1 | #if defined(HAVE_UNISTD_H)
|
---|
2 | #include <unistd.h>
|
---|
3 | #endif
|
---|
4 |
|
---|
5 | #include <sys/types.h>
|
---|
6 |
|
---|
7 | #ifdef HAVE_STRING_H
|
---|
8 | #include <string.h>
|
---|
9 | #endif
|
---|
10 |
|
---|
11 | #ifdef HAVE_STRINGS_H
|
---|
12 | #include <strings.h>
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #if !defined(HAVE_CRYPT)
|
---|
16 |
|
---|
17 | /*
|
---|
18 | This bit of code was derived from the UFC-crypt package which
|
---|
19 | carries the following copyright
|
---|
20 |
|
---|
21 | Modified for use by Samba by Andrew Tridgell, October 1994
|
---|
22 |
|
---|
23 | Note that this routine is only faster on some machines. Under Linux 1.1.51
|
---|
24 | libc 4.5.26 I actually found this routine to be slightly slower.
|
---|
25 |
|
---|
26 | Under SunOS I found a huge speedup by using these routines
|
---|
27 | (a factor of 20 or so)
|
---|
28 |
|
---|
29 | Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
|
---|
30 | that this crypt routine may sometimes get the wrong answer. Only
|
---|
31 | use UFC_CRYT if you really need it.
|
---|
32 |
|
---|
33 | */
|
---|
34 |
|
---|
35 | /*
|
---|
36 | * UFC-crypt: ultra fast crypt(3) implementation
|
---|
37 | *
|
---|
38 | * Copyright (C) 1991-1998, Free Software Foundation, Inc.
|
---|
39 | *
|
---|
40 | * This library is free software; you can redistribute it and/or
|
---|
41 | * modify it under the terms of the GNU Lesser General Public
|
---|
42 | * License as published by the Free Software Foundation; either
|
---|
43 | * version 3 of the License, or (at your option) any later version.
|
---|
44 | *
|
---|
45 | * This library is distributed in the hope that it will be useful,
|
---|
46 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
47 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
48 | * Library General Public License for more details.
|
---|
49 | *
|
---|
50 | * You should have received a copy of the GNU Lesser General Public
|
---|
51 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
52 | *
|
---|
53 | * @(#)crypt_util.c 2.31 02/08/92
|
---|
54 | *
|
---|
55 | * Support routines
|
---|
56 | *
|
---|
57 | */
|
---|
58 |
|
---|
59 |
|
---|
60 | #ifndef long32
|
---|
61 | #if (SIZEOF_INT == 4)
|
---|
62 | #define long32 int
|
---|
63 | #elif (SIZEOF_LONG == 4)
|
---|
64 | #define long32 long
|
---|
65 | #elif (SIZEOF_SHORT == 4)
|
---|
66 | #define long32 short
|
---|
67 | #else
|
---|
68 | /* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */
|
---|
69 | #define long32 int
|
---|
70 | #endif
|
---|
71 | #endif
|
---|
72 |
|
---|
73 | #ifndef long64
|
---|
74 | #ifdef HAVE_LONGLONG
|
---|
75 | #define long64 long long long
|
---|
76 | #endif
|
---|
77 | #endif
|
---|
78 |
|
---|
79 | #ifndef ufc_long
|
---|
80 | #define ufc_long unsigned
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | #ifndef _UFC_64_
|
---|
84 | #define _UFC_32_
|
---|
85 | #endif
|
---|
86 |
|
---|
87 | /*
|
---|
88 | * Permutation done once on the 56 bit
|
---|
89 | * key derived from the original 8 byte ASCII key.
|
---|
90 | */
|
---|
91 | static int pc1[56] = {
|
---|
92 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
---|
93 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
---|
94 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
---|
95 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
---|
96 | };
|
---|
97 |
|
---|
98 | /*
|
---|
99 | * How much to rotate each 28 bit half of the pc1 permutated
|
---|
100 | * 56 bit key before using pc2 to give the i' key
|
---|
101 | */
|
---|
102 | static int rots[16] = {
|
---|
103 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
---|
104 | };
|
---|
105 |
|
---|
106 | /*
|
---|
107 | * Permutation giving the key
|
---|
108 | * of the i' DES round
|
---|
109 | */
|
---|
110 | static int pc2[48] = {
|
---|
111 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
---|
112 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
---|
113 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
---|
114 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
---|
115 | };
|
---|
116 |
|
---|
117 | /*
|
---|
118 | * The E expansion table which selects
|
---|
119 | * bits from the 32 bit intermediate result.
|
---|
120 | */
|
---|
121 | static int esel[48] = {
|
---|
122 | 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
|
---|
123 | 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
|
---|
124 | 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
|
---|
125 | 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
|
---|
126 | };
|
---|
127 | static int e_inverse[64];
|
---|
128 |
|
---|
129 | /*
|
---|
130 | * Permutation done on the
|
---|
131 | * result of sbox lookups
|
---|
132 | */
|
---|
133 | static int perm32[32] = {
|
---|
134 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
---|
135 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
---|
136 | };
|
---|
137 |
|
---|
138 | /*
|
---|
139 | * The sboxes
|
---|
140 | */
|
---|
141 | static int sbox[8][4][16]= {
|
---|
142 | { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
|
---|
143 | { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
|
---|
144 | { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
|
---|
145 | { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
|
---|
146 | },
|
---|
147 |
|
---|
148 | { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
|
---|
149 | { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
|
---|
150 | { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
|
---|
151 | { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
|
---|
152 | },
|
---|
153 |
|
---|
154 | { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
|
---|
155 | { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
|
---|
156 | { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
|
---|
157 | { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
|
---|
158 | },
|
---|
159 |
|
---|
160 | { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
|
---|
161 | { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
|
---|
162 | { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
|
---|
163 | { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
|
---|
164 | },
|
---|
165 |
|
---|
166 | { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
|
---|
167 | { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
|
---|
168 | { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
|
---|
169 | { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
|
---|
170 | },
|
---|
171 |
|
---|
172 | { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
|
---|
173 | { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
|
---|
174 | { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
|
---|
175 | { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
|
---|
176 | },
|
---|
177 |
|
---|
178 | { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
|
---|
179 | { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
|
---|
180 | { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
|
---|
181 | { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
|
---|
182 | },
|
---|
183 |
|
---|
184 | { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
|
---|
185 | { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
|
---|
186 | { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
|
---|
187 | { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
|
---|
188 | }
|
---|
189 | };
|
---|
190 |
|
---|
191 | /*
|
---|
192 | * This is the final
|
---|
193 | * permutation matrix
|
---|
194 | */
|
---|
195 | static int final_perm[64] = {
|
---|
196 | 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
|
---|
197 | 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
|
---|
198 | 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
|
---|
199 | 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
|
---|
200 | };
|
---|
201 |
|
---|
202 | /*
|
---|
203 | * The 16 DES keys in BITMASK format
|
---|
204 | */
|
---|
205 | #ifdef _UFC_32_
|
---|
206 | long32 _ufc_keytab[16][2];
|
---|
207 | #endif
|
---|
208 |
|
---|
209 | #ifdef _UFC_64_
|
---|
210 | long64 _ufc_keytab[16];
|
---|
211 | #endif
|
---|
212 |
|
---|
213 |
|
---|
214 | #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
|
---|
215 | #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
|
---|
216 |
|
---|
217 | /* Macro to set a bit (0..23) */
|
---|
218 | #define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
|
---|
219 |
|
---|
220 | /*
|
---|
221 | * sb arrays:
|
---|
222 | *
|
---|
223 | * Workhorses of the inner loop of the DES implementation.
|
---|
224 | * They do sbox lookup, shifting of this value, 32 bit
|
---|
225 | * permutation and E permutation for the next round.
|
---|
226 | *
|
---|
227 | * Kept in 'BITMASK' format.
|
---|
228 | */
|
---|
229 |
|
---|
230 | #ifdef _UFC_32_
|
---|
231 | long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
|
---|
232 | static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
---|
233 | #endif
|
---|
234 |
|
---|
235 | #ifdef _UFC_64_
|
---|
236 | long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
|
---|
237 | static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
---|
238 | #endif
|
---|
239 |
|
---|
240 | /*
|
---|
241 | * eperm32tab: do 32 bit permutation and E selection
|
---|
242 | *
|
---|
243 | * The first index is the byte number in the 32 bit value to be permuted
|
---|
244 | * - second - is the value of this byte
|
---|
245 | * - third - selects the two 32 bit values
|
---|
246 | *
|
---|
247 | * The table is used and generated internally in init_des to speed it up
|
---|
248 | */
|
---|
249 | static ufc_long eperm32tab[4][256][2];
|
---|
250 |
|
---|
251 | /*
|
---|
252 | * do_pc1: permform pc1 permutation in the key schedule generation.
|
---|
253 | *
|
---|
254 | * The first index is the byte number in the 8 byte ASCII key
|
---|
255 | * - second - - the two 28 bits halfs of the result
|
---|
256 | * - third - selects the 7 bits actually used of each byte
|
---|
257 | *
|
---|
258 | * The result is kept with 28 bit per 32 bit with the 4 most significant
|
---|
259 | * bits zero.
|
---|
260 | */
|
---|
261 | static ufc_long do_pc1[8][2][128];
|
---|
262 |
|
---|
263 | /*
|
---|
264 | * do_pc2: permform pc2 permutation in the key schedule generation.
|
---|
265 | *
|
---|
266 | * The first index is the septet number in the two 28 bit intermediate values
|
---|
267 | * - second - - - septet values
|
---|
268 | *
|
---|
269 | * Knowledge of the structure of the pc2 permutation is used.
|
---|
270 | *
|
---|
271 | * The result is kept with 28 bit per 32 bit with the 4 most significant
|
---|
272 | * bits zero.
|
---|
273 | */
|
---|
274 | static ufc_long do_pc2[8][128];
|
---|
275 |
|
---|
276 | /*
|
---|
277 | * efp: undo an extra e selection and do final
|
---|
278 | * permutation giving the DES result.
|
---|
279 | *
|
---|
280 | * Invoked 6 bit a time on two 48 bit values
|
---|
281 | * giving two 32 bit longs.
|
---|
282 | */
|
---|
283 | static ufc_long efp[16][64][2];
|
---|
284 |
|
---|
285 | static unsigned char bytemask[8] = {
|
---|
286 | 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
|
---|
287 | };
|
---|
288 |
|
---|
289 | static ufc_long longmask[32] = {
|
---|
290 | 0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
---|
291 | 0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
---|
292 | 0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
---|
293 | 0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
---|
294 | 0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
---|
295 | 0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
---|
296 | 0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
---|
297 | 0x00000008, 0x00000004, 0x00000002, 0x00000001
|
---|
298 | };
|
---|
299 |
|
---|
300 |
|
---|
301 | /*
|
---|
302 | * Silly rewrite of 'bzero'. I do so
|
---|
303 | * because some machines don't have
|
---|
304 | * bzero and some don't have memset.
|
---|
305 | */
|
---|
306 |
|
---|
307 | static void clearmem(char *start, int cnt)
|
---|
308 | { while(cnt--)
|
---|
309 | *start++ = '\0';
|
---|
310 | }
|
---|
311 |
|
---|
312 | static int initialized = 0;
|
---|
313 |
|
---|
314 | /* lookup a 6 bit value in sbox */
|
---|
315 |
|
---|
316 | #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
|
---|
317 |
|
---|
318 | /*
|
---|
319 | * Initialize unit - may be invoked directly
|
---|
320 | * by fcrypt users.
|
---|
321 | */
|
---|
322 |
|
---|
323 | static void ufc_init_des(void)
|
---|
324 | { int comes_from_bit;
|
---|
325 | int bit, sg;
|
---|
326 | ufc_long j;
|
---|
327 | ufc_long mask1, mask2;
|
---|
328 |
|
---|
329 | /*
|
---|
330 | * Create the do_pc1 table used
|
---|
331 | * to affect pc1 permutation
|
---|
332 | * when generating keys
|
---|
333 | */
|
---|
334 | for(bit = 0; bit < 56; bit++) {
|
---|
335 | comes_from_bit = pc1[bit] - 1;
|
---|
336 | mask1 = bytemask[comes_from_bit % 8 + 1];
|
---|
337 | mask2 = longmask[bit % 28 + 4];
|
---|
338 | for(j = 0; j < 128; j++) {
|
---|
339 | if(j & mask1)
|
---|
340 | do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
|
---|
341 | }
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*
|
---|
345 | * Create the do_pc2 table used
|
---|
346 | * to affect pc2 permutation when
|
---|
347 | * generating keys
|
---|
348 | */
|
---|
349 | for(bit = 0; bit < 48; bit++) {
|
---|
350 | comes_from_bit = pc2[bit] - 1;
|
---|
351 | mask1 = bytemask[comes_from_bit % 7 + 1];
|
---|
352 | mask2 = BITMASK(bit % 24);
|
---|
353 | for(j = 0; j < 128; j++) {
|
---|
354 | if(j & mask1)
|
---|
355 | do_pc2[comes_from_bit / 7][j] |= mask2;
|
---|
356 | }
|
---|
357 | }
|
---|
358 |
|
---|
359 | /*
|
---|
360 | * Now generate the table used to do combined
|
---|
361 | * 32 bit permutation and e expansion
|
---|
362 | *
|
---|
363 | * We use it because we have to permute 16384 32 bit
|
---|
364 | * longs into 48 bit in order to initialize sb.
|
---|
365 | *
|
---|
366 | * Looping 48 rounds per permutation becomes
|
---|
367 | * just too slow...
|
---|
368 | *
|
---|
369 | */
|
---|
370 |
|
---|
371 | clearmem((char*)eperm32tab, sizeof(eperm32tab));
|
---|
372 |
|
---|
373 | for(bit = 0; bit < 48; bit++) {
|
---|
374 | ufc_long inner_mask1,comes_from;
|
---|
375 |
|
---|
376 | comes_from = perm32[esel[bit]-1]-1;
|
---|
377 | inner_mask1 = bytemask[comes_from % 8];
|
---|
378 |
|
---|
379 | for(j = 256; j--;) {
|
---|
380 | if(j & inner_mask1)
|
---|
381 | eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | /*
|
---|
386 | * Create the sb tables:
|
---|
387 | *
|
---|
388 | * For each 12 bit segment of an 48 bit intermediate
|
---|
389 | * result, the sb table precomputes the two 4 bit
|
---|
390 | * values of the sbox lookups done with the two 6
|
---|
391 | * bit halves, shifts them to their proper place,
|
---|
392 | * sends them through perm32 and finally E expands
|
---|
393 | * them so that they are ready for the next
|
---|
394 | * DES round.
|
---|
395 | *
|
---|
396 | */
|
---|
397 | for(sg = 0; sg < 4; sg++) {
|
---|
398 | int j1, j2;
|
---|
399 | int s1, s2;
|
---|
400 |
|
---|
401 | for(j1 = 0; j1 < 64; j1++) {
|
---|
402 | s1 = s_lookup(2 * sg, j1);
|
---|
403 | for(j2 = 0; j2 < 64; j2++) {
|
---|
404 | ufc_long to_permute, inx;
|
---|
405 |
|
---|
406 | s2 = s_lookup(2 * sg + 1, j2);
|
---|
407 | to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
|
---|
408 |
|
---|
409 | #ifdef _UFC_32_
|
---|
410 | inx = ((j1 << 6) | j2) << 1;
|
---|
411 | sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
|
---|
412 | sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
---|
413 | sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
|
---|
414 | sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
---|
415 | sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
|
---|
416 | sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
---|
417 | sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
|
---|
418 | sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
|
---|
419 | #endif
|
---|
420 | #ifdef _UFC_64_
|
---|
421 | inx = ((j1 << 6) | j2);
|
---|
422 | sb[sg][inx] =
|
---|
423 | ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
|
---|
424 | (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
---|
425 | sb[sg][inx] |=
|
---|
426 | ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
|
---|
427 | (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
---|
428 | sb[sg][inx] |=
|
---|
429 | ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
|
---|
430 | (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
---|
431 | sb[sg][inx] |=
|
---|
432 | ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
|
---|
433 | (long64)eperm32tab[3][(to_permute) & 0xff][1];
|
---|
434 | #endif
|
---|
435 | }
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | /*
|
---|
440 | * Create an inverse matrix for esel telling
|
---|
441 | * where to plug out bits if undoing it
|
---|
442 | */
|
---|
443 | for(bit=48; bit--;) {
|
---|
444 | e_inverse[esel[bit] - 1 ] = bit;
|
---|
445 | e_inverse[esel[bit] - 1 + 32] = bit + 48;
|
---|
446 | }
|
---|
447 |
|
---|
448 | /*
|
---|
449 | * create efp: the matrix used to
|
---|
450 | * undo the E expansion and effect final permutation
|
---|
451 | */
|
---|
452 | clearmem((char*)efp, sizeof efp);
|
---|
453 | for(bit = 0; bit < 64; bit++) {
|
---|
454 | int o_bit, o_long;
|
---|
455 | ufc_long word_value, inner_mask1, inner_mask2;
|
---|
456 | int comes_from_f_bit, comes_from_e_bit;
|
---|
457 | int comes_from_word, bit_within_word;
|
---|
458 |
|
---|
459 | /* See where bit i belongs in the two 32 bit long's */
|
---|
460 | o_long = bit / 32; /* 0..1 */
|
---|
461 | o_bit = bit % 32; /* 0..31 */
|
---|
462 |
|
---|
463 | /*
|
---|
464 | * And find a bit in the e permutated value setting this bit.
|
---|
465 | *
|
---|
466 | * Note: the e selection may have selected the same bit several
|
---|
467 | * times. By the initialization of e_inverse, we only look
|
---|
468 | * for one specific instance.
|
---|
469 | */
|
---|
470 | comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
|
---|
471 | comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
|
---|
472 | comes_from_word = comes_from_e_bit / 6; /* 0..15 */
|
---|
473 | bit_within_word = comes_from_e_bit % 6; /* 0..5 */
|
---|
474 |
|
---|
475 | inner_mask1 = longmask[bit_within_word + 26];
|
---|
476 | inner_mask2 = longmask[o_bit];
|
---|
477 |
|
---|
478 | for(word_value = 64; word_value--;) {
|
---|
479 | if(word_value & inner_mask1)
|
---|
480 | efp[comes_from_word][word_value][o_long] |= inner_mask2;
|
---|
481 | }
|
---|
482 | }
|
---|
483 | initialized++;
|
---|
484 | }
|
---|
485 |
|
---|
486 | /*
|
---|
487 | * Process the elements of the sb table permuting the
|
---|
488 | * bits swapped in the expansion by the current salt.
|
---|
489 | */
|
---|
490 |
|
---|
491 | #ifdef _UFC_32_
|
---|
492 | static void shuffle_sb(long32 *k, ufc_long saltbits)
|
---|
493 | { ufc_long j;
|
---|
494 | long32 x;
|
---|
495 | for(j=4096; j--;) {
|
---|
496 | x = (k[0] ^ k[1]) & (long32)saltbits;
|
---|
497 | *k++ ^= x;
|
---|
498 | *k++ ^= x;
|
---|
499 | }
|
---|
500 | }
|
---|
501 | #endif
|
---|
502 |
|
---|
503 | #ifdef _UFC_64_
|
---|
504 | static void shuffle_sb(long64 *k, ufc_long saltbits)
|
---|
505 | { ufc_long j;
|
---|
506 | long64 x;
|
---|
507 | for(j=4096; j--;) {
|
---|
508 | x = ((*k >> 32) ^ *k) & (long64)saltbits;
|
---|
509 | *k++ ^= (x << 32) | x;
|
---|
510 | }
|
---|
511 | }
|
---|
512 | #endif
|
---|
513 |
|
---|
514 | /*
|
---|
515 | * Setup the unit for a new salt
|
---|
516 | * Hopefully we'll not see a new salt in each crypt call.
|
---|
517 | */
|
---|
518 |
|
---|
519 | static unsigned char current_salt[3] = "&&"; /* invalid value */
|
---|
520 | static ufc_long current_saltbits = 0;
|
---|
521 | static int direction = 0;
|
---|
522 |
|
---|
523 | static void setup_salt(const char *s1)
|
---|
524 | { ufc_long i, j, saltbits;
|
---|
525 | const unsigned char *s2 = (const unsigned char *)s1;
|
---|
526 |
|
---|
527 | if(!initialized)
|
---|
528 | ufc_init_des();
|
---|
529 |
|
---|
530 | if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
|
---|
531 | return;
|
---|
532 | current_salt[0] = s2[0]; current_salt[1] = s2[1];
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * This is the only crypt change to DES:
|
---|
536 | * entries are swapped in the expansion table
|
---|
537 | * according to the bits set in the salt.
|
---|
538 | */
|
---|
539 | saltbits = 0;
|
---|
540 | for(i = 0; i < 2; i++) {
|
---|
541 | long c=ascii_to_bin(s2[i]);
|
---|
542 | if(c < 0 || c > 63)
|
---|
543 | c = 0;
|
---|
544 | for(j = 0; j < 6; j++) {
|
---|
545 | if((c >> j) & 0x1)
|
---|
546 | saltbits |= BITMASK(6 * i + j);
|
---|
547 | }
|
---|
548 | }
|
---|
549 |
|
---|
550 | /*
|
---|
551 | * Permute the sb table values
|
---|
552 | * to reflect the changed e
|
---|
553 | * selection table
|
---|
554 | */
|
---|
555 | shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
|
---|
556 | shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
|
---|
557 | shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
|
---|
558 | shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
|
---|
559 |
|
---|
560 | current_saltbits = saltbits;
|
---|
561 | }
|
---|
562 |
|
---|
563 | static void ufc_mk_keytab(char *key)
|
---|
564 | { ufc_long v1, v2, *k1;
|
---|
565 | int i;
|
---|
566 | #ifdef _UFC_32_
|
---|
567 | long32 v, *k2 = &_ufc_keytab[0][0];
|
---|
568 | #endif
|
---|
569 | #ifdef _UFC_64_
|
---|
570 | long64 v, *k2 = &_ufc_keytab[0];
|
---|
571 | #endif
|
---|
572 |
|
---|
573 | v1 = v2 = 0; k1 = &do_pc1[0][0][0];
|
---|
574 | for(i = 8; i--;) {
|
---|
575 | v1 |= k1[*key & 0x7f]; k1 += 128;
|
---|
576 | v2 |= k1[*key++ & 0x7f]; k1 += 128;
|
---|
577 | }
|
---|
578 |
|
---|
579 | for(i = 0; i < 16; i++) {
|
---|
580 | k1 = &do_pc2[0][0];
|
---|
581 |
|
---|
582 | v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
|
---|
583 | v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
|
---|
584 | v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
|
---|
585 | v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
|
---|
586 | v |= k1[(v1 ) & 0x7f]; k1 += 128;
|
---|
587 |
|
---|
588 | #ifdef _UFC_32_
|
---|
589 | *k2++ = v;
|
---|
590 | v = 0;
|
---|
591 | #endif
|
---|
592 | #ifdef _UFC_64_
|
---|
593 | v <<= 32;
|
---|
594 | #endif
|
---|
595 |
|
---|
596 | v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
|
---|
597 | v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
|
---|
598 | v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
|
---|
599 | v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
|
---|
600 | v |= k1[(v2 ) & 0x7f];
|
---|
601 |
|
---|
602 | *k2++ = v;
|
---|
603 | }
|
---|
604 |
|
---|
605 | direction = 0;
|
---|
606 | }
|
---|
607 |
|
---|
608 | /*
|
---|
609 | * Undo an extra E selection and do final permutations
|
---|
610 | */
|
---|
611 |
|
---|
612 | ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
|
---|
613 | { ufc_long v1, v2, x;
|
---|
614 | static ufc_long ary[2];
|
---|
615 |
|
---|
616 | x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
|
---|
617 | x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
|
---|
618 |
|
---|
619 | v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
|
---|
620 |
|
---|
621 | v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
|
---|
622 | v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
|
---|
623 | v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
|
---|
624 | v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
|
---|
625 |
|
---|
626 | v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
|
---|
627 | v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
|
---|
628 | v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
|
---|
629 | v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
|
---|
630 |
|
---|
631 | v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
|
---|
632 | v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
|
---|
633 | v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
|
---|
634 | v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
|
---|
635 |
|
---|
636 | v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
|
---|
637 | v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
|
---|
638 | v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
|
---|
639 | v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
|
---|
640 |
|
---|
641 | ary[0] = v1; ary[1] = v2;
|
---|
642 | return ary;
|
---|
643 | }
|
---|
644 |
|
---|
645 | /*
|
---|
646 | * crypt only: convert from 64 bit to 11 bit ASCII
|
---|
647 | * prefixing with the salt
|
---|
648 | */
|
---|
649 |
|
---|
650 | static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
|
---|
651 | { static char outbuf[14];
|
---|
652 | int i, s;
|
---|
653 |
|
---|
654 | outbuf[0] = salt[0];
|
---|
655 | outbuf[1] = salt[1] ? salt[1] : salt[0];
|
---|
656 |
|
---|
657 | for(i = 0; i < 5; i++)
|
---|
658 | outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
|
---|
659 |
|
---|
660 | s = (v2 & 0xf) << 2;
|
---|
661 | v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
|
---|
662 |
|
---|
663 | for(i = 5; i < 10; i++)
|
---|
664 | outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
|
---|
665 |
|
---|
666 | outbuf[12] = bin_to_ascii(s);
|
---|
667 | outbuf[13] = 0;
|
---|
668 |
|
---|
669 | return outbuf;
|
---|
670 | }
|
---|
671 |
|
---|
672 | /*
|
---|
673 | * UNIX crypt function
|
---|
674 | */
|
---|
675 |
|
---|
676 | static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
|
---|
677 |
|
---|
678 | char *ufc_crypt(const char *key,const char *salt)
|
---|
679 | { ufc_long *s;
|
---|
680 | char ktab[9];
|
---|
681 |
|
---|
682 | /*
|
---|
683 | * Hack DES tables according to salt
|
---|
684 | */
|
---|
685 | setup_salt(salt);
|
---|
686 |
|
---|
687 | /*
|
---|
688 | * Setup key schedule
|
---|
689 | */
|
---|
690 | clearmem(ktab, sizeof ktab);
|
---|
691 | strncpy(ktab, key, 8);
|
---|
692 | ufc_mk_keytab(ktab);
|
---|
693 |
|
---|
694 | /*
|
---|
695 | * Go for the 25 DES encryptions
|
---|
696 | */
|
---|
697 | s = _ufc_doit((ufc_long)0, (ufc_long)0,
|
---|
698 | (ufc_long)0, (ufc_long)0, (ufc_long)25);
|
---|
699 |
|
---|
700 | /*
|
---|
701 | * And convert back to 6 bit ASCII
|
---|
702 | */
|
---|
703 | return output_conversion(s[0], s[1], salt);
|
---|
704 | }
|
---|
705 |
|
---|
706 |
|
---|
707 | #ifdef _UFC_32_
|
---|
708 |
|
---|
709 | /*
|
---|
710 | * 32 bit version
|
---|
711 | */
|
---|
712 |
|
---|
713 | extern long32 _ufc_keytab[16][2];
|
---|
714 | extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
---|
715 |
|
---|
716 | #define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
|
---|
717 |
|
---|
718 | static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
---|
719 | { int i;
|
---|
720 | long32 s, *k;
|
---|
721 |
|
---|
722 | while(itr--) {
|
---|
723 | k = &_ufc_keytab[0][0];
|
---|
724 | for(i=8; i--; ) {
|
---|
725 | s = *k++ ^ r1;
|
---|
726 | l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
---|
727 | l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
|
---|
728 | s = *k++ ^ r2;
|
---|
729 | l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
---|
730 | l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
|
---|
731 |
|
---|
732 | s = *k++ ^ l1;
|
---|
733 | r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
---|
734 | r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
|
---|
735 | s = *k++ ^ l2;
|
---|
736 | r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
---|
737 | r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
|
---|
738 | }
|
---|
739 | s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
|
---|
740 | }
|
---|
741 | return _ufc_dofinalperm(l1, l2, r1, r2);
|
---|
742 | }
|
---|
743 |
|
---|
744 | #endif
|
---|
745 |
|
---|
746 | #ifdef _UFC_64_
|
---|
747 |
|
---|
748 | /*
|
---|
749 | * 64 bit version
|
---|
750 | */
|
---|
751 |
|
---|
752 | extern long64 _ufc_keytab[16];
|
---|
753 | extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
---|
754 |
|
---|
755 | #define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
|
---|
756 |
|
---|
757 | static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
---|
758 | { int i;
|
---|
759 | long64 l, r, s, *k;
|
---|
760 |
|
---|
761 | l = (((long64)l1) << 32) | ((long64)l2);
|
---|
762 | r = (((long64)r1) << 32) | ((long64)r2);
|
---|
763 |
|
---|
764 | while(itr--) {
|
---|
765 | k = &_ufc_keytab[0];
|
---|
766 | for(i=8; i--; ) {
|
---|
767 | s = *k++ ^ r;
|
---|
768 | l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
---|
769 | l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
---|
770 | l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
---|
771 | l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
---|
772 |
|
---|
773 | s = *k++ ^ l;
|
---|
774 | r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
---|
775 | r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
---|
776 | r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
---|
777 | r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
---|
778 | }
|
---|
779 | s=l; l=r; r=s;
|
---|
780 | }
|
---|
781 |
|
---|
782 | l1 = l >> 32; l2 = l & 0xffffffff;
|
---|
783 | r1 = r >> 32; r2 = r & 0xffffffff;
|
---|
784 | return _ufc_dofinalperm(l1, l2, r1, r2);
|
---|
785 | }
|
---|
786 |
|
---|
787 | #endif
|
---|
788 |
|
---|
789 | #define crypt ufc_crypt
|
---|
790 | #endif
|
---|
791 |
|
---|
792 | main()
|
---|
793 | {
|
---|
794 | char passwd[9];
|
---|
795 | char salt[9];
|
---|
796 | char c_out1[256];
|
---|
797 | char c_out2[256];
|
---|
798 |
|
---|
799 | char expected_out[14];
|
---|
800 |
|
---|
801 | strcpy(expected_out, "12yJ.Of/NQ.Pk");
|
---|
802 | strcpy(passwd, "12345678");
|
---|
803 | strcpy(salt, "12345678");
|
---|
804 |
|
---|
805 | strcpy(c_out1, crypt(passwd, salt));
|
---|
806 | salt[2] = '\0';
|
---|
807 | strcpy(c_out2, crypt(passwd, salt));
|
---|
808 |
|
---|
809 | /*
|
---|
810 | * If the non-trucated salt fails but the
|
---|
811 | * truncated salt succeeds then exit 1.
|
---|
812 | */
|
---|
813 |
|
---|
814 | if((strcmp(c_out1, expected_out) != 0) &&
|
---|
815 | (strcmp(c_out2, expected_out) == 0))
|
---|
816 | exit(1);
|
---|
817 |
|
---|
818 | #ifdef HAVE_BIGCRYPT
|
---|
819 | /*
|
---|
820 | * Try the same with bigcrypt...
|
---|
821 | */
|
---|
822 |
|
---|
823 | {
|
---|
824 | char big_passwd[17];
|
---|
825 | char big_salt[17];
|
---|
826 | char big_c_out1[256];
|
---|
827 | char big_c_out2[256];
|
---|
828 | char big_expected_out[27];
|
---|
829 |
|
---|
830 | strcpy(big_passwd, "1234567812345678");
|
---|
831 | strcpy(big_salt, "1234567812345678");
|
---|
832 | strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM");
|
---|
833 |
|
---|
834 | strcpy(big_c_out1, bigcrypt(big_passwd, big_salt));
|
---|
835 | big_salt[2] = '\0';
|
---|
836 | strcpy(big_c_out2, bigcrypt(big_passwd, big_salt));
|
---|
837 |
|
---|
838 | /*
|
---|
839 | * If the non-trucated salt fails but the
|
---|
840 | * truncated salt succeeds then exit 1.
|
---|
841 | */
|
---|
842 |
|
---|
843 | if((strcmp(big_c_out1, big_expected_out) != 0) &&
|
---|
844 | (strcmp(big_c_out2, big_expected_out) == 0))
|
---|
845 | exit(1);
|
---|
846 |
|
---|
847 | }
|
---|
848 | #endif
|
---|
849 |
|
---|
850 | exit(0);
|
---|
851 | }
|
---|