1 | /*
|
---|
2 | ctdb ip takeover code
|
---|
3 |
|
---|
4 | Copyright (C) Ronnie Sahlberg 2007
|
---|
5 | Copyright (C) Andrew Tridgell 2007
|
---|
6 | Copyright (C) Martin Schwenke 2011
|
---|
7 |
|
---|
8 | This program is free software; you can redistribute it and/or modify
|
---|
9 | it under the terms of the GNU General Public License as published by
|
---|
10 | the Free Software Foundation; either version 3 of the License, or
|
---|
11 | (at your option) any later version.
|
---|
12 |
|
---|
13 | This program is distributed in the hope that it will be useful,
|
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | GNU General Public License for more details.
|
---|
17 |
|
---|
18 | You should have received a copy of the GNU General Public License
|
---|
19 | along with this program; if not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #include "replace.h"
|
---|
23 | #include "system/network.h"
|
---|
24 |
|
---|
25 | #include "lib/util/debug.h"
|
---|
26 | #include "common/logging.h"
|
---|
27 |
|
---|
28 | #include "protocol/protocol_api.h"
|
---|
29 |
|
---|
30 | #include "server/ipalloc_private.h"
|
---|
31 |
|
---|
32 | /*
|
---|
33 | * This is the length of the longtest common prefix between the IPs.
|
---|
34 | * It is calculated by XOR-ing the 2 IPs together and counting the
|
---|
35 | * number of leading zeroes. The implementation means that all
|
---|
36 | * addresses end up being 128 bits long.
|
---|
37 | *
|
---|
38 | * FIXME? Should we consider IPv4 and IPv6 separately given that the
|
---|
39 | * 12 bytes of 0 prefix padding will hurt the algorithm if there are
|
---|
40 | * lots of nodes and IP addresses?
|
---|
41 | */
|
---|
42 | static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
|
---|
43 | {
|
---|
44 | uint32_t ip1_k[IP_KEYLEN];
|
---|
45 | uint32_t *t;
|
---|
46 | int i;
|
---|
47 | uint32_t x;
|
---|
48 |
|
---|
49 | uint32_t distance = 0;
|
---|
50 |
|
---|
51 | memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
|
---|
52 | t = ip_key(ip2);
|
---|
53 | for (i=0; i<IP_KEYLEN; i++) {
|
---|
54 | x = ip1_k[i] ^ t[i];
|
---|
55 | if (x == 0) {
|
---|
56 | distance += 32;
|
---|
57 | } else {
|
---|
58 | /* Count number of leading zeroes.
|
---|
59 | * FIXME? This could be optimised...
|
---|
60 | */
|
---|
61 | while ((x & (1 << 31)) == 0) {
|
---|
62 | x <<= 1;
|
---|
63 | distance += 1;
|
---|
64 | }
|
---|
65 | }
|
---|
66 | }
|
---|
67 |
|
---|
68 | return distance;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /* Calculate the IP distance for the given IP relative to IPs on the
|
---|
72 | given node. The ips argument is generally the all_ips variable
|
---|
73 | used in the main part of the algorithm.
|
---|
74 | */
|
---|
75 | static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
|
---|
76 | struct public_ip_list *ips,
|
---|
77 | int pnn)
|
---|
78 | {
|
---|
79 | struct public_ip_list *t;
|
---|
80 | uint32_t d;
|
---|
81 |
|
---|
82 | uint32_t sum = 0;
|
---|
83 |
|
---|
84 | for (t = ips; t != NULL; t = t->next) {
|
---|
85 | if (t->pnn != pnn) {
|
---|
86 | continue;
|
---|
87 | }
|
---|
88 |
|
---|
89 | /* Optimisation: We never calculate the distance
|
---|
90 | * between an address and itself. This allows us to
|
---|
91 | * calculate the effect of removing an address from a
|
---|
92 | * node by simply calculating the distance between
|
---|
93 | * that address and all of the exitsing addresses.
|
---|
94 | * Moreover, we assume that we're only ever dealing
|
---|
95 | * with addresses from all_ips so we can identify an
|
---|
96 | * address via a pointer rather than doing a more
|
---|
97 | * expensive address comparison. */
|
---|
98 | if (&(t->addr) == ip) {
|
---|
99 | continue;
|
---|
100 | }
|
---|
101 |
|
---|
102 | d = ip_distance(ip, &(t->addr));
|
---|
103 | sum += d * d; /* Cheaper than pulling in math.h :-) */
|
---|
104 | }
|
---|
105 |
|
---|
106 | return sum;
|
---|
107 | }
|
---|
108 |
|
---|
109 | /* Return the LCP2 imbalance metric for addresses currently assigned
|
---|
110 | to the given node.
|
---|
111 | */
|
---|
112 | static uint32_t lcp2_imbalance(struct public_ip_list * all_ips, int pnn)
|
---|
113 | {
|
---|
114 | struct public_ip_list *t;
|
---|
115 |
|
---|
116 | uint32_t imbalance = 0;
|
---|
117 |
|
---|
118 | for (t = all_ips; t != NULL; t = t->next) {
|
---|
119 | if (t->pnn != pnn) {
|
---|
120 | continue;
|
---|
121 | }
|
---|
122 | /* Pass the rest of the IPs rather than the whole
|
---|
123 | all_ips input list.
|
---|
124 | */
|
---|
125 | imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
|
---|
126 | }
|
---|
127 |
|
---|
128 | return imbalance;
|
---|
129 | }
|
---|
130 |
|
---|
131 | static bool lcp2_init(struct ipalloc_state *ipalloc_state,
|
---|
132 | uint32_t **lcp2_imbalances,
|
---|
133 | bool **rebalance_candidates)
|
---|
134 | {
|
---|
135 | int i, numnodes;
|
---|
136 | struct public_ip_list *t;
|
---|
137 |
|
---|
138 | numnodes = ipalloc_state->num;
|
---|
139 |
|
---|
140 | *rebalance_candidates = talloc_array(ipalloc_state, bool, numnodes);
|
---|
141 | if (*rebalance_candidates == NULL) {
|
---|
142 | DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
|
---|
143 | return false;
|
---|
144 | }
|
---|
145 | *lcp2_imbalances = talloc_array(ipalloc_state, uint32_t, numnodes);
|
---|
146 | if (*lcp2_imbalances == NULL) {
|
---|
147 | DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
|
---|
148 | return false;
|
---|
149 | }
|
---|
150 |
|
---|
151 | for (i=0; i<numnodes; i++) {
|
---|
152 | (*lcp2_imbalances)[i] =
|
---|
153 | lcp2_imbalance(ipalloc_state->all_ips, i);
|
---|
154 | /* First step: assume all nodes are candidates */
|
---|
155 | (*rebalance_candidates)[i] = true;
|
---|
156 | }
|
---|
157 |
|
---|
158 | /* 2nd step: if a node has IPs assigned then it must have been
|
---|
159 | * healthy before, so we remove it from consideration. This
|
---|
160 | * is overkill but is all we have because we don't maintain
|
---|
161 | * state between takeover runs. An alternative would be to
|
---|
162 | * keep state and invalidate it every time the recovery master
|
---|
163 | * changes.
|
---|
164 | */
|
---|
165 | for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
|
---|
166 | if (t->pnn != -1) {
|
---|
167 | (*rebalance_candidates)[t->pnn] = false;
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 | /* 3rd step: if a node is forced to re-balance then
|
---|
172 | we allow failback onto the node */
|
---|
173 | if (ipalloc_state->force_rebalance_nodes == NULL) {
|
---|
174 | return true;
|
---|
175 | }
|
---|
176 | for (i = 0;
|
---|
177 | i < talloc_array_length(ipalloc_state->force_rebalance_nodes);
|
---|
178 | i++) {
|
---|
179 | uint32_t pnn = ipalloc_state->force_rebalance_nodes[i];
|
---|
180 | if (pnn >= numnodes) {
|
---|
181 | DEBUG(DEBUG_ERR,
|
---|
182 | (__location__ "unknown node %u\n", pnn));
|
---|
183 | continue;
|
---|
184 | }
|
---|
185 |
|
---|
186 | DEBUG(DEBUG_NOTICE,
|
---|
187 | ("Forcing rebalancing of IPs to node %u\n", pnn));
|
---|
188 | (*rebalance_candidates)[pnn] = true;
|
---|
189 | }
|
---|
190 |
|
---|
191 | return true;
|
---|
192 | }
|
---|
193 |
|
---|
194 | /* Allocate any unassigned addresses using the LCP2 algorithm to find
|
---|
195 | * the IP/node combination that will cost the least.
|
---|
196 | */
|
---|
197 | static void lcp2_allocate_unassigned(struct ipalloc_state *ipalloc_state,
|
---|
198 | uint32_t *lcp2_imbalances)
|
---|
199 | {
|
---|
200 | struct public_ip_list *t;
|
---|
201 | int dstnode, numnodes;
|
---|
202 |
|
---|
203 | int minnode;
|
---|
204 | uint32_t mindsum, dstdsum, dstimbl, minimbl;
|
---|
205 | struct public_ip_list *minip;
|
---|
206 |
|
---|
207 | bool should_loop = true;
|
---|
208 | bool have_unassigned = true;
|
---|
209 |
|
---|
210 | numnodes = ipalloc_state->num;
|
---|
211 |
|
---|
212 | while (have_unassigned && should_loop) {
|
---|
213 | should_loop = false;
|
---|
214 |
|
---|
215 | DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
|
---|
216 | DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
|
---|
217 |
|
---|
218 | minnode = -1;
|
---|
219 | mindsum = 0;
|
---|
220 | minip = NULL;
|
---|
221 |
|
---|
222 | /* loop over each unassigned ip. */
|
---|
223 | for (t = ipalloc_state->all_ips; t != NULL ; t = t->next) {
|
---|
224 | if (t->pnn != -1) {
|
---|
225 | continue;
|
---|
226 | }
|
---|
227 |
|
---|
228 | for (dstnode = 0; dstnode < numnodes; dstnode++) {
|
---|
229 | /* only check nodes that can actually takeover this ip */
|
---|
230 | if (!can_node_takeover_ip(ipalloc_state,
|
---|
231 | dstnode,
|
---|
232 | t)) {
|
---|
233 | /* no it couldnt so skip to the next node */
|
---|
234 | continue;
|
---|
235 | }
|
---|
236 |
|
---|
237 | dstdsum = ip_distance_2_sum(&(t->addr),
|
---|
238 | ipalloc_state->all_ips,
|
---|
239 | dstnode);
|
---|
240 | dstimbl = lcp2_imbalances[dstnode] + dstdsum;
|
---|
241 | DEBUG(DEBUG_DEBUG,
|
---|
242 | (" %s -> %d [+%d]\n",
|
---|
243 | ctdb_sock_addr_to_string(ipalloc_state,
|
---|
244 | &(t->addr)),
|
---|
245 | dstnode,
|
---|
246 | dstimbl - lcp2_imbalances[dstnode]));
|
---|
247 |
|
---|
248 |
|
---|
249 | if ((minnode == -1) || (dstdsum < mindsum)) {
|
---|
250 | minnode = dstnode;
|
---|
251 | minimbl = dstimbl;
|
---|
252 | mindsum = dstdsum;
|
---|
253 | minip = t;
|
---|
254 | should_loop = true;
|
---|
255 | }
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
|
---|
260 |
|
---|
261 | /* If we found one then assign it to the given node. */
|
---|
262 | if (minnode != -1) {
|
---|
263 | minip->pnn = minnode;
|
---|
264 | lcp2_imbalances[minnode] = minimbl;
|
---|
265 | DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
|
---|
266 | ctdb_sock_addr_to_string(
|
---|
267 | ipalloc_state,
|
---|
268 | &(minip->addr)),
|
---|
269 | minnode,
|
---|
270 | mindsum));
|
---|
271 | }
|
---|
272 |
|
---|
273 | /* There might be a better way but at least this is clear. */
|
---|
274 | have_unassigned = false;
|
---|
275 | for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
|
---|
276 | if (t->pnn == -1) {
|
---|
277 | have_unassigned = true;
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 |
|
---|
282 | /* We know if we have an unassigned addresses so we might as
|
---|
283 | * well optimise.
|
---|
284 | */
|
---|
285 | if (have_unassigned) {
|
---|
286 | for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
|
---|
287 | if (t->pnn == -1) {
|
---|
288 | DEBUG(DEBUG_WARNING,
|
---|
289 | ("Failed to find node to cover ip %s\n",
|
---|
290 | ctdb_sock_addr_to_string(ipalloc_state,
|
---|
291 | &t->addr)));
|
---|
292 | }
|
---|
293 | }
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | /* LCP2 algorithm for rebalancing the cluster. Given a candidate node
|
---|
298 | * to move IPs from, determines the best IP/destination node
|
---|
299 | * combination to move from the source node.
|
---|
300 | */
|
---|
301 | static bool lcp2_failback_candidate(struct ipalloc_state *ipalloc_state,
|
---|
302 | int srcnode,
|
---|
303 | uint32_t *lcp2_imbalances,
|
---|
304 | bool *rebalance_candidates)
|
---|
305 | {
|
---|
306 | int dstnode, mindstnode, numnodes;
|
---|
307 | uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
|
---|
308 | uint32_t minsrcimbl, mindstimbl;
|
---|
309 | struct public_ip_list *minip;
|
---|
310 | struct public_ip_list *t;
|
---|
311 |
|
---|
312 | /* Find an IP and destination node that best reduces imbalance. */
|
---|
313 | srcimbl = 0;
|
---|
314 | minip = NULL;
|
---|
315 | minsrcimbl = 0;
|
---|
316 | mindstnode = -1;
|
---|
317 | mindstimbl = 0;
|
---|
318 |
|
---|
319 | numnodes = ipalloc_state->num;
|
---|
320 |
|
---|
321 | DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
|
---|
322 | DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n",
|
---|
323 | srcnode, lcp2_imbalances[srcnode]));
|
---|
324 |
|
---|
325 | for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
|
---|
326 | /* Only consider addresses on srcnode. */
|
---|
327 | if (t->pnn != srcnode) {
|
---|
328 | continue;
|
---|
329 | }
|
---|
330 |
|
---|
331 | /* What is this IP address costing the source node? */
|
---|
332 | srcdsum = ip_distance_2_sum(&(t->addr),
|
---|
333 | ipalloc_state->all_ips,
|
---|
334 | srcnode);
|
---|
335 | srcimbl = lcp2_imbalances[srcnode] - srcdsum;
|
---|
336 |
|
---|
337 | /* Consider this IP address would cost each potential
|
---|
338 | * destination node. Destination nodes are limited to
|
---|
339 | * those that are newly healthy, since we don't want
|
---|
340 | * to do gratuitous failover of IPs just to make minor
|
---|
341 | * balance improvements.
|
---|
342 | */
|
---|
343 | for (dstnode = 0; dstnode < numnodes; dstnode++) {
|
---|
344 | if (!rebalance_candidates[dstnode]) {
|
---|
345 | continue;
|
---|
346 | }
|
---|
347 |
|
---|
348 | /* only check nodes that can actually takeover this ip */
|
---|
349 | if (!can_node_takeover_ip(ipalloc_state, dstnode,
|
---|
350 | t)) {
|
---|
351 | /* no it couldnt so skip to the next node */
|
---|
352 | continue;
|
---|
353 | }
|
---|
354 |
|
---|
355 | dstdsum = ip_distance_2_sum(&(t->addr),
|
---|
356 | ipalloc_state->all_ips,
|
---|
357 | dstnode);
|
---|
358 | dstimbl = lcp2_imbalances[dstnode] + dstdsum;
|
---|
359 | DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
|
---|
360 | srcnode, -srcdsum,
|
---|
361 | ctdb_sock_addr_to_string(
|
---|
362 | ipalloc_state, &(t->addr)),
|
---|
363 | dstnode, dstdsum));
|
---|
364 |
|
---|
365 | if ((dstimbl < lcp2_imbalances[srcnode]) &&
|
---|
366 | (dstdsum < srcdsum) && \
|
---|
367 | ((mindstnode == -1) || \
|
---|
368 | ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
|
---|
369 |
|
---|
370 | minip = t;
|
---|
371 | minsrcimbl = srcimbl;
|
---|
372 | mindstnode = dstnode;
|
---|
373 | mindstimbl = dstimbl;
|
---|
374 | }
|
---|
375 | }
|
---|
376 | }
|
---|
377 | DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
|
---|
378 |
|
---|
379 | if (mindstnode != -1) {
|
---|
380 | /* We found a move that makes things better... */
|
---|
381 | DEBUG(DEBUG_INFO,
|
---|
382 | ("%d [%d] -> %s -> %d [+%d]\n",
|
---|
383 | srcnode, minsrcimbl - lcp2_imbalances[srcnode],
|
---|
384 | ctdb_sock_addr_to_string(ipalloc_state, &(minip->addr)),
|
---|
385 | mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
|
---|
386 |
|
---|
387 |
|
---|
388 | lcp2_imbalances[srcnode] = minsrcimbl;
|
---|
389 | lcp2_imbalances[mindstnode] = mindstimbl;
|
---|
390 | minip->pnn = mindstnode;
|
---|
391 |
|
---|
392 | return true;
|
---|
393 | }
|
---|
394 |
|
---|
395 | return false;
|
---|
396 | }
|
---|
397 |
|
---|
398 | struct lcp2_imbalance_pnn {
|
---|
399 | uint32_t imbalance;
|
---|
400 | int pnn;
|
---|
401 | };
|
---|
402 |
|
---|
403 | static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
|
---|
404 | {
|
---|
405 | const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
|
---|
406 | const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
|
---|
407 |
|
---|
408 | if (lipa->imbalance > lipb->imbalance) {
|
---|
409 | return -1;
|
---|
410 | } else if (lipa->imbalance == lipb->imbalance) {
|
---|
411 | return 0;
|
---|
412 | } else {
|
---|
413 | return 1;
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | /* LCP2 algorithm for rebalancing the cluster. This finds the source
|
---|
418 | * node with the highest LCP2 imbalance, and then determines the best
|
---|
419 | * IP/destination node combination to move from the source node.
|
---|
420 | */
|
---|
421 | static void lcp2_failback(struct ipalloc_state *ipalloc_state,
|
---|
422 | uint32_t *lcp2_imbalances,
|
---|
423 | bool *rebalance_candidates)
|
---|
424 | {
|
---|
425 | int i, numnodes;
|
---|
426 | struct lcp2_imbalance_pnn * lips;
|
---|
427 | bool again;
|
---|
428 |
|
---|
429 | numnodes = ipalloc_state->num;
|
---|
430 |
|
---|
431 | try_again:
|
---|
432 | /* Put the imbalances and nodes into an array, sort them and
|
---|
433 | * iterate through candidates. Usually the 1st one will be
|
---|
434 | * used, so this doesn't cost much...
|
---|
435 | */
|
---|
436 | DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
|
---|
437 | DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
|
---|
438 | lips = talloc_array(ipalloc_state, struct lcp2_imbalance_pnn, numnodes);
|
---|
439 | for (i = 0; i < numnodes; i++) {
|
---|
440 | lips[i].imbalance = lcp2_imbalances[i];
|
---|
441 | lips[i].pnn = i;
|
---|
442 | DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
|
---|
443 | }
|
---|
444 | qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
|
---|
445 | lcp2_cmp_imbalance_pnn);
|
---|
446 |
|
---|
447 | again = false;
|
---|
448 | for (i = 0; i < numnodes; i++) {
|
---|
449 | /* This means that all nodes had 0 or 1 addresses, so
|
---|
450 | * can't be imbalanced.
|
---|
451 | */
|
---|
452 | if (lips[i].imbalance == 0) {
|
---|
453 | break;
|
---|
454 | }
|
---|
455 |
|
---|
456 | if (lcp2_failback_candidate(ipalloc_state,
|
---|
457 | lips[i].pnn,
|
---|
458 | lcp2_imbalances,
|
---|
459 | rebalance_candidates)) {
|
---|
460 | again = true;
|
---|
461 | break;
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 | talloc_free(lips);
|
---|
466 | if (again) {
|
---|
467 | goto try_again;
|
---|
468 | }
|
---|
469 | }
|
---|
470 |
|
---|
471 | bool ipalloc_lcp2(struct ipalloc_state *ipalloc_state)
|
---|
472 | {
|
---|
473 | uint32_t *lcp2_imbalances;
|
---|
474 | bool *rebalance_candidates;
|
---|
475 | int numnodes, num_rebalance_candidates, i;
|
---|
476 | bool ret = true;
|
---|
477 |
|
---|
478 | unassign_unsuitable_ips(ipalloc_state);
|
---|
479 |
|
---|
480 | if (!lcp2_init(ipalloc_state,
|
---|
481 | &lcp2_imbalances, &rebalance_candidates)) {
|
---|
482 | ret = false;
|
---|
483 | goto finished;
|
---|
484 | }
|
---|
485 |
|
---|
486 | lcp2_allocate_unassigned(ipalloc_state, lcp2_imbalances);
|
---|
487 |
|
---|
488 | /* If we don't want IPs to fail back then don't rebalance IPs. */
|
---|
489 | if (1 == ipalloc_state->no_ip_failback) {
|
---|
490 | goto finished;
|
---|
491 | }
|
---|
492 |
|
---|
493 | /* It is only worth continuing if we have suitable target
|
---|
494 | * nodes to transfer IPs to. This check is much cheaper than
|
---|
495 | * continuing on...
|
---|
496 | */
|
---|
497 | numnodes = ipalloc_state->num;
|
---|
498 | num_rebalance_candidates = 0;
|
---|
499 | for (i=0; i<numnodes; i++) {
|
---|
500 | if (rebalance_candidates[i]) {
|
---|
501 | num_rebalance_candidates++;
|
---|
502 | }
|
---|
503 | }
|
---|
504 | if (num_rebalance_candidates == 0) {
|
---|
505 | goto finished;
|
---|
506 | }
|
---|
507 |
|
---|
508 | /* Now, try to make sure the ip adresses are evenly distributed
|
---|
509 | across the nodes.
|
---|
510 | */
|
---|
511 | lcp2_failback(ipalloc_state, lcp2_imbalances, rebalance_candidates);
|
---|
512 |
|
---|
513 | finished:
|
---|
514 | return ret;
|
---|
515 | }
|
---|