1 | /*
|
---|
2 | Unix SMB/CIFS implementation.
|
---|
3 | time handling functions
|
---|
4 |
|
---|
5 | Copyright (C) Andrew Tridgell 1992-2004
|
---|
6 | Copyright (C) Stefan (metze) Metzmacher 2002
|
---|
7 | Copyright (C) Jeremy Allison 2007
|
---|
8 | Copyright (C) Andrew Bartlett 2011
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify
|
---|
11 | it under the terms of the GNU General Public License as published by
|
---|
12 | the Free Software Foundation; either version 3 of the License, or
|
---|
13 | (at your option) any later version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful,
|
---|
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | GNU General Public License for more details.
|
---|
19 |
|
---|
20 | You should have received a copy of the GNU General Public License
|
---|
21 | along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | */
|
---|
23 |
|
---|
24 | #include "includes.h"
|
---|
25 | #include "system/time.h"
|
---|
26 |
|
---|
27 | /**
|
---|
28 | * @file
|
---|
29 | * @brief time handling functions
|
---|
30 | */
|
---|
31 |
|
---|
32 | #if (SIZEOF_LONG == 8)
|
---|
33 | #define TIME_FIXUP_CONSTANT_INT 11644473600L
|
---|
34 | #elif (SIZEOF_LONG_LONG == 8)
|
---|
35 | #define TIME_FIXUP_CONSTANT_INT 11644473600LL
|
---|
36 | #endif
|
---|
37 |
|
---|
38 |
|
---|
39 |
|
---|
40 | /**
|
---|
41 | External access to time_t_min and time_t_max.
|
---|
42 | **/
|
---|
43 | _PUBLIC_ time_t get_time_t_max(void)
|
---|
44 | {
|
---|
45 | return TIME_T_MAX;
|
---|
46 | }
|
---|
47 |
|
---|
48 | /**
|
---|
49 | a gettimeofday wrapper
|
---|
50 | **/
|
---|
51 | _PUBLIC_ void GetTimeOfDay(struct timeval *tval)
|
---|
52 | {
|
---|
53 | #ifdef HAVE_GETTIMEOFDAY_TZ
|
---|
54 | gettimeofday(tval,NULL);
|
---|
55 | #else
|
---|
56 | gettimeofday(tval);
|
---|
57 | #endif
|
---|
58 | }
|
---|
59 |
|
---|
60 | /**
|
---|
61 | a wrapper to preferably get the monotonic time
|
---|
62 | **/
|
---|
63 | _PUBLIC_ void clock_gettime_mono(struct timespec *tp)
|
---|
64 | {
|
---|
65 | if (clock_gettime(CUSTOM_CLOCK_MONOTONIC,tp) != 0) {
|
---|
66 | clock_gettime(CLOCK_REALTIME,tp);
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | /**
|
---|
71 | a wrapper to preferably get the monotonic time in seconds
|
---|
72 | as this is only second resolution we can use the cached
|
---|
73 | (and much faster) COARSE clock variant
|
---|
74 | **/
|
---|
75 | _PUBLIC_ time_t time_mono(time_t *t)
|
---|
76 | {
|
---|
77 | struct timespec tp;
|
---|
78 | int rc = -1;
|
---|
79 | #ifdef CLOCK_MONOTONIC_COARSE
|
---|
80 | rc = clock_gettime(CLOCK_MONOTONIC_COARSE,&tp);
|
---|
81 | #endif
|
---|
82 | if (rc != 0) {
|
---|
83 | clock_gettime_mono(&tp);
|
---|
84 | }
|
---|
85 | if (t != NULL) {
|
---|
86 | *t = tp.tv_sec;
|
---|
87 | }
|
---|
88 | return tp.tv_sec;
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | #define TIME_FIXUP_CONSTANT 11644473600LL
|
---|
93 |
|
---|
94 | time_t convert_timespec_to_time_t(struct timespec ts)
|
---|
95 | {
|
---|
96 | /* Ensure tv_nsec is less than 1sec. */
|
---|
97 | while (ts.tv_nsec > 1000000000) {
|
---|
98 | ts.tv_sec += 1;
|
---|
99 | ts.tv_nsec -= 1000000000;
|
---|
100 | }
|
---|
101 |
|
---|
102 | /* 1 ns == 1,000,000,000 - one thousand millionths of a second.
|
---|
103 | increment if it's greater than 500 millionth of a second. */
|
---|
104 |
|
---|
105 | if (ts.tv_nsec > 500000000) {
|
---|
106 | return ts.tv_sec + 1;
|
---|
107 | }
|
---|
108 | return ts.tv_sec;
|
---|
109 | }
|
---|
110 |
|
---|
111 | struct timespec convert_time_t_to_timespec(time_t t)
|
---|
112 | {
|
---|
113 | struct timespec ts;
|
---|
114 | ts.tv_sec = t;
|
---|
115 | ts.tv_nsec = 0;
|
---|
116 | return ts;
|
---|
117 | }
|
---|
118 |
|
---|
119 |
|
---|
120 |
|
---|
121 | /**
|
---|
122 | Interpret an 8 byte "filetime" structure to a time_t
|
---|
123 | It's originally in "100ns units since jan 1st 1601"
|
---|
124 |
|
---|
125 | An 8 byte value of 0xffffffffffffffff will be returned as a timespec of
|
---|
126 |
|
---|
127 | tv_sec = 0
|
---|
128 | tv_nsec = 0;
|
---|
129 |
|
---|
130 | Returns GMT.
|
---|
131 | **/
|
---|
132 | time_t nt_time_to_unix(NTTIME nt)
|
---|
133 | {
|
---|
134 | return convert_timespec_to_time_t(nt_time_to_unix_timespec(&nt));
|
---|
135 | }
|
---|
136 |
|
---|
137 |
|
---|
138 | /**
|
---|
139 | put a 8 byte filetime from a time_t
|
---|
140 | This takes GMT as input
|
---|
141 | **/
|
---|
142 | _PUBLIC_ void unix_to_nt_time(NTTIME *nt, time_t t)
|
---|
143 | {
|
---|
144 | uint64_t t2;
|
---|
145 |
|
---|
146 | if (t == (time_t)-1) {
|
---|
147 | *nt = (NTTIME)-1LL;
|
---|
148 | return;
|
---|
149 | }
|
---|
150 |
|
---|
151 | if (t == TIME_T_MAX) {
|
---|
152 | *nt = 0x7fffffffffffffffLL;
|
---|
153 | return;
|
---|
154 | }
|
---|
155 |
|
---|
156 | if (t == 0) {
|
---|
157 | *nt = 0;
|
---|
158 | return;
|
---|
159 | }
|
---|
160 |
|
---|
161 | t2 = t;
|
---|
162 | t2 += TIME_FIXUP_CONSTANT_INT;
|
---|
163 | t2 *= 1000*1000*10;
|
---|
164 |
|
---|
165 | *nt = t2;
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | /**
|
---|
170 | check if it's a null unix time
|
---|
171 | **/
|
---|
172 | _PUBLIC_ bool null_time(time_t t)
|
---|
173 | {
|
---|
174 | return t == 0 ||
|
---|
175 | t == (time_t)0xFFFFFFFF ||
|
---|
176 | t == (time_t)-1;
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | /**
|
---|
181 | check if it's a null NTTIME
|
---|
182 | **/
|
---|
183 | _PUBLIC_ bool null_nttime(NTTIME t)
|
---|
184 | {
|
---|
185 | return t == 0 || t == (NTTIME)-1;
|
---|
186 | }
|
---|
187 |
|
---|
188 | /*******************************************************************
|
---|
189 | create a 16 bit dos packed date
|
---|
190 | ********************************************************************/
|
---|
191 | static uint16_t make_dos_date1(struct tm *t)
|
---|
192 | {
|
---|
193 | uint16_t ret=0;
|
---|
194 | ret = (((unsigned int)(t->tm_mon+1)) >> 3) | ((t->tm_year-80) << 1);
|
---|
195 | ret = ((ret&0xFF)<<8) | (t->tm_mday | (((t->tm_mon+1) & 0x7) << 5));
|
---|
196 | return ret;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /*******************************************************************
|
---|
200 | create a 16 bit dos packed time
|
---|
201 | ********************************************************************/
|
---|
202 | static uint16_t make_dos_time1(struct tm *t)
|
---|
203 | {
|
---|
204 | uint16_t ret=0;
|
---|
205 | ret = ((((unsigned int)t->tm_min >> 3)&0x7) | (((unsigned int)t->tm_hour) << 3));
|
---|
206 | ret = ((ret&0xFF)<<8) | ((t->tm_sec/2) | ((t->tm_min & 0x7) << 5));
|
---|
207 | return ret;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /*******************************************************************
|
---|
211 | create a 32 bit dos packed date/time from some parameters
|
---|
212 | This takes a GMT time and returns a packed localtime structure
|
---|
213 | ********************************************************************/
|
---|
214 | static uint32_t make_dos_date(time_t unixdate, int zone_offset)
|
---|
215 | {
|
---|
216 | struct tm *t;
|
---|
217 | uint32_t ret=0;
|
---|
218 |
|
---|
219 | if (unixdate == 0) {
|
---|
220 | return 0;
|
---|
221 | }
|
---|
222 |
|
---|
223 | unixdate -= zone_offset;
|
---|
224 |
|
---|
225 | t = gmtime(&unixdate);
|
---|
226 | if (!t) {
|
---|
227 | return 0xFFFFFFFF;
|
---|
228 | }
|
---|
229 |
|
---|
230 | ret = make_dos_date1(t);
|
---|
231 | ret = ((ret&0xFFFF)<<16) | make_dos_time1(t);
|
---|
232 |
|
---|
233 | return ret;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /**
|
---|
237 | put a dos date into a buffer (time/date format)
|
---|
238 | This takes GMT time and puts local time in the buffer
|
---|
239 | **/
|
---|
240 | _PUBLIC_ void push_dos_date(uint8_t *buf, int offset, time_t unixdate, int zone_offset)
|
---|
241 | {
|
---|
242 | uint32_t x = make_dos_date(unixdate, zone_offset);
|
---|
243 | SIVAL(buf,offset,x);
|
---|
244 | }
|
---|
245 |
|
---|
246 | /**
|
---|
247 | put a dos date into a buffer (date/time format)
|
---|
248 | This takes GMT time and puts local time in the buffer
|
---|
249 | **/
|
---|
250 | _PUBLIC_ void push_dos_date2(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
251 | {
|
---|
252 | uint32_t x;
|
---|
253 | x = make_dos_date(unixdate, zone_offset);
|
---|
254 | x = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
255 | SIVAL(buf,offset,x);
|
---|
256 | }
|
---|
257 |
|
---|
258 | /**
|
---|
259 | put a dos 32 bit "unix like" date into a buffer. This routine takes
|
---|
260 | GMT and converts it to LOCAL time before putting it (most SMBs assume
|
---|
261 | localtime for this sort of date)
|
---|
262 | **/
|
---|
263 | _PUBLIC_ void push_dos_date3(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
264 | {
|
---|
265 | if (!null_time(unixdate)) {
|
---|
266 | unixdate -= zone_offset;
|
---|
267 | }
|
---|
268 | SIVAL(buf,offset,unixdate);
|
---|
269 | }
|
---|
270 |
|
---|
271 | /*******************************************************************
|
---|
272 | interpret a 32 bit dos packed date/time to some parameters
|
---|
273 | ********************************************************************/
|
---|
274 | void interpret_dos_date(uint32_t date,int *year,int *month,int *day,int *hour,int *minute,int *second)
|
---|
275 | {
|
---|
276 | uint32_t p0,p1,p2,p3;
|
---|
277 |
|
---|
278 | p0=date&0xFF; p1=((date&0xFF00)>>8)&0xFF;
|
---|
279 | p2=((date&0xFF0000)>>16)&0xFF; p3=((date&0xFF000000)>>24)&0xFF;
|
---|
280 |
|
---|
281 | *second = 2*(p0 & 0x1F);
|
---|
282 | *minute = ((p0>>5)&0xFF) + ((p1&0x7)<<3);
|
---|
283 | *hour = (p1>>3)&0xFF;
|
---|
284 | *day = (p2&0x1F);
|
---|
285 | *month = ((p2>>5)&0xFF) + ((p3&0x1)<<3) - 1;
|
---|
286 | *year = ((p3>>1)&0xFF) + 80;
|
---|
287 | }
|
---|
288 |
|
---|
289 | /**
|
---|
290 | create a unix date (int GMT) from a dos date (which is actually in
|
---|
291 | localtime)
|
---|
292 | **/
|
---|
293 | _PUBLIC_ time_t pull_dos_date(const uint8_t *date_ptr, int zone_offset)
|
---|
294 | {
|
---|
295 | uint32_t dos_date=0;
|
---|
296 | struct tm t;
|
---|
297 | time_t ret;
|
---|
298 |
|
---|
299 | dos_date = IVAL(date_ptr,0);
|
---|
300 |
|
---|
301 | if (dos_date == 0) return (time_t)0;
|
---|
302 |
|
---|
303 | interpret_dos_date(dos_date,&t.tm_year,&t.tm_mon,
|
---|
304 | &t.tm_mday,&t.tm_hour,&t.tm_min,&t.tm_sec);
|
---|
305 | t.tm_isdst = -1;
|
---|
306 |
|
---|
307 | ret = timegm(&t);
|
---|
308 |
|
---|
309 | ret += zone_offset;
|
---|
310 |
|
---|
311 | return ret;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /**
|
---|
315 | like make_unix_date() but the words are reversed
|
---|
316 | **/
|
---|
317 | _PUBLIC_ time_t pull_dos_date2(const uint8_t *date_ptr, int zone_offset)
|
---|
318 | {
|
---|
319 | uint32_t x,x2;
|
---|
320 |
|
---|
321 | x = IVAL(date_ptr,0);
|
---|
322 | x2 = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
323 | SIVAL(&x,0,x2);
|
---|
324 |
|
---|
325 | return pull_dos_date((const uint8_t *)&x, zone_offset);
|
---|
326 | }
|
---|
327 |
|
---|
328 | /**
|
---|
329 | create a unix GMT date from a dos date in 32 bit "unix like" format
|
---|
330 | these generally arrive as localtimes, with corresponding DST
|
---|
331 | **/
|
---|
332 | _PUBLIC_ time_t pull_dos_date3(const uint8_t *date_ptr, int zone_offset)
|
---|
333 | {
|
---|
334 | time_t t = (time_t)IVAL(date_ptr,0);
|
---|
335 | if (!null_time(t)) {
|
---|
336 | t += zone_offset;
|
---|
337 | }
|
---|
338 | return t;
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | /****************************************************************************
|
---|
343 | Return the date and time as a string
|
---|
344 | ****************************************************************************/
|
---|
345 |
|
---|
346 | char *timeval_string(TALLOC_CTX *ctx, const struct timeval *tp, bool hires)
|
---|
347 | {
|
---|
348 | time_t t;
|
---|
349 | struct tm *tm;
|
---|
350 |
|
---|
351 | t = (time_t)tp->tv_sec;
|
---|
352 | tm = localtime(&t);
|
---|
353 | if (!tm) {
|
---|
354 | if (hires) {
|
---|
355 | return talloc_asprintf(ctx,
|
---|
356 | "%ld.%06ld seconds since the Epoch",
|
---|
357 | (long)tp->tv_sec,
|
---|
358 | (long)tp->tv_usec);
|
---|
359 | } else {
|
---|
360 | return talloc_asprintf(ctx,
|
---|
361 | "%ld seconds since the Epoch",
|
---|
362 | (long)t);
|
---|
363 | }
|
---|
364 | } else {
|
---|
365 | #ifdef HAVE_STRFTIME
|
---|
366 | char TimeBuf[60];
|
---|
367 | if (hires) {
|
---|
368 | strftime(TimeBuf,sizeof(TimeBuf)-1,"%Y/%m/%d %H:%M:%S",tm);
|
---|
369 | return talloc_asprintf(ctx,
|
---|
370 | "%s.%06ld", TimeBuf,
|
---|
371 | (long)tp->tv_usec);
|
---|
372 | } else {
|
---|
373 | strftime(TimeBuf,sizeof(TimeBuf)-1,"%Y/%m/%d %H:%M:%S",tm);
|
---|
374 | return talloc_strdup(ctx, TimeBuf);
|
---|
375 | }
|
---|
376 | #else
|
---|
377 | if (hires) {
|
---|
378 | const char *asct = asctime(tm);
|
---|
379 | return talloc_asprintf(ctx, "%s.%06ld",
|
---|
380 | asct ? asct : "unknown",
|
---|
381 | (long)tp->tv_usec);
|
---|
382 | } else {
|
---|
383 | const char *asct = asctime(tm);
|
---|
384 | return talloc_asprintf(ctx, asct ? asct : "unknown");
|
---|
385 | }
|
---|
386 | #endif
|
---|
387 | }
|
---|
388 | }
|
---|
389 |
|
---|
390 | char *current_timestring(TALLOC_CTX *ctx, bool hires)
|
---|
391 | {
|
---|
392 | struct timeval tv;
|
---|
393 |
|
---|
394 | GetTimeOfDay(&tv);
|
---|
395 | return timeval_string(ctx, &tv, hires);
|
---|
396 | }
|
---|
397 |
|
---|
398 |
|
---|
399 | /**
|
---|
400 | return a HTTP/1.0 time string
|
---|
401 | **/
|
---|
402 | _PUBLIC_ char *http_timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
403 | {
|
---|
404 | char *buf;
|
---|
405 | char tempTime[60];
|
---|
406 | struct tm *tm = localtime(&t);
|
---|
407 |
|
---|
408 | if (t == TIME_T_MAX) {
|
---|
409 | return talloc_strdup(mem_ctx, "never");
|
---|
410 | }
|
---|
411 |
|
---|
412 | if (!tm) {
|
---|
413 | return talloc_asprintf(mem_ctx,"%ld seconds since the Epoch",(long)t);
|
---|
414 | }
|
---|
415 |
|
---|
416 | #ifndef HAVE_STRFTIME
|
---|
417 | buf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
418 | if (buf[strlen(buf)-1] == '\n') {
|
---|
419 | buf[strlen(buf)-1] = 0;
|
---|
420 | }
|
---|
421 | #else
|
---|
422 | strftime(tempTime, sizeof(tempTime)-1, "%a, %d %b %Y %H:%M:%S %Z", tm);
|
---|
423 | buf = talloc_strdup(mem_ctx, tempTime);
|
---|
424 | #endif /* !HAVE_STRFTIME */
|
---|
425 |
|
---|
426 | return buf;
|
---|
427 | }
|
---|
428 |
|
---|
429 | /**
|
---|
430 | Return the date and time as a string
|
---|
431 | **/
|
---|
432 | _PUBLIC_ char *timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
433 | {
|
---|
434 | char *TimeBuf;
|
---|
435 | char tempTime[80];
|
---|
436 | struct tm *tm;
|
---|
437 |
|
---|
438 | tm = localtime(&t);
|
---|
439 | if (!tm) {
|
---|
440 | return talloc_asprintf(mem_ctx,
|
---|
441 | "%ld seconds since the Epoch",
|
---|
442 | (long)t);
|
---|
443 | }
|
---|
444 |
|
---|
445 | #ifdef HAVE_STRFTIME
|
---|
446 | /* Some versions of gcc complain about using some special format
|
---|
447 | * specifiers. This is a bug in gcc, not a bug in this code. See a
|
---|
448 | * recent strftime() manual page for details. */
|
---|
449 | strftime(tempTime,sizeof(tempTime)-1,"%a %b %e %X %Y %Z",tm);
|
---|
450 | TimeBuf = talloc_strdup(mem_ctx, tempTime);
|
---|
451 | #else
|
---|
452 | TimeBuf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
453 | #endif
|
---|
454 |
|
---|
455 | return TimeBuf;
|
---|
456 | }
|
---|
457 |
|
---|
458 | /**
|
---|
459 | return a talloced string representing a NTTIME for human consumption
|
---|
460 | */
|
---|
461 | _PUBLIC_ const char *nt_time_string(TALLOC_CTX *mem_ctx, NTTIME nt)
|
---|
462 | {
|
---|
463 | time_t t;
|
---|
464 | if (nt == 0) {
|
---|
465 | return "NTTIME(0)";
|
---|
466 | }
|
---|
467 | t = nt_time_to_unix(nt);
|
---|
468 | return timestring(mem_ctx, t);
|
---|
469 | }
|
---|
470 |
|
---|
471 |
|
---|
472 | /**
|
---|
473 | put a NTTIME into a packet
|
---|
474 | */
|
---|
475 | _PUBLIC_ void push_nttime(uint8_t *base, uint16_t offset, NTTIME t)
|
---|
476 | {
|
---|
477 | SBVAL(base, offset, t);
|
---|
478 | }
|
---|
479 |
|
---|
480 | /**
|
---|
481 | pull a NTTIME from a packet
|
---|
482 | */
|
---|
483 | _PUBLIC_ NTTIME pull_nttime(uint8_t *base, uint16_t offset)
|
---|
484 | {
|
---|
485 | NTTIME ret = BVAL(base, offset);
|
---|
486 | return ret;
|
---|
487 | }
|
---|
488 |
|
---|
489 | /**
|
---|
490 | return (tv1 - tv2) in microseconds
|
---|
491 | */
|
---|
492 | _PUBLIC_ int64_t usec_time_diff(const struct timeval *tv1, const struct timeval *tv2)
|
---|
493 | {
|
---|
494 | int64_t sec_diff = tv1->tv_sec - tv2->tv_sec;
|
---|
495 | return (sec_diff * 1000000) + (int64_t)(tv1->tv_usec - tv2->tv_usec);
|
---|
496 | }
|
---|
497 |
|
---|
498 | /**
|
---|
499 | return (tp1 - tp2) in microseconds
|
---|
500 | */
|
---|
501 | _PUBLIC_ int64_t nsec_time_diff(const struct timespec *tp1, const struct timespec *tp2)
|
---|
502 | {
|
---|
503 | int64_t sec_diff = tp1->tv_sec - tp2->tv_sec;
|
---|
504 | return (sec_diff * 1000000000) + (int64_t)(tp1->tv_nsec - tp2->tv_nsec);
|
---|
505 | }
|
---|
506 |
|
---|
507 |
|
---|
508 | /**
|
---|
509 | return a zero timeval
|
---|
510 | */
|
---|
511 | _PUBLIC_ struct timeval timeval_zero(void)
|
---|
512 | {
|
---|
513 | struct timeval tv;
|
---|
514 | tv.tv_sec = 0;
|
---|
515 | tv.tv_usec = 0;
|
---|
516 | return tv;
|
---|
517 | }
|
---|
518 |
|
---|
519 | /**
|
---|
520 | return true if a timeval is zero
|
---|
521 | */
|
---|
522 | _PUBLIC_ bool timeval_is_zero(const struct timeval *tv)
|
---|
523 | {
|
---|
524 | return tv->tv_sec == 0 && tv->tv_usec == 0;
|
---|
525 | }
|
---|
526 |
|
---|
527 | /**
|
---|
528 | return a timeval for the current time
|
---|
529 | */
|
---|
530 | _PUBLIC_ struct timeval timeval_current(void)
|
---|
531 | {
|
---|
532 | struct timeval tv;
|
---|
533 | GetTimeOfDay(&tv);
|
---|
534 | return tv;
|
---|
535 | }
|
---|
536 |
|
---|
537 | /**
|
---|
538 | return a timeval struct with the given elements
|
---|
539 | */
|
---|
540 | _PUBLIC_ struct timeval timeval_set(uint32_t secs, uint32_t usecs)
|
---|
541 | {
|
---|
542 | struct timeval tv;
|
---|
543 | tv.tv_sec = secs;
|
---|
544 | tv.tv_usec = usecs;
|
---|
545 | return tv;
|
---|
546 | }
|
---|
547 |
|
---|
548 |
|
---|
549 | /**
|
---|
550 | return a timeval ofs microseconds after tv
|
---|
551 | */
|
---|
552 | _PUBLIC_ struct timeval timeval_add(const struct timeval *tv,
|
---|
553 | uint32_t secs, uint32_t usecs)
|
---|
554 | {
|
---|
555 | struct timeval tv2 = *tv;
|
---|
556 | const unsigned int million = 1000000;
|
---|
557 | tv2.tv_sec += secs;
|
---|
558 | tv2.tv_usec += usecs;
|
---|
559 | tv2.tv_sec += tv2.tv_usec / million;
|
---|
560 | tv2.tv_usec = tv2.tv_usec % million;
|
---|
561 | return tv2;
|
---|
562 | }
|
---|
563 |
|
---|
564 | /**
|
---|
565 | return the sum of two timeval structures
|
---|
566 | */
|
---|
567 | struct timeval timeval_sum(const struct timeval *tv1,
|
---|
568 | const struct timeval *tv2)
|
---|
569 | {
|
---|
570 | return timeval_add(tv1, tv2->tv_sec, tv2->tv_usec);
|
---|
571 | }
|
---|
572 |
|
---|
573 | /**
|
---|
574 | return a timeval secs/usecs into the future
|
---|
575 | */
|
---|
576 | _PUBLIC_ struct timeval timeval_current_ofs(uint32_t secs, uint32_t usecs)
|
---|
577 | {
|
---|
578 | struct timeval tv = timeval_current();
|
---|
579 | return timeval_add(&tv, secs, usecs);
|
---|
580 | }
|
---|
581 |
|
---|
582 | /**
|
---|
583 | compare two timeval structures.
|
---|
584 | Return -1 if tv1 < tv2
|
---|
585 | Return 0 if tv1 == tv2
|
---|
586 | Return 1 if tv1 > tv2
|
---|
587 | */
|
---|
588 | _PUBLIC_ int timeval_compare(const struct timeval *tv1, const struct timeval *tv2)
|
---|
589 | {
|
---|
590 | if (tv1->tv_sec > tv2->tv_sec) return 1;
|
---|
591 | if (tv1->tv_sec < tv2->tv_sec) return -1;
|
---|
592 | if (tv1->tv_usec > tv2->tv_usec) return 1;
|
---|
593 | if (tv1->tv_usec < tv2->tv_usec) return -1;
|
---|
594 | return 0;
|
---|
595 | }
|
---|
596 |
|
---|
597 | /**
|
---|
598 | return true if a timer is in the past
|
---|
599 | */
|
---|
600 | _PUBLIC_ bool timeval_expired(const struct timeval *tv)
|
---|
601 | {
|
---|
602 | struct timeval tv2 = timeval_current();
|
---|
603 | if (tv2.tv_sec > tv->tv_sec) return true;
|
---|
604 | if (tv2.tv_sec < tv->tv_sec) return false;
|
---|
605 | return (tv2.tv_usec >= tv->tv_usec);
|
---|
606 | }
|
---|
607 |
|
---|
608 | /**
|
---|
609 | return the number of seconds elapsed between two times
|
---|
610 | */
|
---|
611 | _PUBLIC_ double timeval_elapsed2(const struct timeval *tv1, const struct timeval *tv2)
|
---|
612 | {
|
---|
613 | return (tv2->tv_sec - tv1->tv_sec) +
|
---|
614 | (tv2->tv_usec - tv1->tv_usec)*1.0e-6;
|
---|
615 | }
|
---|
616 |
|
---|
617 | /**
|
---|
618 | return the number of seconds elapsed since a given time
|
---|
619 | */
|
---|
620 | _PUBLIC_ double timeval_elapsed(const struct timeval *tv)
|
---|
621 | {
|
---|
622 | struct timeval tv2 = timeval_current();
|
---|
623 | return timeval_elapsed2(tv, &tv2);
|
---|
624 | }
|
---|
625 |
|
---|
626 | /**
|
---|
627 | return the lesser of two timevals
|
---|
628 | */
|
---|
629 | _PUBLIC_ struct timeval timeval_min(const struct timeval *tv1,
|
---|
630 | const struct timeval *tv2)
|
---|
631 | {
|
---|
632 | if (tv1->tv_sec < tv2->tv_sec) return *tv1;
|
---|
633 | if (tv1->tv_sec > tv2->tv_sec) return *tv2;
|
---|
634 | if (tv1->tv_usec < tv2->tv_usec) return *tv1;
|
---|
635 | return *tv2;
|
---|
636 | }
|
---|
637 |
|
---|
638 | /**
|
---|
639 | return the greater of two timevals
|
---|
640 | */
|
---|
641 | _PUBLIC_ struct timeval timeval_max(const struct timeval *tv1,
|
---|
642 | const struct timeval *tv2)
|
---|
643 | {
|
---|
644 | if (tv1->tv_sec > tv2->tv_sec) return *tv1;
|
---|
645 | if (tv1->tv_sec < tv2->tv_sec) return *tv2;
|
---|
646 | if (tv1->tv_usec > tv2->tv_usec) return *tv1;
|
---|
647 | return *tv2;
|
---|
648 | }
|
---|
649 |
|
---|
650 | /**
|
---|
651 | return the difference between two timevals as a timeval
|
---|
652 | if tv1 comes after tv2, then return a zero timeval
|
---|
653 | (this is *tv2 - *tv1)
|
---|
654 | */
|
---|
655 | _PUBLIC_ struct timeval timeval_until(const struct timeval *tv1,
|
---|
656 | const struct timeval *tv2)
|
---|
657 | {
|
---|
658 | struct timeval t;
|
---|
659 | if (timeval_compare(tv1, tv2) >= 0) {
|
---|
660 | return timeval_zero();
|
---|
661 | }
|
---|
662 | t.tv_sec = tv2->tv_sec - tv1->tv_sec;
|
---|
663 | if (tv1->tv_usec > tv2->tv_usec) {
|
---|
664 | t.tv_sec--;
|
---|
665 | t.tv_usec = 1000000 - (tv1->tv_usec - tv2->tv_usec);
|
---|
666 | } else {
|
---|
667 | t.tv_usec = tv2->tv_usec - tv1->tv_usec;
|
---|
668 | }
|
---|
669 | return t;
|
---|
670 | }
|
---|
671 |
|
---|
672 |
|
---|
673 | /**
|
---|
674 | convert a timeval to a NTTIME
|
---|
675 | */
|
---|
676 | _PUBLIC_ NTTIME timeval_to_nttime(const struct timeval *tv)
|
---|
677 | {
|
---|
678 | return 10*(tv->tv_usec +
|
---|
679 | ((TIME_FIXUP_CONSTANT + (uint64_t)tv->tv_sec) * 1000000));
|
---|
680 | }
|
---|
681 |
|
---|
682 | /**
|
---|
683 | convert a NTTIME to a timeval
|
---|
684 | */
|
---|
685 | _PUBLIC_ void nttime_to_timeval(struct timeval *tv, NTTIME t)
|
---|
686 | {
|
---|
687 | if (tv == NULL) return;
|
---|
688 |
|
---|
689 | t += 10/2;
|
---|
690 | t /= 10;
|
---|
691 | t -= TIME_FIXUP_CONSTANT*1000*1000;
|
---|
692 |
|
---|
693 | tv->tv_sec = t / 1000000;
|
---|
694 |
|
---|
695 | if (TIME_T_MIN > tv->tv_sec || tv->tv_sec > TIME_T_MAX) {
|
---|
696 | tv->tv_sec = 0;
|
---|
697 | tv->tv_usec = 0;
|
---|
698 | return;
|
---|
699 | }
|
---|
700 |
|
---|
701 | tv->tv_usec = t - tv->tv_sec*1000000;
|
---|
702 | }
|
---|
703 |
|
---|
704 | /*******************************************************************
|
---|
705 | yield the difference between *A and *B, in seconds, ignoring leap seconds
|
---|
706 | ********************************************************************/
|
---|
707 | static int tm_diff(struct tm *a, struct tm *b)
|
---|
708 | {
|
---|
709 | int ay = a->tm_year + (1900 - 1);
|
---|
710 | int by = b->tm_year + (1900 - 1);
|
---|
711 | int intervening_leap_days =
|
---|
712 | (ay/4 - by/4) - (ay/100 - by/100) + (ay/400 - by/400);
|
---|
713 | int years = ay - by;
|
---|
714 | int days = 365*years + intervening_leap_days + (a->tm_yday - b->tm_yday);
|
---|
715 | int hours = 24*days + (a->tm_hour - b->tm_hour);
|
---|
716 | int minutes = 60*hours + (a->tm_min - b->tm_min);
|
---|
717 | int seconds = 60*minutes + (a->tm_sec - b->tm_sec);
|
---|
718 |
|
---|
719 | return seconds;
|
---|
720 | }
|
---|
721 |
|
---|
722 |
|
---|
723 | int extra_time_offset=0;
|
---|
724 |
|
---|
725 | /**
|
---|
726 | return the UTC offset in seconds west of UTC, or 0 if it cannot be determined
|
---|
727 | */
|
---|
728 | _PUBLIC_ int get_time_zone(time_t t)
|
---|
729 | {
|
---|
730 | struct tm *tm = gmtime(&t);
|
---|
731 | struct tm tm_utc;
|
---|
732 | if (!tm)
|
---|
733 | return 0;
|
---|
734 | tm_utc = *tm;
|
---|
735 | tm = localtime(&t);
|
---|
736 | if (!tm)
|
---|
737 | return 0;
|
---|
738 | return tm_diff(&tm_utc,tm)+60*extra_time_offset;
|
---|
739 | }
|
---|
740 |
|
---|
741 | struct timespec nt_time_to_unix_timespec(NTTIME *nt)
|
---|
742 | {
|
---|
743 | int64_t d;
|
---|
744 | struct timespec ret;
|
---|
745 |
|
---|
746 | if (*nt == 0 || *nt == (int64_t)-1) {
|
---|
747 | ret.tv_sec = 0;
|
---|
748 | ret.tv_nsec = 0;
|
---|
749 | return ret;
|
---|
750 | }
|
---|
751 |
|
---|
752 | d = (int64_t)*nt;
|
---|
753 | /* d is now in 100ns units, since jan 1st 1601".
|
---|
754 | Save off the ns fraction. */
|
---|
755 |
|
---|
756 | /*
|
---|
757 | * Take the last seven decimal digits and multiply by 100.
|
---|
758 | * to convert from 100ns units to 1ns units.
|
---|
759 | */
|
---|
760 | ret.tv_nsec = (long) ((d % (1000 * 1000 * 10)) * 100);
|
---|
761 |
|
---|
762 | /* Convert to seconds */
|
---|
763 | d /= 1000*1000*10;
|
---|
764 |
|
---|
765 | /* Now adjust by 369 years to make the secs since 1970 */
|
---|
766 | d -= TIME_FIXUP_CONSTANT_INT;
|
---|
767 |
|
---|
768 | if (d <= (int64_t)TIME_T_MIN) {
|
---|
769 | ret.tv_sec = TIME_T_MIN;
|
---|
770 | ret.tv_nsec = 0;
|
---|
771 | return ret;
|
---|
772 | }
|
---|
773 |
|
---|
774 | if (d >= (int64_t)TIME_T_MAX) {
|
---|
775 | ret.tv_sec = TIME_T_MAX;
|
---|
776 | ret.tv_nsec = 0;
|
---|
777 | return ret;
|
---|
778 | }
|
---|
779 |
|
---|
780 | ret.tv_sec = (time_t)d;
|
---|
781 | return ret;
|
---|
782 | }
|
---|
783 |
|
---|
784 |
|
---|
785 | /**
|
---|
786 | check if 2 NTTIMEs are equal.
|
---|
787 | */
|
---|
788 | bool nt_time_equal(NTTIME *t1, NTTIME *t2)
|
---|
789 | {
|
---|
790 | return *t1 == *t2;
|
---|
791 | }
|
---|
792 |
|
---|
793 | /**
|
---|
794 | Check if it's a null timespec.
|
---|
795 | **/
|
---|
796 |
|
---|
797 | bool null_timespec(struct timespec ts)
|
---|
798 | {
|
---|
799 | return ts.tv_sec == 0 ||
|
---|
800 | ts.tv_sec == (time_t)0xFFFFFFFF ||
|
---|
801 | ts.tv_sec == (time_t)-1;
|
---|
802 | }
|
---|
803 |
|
---|
804 |
|
---|