| 1 | /*
|
|---|
| 2 | Unix SMB/CIFS implementation.
|
|---|
| 3 |
|
|---|
| 4 | trivial database library
|
|---|
| 5 |
|
|---|
| 6 | Copyright (C) Rusty Russell 2010
|
|---|
| 7 |
|
|---|
| 8 | ** NOTE! The following LGPL license applies to the tdb
|
|---|
| 9 | ** library. This does NOT imply that all of Samba is released
|
|---|
| 10 | ** under the LGPL
|
|---|
| 11 |
|
|---|
| 12 | This library is free software; you can redistribute it and/or
|
|---|
| 13 | modify it under the terms of the GNU Lesser General Public
|
|---|
| 14 | License as published by the Free Software Foundation; either
|
|---|
| 15 | version 3 of the License, or (at your option) any later version.
|
|---|
| 16 |
|
|---|
| 17 | This library is distributed in the hope that it will be useful,
|
|---|
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|---|
| 20 | Lesser General Public License for more details.
|
|---|
| 21 |
|
|---|
| 22 | You should have received a copy of the GNU Lesser General Public
|
|---|
| 23 | License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|---|
| 24 | */
|
|---|
| 25 | #include "includes.h"
|
|---|
| 26 |
|
|---|
| 27 | /* This is based on the hash algorithm from gdbm */
|
|---|
| 28 |
|
|---|
| 29 |
|
|---|
| 30 | #ifndef WORDS_BIGENDIAN
|
|---|
| 31 | # define HASH_LITTLE_ENDIAN 1
|
|---|
| 32 | # define HASH_BIG_ENDIAN 0
|
|---|
| 33 | #else
|
|---|
| 34 | # define HASH_LITTLE_ENDIAN 0
|
|---|
| 35 | # define HASH_BIG_ENDIAN 1
|
|---|
| 36 | #endif
|
|---|
| 37 |
|
|---|
| 38 | /*
|
|---|
| 39 | -------------------------------------------------------------------------------
|
|---|
| 40 | lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|---|
| 41 |
|
|---|
| 42 | These are functions for producing 32-bit hashes for hash table lookup.
|
|---|
| 43 | hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
|---|
| 44 | are externally useful functions. Routines to test the hash are included
|
|---|
| 45 | if SELF_TEST is defined. You can use this free for any purpose. It's in
|
|---|
| 46 | the public domain. It has no warranty.
|
|---|
| 47 |
|
|---|
| 48 | You probably want to use hashlittle(). hashlittle() and hashbig()
|
|---|
| 49 | hash byte arrays. hashlittle() is is faster than hashbig() on
|
|---|
| 50 | little-endian machines. Intel and AMD are little-endian machines.
|
|---|
| 51 | On second thought, you probably want hashlittle2(), which is identical to
|
|---|
| 52 | hashlittle() except it returns two 32-bit hashes for the price of one.
|
|---|
| 53 | You could implement hashbig2() if you wanted but I haven't bothered here.
|
|---|
| 54 |
|
|---|
| 55 | If you want to find a hash of, say, exactly 7 integers, do
|
|---|
| 56 | a = i1; b = i2; c = i3;
|
|---|
| 57 | mix(a,b,c);
|
|---|
| 58 | a += i4; b += i5; c += i6;
|
|---|
| 59 | mix(a,b,c);
|
|---|
| 60 | a += i7;
|
|---|
| 61 | final(a,b,c);
|
|---|
| 62 | then use c as the hash value. If you have a variable length array of
|
|---|
| 63 | 4-byte integers to hash, use hash_word(). If you have a byte array (like
|
|---|
| 64 | a character string), use hashlittle(). If you have several byte arrays, or
|
|---|
| 65 | a mix of things, see the comments above hashlittle().
|
|---|
| 66 |
|
|---|
| 67 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
|---|
| 68 | then mix those integers. This is fast (you can do a lot more thorough
|
|---|
| 69 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
|---|
| 70 | on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
|---|
| 71 | */
|
|---|
| 72 |
|
|---|
| 73 | #define hashsize(n) ((uint32_t)1<<(n))
|
|---|
| 74 | #define hashmask(n) (hashsize(n)-1)
|
|---|
| 75 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
|---|
| 76 |
|
|---|
| 77 | /*
|
|---|
| 78 | -------------------------------------------------------------------------------
|
|---|
| 79 | mix -- mix 3 32-bit values reversibly.
|
|---|
| 80 |
|
|---|
| 81 | This is reversible, so any information in (a,b,c) before mix() is
|
|---|
| 82 | still in (a,b,c) after mix().
|
|---|
| 83 |
|
|---|
| 84 | If four pairs of (a,b,c) inputs are run through mix(), or through
|
|---|
| 85 | mix() in reverse, there are at least 32 bits of the output that
|
|---|
| 86 | are sometimes the same for one pair and different for another pair.
|
|---|
| 87 | This was tested for:
|
|---|
| 88 | * pairs that differed by one bit, by two bits, in any combination
|
|---|
| 89 | of top bits of (a,b,c), or in any combination of bottom bits of
|
|---|
| 90 | (a,b,c).
|
|---|
| 91 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|---|
| 92 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|---|
| 93 | is commonly produced by subtraction) look like a single 1-bit
|
|---|
| 94 | difference.
|
|---|
| 95 | * the base values were pseudorandom, all zero but one bit set, or
|
|---|
| 96 | all zero plus a counter that starts at zero.
|
|---|
| 97 |
|
|---|
| 98 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
|---|
| 99 | satisfy this are
|
|---|
| 100 | 4 6 8 16 19 4
|
|---|
| 101 | 9 15 3 18 27 15
|
|---|
| 102 | 14 9 3 7 17 3
|
|---|
| 103 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
|---|
| 104 | for "differ" defined as + with a one-bit base and a two-bit delta. I
|
|---|
| 105 | used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
|---|
| 106 | the operations, constants, and arrangements of the variables.
|
|---|
| 107 |
|
|---|
| 108 | This does not achieve avalanche. There are input bits of (a,b,c)
|
|---|
| 109 | that fail to affect some output bits of (a,b,c), especially of a. The
|
|---|
| 110 | most thoroughly mixed value is c, but it doesn't really even achieve
|
|---|
| 111 | avalanche in c.
|
|---|
| 112 |
|
|---|
| 113 | This allows some parallelism. Read-after-writes are good at doubling
|
|---|
| 114 | the number of bits affected, so the goal of mixing pulls in the opposite
|
|---|
| 115 | direction as the goal of parallelism. I did what I could. Rotates
|
|---|
| 116 | seem to cost as much as shifts on every machine I could lay my hands
|
|---|
| 117 | on, and rotates are much kinder to the top and bottom bits, so I used
|
|---|
| 118 | rotates.
|
|---|
| 119 | -------------------------------------------------------------------------------
|
|---|
| 120 | */
|
|---|
| 121 | #define mix(a,b,c) \
|
|---|
| 122 | { \
|
|---|
| 123 | a -= c; a ^= rot(c, 4); c += b; \
|
|---|
| 124 | b -= a; b ^= rot(a, 6); a += c; \
|
|---|
| 125 | c -= b; c ^= rot(b, 8); b += a; \
|
|---|
| 126 | a -= c; a ^= rot(c,16); c += b; \
|
|---|
| 127 | b -= a; b ^= rot(a,19); a += c; \
|
|---|
| 128 | c -= b; c ^= rot(b, 4); b += a; \
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | /*
|
|---|
| 132 | -------------------------------------------------------------------------------
|
|---|
| 133 | final -- final mixing of 3 32-bit values (a,b,c) into c
|
|---|
| 134 |
|
|---|
| 135 | Pairs of (a,b,c) values differing in only a few bits will usually
|
|---|
| 136 | produce values of c that look totally different. This was tested for
|
|---|
| 137 | * pairs that differed by one bit, by two bits, in any combination
|
|---|
| 138 | of top bits of (a,b,c), or in any combination of bottom bits of
|
|---|
| 139 | (a,b,c).
|
|---|
| 140 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|---|
| 141 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|---|
| 142 | is commonly produced by subtraction) look like a single 1-bit
|
|---|
| 143 | difference.
|
|---|
| 144 | * the base values were pseudorandom, all zero but one bit set, or
|
|---|
| 145 | all zero plus a counter that starts at zero.
|
|---|
| 146 |
|
|---|
| 147 | These constants passed:
|
|---|
| 148 | 14 11 25 16 4 14 24
|
|---|
| 149 | 12 14 25 16 4 14 24
|
|---|
| 150 | and these came close:
|
|---|
| 151 | 4 8 15 26 3 22 24
|
|---|
| 152 | 10 8 15 26 3 22 24
|
|---|
| 153 | 11 8 15 26 3 22 24
|
|---|
| 154 | -------------------------------------------------------------------------------
|
|---|
| 155 | */
|
|---|
| 156 | #define final(a,b,c) \
|
|---|
| 157 | { \
|
|---|
| 158 | c ^= b; c -= rot(b,14); \
|
|---|
| 159 | a ^= c; a -= rot(c,11); \
|
|---|
| 160 | b ^= a; b -= rot(a,25); \
|
|---|
| 161 | c ^= b; c -= rot(b,16); \
|
|---|
| 162 | a ^= c; a -= rot(c,4); \
|
|---|
| 163 | b ^= a; b -= rot(a,14); \
|
|---|
| 164 | c ^= b; c -= rot(b,24); \
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 |
|
|---|
| 168 | /*
|
|---|
| 169 | -------------------------------------------------------------------------------
|
|---|
| 170 | hashlittle() -- hash a variable-length key into a 32-bit value
|
|---|
| 171 | k : the key (the unaligned variable-length array of bytes)
|
|---|
| 172 | length : the length of the key, counting by bytes
|
|---|
| 173 | val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
|
|---|
| 174 | Returns a 32-bit value. Every bit of the key affects every bit of
|
|---|
| 175 | the return value. Two keys differing by one or two bits will have
|
|---|
| 176 | totally different hash values. Note that the return value is better
|
|---|
| 177 | mixed than val2, so use that first.
|
|---|
| 178 |
|
|---|
| 179 | The best hash table sizes are powers of 2. There is no need to do
|
|---|
| 180 | mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
|---|
| 181 | use a bitmask. For example, if you need only 10 bits, do
|
|---|
| 182 | h = (h & hashmask(10));
|
|---|
| 183 | In which case, the hash table should have hashsize(10) elements.
|
|---|
| 184 |
|
|---|
| 185 | If you are hashing n strings (uint8_t **)k, do it like this:
|
|---|
| 186 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
|---|
| 187 |
|
|---|
| 188 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
|---|
| 189 | code any way you wish, private, educational, or commercial. It's free.
|
|---|
| 190 |
|
|---|
| 191 | Use for hash table lookup, or anything where one collision in 2^^32 is
|
|---|
| 192 | acceptable. Do NOT use for cryptographic purposes.
|
|---|
| 193 | -------------------------------------------------------------------------------
|
|---|
| 194 | */
|
|---|
| 195 |
|
|---|
| 196 | static uint32_t hashlittle( const void *key, size_t length )
|
|---|
| 197 | {
|
|---|
| 198 | uint32_t a,b,c; /* internal state */
|
|---|
| 199 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
|---|
| 200 |
|
|---|
| 201 | /* Set up the internal state */
|
|---|
| 202 | a = b = c = 0xdeadbeef + ((uint32_t)length);
|
|---|
| 203 |
|
|---|
| 204 | u.ptr = key;
|
|---|
| 205 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|---|
| 206 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
|---|
| 207 | #ifdef VALGRIND
|
|---|
| 208 | const uint8_t *k8;
|
|---|
| 209 | #endif
|
|---|
| 210 |
|
|---|
| 211 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|---|
| 212 | while (length > 12)
|
|---|
| 213 | {
|
|---|
| 214 | a += k[0];
|
|---|
| 215 | b += k[1];
|
|---|
| 216 | c += k[2];
|
|---|
| 217 | mix(a,b,c);
|
|---|
| 218 | length -= 12;
|
|---|
| 219 | k += 3;
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| 222 | /*----------------------------- handle the last (probably partial) block */
|
|---|
| 223 | /*
|
|---|
| 224 | * "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|---|
| 225 | * then masks off the part it's not allowed to read. Because the
|
|---|
| 226 | * string is aligned, the masked-off tail is in the same word as the
|
|---|
| 227 | * rest of the string. Every machine with memory protection I've seen
|
|---|
| 228 | * does it on word boundaries, so is OK with this. But VALGRIND will
|
|---|
| 229 | * still catch it and complain. The masking trick does make the hash
|
|---|
| 230 | * noticably faster for short strings (like English words).
|
|---|
| 231 | */
|
|---|
| 232 | #ifndef VALGRIND
|
|---|
| 233 |
|
|---|
| 234 | switch(length)
|
|---|
| 235 | {
|
|---|
| 236 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|---|
| 237 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|---|
| 238 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|---|
| 239 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|---|
| 240 | case 8 : b+=k[1]; a+=k[0]; break;
|
|---|
| 241 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|---|
| 242 | case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|---|
| 243 | case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|---|
| 244 | case 4 : a+=k[0]; break;
|
|---|
| 245 | case 3 : a+=k[0]&0xffffff; break;
|
|---|
| 246 | case 2 : a+=k[0]&0xffff; break;
|
|---|
| 247 | case 1 : a+=k[0]&0xff; break;
|
|---|
| 248 | case 0 : return c; /* zero length strings require no mixing */
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | #else /* make valgrind happy */
|
|---|
| 252 |
|
|---|
| 253 | k8 = (const uint8_t *)k;
|
|---|
| 254 | switch(length)
|
|---|
| 255 | {
|
|---|
| 256 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|---|
| 257 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
|---|
| 258 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
|---|
| 259 | case 9 : c+=k8[8]; /* fall through */
|
|---|
| 260 | case 8 : b+=k[1]; a+=k[0]; break;
|
|---|
| 261 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
|---|
| 262 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
|---|
| 263 | case 5 : b+=k8[4]; /* fall through */
|
|---|
| 264 | case 4 : a+=k[0]; break;
|
|---|
| 265 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
|---|
| 266 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
|---|
| 267 | case 1 : a+=k8[0]; break;
|
|---|
| 268 | case 0 : return c;
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | #endif /* !valgrind */
|
|---|
| 272 |
|
|---|
| 273 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
|---|
| 274 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
|---|
| 275 | const uint8_t *k8;
|
|---|
| 276 |
|
|---|
| 277 | /*--------------- all but last block: aligned reads and different mixing */
|
|---|
| 278 | while (length > 12)
|
|---|
| 279 | {
|
|---|
| 280 | a += k[0] + (((uint32_t)k[1])<<16);
|
|---|
| 281 | b += k[2] + (((uint32_t)k[3])<<16);
|
|---|
| 282 | c += k[4] + (((uint32_t)k[5])<<16);
|
|---|
| 283 | mix(a,b,c);
|
|---|
| 284 | length -= 12;
|
|---|
| 285 | k += 6;
|
|---|
| 286 | }
|
|---|
| 287 |
|
|---|
| 288 | /*----------------------------- handle the last (probably partial) block */
|
|---|
| 289 | k8 = (const uint8_t *)k;
|
|---|
| 290 | switch(length)
|
|---|
| 291 | {
|
|---|
| 292 | case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
|---|
| 293 | b+=k[2]+(((uint32_t)k[3])<<16);
|
|---|
| 294 | a+=k[0]+(((uint32_t)k[1])<<16);
|
|---|
| 295 | break;
|
|---|
| 296 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
|---|
| 297 | case 10: c+=k[4];
|
|---|
| 298 | b+=k[2]+(((uint32_t)k[3])<<16);
|
|---|
| 299 | a+=k[0]+(((uint32_t)k[1])<<16);
|
|---|
| 300 | break;
|
|---|
| 301 | case 9 : c+=k8[8]; /* fall through */
|
|---|
| 302 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
|---|
| 303 | a+=k[0]+(((uint32_t)k[1])<<16);
|
|---|
| 304 | break;
|
|---|
| 305 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
|---|
| 306 | case 6 : b+=k[2];
|
|---|
| 307 | a+=k[0]+(((uint32_t)k[1])<<16);
|
|---|
| 308 | break;
|
|---|
| 309 | case 5 : b+=k8[4]; /* fall through */
|
|---|
| 310 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
|---|
| 311 | break;
|
|---|
| 312 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
|---|
| 313 | case 2 : a+=k[0];
|
|---|
| 314 | break;
|
|---|
| 315 | case 1 : a+=k8[0];
|
|---|
| 316 | break;
|
|---|
| 317 | case 0 : return c; /* zero length requires no mixing */
|
|---|
| 318 | }
|
|---|
| 319 |
|
|---|
| 320 | } else { /* need to read the key one byte at a time */
|
|---|
| 321 | const uint8_t *k = (const uint8_t *)key;
|
|---|
| 322 |
|
|---|
| 323 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|---|
| 324 | while (length > 12)
|
|---|
| 325 | {
|
|---|
| 326 | a += k[0];
|
|---|
| 327 | a += ((uint32_t)k[1])<<8;
|
|---|
| 328 | a += ((uint32_t)k[2])<<16;
|
|---|
| 329 | a += ((uint32_t)k[3])<<24;
|
|---|
| 330 | b += k[4];
|
|---|
| 331 | b += ((uint32_t)k[5])<<8;
|
|---|
| 332 | b += ((uint32_t)k[6])<<16;
|
|---|
| 333 | b += ((uint32_t)k[7])<<24;
|
|---|
| 334 | c += k[8];
|
|---|
| 335 | c += ((uint32_t)k[9])<<8;
|
|---|
| 336 | c += ((uint32_t)k[10])<<16;
|
|---|
| 337 | c += ((uint32_t)k[11])<<24;
|
|---|
| 338 | mix(a,b,c);
|
|---|
| 339 | length -= 12;
|
|---|
| 340 | k += 12;
|
|---|
| 341 | }
|
|---|
| 342 |
|
|---|
| 343 | /*-------------------------------- last block: affect all 32 bits of (c) */
|
|---|
| 344 | switch(length) /* all the case statements fall through */
|
|---|
| 345 | {
|
|---|
| 346 | case 12: c+=((uint32_t)k[11])<<24;
|
|---|
| 347 | case 11: c+=((uint32_t)k[10])<<16;
|
|---|
| 348 | case 10: c+=((uint32_t)k[9])<<8;
|
|---|
| 349 | case 9 : c+=k[8];
|
|---|
| 350 | case 8 : b+=((uint32_t)k[7])<<24;
|
|---|
| 351 | case 7 : b+=((uint32_t)k[6])<<16;
|
|---|
| 352 | case 6 : b+=((uint32_t)k[5])<<8;
|
|---|
| 353 | case 5 : b+=k[4];
|
|---|
| 354 | case 4 : a+=((uint32_t)k[3])<<24;
|
|---|
| 355 | case 3 : a+=((uint32_t)k[2])<<16;
|
|---|
| 356 | case 2 : a+=((uint32_t)k[1])<<8;
|
|---|
| 357 | case 1 : a+=k[0];
|
|---|
| 358 | break;
|
|---|
| 359 | case 0 : return c;
|
|---|
| 360 | }
|
|---|
| 361 | }
|
|---|
| 362 |
|
|---|
| 363 | final(a,b,c);
|
|---|
| 364 | return c;
|
|---|
| 365 | }
|
|---|
| 366 |
|
|---|
| 367 | unsigned int jenkins_hash(TDB_DATA *key)
|
|---|
| 368 | {
|
|---|
| 369 | return hashlittle(key->dptr, key->dsize);
|
|---|
| 370 | }
|
|---|