source: trunk/server/lib/tdb/common/hash.c

Last change on this file was 987, checked in by Silvan Scherrer, 9 years ago

samba server: fix crlf in tdb trunk code

File size: 13.5 KB
Line 
1 /*
2 Unix SMB/CIFS implementation.
3
4 trivial database library
5
6 Copyright (C) Rusty Russell 2010
7
8 ** NOTE! The following LGPL license applies to the tdb
9 ** library. This does NOT imply that all of Samba is released
10 ** under the LGPL
11
12 This library is free software; you can redistribute it and/or
13 modify it under the terms of the GNU Lesser General Public
14 License as published by the Free Software Foundation; either
15 version 3 of the License, or (at your option) any later version.
16
17 This library is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 Lesser General Public License for more details.
21
22 You should have received a copy of the GNU Lesser General Public
23 License along with this library; if not, see <http://www.gnu.org/licenses/>.
24*/
25#include "tdb_private.h"
26
27/* This is based on the hash algorithm from gdbm */
28unsigned int tdb_old_hash(TDB_DATA *key)
29{
30 uint32_t value; /* Used to compute the hash value. */
31 uint32_t i; /* Used to cycle through random values. */
32
33 /* Set the initial value from the key size. */
34 for (value = 0x238F13AF * key->dsize, i=0; i < key->dsize; i++)
35 value = (value + (key->dptr[i] << (i*5 % 24)));
36
37 return (1103515243 * value + 12345);
38}
39
40#ifndef WORDS_BIGENDIAN
41# define HASH_LITTLE_ENDIAN 1
42# define HASH_BIG_ENDIAN 0
43#else
44# define HASH_LITTLE_ENDIAN 0
45# define HASH_BIG_ENDIAN 1
46#endif
47
48/*
49-------------------------------------------------------------------------------
50lookup3.c, by Bob Jenkins, May 2006, Public Domain.
51
52These are functions for producing 32-bit hashes for hash table lookup.
53hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
54are externally useful functions. Routines to test the hash are included
55if SELF_TEST is defined. You can use this free for any purpose. It's in
56the public domain. It has no warranty.
57
58You probably want to use hashlittle(). hashlittle() and hashbig()
59hash byte arrays. hashlittle() is is faster than hashbig() on
60little-endian machines. Intel and AMD are little-endian machines.
61On second thought, you probably want hashlittle2(), which is identical to
62hashlittle() except it returns two 32-bit hashes for the price of one.
63You could implement hashbig2() if you wanted but I haven't bothered here.
64
65If you want to find a hash of, say, exactly 7 integers, do
66 a = i1; b = i2; c = i3;
67 mix(a,b,c);
68 a += i4; b += i5; c += i6;
69 mix(a,b,c);
70 a += i7;
71 final(a,b,c);
72then use c as the hash value. If you have a variable length array of
734-byte integers to hash, use hash_word(). If you have a byte array (like
74a character string), use hashlittle(). If you have several byte arrays, or
75a mix of things, see the comments above hashlittle().
76
77Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
78then mix those integers. This is fast (you can do a lot more thorough
79mixing with 12*3 instructions on 3 integers than you can with 3 instructions
80on 1 byte), but shoehorning those bytes into integers efficiently is messy.
81*/
82
83#define hashsize(n) ((uint32_t)1<<(n))
84#define hashmask(n) (hashsize(n)-1)
85#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
86
87/*
88-------------------------------------------------------------------------------
89mix -- mix 3 32-bit values reversibly.
90
91This is reversible, so any information in (a,b,c) before mix() is
92still in (a,b,c) after mix().
93
94If four pairs of (a,b,c) inputs are run through mix(), or through
95mix() in reverse, there are at least 32 bits of the output that
96are sometimes the same for one pair and different for another pair.
97This was tested for:
98* pairs that differed by one bit, by two bits, in any combination
99 of top bits of (a,b,c), or in any combination of bottom bits of
100 (a,b,c).
101* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
102 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
103 is commonly produced by subtraction) look like a single 1-bit
104 difference.
105* the base values were pseudorandom, all zero but one bit set, or
106 all zero plus a counter that starts at zero.
107
108Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
109satisfy this are
110 4 6 8 16 19 4
111 9 15 3 18 27 15
112 14 9 3 7 17 3
113Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
114for "differ" defined as + with a one-bit base and a two-bit delta. I
115used http://burtleburtle.net/bob/hash/avalanche.html to choose
116the operations, constants, and arrangements of the variables.
117
118This does not achieve avalanche. There are input bits of (a,b,c)
119that fail to affect some output bits of (a,b,c), especially of a. The
120most thoroughly mixed value is c, but it doesn't really even achieve
121avalanche in c.
122
123This allows some parallelism. Read-after-writes are good at doubling
124the number of bits affected, so the goal of mixing pulls in the opposite
125direction as the goal of parallelism. I did what I could. Rotates
126seem to cost as much as shifts on every machine I could lay my hands
127on, and rotates are much kinder to the top and bottom bits, so I used
128rotates.
129-------------------------------------------------------------------------------
130*/
131#define mix(a,b,c) \
132{ \
133 a -= c; a ^= rot(c, 4); c += b; \
134 b -= a; b ^= rot(a, 6); a += c; \
135 c -= b; c ^= rot(b, 8); b += a; \
136 a -= c; a ^= rot(c,16); c += b; \
137 b -= a; b ^= rot(a,19); a += c; \
138 c -= b; c ^= rot(b, 4); b += a; \
139}
140
141/*
142-------------------------------------------------------------------------------
143final -- final mixing of 3 32-bit values (a,b,c) into c
144
145Pairs of (a,b,c) values differing in only a few bits will usually
146produce values of c that look totally different. This was tested for
147* pairs that differed by one bit, by two bits, in any combination
148 of top bits of (a,b,c), or in any combination of bottom bits of
149 (a,b,c).
150* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
151 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
152 is commonly produced by subtraction) look like a single 1-bit
153 difference.
154* the base values were pseudorandom, all zero but one bit set, or
155 all zero plus a counter that starts at zero.
156
157These constants passed:
158 14 11 25 16 4 14 24
159 12 14 25 16 4 14 24
160and these came close:
161 4 8 15 26 3 22 24
162 10 8 15 26 3 22 24
163 11 8 15 26 3 22 24
164-------------------------------------------------------------------------------
165*/
166#define final(a,b,c) \
167{ \
168 c ^= b; c -= rot(b,14); \
169 a ^= c; a -= rot(c,11); \
170 b ^= a; b -= rot(a,25); \
171 c ^= b; c -= rot(b,16); \
172 a ^= c; a -= rot(c,4); \
173 b ^= a; b -= rot(a,14); \
174 c ^= b; c -= rot(b,24); \
175}
176
177
178/*
179-------------------------------------------------------------------------------
180hashlittle() -- hash a variable-length key into a 32-bit value
181 k : the key (the unaligned variable-length array of bytes)
182 length : the length of the key, counting by bytes
183 val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
184Returns a 32-bit value. Every bit of the key affects every bit of
185the return value. Two keys differing by one or two bits will have
186totally different hash values. Note that the return value is better
187mixed than val2, so use that first.
188
189The best hash table sizes are powers of 2. There is no need to do
190mod a prime (mod is sooo slow!). If you need less than 32 bits,
191use a bitmask. For example, if you need only 10 bits, do
192 h = (h & hashmask(10));
193In which case, the hash table should have hashsize(10) elements.
194
195If you are hashing n strings (uint8_t **)k, do it like this:
196 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
197
198By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
199code any way you wish, private, educational, or commercial. It's free.
200
201Use for hash table lookup, or anything where one collision in 2^^32 is
202acceptable. Do NOT use for cryptographic purposes.
203-------------------------------------------------------------------------------
204*/
205
206static uint32_t hashlittle( const void *key, size_t length )
207{
208 uint32_t a,b,c; /* internal state */
209 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
210
211 /* Set up the internal state */
212 a = b = c = 0xdeadbeef + ((uint32_t)length);
213
214 u.ptr = key;
215 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
216 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
217#ifdef VALGRIND
218 const uint8_t *k8;
219#endif
220
221 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
222 while (length > 12)
223 {
224 a += k[0];
225 b += k[1];
226 c += k[2];
227 mix(a,b,c);
228 length -= 12;
229 k += 3;
230 }
231
232 /*----------------------------- handle the last (probably partial) block */
233 /*
234 * "k[2]&0xffffff" actually reads beyond the end of the string, but
235 * then masks off the part it's not allowed to read. Because the
236 * string is aligned, the masked-off tail is in the same word as the
237 * rest of the string. Every machine with memory protection I've seen
238 * does it on word boundaries, so is OK with this. But VALGRIND will
239 * still catch it and complain. The masking trick does make the hash
240 * noticably faster for short strings (like English words).
241 */
242#ifndef VALGRIND
243
244 switch(length)
245 {
246 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
247 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
248 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
249 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
250 case 8 : b+=k[1]; a+=k[0]; break;
251 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
252 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
253 case 5 : b+=k[1]&0xff; a+=k[0]; break;
254 case 4 : a+=k[0]; break;
255 case 3 : a+=k[0]&0xffffff; break;
256 case 2 : a+=k[0]&0xffff; break;
257 case 1 : a+=k[0]&0xff; break;
258 case 0 : return c; /* zero length strings require no mixing */
259 }
260
261#else /* make valgrind happy */
262
263 k8 = (const uint8_t *)k;
264 switch(length)
265 {
266 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
267 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
268 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
269 case 9 : c+=k8[8]; /* fall through */
270 case 8 : b+=k[1]; a+=k[0]; break;
271 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
272 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
273 case 5 : b+=k8[4]; /* fall through */
274 case 4 : a+=k[0]; break;
275 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
276 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
277 case 1 : a+=k8[0]; break;
278 case 0 : return c;
279 }
280
281#endif /* !valgrind */
282
283 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
284 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
285 const uint8_t *k8;
286
287 /*--------------- all but last block: aligned reads and different mixing */
288 while (length > 12)
289 {
290 a += k[0] + (((uint32_t)k[1])<<16);
291 b += k[2] + (((uint32_t)k[3])<<16);
292 c += k[4] + (((uint32_t)k[5])<<16);
293 mix(a,b,c);
294 length -= 12;
295 k += 6;
296 }
297
298 /*----------------------------- handle the last (probably partial) block */
299 k8 = (const uint8_t *)k;
300 switch(length)
301 {
302 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
303 b+=k[2]+(((uint32_t)k[3])<<16);
304 a+=k[0]+(((uint32_t)k[1])<<16);
305 break;
306 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
307 case 10: c+=k[4];
308 b+=k[2]+(((uint32_t)k[3])<<16);
309 a+=k[0]+(((uint32_t)k[1])<<16);
310 break;
311 case 9 : c+=k8[8]; /* fall through */
312 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
313 a+=k[0]+(((uint32_t)k[1])<<16);
314 break;
315 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
316 case 6 : b+=k[2];
317 a+=k[0]+(((uint32_t)k[1])<<16);
318 break;
319 case 5 : b+=k8[4]; /* fall through */
320 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
321 break;
322 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
323 case 2 : a+=k[0];
324 break;
325 case 1 : a+=k8[0];
326 break;
327 case 0 : return c; /* zero length requires no mixing */
328 }
329
330 } else { /* need to read the key one byte at a time */
331 const uint8_t *k = (const uint8_t *)key;
332
333 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
334 while (length > 12)
335 {
336 a += k[0];
337 a += ((uint32_t)k[1])<<8;
338 a += ((uint32_t)k[2])<<16;
339 a += ((uint32_t)k[3])<<24;
340 b += k[4];
341 b += ((uint32_t)k[5])<<8;
342 b += ((uint32_t)k[6])<<16;
343 b += ((uint32_t)k[7])<<24;
344 c += k[8];
345 c += ((uint32_t)k[9])<<8;
346 c += ((uint32_t)k[10])<<16;
347 c += ((uint32_t)k[11])<<24;
348 mix(a,b,c);
349 length -= 12;
350 k += 12;
351 }
352
353 /*-------------------------------- last block: affect all 32 bits of (c) */
354 switch(length) /* all the case statements fall through */
355 {
356 case 12: c+=((uint32_t)k[11])<<24;
357 case 11: c+=((uint32_t)k[10])<<16;
358 case 10: c+=((uint32_t)k[9])<<8;
359 case 9 : c+=k[8];
360 case 8 : b+=((uint32_t)k[7])<<24;
361 case 7 : b+=((uint32_t)k[6])<<16;
362 case 6 : b+=((uint32_t)k[5])<<8;
363 case 5 : b+=k[4];
364 case 4 : a+=((uint32_t)k[3])<<24;
365 case 3 : a+=((uint32_t)k[2])<<16;
366 case 2 : a+=((uint32_t)k[1])<<8;
367 case 1 : a+=k[0];
368 break;
369 case 0 : return c;
370 }
371 }
372
373 final(a,b,c);
374 return c;
375}
376
377_PUBLIC_ unsigned int tdb_jenkins_hash(TDB_DATA *key)
378{
379 return hashlittle(key->dptr, key->dsize);
380}
Note: See TracBrowser for help on using the repository browser.