source: vendor/3.6.0/tests/crypttest.c

Last change on this file was 414, checked in by Herwig Bauernfeind, 15 years ago

Samba 3.5.0: Initial import

File size: 23.3 KB
Line 
1#if defined(HAVE_UNISTD_H)
2#include <unistd.h>
3#endif
4
5#include <sys/types.h>
6
7#ifdef HAVE_STRING_H
8#include <string.h>
9#endif
10
11#ifdef HAVE_STRINGS_H
12#include <strings.h>
13#endif
14
15#if !defined(HAVE_CRYPT)
16
17/*
18 This bit of code was derived from the UFC-crypt package which
19 carries the following copyright
20
21 Modified for use by Samba by Andrew Tridgell, October 1994
22
23 Note that this routine is only faster on some machines. Under Linux 1.1.51
24 libc 4.5.26 I actually found this routine to be slightly slower.
25
26 Under SunOS I found a huge speedup by using these routines
27 (a factor of 20 or so)
28
29 Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
30 that this crypt routine may sometimes get the wrong answer. Only
31 use UFC_CRYT if you really need it.
32
33*/
34
35/*
36 * UFC-crypt: ultra fast crypt(3) implementation
37 *
38 * Copyright (C) 1991-1998, Free Software Foundation, Inc.
39 *
40 * This library is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU Lesser General Public
42 * License as published by the Free Software Foundation; either
43 * version 3 of the License, or (at your option) any later version.
44 *
45 * This library is distributed in the hope that it will be useful,
46 * but WITHOUT ANY WARRANTY; without even the implied warranty of
47 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
48 * Library General Public License for more details.
49 *
50 * You should have received a copy of the GNU Lesser General Public
51 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
52 *
53 * @(#)crypt_util.c 2.31 02/08/92
54 *
55 * Support routines
56 *
57 */
58
59
60#ifndef long32
61#if (SIZEOF_INT == 4)
62#define long32 int
63#elif (SIZEOF_LONG == 4)
64#define long32 long
65#elif (SIZEOF_SHORT == 4)
66#define long32 short
67#else
68/* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */
69#define long32 int
70#endif
71#endif
72
73#ifndef long64
74#ifdef HAVE_LONGLONG
75#define long64 long long long
76#endif
77#endif
78
79#ifndef ufc_long
80#define ufc_long unsigned
81#endif
82
83#ifndef _UFC_64_
84#define _UFC_32_
85#endif
86
87/*
88 * Permutation done once on the 56 bit
89 * key derived from the original 8 byte ASCII key.
90 */
91static int pc1[56] = {
92 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
93 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
94 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
95 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
96};
97
98/*
99 * How much to rotate each 28 bit half of the pc1 permutated
100 * 56 bit key before using pc2 to give the i' key
101 */
102static int rots[16] = {
103 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
104};
105
106/*
107 * Permutation giving the key
108 * of the i' DES round
109 */
110static int pc2[48] = {
111 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
112 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
113 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
114 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
115};
116
117/*
118 * The E expansion table which selects
119 * bits from the 32 bit intermediate result.
120 */
121static int esel[48] = {
122 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
123 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
124 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
125 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
126};
127static int e_inverse[64];
128
129/*
130 * Permutation done on the
131 * result of sbox lookups
132 */
133static int perm32[32] = {
134 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
135 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
136};
137
138/*
139 * The sboxes
140 */
141static int sbox[8][4][16]= {
142 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
143 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
144 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
145 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
146 },
147
148 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
149 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
150 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
151 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
152 },
153
154 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
155 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
156 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
157 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
158 },
159
160 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
161 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
162 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
163 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
164 },
165
166 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
167 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
168 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
169 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
170 },
171
172 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
173 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
174 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
175 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
176 },
177
178 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
179 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
180 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
181 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
182 },
183
184 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
185 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
186 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
187 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
188 }
189};
190
191/*
192 * This is the final
193 * permutation matrix
194 */
195static int final_perm[64] = {
196 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
197 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
198 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
199 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
200};
201
202/*
203 * The 16 DES keys in BITMASK format
204 */
205#ifdef _UFC_32_
206long32 _ufc_keytab[16][2];
207#endif
208
209#ifdef _UFC_64_
210long64 _ufc_keytab[16];
211#endif
212
213
214#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
215#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
216
217/* Macro to set a bit (0..23) */
218#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
219
220/*
221 * sb arrays:
222 *
223 * Workhorses of the inner loop of the DES implementation.
224 * They do sbox lookup, shifting of this value, 32 bit
225 * permutation and E permutation for the next round.
226 *
227 * Kept in 'BITMASK' format.
228 */
229
230#ifdef _UFC_32_
231long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
232static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
233#endif
234
235#ifdef _UFC_64_
236long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
237static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
238#endif
239
240/*
241 * eperm32tab: do 32 bit permutation and E selection
242 *
243 * The first index is the byte number in the 32 bit value to be permuted
244 * - second - is the value of this byte
245 * - third - selects the two 32 bit values
246 *
247 * The table is used and generated internally in init_des to speed it up
248 */
249static ufc_long eperm32tab[4][256][2];
250
251/*
252 * do_pc1: permform pc1 permutation in the key schedule generation.
253 *
254 * The first index is the byte number in the 8 byte ASCII key
255 * - second - - the two 28 bits halfs of the result
256 * - third - selects the 7 bits actually used of each byte
257 *
258 * The result is kept with 28 bit per 32 bit with the 4 most significant
259 * bits zero.
260 */
261static ufc_long do_pc1[8][2][128];
262
263/*
264 * do_pc2: permform pc2 permutation in the key schedule generation.
265 *
266 * The first index is the septet number in the two 28 bit intermediate values
267 * - second - - - septet values
268 *
269 * Knowledge of the structure of the pc2 permutation is used.
270 *
271 * The result is kept with 28 bit per 32 bit with the 4 most significant
272 * bits zero.
273 */
274static ufc_long do_pc2[8][128];
275
276/*
277 * efp: undo an extra e selection and do final
278 * permutation giving the DES result.
279 *
280 * Invoked 6 bit a time on two 48 bit values
281 * giving two 32 bit longs.
282 */
283static ufc_long efp[16][64][2];
284
285static unsigned char bytemask[8] = {
286 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
287};
288
289static ufc_long longmask[32] = {
290 0x80000000, 0x40000000, 0x20000000, 0x10000000,
291 0x08000000, 0x04000000, 0x02000000, 0x01000000,
292 0x00800000, 0x00400000, 0x00200000, 0x00100000,
293 0x00080000, 0x00040000, 0x00020000, 0x00010000,
294 0x00008000, 0x00004000, 0x00002000, 0x00001000,
295 0x00000800, 0x00000400, 0x00000200, 0x00000100,
296 0x00000080, 0x00000040, 0x00000020, 0x00000010,
297 0x00000008, 0x00000004, 0x00000002, 0x00000001
298};
299
300
301/*
302 * Silly rewrite of 'bzero'. I do so
303 * because some machines don't have
304 * bzero and some don't have memset.
305 */
306
307static void clearmem(char *start, int cnt)
308 { while(cnt--)
309 *start++ = '\0';
310 }
311
312static int initialized = 0;
313
314/* lookup a 6 bit value in sbox */
315
316#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
317
318/*
319 * Initialize unit - may be invoked directly
320 * by fcrypt users.
321 */
322
323static void ufc_init_des(void)
324 { int comes_from_bit;
325 int bit, sg;
326 ufc_long j;
327 ufc_long mask1, mask2;
328
329 /*
330 * Create the do_pc1 table used
331 * to affect pc1 permutation
332 * when generating keys
333 */
334 for(bit = 0; bit < 56; bit++) {
335 comes_from_bit = pc1[bit] - 1;
336 mask1 = bytemask[comes_from_bit % 8 + 1];
337 mask2 = longmask[bit % 28 + 4];
338 for(j = 0; j < 128; j++) {
339 if(j & mask1)
340 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
341 }
342 }
343
344 /*
345 * Create the do_pc2 table used
346 * to affect pc2 permutation when
347 * generating keys
348 */
349 for(bit = 0; bit < 48; bit++) {
350 comes_from_bit = pc2[bit] - 1;
351 mask1 = bytemask[comes_from_bit % 7 + 1];
352 mask2 = BITMASK(bit % 24);
353 for(j = 0; j < 128; j++) {
354 if(j & mask1)
355 do_pc2[comes_from_bit / 7][j] |= mask2;
356 }
357 }
358
359 /*
360 * Now generate the table used to do combined
361 * 32 bit permutation and e expansion
362 *
363 * We use it because we have to permute 16384 32 bit
364 * longs into 48 bit in order to initialize sb.
365 *
366 * Looping 48 rounds per permutation becomes
367 * just too slow...
368 *
369 */
370
371 clearmem((char*)eperm32tab, sizeof(eperm32tab));
372
373 for(bit = 0; bit < 48; bit++) {
374 ufc_long inner_mask1,comes_from;
375
376 comes_from = perm32[esel[bit]-1]-1;
377 inner_mask1 = bytemask[comes_from % 8];
378
379 for(j = 256; j--;) {
380 if(j & inner_mask1)
381 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
382 }
383 }
384
385 /*
386 * Create the sb tables:
387 *
388 * For each 12 bit segment of an 48 bit intermediate
389 * result, the sb table precomputes the two 4 bit
390 * values of the sbox lookups done with the two 6
391 * bit halves, shifts them to their proper place,
392 * sends them through perm32 and finally E expands
393 * them so that they are ready for the next
394 * DES round.
395 *
396 */
397 for(sg = 0; sg < 4; sg++) {
398 int j1, j2;
399 int s1, s2;
400
401 for(j1 = 0; j1 < 64; j1++) {
402 s1 = s_lookup(2 * sg, j1);
403 for(j2 = 0; j2 < 64; j2++) {
404 ufc_long to_permute, inx;
405
406 s2 = s_lookup(2 * sg + 1, j2);
407 to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
408
409#ifdef _UFC_32_
410 inx = ((j1 << 6) | j2) << 1;
411 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
412 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
413 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
414 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
415 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
416 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
417 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
418 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
419#endif
420#ifdef _UFC_64_
421 inx = ((j1 << 6) | j2);
422 sb[sg][inx] =
423 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
424 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
425 sb[sg][inx] |=
426 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
427 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
428 sb[sg][inx] |=
429 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
430 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
431 sb[sg][inx] |=
432 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
433 (long64)eperm32tab[3][(to_permute) & 0xff][1];
434#endif
435 }
436 }
437 }
438
439 /*
440 * Create an inverse matrix for esel telling
441 * where to plug out bits if undoing it
442 */
443 for(bit=48; bit--;) {
444 e_inverse[esel[bit] - 1 ] = bit;
445 e_inverse[esel[bit] - 1 + 32] = bit + 48;
446 }
447
448 /*
449 * create efp: the matrix used to
450 * undo the E expansion and effect final permutation
451 */
452 clearmem((char*)efp, sizeof efp);
453 for(bit = 0; bit < 64; bit++) {
454 int o_bit, o_long;
455 ufc_long word_value, inner_mask1, inner_mask2;
456 int comes_from_f_bit, comes_from_e_bit;
457 int comes_from_word, bit_within_word;
458
459 /* See where bit i belongs in the two 32 bit long's */
460 o_long = bit / 32; /* 0..1 */
461 o_bit = bit % 32; /* 0..31 */
462
463 /*
464 * And find a bit in the e permutated value setting this bit.
465 *
466 * Note: the e selection may have selected the same bit several
467 * times. By the initialization of e_inverse, we only look
468 * for one specific instance.
469 */
470 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
471 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
472 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
473 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
474
475 inner_mask1 = longmask[bit_within_word + 26];
476 inner_mask2 = longmask[o_bit];
477
478 for(word_value = 64; word_value--;) {
479 if(word_value & inner_mask1)
480 efp[comes_from_word][word_value][o_long] |= inner_mask2;
481 }
482 }
483 initialized++;
484 }
485
486/*
487 * Process the elements of the sb table permuting the
488 * bits swapped in the expansion by the current salt.
489 */
490
491#ifdef _UFC_32_
492static void shuffle_sb(long32 *k, ufc_long saltbits)
493 { ufc_long j;
494 long32 x;
495 for(j=4096; j--;) {
496 x = (k[0] ^ k[1]) & (long32)saltbits;
497 *k++ ^= x;
498 *k++ ^= x;
499 }
500 }
501#endif
502
503#ifdef _UFC_64_
504static void shuffle_sb(long64 *k, ufc_long saltbits)
505 { ufc_long j;
506 long64 x;
507 for(j=4096; j--;) {
508 x = ((*k >> 32) ^ *k) & (long64)saltbits;
509 *k++ ^= (x << 32) | x;
510 }
511 }
512#endif
513
514/*
515 * Setup the unit for a new salt
516 * Hopefully we'll not see a new salt in each crypt call.
517 */
518
519static unsigned char current_salt[3] = "&&"; /* invalid value */
520static ufc_long current_saltbits = 0;
521static int direction = 0;
522
523static void setup_salt(const char *s1)
524 { ufc_long i, j, saltbits;
525 const unsigned char *s2 = (const unsigned char *)s1;
526
527 if(!initialized)
528 ufc_init_des();
529
530 if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
531 return;
532 current_salt[0] = s2[0]; current_salt[1] = s2[1];
533
534 /*
535 * This is the only crypt change to DES:
536 * entries are swapped in the expansion table
537 * according to the bits set in the salt.
538 */
539 saltbits = 0;
540 for(i = 0; i < 2; i++) {
541 long c=ascii_to_bin(s2[i]);
542 if(c < 0 || c > 63)
543 c = 0;
544 for(j = 0; j < 6; j++) {
545 if((c >> j) & 0x1)
546 saltbits |= BITMASK(6 * i + j);
547 }
548 }
549
550 /*
551 * Permute the sb table values
552 * to reflect the changed e
553 * selection table
554 */
555 shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
556 shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
557 shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
558 shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
559
560 current_saltbits = saltbits;
561 }
562
563static void ufc_mk_keytab(char *key)
564 { ufc_long v1, v2, *k1;
565 int i;
566#ifdef _UFC_32_
567 long32 v, *k2 = &_ufc_keytab[0][0];
568#endif
569#ifdef _UFC_64_
570 long64 v, *k2 = &_ufc_keytab[0];
571#endif
572
573 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
574 for(i = 8; i--;) {
575 v1 |= k1[*key & 0x7f]; k1 += 128;
576 v2 |= k1[*key++ & 0x7f]; k1 += 128;
577 }
578
579 for(i = 0; i < 16; i++) {
580 k1 = &do_pc2[0][0];
581
582 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
583 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
584 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
585 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
586 v |= k1[(v1 ) & 0x7f]; k1 += 128;
587
588#ifdef _UFC_32_
589 *k2++ = v;
590 v = 0;
591#endif
592#ifdef _UFC_64_
593 v <<= 32;
594#endif
595
596 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
597 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
598 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
599 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
600 v |= k1[(v2 ) & 0x7f];
601
602 *k2++ = v;
603 }
604
605 direction = 0;
606 }
607
608/*
609 * Undo an extra E selection and do final permutations
610 */
611
612ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
613 { ufc_long v1, v2, x;
614 static ufc_long ary[2];
615
616 x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
617 x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
618
619 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
620
621 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
622 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
623 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
624 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
625
626 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
627 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
628 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
629 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
630
631 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
632 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
633 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
634 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
635
636 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
637 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
638 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
639 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
640
641 ary[0] = v1; ary[1] = v2;
642 return ary;
643 }
644
645/*
646 * crypt only: convert from 64 bit to 11 bit ASCII
647 * prefixing with the salt
648 */
649
650static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
651 { static char outbuf[14];
652 int i, s;
653
654 outbuf[0] = salt[0];
655 outbuf[1] = salt[1] ? salt[1] : salt[0];
656
657 for(i = 0; i < 5; i++)
658 outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
659
660 s = (v2 & 0xf) << 2;
661 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
662
663 for(i = 5; i < 10; i++)
664 outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
665
666 outbuf[12] = bin_to_ascii(s);
667 outbuf[13] = 0;
668
669 return outbuf;
670 }
671
672/*
673 * UNIX crypt function
674 */
675
676static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
677
678char *ufc_crypt(const char *key,const char *salt)
679 { ufc_long *s;
680 char ktab[9];
681
682 /*
683 * Hack DES tables according to salt
684 */
685 setup_salt(salt);
686
687 /*
688 * Setup key schedule
689 */
690 clearmem(ktab, sizeof ktab);
691 strncpy(ktab, key, 8);
692 ufc_mk_keytab(ktab);
693
694 /*
695 * Go for the 25 DES encryptions
696 */
697 s = _ufc_doit((ufc_long)0, (ufc_long)0,
698 (ufc_long)0, (ufc_long)0, (ufc_long)25);
699
700 /*
701 * And convert back to 6 bit ASCII
702 */
703 return output_conversion(s[0], s[1], salt);
704 }
705
706
707#ifdef _UFC_32_
708
709/*
710 * 32 bit version
711 */
712
713extern long32 _ufc_keytab[16][2];
714extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
715
716#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
717
718static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
719 { int i;
720 long32 s, *k;
721
722 while(itr--) {
723 k = &_ufc_keytab[0][0];
724 for(i=8; i--; ) {
725 s = *k++ ^ r1;
726 l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
727 l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
728 s = *k++ ^ r2;
729 l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
730 l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
731
732 s = *k++ ^ l1;
733 r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
734 r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
735 s = *k++ ^ l2;
736 r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
737 r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
738 }
739 s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
740 }
741 return _ufc_dofinalperm(l1, l2, r1, r2);
742 }
743
744#endif
745
746#ifdef _UFC_64_
747
748/*
749 * 64 bit version
750 */
751
752extern long64 _ufc_keytab[16];
753extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
754
755#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
756
757static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
758 { int i;
759 long64 l, r, s, *k;
760
761 l = (((long64)l1) << 32) | ((long64)l2);
762 r = (((long64)r1) << 32) | ((long64)r2);
763
764 while(itr--) {
765 k = &_ufc_keytab[0];
766 for(i=8; i--; ) {
767 s = *k++ ^ r;
768 l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
769 l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
770 l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
771 l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
772
773 s = *k++ ^ l;
774 r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
775 r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
776 r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
777 r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
778 }
779 s=l; l=r; r=s;
780 }
781
782 l1 = l >> 32; l2 = l & 0xffffffff;
783 r1 = r >> 32; r2 = r & 0xffffffff;
784 return _ufc_dofinalperm(l1, l2, r1, r2);
785 }
786
787#endif
788
789#define crypt ufc_crypt
790#endif
791
792main()
793{
794 char passwd[9];
795 char salt[9];
796 char c_out1[256];
797 char c_out2[256];
798
799 char expected_out[14];
800
801 strcpy(expected_out, "12yJ.Of/NQ.Pk");
802 strcpy(passwd, "12345678");
803 strcpy(salt, "12345678");
804
805 strcpy(c_out1, crypt(passwd, salt));
806 salt[2] = '\0';
807 strcpy(c_out2, crypt(passwd, salt));
808
809 /*
810 * If the non-trucated salt fails but the
811 * truncated salt succeeds then exit 1.
812 */
813
814 if((strcmp(c_out1, expected_out) != 0) &&
815 (strcmp(c_out2, expected_out) == 0))
816 exit(1);
817
818#ifdef HAVE_BIGCRYPT
819 /*
820 * Try the same with bigcrypt...
821 */
822
823 {
824 char big_passwd[17];
825 char big_salt[17];
826 char big_c_out1[256];
827 char big_c_out2[256];
828 char big_expected_out[27];
829
830 strcpy(big_passwd, "1234567812345678");
831 strcpy(big_salt, "1234567812345678");
832 strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM");
833
834 strcpy(big_c_out1, bigcrypt(big_passwd, big_salt));
835 big_salt[2] = '\0';
836 strcpy(big_c_out2, bigcrypt(big_passwd, big_salt));
837
838 /*
839 * If the non-trucated salt fails but the
840 * truncated salt succeeds then exit 1.
841 */
842
843 if((strcmp(big_c_out1, big_expected_out) != 0) &&
844 (strcmp(big_c_out2, big_expected_out) == 0))
845 exit(1);
846
847 }
848#endif
849
850 exit(0);
851}
Note: See TracBrowser for help on using the repository browser.