source: trunk/server/lib/talloc/talloc.h@ 752

Last change on this file since 752 was 752, checked in by Silvan Scherrer, 13 years ago

Samba Server: updated trunk to 3.6.9 2nd part

File size: 56.4 KB
Line 
1#ifndef _TALLOC_H_
2#define _TALLOC_H_
3/*
4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
6
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
9
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
13
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
18
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
23
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
26*/
27
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36/**
37 * @defgroup talloc The talloc API
38 *
39 * talloc is a hierarchical, reference counted memory pool system with
40 * destructors. It is the core memory allocator used in Samba.
41 *
42 * @{
43 */
44
45#define TALLOC_VERSION_MAJOR 2
46#define TALLOC_VERSION_MINOR 0
47
48int talloc_version_major(void);
49int talloc_version_minor(void);
50
51/**
52 * @brief Define a talloc parent type
53 *
54 * As talloc is a hierarchial memory allocator, every talloc chunk is a
55 * potential parent to other talloc chunks. So defining a separate type for a
56 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
57 * as it provides an indicator for function arguments. You will frequently
58 * write code like
59 *
60 * @code
61 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
62 * {
63 * struct foo *result;
64 * result = talloc(mem_ctx, struct foo);
65 * if (result == NULL) return NULL;
66 * ... initialize foo ...
67 * return result;
68 * }
69 * @endcode
70 *
71 * In this type of allocating functions it is handy to have a general
72 * TALLOC_CTX type to indicate which parent to put allocated structures on.
73 */
74typedef void TALLOC_CTX;
75
76/*
77 this uses a little trick to allow __LINE__ to be stringified
78*/
79#ifndef __location__
80#define __TALLOC_STRING_LINE1__(s) #s
81#define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
82#define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
83#define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
84#endif
85
86#ifndef TALLOC_DEPRECATED
87#define TALLOC_DEPRECATED 0
88#endif
89
90#ifndef PRINTF_ATTRIBUTE
91#if (__GNUC__ >= 3)
92/** Use gcc attribute to check printf fns. a1 is the 1-based index of
93 * the parameter containing the format, and a2 the index of the first
94 * argument. Note that some gcc 2.x versions don't handle this
95 * properly **/
96#define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
97#else
98#define PRINTF_ATTRIBUTE(a1, a2)
99#endif
100#endif
101
102#ifdef DOXYGEN
103/**
104 * @brief Create a new talloc context.
105 *
106 * The talloc() macro is the core of the talloc library. It takes a memory
107 * context and a type, and returns a pointer to a new area of memory of the
108 * given type.
109 *
110 * The returned pointer is itself a talloc context, so you can use it as the
111 * context argument to more calls to talloc if you wish.
112 *
113 * The returned pointer is a "child" of the supplied context. This means that if
114 * you talloc_free() the context then the new child disappears as well.
115 * Alternatively you can free just the child.
116 *
117 * @param[in] ctx A talloc context to create a new reference on or NULL to
118 * create a new top level context.
119 *
120 * @param[in] type The type of memory to allocate.
121 *
122 * @return A type casted talloc context or NULL on error.
123 *
124 * @code
125 * unsigned int *a, *b;
126 *
127 * a = talloc(NULL, unsigned int);
128 * b = talloc(a, unsigned int);
129 * @endcode
130 *
131 * @see talloc_zero
132 * @see talloc_array
133 * @see talloc_steal
134 * @see talloc_free
135 */
136void *talloc(const void *ctx, #type);
137#else
138#define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
139void *_talloc(const void *context, size_t size);
140#endif
141
142/**
143 * @brief Create a new top level talloc context.
144 *
145 * This function creates a zero length named talloc context as a top level
146 * context. It is equivalent to:
147 *
148 * @code
149 * talloc_named(NULL, 0, fmt, ...);
150 * @endcode
151 * @param[in] fmt Format string for the name.
152 *
153 * @param[in] ... Additional printf-style arguments.
154 *
155 * @return The allocated memory chunk, NULL on error.
156 *
157 * @see talloc_named()
158 */
159void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
160
161#ifdef DOXYGEN
162/**
163 * @brief Free a chunk of talloc memory.
164 *
165 * The talloc_free() function frees a piece of talloc memory, and all its
166 * children. You can call talloc_free() on any pointer returned by
167 * talloc().
168 *
169 * The return value of talloc_free() indicates success or failure, with 0
170 * returned for success and -1 for failure. A possible failure condition
171 * is if the pointer had a destructor attached to it and the destructor
172 * returned -1. See talloc_set_destructor() for details on
173 * destructors. Likewise, if "ptr" is NULL, then the function will make
174 * no modifications and return -1.
175 *
176 * From version 2.0 and onwards, as a special case, talloc_free() is
177 * refused on pointers that have more than one parent associated, as talloc
178 * would have no way of knowing which parent should be removed. This is
179 * different from older versions in the sense that always the reference to
180 * the most recently established parent has been destroyed. Hence to free a
181 * pointer that has more than one parent please use talloc_unlink().
182 *
183 * To help you find problems in your code caused by this behaviour, if
184 * you do try and free a pointer with more than one parent then the
185 * talloc logging function will be called to give output like this:
186 *
187 * @code
188 * ERROR: talloc_free with references at some_dir/source/foo.c:123
189 * reference at some_dir/source/other.c:325
190 * reference at some_dir/source/third.c:121
191 * @endcode
192 *
193 * Please see the documentation for talloc_set_log_fn() and
194 * talloc_set_log_stderr() for more information on talloc logging
195 * functions.
196 *
197 * talloc_free() operates recursively on its children.
198 *
199 * @param[in] ptr The chunk to be freed.
200 *
201 * @return Returns 0 on success and -1 on error. A possible
202 * failure condition is if the pointer had a destructor
203 * attached to it and the destructor returned -1. Likewise,
204 * if "ptr" is NULL, then the function will make no
205 * modifications and returns -1.
206 *
207 * Example:
208 * @code
209 * unsigned int *a, *b;
210 * a = talloc(NULL, unsigned int);
211 * b = talloc(a, unsigned int);
212 *
213 * talloc_free(a); // Frees a and b
214 * @endcode
215 *
216 * @see talloc_set_destructor()
217 * @see talloc_unlink()
218 */
219int talloc_free(void *ptr);
220#else
221#define talloc_free(ctx) _talloc_free(ctx, __location__)
222int _talloc_free(void *ptr, const char *location);
223#endif
224
225/**
226 * @brief Free a talloc chunk's children.
227 *
228 * The function walks along the list of all children of a talloc context and
229 * talloc_free()s only the children, not the context itself.
230 *
231 * A NULL argument is handled as no-op.
232 *
233 * @param[in] ptr The chunk that you want to free the children of
234 * (NULL is allowed too)
235 */
236void talloc_free_children(void *ptr);
237
238#ifdef DOXYGEN
239/**
240 * @brief Assign a destructor function to be called when a chunk is freed.
241 *
242 * The function talloc_set_destructor() sets the "destructor" for the pointer
243 * "ptr". A destructor is a function that is called when the memory used by a
244 * pointer is about to be released. The destructor receives the pointer as an
245 * argument, and should return 0 for success and -1 for failure.
246 *
247 * The destructor can do anything it wants to, including freeing other pieces
248 * of memory. A common use for destructors is to clean up operating system
249 * resources (such as open file descriptors) contained in the structure the
250 * destructor is placed on.
251 *
252 * You can only place one destructor on a pointer. If you need more than one
253 * destructor then you can create a zero-length child of the pointer and place
254 * an additional destructor on that.
255 *
256 * To remove a destructor call talloc_set_destructor() with NULL for the
257 * destructor.
258 *
259 * If your destructor attempts to talloc_free() the pointer that it is the
260 * destructor for then talloc_free() will return -1 and the free will be
261 * ignored. This would be a pointless operation anyway, as the destructor is
262 * only called when the memory is just about to go away.
263 *
264 * @param[in] ptr The talloc chunk to add a destructor to.
265 *
266 * @param[in] destructor The destructor function to be called. NULL to remove
267 * it.
268 *
269 * Example:
270 * @code
271 * static int destroy_fd(int *fd) {
272 * close(*fd);
273 * return 0;
274 * }
275 *
276 * int *open_file(const char *filename) {
277 * int *fd = talloc(NULL, int);
278 * *fd = open(filename, O_RDONLY);
279 * if (*fd < 0) {
280 * talloc_free(fd);
281 * return NULL;
282 * }
283 * // Whenever they free this, we close the file.
284 * talloc_set_destructor(fd, destroy_fd);
285 * return fd;
286 * }
287 * @endcode
288 *
289 * @see talloc()
290 * @see talloc_free()
291 */
292void talloc_set_destructor(const void *ptr, int (*destructor)(void *));
293
294/**
295 * @brief Change a talloc chunk's parent.
296 *
297 * The talloc_steal() function changes the parent context of a talloc
298 * pointer. It is typically used when the context that the pointer is
299 * currently a child of is going to be freed and you wish to keep the
300 * memory for a longer time.
301 *
302 * To make the changed hierarchy less error-prone, you might consider to use
303 * talloc_move().
304 *
305 * If you try and call talloc_steal() on a pointer that has more than one
306 * parent then the result is ambiguous. Talloc will choose to remove the
307 * parent that is currently indicated by talloc_parent() and replace it with
308 * the chosen parent. You will also get a message like this via the talloc
309 * logging functions:
310 *
311 * @code
312 * WARNING: talloc_steal with references at some_dir/source/foo.c:123
313 * reference at some_dir/source/other.c:325
314 * reference at some_dir/source/third.c:121
315 * @endcode
316 *
317 * To unambiguously change the parent of a pointer please see the function
318 * talloc_reparent(). See the talloc_set_log_fn() documentation for more
319 * information on talloc logging.
320 *
321 * @param[in] new_ctx The new parent context.
322 *
323 * @param[in] ptr The talloc chunk to move.
324 *
325 * @return Returns the pointer that you pass it. It does not have
326 * any failure modes.
327 *
328 * @note It is possible to produce loops in the parent/child relationship
329 * if you are not careful with talloc_steal(). No guarantees are provided
330 * as to your sanity or the safety of your data if you do this.
331 */
332void *talloc_steal(const void *new_ctx, const void *ptr);
333#else /* DOXYGEN */
334/* try to make talloc_set_destructor() and talloc_steal() type safe,
335 if we have a recent gcc */
336#if (__GNUC__ >= 3)
337#define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
338#define talloc_set_destructor(ptr, function) \
339 do { \
340 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
341 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
342 } while(0)
343/* this extremely strange macro is to avoid some braindamaged warning
344 stupidity in gcc 4.1.x */
345#define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__); __talloc_steal_ret; })
346#else /* __GNUC__ >= 3 */
347#define talloc_set_destructor(ptr, function) \
348 _talloc_set_destructor((ptr), (int (*)(void *))(function))
349#define _TALLOC_TYPEOF(ptr) void *
350#define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__)
351#endif /* __GNUC__ >= 3 */
352void _talloc_set_destructor(const void *ptr, int (*_destructor)(void *));
353void *_talloc_steal_loc(const void *new_ctx, const void *ptr, const char *location);
354#endif /* DOXYGEN */
355
356/**
357 * @brief Assign a name to a talloc chunk.
358 *
359 * Each talloc pointer has a "name". The name is used principally for
360 * debugging purposes, although it is also possible to set and get the name on
361 * a pointer in as a way of "marking" pointers in your code.
362 *
363 * The main use for names on pointer is for "talloc reports". See
364 * talloc_report() and talloc_report_full() for details. Also see
365 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
366 *
367 * The talloc_set_name() function allocates memory as a child of the
368 * pointer. It is logically equivalent to:
369 *
370 * @code
371 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
372 * @endcode
373 *
374 * @param[in] ptr The talloc chunk to assign a name to.
375 *
376 * @param[in] fmt Format string for the name.
377 *
378 * @param[in] ... Add printf-style additional arguments.
379 *
380 * @return The assigned name, NULL on error.
381 *
382 * @note Multiple calls to talloc_set_name() will allocate more memory without
383 * releasing the name. All of the memory is released when the ptr is freed
384 * using talloc_free().
385 */
386const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
387
388#ifdef DOXYGEN
389/**
390 * @brief Change a talloc chunk's parent.
391 *
392 * This function has the same effect as talloc_steal(), and additionally sets
393 * the source pointer to NULL. You would use it like this:
394 *
395 * @code
396 * struct foo *X = talloc(tmp_ctx, struct foo);
397 * struct foo *Y;
398 * Y = talloc_move(new_ctx, &X);
399 * @endcode
400 *
401 * @param[in] new_ctx The new parent context.
402 *
403 * @param[in] pptr Pointer to the talloc chunk to move.
404 *
405 * @return The pointer of the talloc chunk it has been moved to,
406 * NULL on error.
407 */
408void *talloc_move(const void *new_ctx, void **pptr);
409#else
410#define talloc_move(ctx, pptr) (_TALLOC_TYPEOF(*(pptr)))_talloc_move((ctx),(void *)(pptr))
411void *_talloc_move(const void *new_ctx, const void *pptr);
412#endif
413
414/**
415 * @brief Assign a name to a talloc chunk.
416 *
417 * The function is just like talloc_set_name(), but it takes a string constant,
418 * and is much faster. It is extensively used by the "auto naming" macros, such
419 * as talloc_p().
420 *
421 * This function does not allocate any memory. It just copies the supplied
422 * pointer into the internal representation of the talloc ptr. This means you
423 * must not pass a name pointer to memory that will disappear before the ptr
424 * is freed with talloc_free().
425 *
426 * @param[in] ptr The talloc chunk to assign a name to.
427 *
428 * @param[in] name Format string for the name.
429 */
430void talloc_set_name_const(const void *ptr, const char *name);
431
432/**
433 * @brief Create a named talloc chunk.
434 *
435 * The talloc_named() function creates a named talloc pointer. It is
436 * equivalent to:
437 *
438 * @code
439 * ptr = talloc_size(context, size);
440 * talloc_set_name(ptr, fmt, ....);
441 * @endcode
442 *
443 * @param[in] context The talloc context to hang the result off.
444 *
445 * @param[in] size Number of char's that you want to allocate.
446 *
447 * @param[in] fmt Format string for the name.
448 *
449 * @param[in] ... Additional printf-style arguments.
450 *
451 * @return The allocated memory chunk, NULL on error.
452 *
453 * @see talloc_set_name()
454 */
455void *talloc_named(const void *context, size_t size,
456 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
457
458/**
459 * @brief Basic routine to allocate a chunk of memory.
460 *
461 * This is equivalent to:
462 *
463 * @code
464 * ptr = talloc_size(context, size);
465 * talloc_set_name_const(ptr, name);
466 * @endcode
467 *
468 * @param[in] context The parent context.
469 *
470 * @param[in] size The number of char's that we want to allocate.
471 *
472 * @param[in] name The name the talloc block has.
473 *
474 * @return The allocated memory chunk, NULL on error.
475 */
476void *talloc_named_const(const void *context, size_t size, const char *name);
477
478#ifdef DOXYGEN
479/**
480 * @brief Untyped allocation.
481 *
482 * The function should be used when you don't have a convenient type to pass to
483 * talloc(). Unlike talloc(), it is not type safe (as it returns a void *), so
484 * you are on your own for type checking.
485 *
486 * Best to use talloc() or talloc_array() instead.
487 *
488 * @param[in] ctx The talloc context to hang the result off.
489 *
490 * @param[in] size Number of char's that you want to allocate.
491 *
492 * @return The allocated memory chunk, NULL on error.
493 *
494 * Example:
495 * @code
496 * void *mem = talloc_size(NULL, 100);
497 * @endcode
498 */
499void *talloc_size(const void *ctx, size_t size);
500#else
501#define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
502#endif
503
504#ifdef DOXYGEN
505/**
506 * @brief Allocate into a typed pointer.
507 *
508 * The talloc_ptrtype() macro should be used when you have a pointer and want
509 * to allocate memory to point at with this pointer. When compiling with
510 * gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size() and
511 * talloc_get_name() will return the current location in the source file and
512 * not the type.
513 *
514 * @param[in] ctx The talloc context to hang the result off.
515 *
516 * @param[in] type The pointer you want to assign the result to.
517 *
518 * @return The properly casted allocated memory chunk, NULL on
519 * error.
520 *
521 * Example:
522 * @code
523 * unsigned int *a = talloc_ptrtype(NULL, a);
524 * @endcode
525 */
526void *talloc_ptrtype(const void *ctx, #type);
527#else
528#define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
529#endif
530
531#ifdef DOXYGEN
532/**
533 * @brief Allocate a new 0-sized talloc chunk.
534 *
535 * This is a utility macro that creates a new memory context hanging off an
536 * existing context, automatically naming it "talloc_new: __location__" where
537 * __location__ is the source line it is called from. It is particularly
538 * useful for creating a new temporary working context.
539 *
540 * @param[in] ctx The talloc parent context.
541 *
542 * @return A new talloc chunk, NULL on error.
543 */
544void *talloc_new(const void *ctx);
545#else
546#define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
547#endif
548
549#ifdef DOXYGEN
550/**
551 * @brief Allocate a 0-initizialized structure.
552 *
553 * The macro is equivalent to:
554 *
555 * @code
556 * ptr = talloc(ctx, type);
557 * if (ptr) memset(ptr, 0, sizeof(type));
558 * @endcode
559 *
560 * @param[in] ctx The talloc context to hang the result off.
561 *
562 * @param[in] type The type that we want to allocate.
563 *
564 * @return Pointer to a piece of memory, properly cast to 'type *',
565 * NULL on error.
566 *
567 * Example:
568 * @code
569 * unsigned int *a, *b;
570 * a = talloc_zero(NULL, unsigned int);
571 * b = talloc_zero(a, unsigned int);
572 * @endcode
573 *
574 * @see talloc()
575 * @see talloc_zero_size()
576 * @see talloc_zero_array()
577 */
578void *talloc_zero(const void *ctx, #type);
579
580/**
581 * @brief Allocate untyped, 0-initialized memory.
582 *
583 * @param[in] ctx The talloc context to hang the result off.
584 *
585 * @param[in] size Number of char's that you want to allocate.
586 *
587 * @return The allocated memory chunk.
588 */
589void *talloc_zero_size(const void *ctx, size_t size);
590#else
591#define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
592#define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
593void *_talloc_zero(const void *ctx, size_t size, const char *name);
594#endif
595
596/**
597 * @brief Return the name of a talloc chunk.
598 *
599 * @param[in] ptr The talloc chunk.
600 *
601 * @return The current name for the given talloc pointer.
602 *
603 * @see talloc_set_name()
604 */
605const char *talloc_get_name(const void *ptr);
606
607/**
608 * @brief Verify that a talloc chunk carries a specified name.
609 *
610 * This function checks if a pointer has the specified name. If it does
611 * then the pointer is returned.
612 *
613 * @param[in] ptr The talloc chunk to check.
614 *
615 * @param[in] name The name to check against.
616 *
617 * @return The pointer if the name matches, NULL if it doesn't.
618 */
619void *talloc_check_name(const void *ptr, const char *name);
620
621/**
622 * @brief Get the parent chunk of a pointer.
623 *
624 * @param[in] ptr The talloc pointer to inspect.
625 *
626 * @return The talloc parent of ptr, NULL on error.
627 */
628void *talloc_parent(const void *ptr);
629
630/**
631 * @brief Get a talloc chunk's parent name.
632 *
633 * @param[in] ptr The talloc pointer to inspect.
634 *
635 * @return The name of ptr's parent chunk.
636 */
637const char *talloc_parent_name(const void *ptr);
638
639/**
640 * @brief Get the total size of a talloc chunk including its children.
641 *
642 * The function returns the total size in bytes used by this pointer and all
643 * child pointers. Mostly useful for debugging.
644 *
645 * Passing NULL is allowed, but it will only give a meaningful result if
646 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
647 * been called.
648 *
649 * @param[in] ptr The talloc chunk.
650 *
651 * @return The total size.
652 */
653size_t talloc_total_size(const void *ptr);
654
655/**
656 * @brief Get the number of talloc chunks hanging off a chunk.
657 *
658 * The talloc_total_blocks() function returns the total memory block
659 * count used by this pointer and all child pointers. Mostly useful for
660 * debugging.
661 *
662 * Passing NULL is allowed, but it will only give a meaningful result if
663 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
664 * been called.
665 *
666 * @param[in] ptr The talloc chunk.
667 *
668 * @return The total size.
669 */
670size_t talloc_total_blocks(const void *ptr);
671
672#ifdef DOXYGEN
673/**
674 * @brief Duplicate a memory area into a talloc chunk.
675 *
676 * The function is equivalent to:
677 *
678 * @code
679 * ptr = talloc_size(ctx, size);
680 * if (ptr) memcpy(ptr, p, size);
681 * @endcode
682 *
683 * @param[in] t The talloc context to hang the result off.
684 *
685 * @param[in] p The memory chunk you want to duplicate.
686 *
687 * @param[in] size Number of char's that you want copy.
688 *
689 * @return The allocated memory chunk.
690 *
691 * @see talloc_size()
692 */
693void *talloc_memdup(const void *t, const void *p, size_t size);
694#else
695#define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
696void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
697#endif
698
699#ifdef DOXYGEN
700/**
701 * @brief Assign a type to a talloc chunk.
702 *
703 * This macro allows you to force the name of a pointer to be of a particular
704 * type. This can be used in conjunction with talloc_get_type() to do type
705 * checking on void* pointers.
706 *
707 * It is equivalent to this:
708 *
709 * @code
710 * talloc_set_name_const(ptr, #type)
711 * @endcode
712 *
713 * @param[in] ptr The talloc chunk to assign the type to.
714 *
715 * @param[in] type The type to assign.
716 */
717void talloc_set_type(const char *ptr, #type);
718
719/**
720 * @brief Get a typed pointer out of a talloc pointer.
721 *
722 * This macro allows you to do type checking on talloc pointers. It is
723 * particularly useful for void* private pointers. It is equivalent to
724 * this:
725 *
726 * @code
727 * (type *)talloc_check_name(ptr, #type)
728 * @endcode
729 *
730 * @param[in] ptr The talloc pointer to check.
731 *
732 * @param[in] type The type to check against.
733 *
734 * @return The properly casted pointer given by ptr, NULL on error.
735 */
736type *talloc_get_type(const void *ptr, #type);
737#else
738#define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
739#define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
740#endif
741
742#ifdef DOXYGEN
743/**
744 * @brief Safely turn a void pointer into a typed pointer.
745 *
746 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
747 * assing the talloc chunk pointer to some void pointer variable,
748 * talloc_get_type_abort() is the recommended way to get the convert the void
749 * pointer back to a typed pointer.
750 *
751 * @param[in] ptr The void pointer to convert.
752 *
753 * @param[in] type The type that this chunk contains
754 *
755 * @return The same value as ptr, type-checked and properly cast.
756 */
757void *talloc_get_type_abort(const void *ptr, #type);
758#else
759#define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
760void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
761#endif
762
763/**
764 * @brief Find a parent context by name.
765 *
766 * Find a parent memory context of the current context that has the given
767 * name. This can be very useful in complex programs where it may be
768 * difficult to pass all information down to the level you need, but you
769 * know the structure you want is a parent of another context.
770 *
771 * @param[in] ctx The talloc chunk to start from.
772 *
773 * @param[in] name The name of the parent we look for.
774 *
775 * @return The memory context we are looking for, NULL if not
776 * found.
777 */
778void *talloc_find_parent_byname(const void *ctx, const char *name);
779
780#ifdef DOXYGEN
781/**
782 * @brief Find a parent context by type.
783 *
784 * Find a parent memory context of the current context that has the given
785 * name. This can be very useful in complex programs where it may be
786 * difficult to pass all information down to the level you need, but you
787 * know the structure you want is a parent of another context.
788 *
789 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
790 *
791 * @param[in] ptr The talloc chunk to start from.
792 *
793 * @param[in] type The type of the parent to look for.
794 *
795 * @return The memory context we are looking for, NULL if not
796 * found.
797 */
798void *talloc_find_parent_bytype(const void *ptr, #type);
799#else
800#define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
801#endif
802
803/**
804 * @brief Allocate a talloc pool.
805 *
806 * A talloc pool is a pure optimization for specific situations. In the
807 * release process for Samba 3.2 we found out that we had become considerably
808 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
809 * consumer in benchmarks. For Samba 3.2 we have internally converted many
810 * static buffers to dynamically allocated ones, so malloc(3) being beaten
811 * more was no surprise. But it made us slower.
812 *
813 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
814 * pattern Samba has: The SMB protocol is mainly a request/response protocol
815 * where we have to allocate a certain amount of memory per request and free
816 * that after the SMB reply is sent to the client.
817 *
818 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
819 * exactly as you would use any other ::TALLOC_CTX. The difference is that
820 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
821 * just increments a pointer inside the talloc_pool. This also works
822 * recursively. If you use the child of the talloc pool as a parent for
823 * grand-children, their memory is also taken from the talloc pool.
824 *
825 * If you talloc_free() children of a talloc pool, the memory is not given
826 * back to the system. Instead, free(3) is only called if the talloc_pool()
827 * itself is released with talloc_free().
828 *
829 * The downside of a talloc pool is that if you talloc_move() a child of a
830 * talloc pool to a talloc parent outside the pool, the whole pool memory is
831 * not free(3)'ed until that moved chunk is also talloc_free()ed.
832 *
833 * @param[in] context The talloc context to hang the result off.
834 *
835 * @param[in] size Size of the talloc pool.
836 *
837 * @return The allocated talloc pool, NULL on error.
838 */
839void *talloc_pool(const void *context, size_t size);
840
841/**
842 * @brief Free a talloc chunk and NULL out the pointer.
843 *
844 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
845 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
846 * it.
847 *
848 * @param[in] ctx The chunk to be freed.
849 */
850#define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
851
852/* @} ******************************************************************/
853
854/**
855 * \defgroup talloc_ref The talloc reference function.
856 * @ingroup talloc
857 *
858 * This module contains the definitions around talloc references
859 *
860 * @{
861 */
862
863/**
864 * @brief Increase the reference count of a talloc chunk.
865 *
866 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
867 *
868 * @code
869 * talloc_reference(NULL, ptr);
870 * @endcode
871 *
872 * You can use either syntax, depending on which you think is clearer in
873 * your code.
874 *
875 * @param[in] ptr The pointer to increase the reference count.
876 *
877 * @return 0 on success, -1 on error.
878 */
879int talloc_increase_ref_count(const void *ptr);
880
881/**
882 * @brief Get the number of references to a talloc chunk.
883 *
884 * @param[in] ptr The pointer to retrieve the reference count from.
885 *
886 * @return The number of references.
887 */
888size_t talloc_reference_count(const void *ptr);
889
890#ifdef DOXYGEN
891/**
892 * @brief Create an additional talloc parent to a pointer.
893 *
894 * The talloc_reference() function makes "context" an additional parent of
895 * ptr. Each additional reference consumes around 48 bytes of memory on intel
896 * x86 platforms.
897 *
898 * If ptr is NULL, then the function is a no-op, and simply returns NULL.
899 *
900 * After creating a reference you can free it in one of the following ways:
901 *
902 * - you can talloc_free() any parent of the original pointer. That
903 * will reduce the number of parents of this pointer by 1, and will
904 * cause this pointer to be freed if it runs out of parents.
905 *
906 * - you can talloc_free() the pointer itself if it has at maximum one
907 * parent. This behaviour has been changed since the release of version
908 * 2.0. Further informations in the description of "talloc_free".
909 *
910 * For more control on which parent to remove, see talloc_unlink()
911 * @param[in] ctx The additional parent.
912 *
913 * @param[in] ptr The pointer you want to create an additional parent for.
914 *
915 * @return The original pointer 'ptr', NULL if talloc ran out of
916 * memory in creating the reference.
917 *
918 * Example:
919 * @code
920 * unsigned int *a, *b, *c;
921 * a = talloc(NULL, unsigned int);
922 * b = talloc(NULL, unsigned int);
923 * c = talloc(a, unsigned int);
924 * // b also serves as a parent of c.
925 * talloc_reference(b, c);
926 * @endcode
927 *
928 * @see talloc_unlink()
929 */
930void *talloc_reference(const void *ctx, const void *ptr);
931#else
932#define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference_loc((ctx),(ptr), __location__)
933void *_talloc_reference_loc(const void *context, const void *ptr, const char *location);
934#endif
935
936/**
937 * @brief Remove a specific parent from a talloc chunk.
938 *
939 * The function removes a specific parent from ptr. The context passed must
940 * either be a context used in talloc_reference() with this pointer, or must be
941 * a direct parent of ptr.
942 *
943 * You can just use talloc_free() instead of talloc_unlink() if there
944 * is at maximum one parent. This behaviour has been changed since the
945 * release of version 2.0. Further informations in the description of
946 * "talloc_free".
947 *
948 * @param[in] context The talloc parent to remove.
949 *
950 * @param[in] ptr The talloc ptr you want to remove the parent from.
951 *
952 * @return 0 on success, -1 on error.
953 *
954 * @note If the parent has already been removed using talloc_free() then
955 * this function will fail and will return -1. Likewise, if ptr is NULL,
956 * then the function will make no modifications and return -1.
957 *
958 * Example:
959 * @code
960 * unsigned int *a, *b, *c;
961 * a = talloc(NULL, unsigned int);
962 * b = talloc(NULL, unsigned int);
963 * c = talloc(a, unsigned int);
964 * // b also serves as a parent of c.
965 * talloc_reference(b, c);
966 * talloc_unlink(b, c);
967 * @endcode
968 */
969int talloc_unlink(const void *context, void *ptr);
970
971/**
972 * @brief Provide a talloc context that is freed at program exit.
973 *
974 * This is a handy utility function that returns a talloc context
975 * which will be automatically freed on program exit. This can be used
976 * to reduce the noise in memory leak reports.
977 *
978 * Never use this in code that might be used in objects loaded with
979 * dlopen and unloaded with dlclose. talloc_autofree_context()
980 * internally uses atexit(3). Some platforms like modern Linux handles
981 * this fine, but for example FreeBSD does not deal well with dlopen()
982 * and atexit() used simultaneously: dlclose() does not clean up the
983 * list of atexit-handlers, so when the program exits the code that
984 * was registered from within talloc_autofree_context() is gone, the
985 * program crashes at exit.
986 *
987 * @return A talloc context, NULL on error.
988 */
989void *talloc_autofree_context(void);
990
991/**
992 * @brief Get the size of a talloc chunk.
993 *
994 * This function lets you know the amount of memory allocated so far by
995 * this context. It does NOT account for subcontext memory.
996 * This can be used to calculate the size of an array.
997 *
998 * @param[in] ctx The talloc chunk.
999 *
1000 * @return The size of the talloc chunk.
1001 */
1002size_t talloc_get_size(const void *ctx);
1003
1004/**
1005 * @brief Show the parentage of a context.
1006 *
1007 * @param[in] context The talloc context to look at.
1008 *
1009 * @param[in] file The output to use, a file, stdout or stderr.
1010 */
1011void talloc_show_parents(const void *context, FILE *file);
1012
1013/**
1014 * @brief Check if a context is parent of a talloc chunk.
1015 *
1016 * This checks if context is referenced in the talloc hierarchy above ptr.
1017 *
1018 * @param[in] context The assumed talloc context.
1019 *
1020 * @param[in] ptr The talloc chunk to check.
1021 *
1022 * @return Return 1 if this is the case, 0 if not.
1023 */
1024int talloc_is_parent(const void *context, const void *ptr);
1025
1026/**
1027 * @brief Change the parent context of a talloc pointer.
1028 *
1029 * The function changes the parent context of a talloc pointer. It is typically
1030 * used when the context that the pointer is currently a child of is going to be
1031 * freed and you wish to keep the memory for a longer time.
1032 *
1033 * The difference between talloc_reparent() and talloc_steal() is that
1034 * talloc_reparent() can specify which parent you wish to change. This is
1035 * useful when a pointer has multiple parents via references.
1036 *
1037 * @param[in] old_parent
1038 * @param[in] new_parent
1039 * @param[in] ptr
1040 *
1041 * @return Return the pointer you passed. It does not have any
1042 * failure modes.
1043 */
1044void *talloc_reparent(const void *old_parent, const void *new_parent, const void *ptr);
1045
1046/* @} ******************************************************************/
1047
1048/**
1049 * @defgroup talloc_array The talloc array functions
1050 * @ingroup talloc
1051 *
1052 * Talloc contains some handy helpers for handling Arrays conveniently
1053 *
1054 * @{
1055 */
1056
1057#ifdef DOXYGEN
1058/**
1059 * @brief Allocate an array.
1060 *
1061 * The macro is equivalent to:
1062 *
1063 * @code
1064 * (type *)talloc_size(ctx, sizeof(type) * count);
1065 * @endcode
1066 *
1067 * except that it provides integer overflow protection for the multiply,
1068 * returning NULL if the multiply overflows.
1069 *
1070 * @param[in] ctx The talloc context to hang the result off.
1071 *
1072 * @param[in] type The type that we want to allocate.
1073 *
1074 * @param[in] count The number of 'type' elements you want to allocate.
1075 *
1076 * @return The allocated result, properly cast to 'type *', NULL on
1077 * error.
1078 *
1079 * Example:
1080 * @code
1081 * unsigned int *a, *b;
1082 * a = talloc_zero(NULL, unsigned int);
1083 * b = talloc_array(a, unsigned int, 100);
1084 * @endcode
1085 *
1086 * @see talloc()
1087 * @see talloc_zero_array()
1088 */
1089void *talloc_array(const void *ctx, #type, unsigned count);
1090#else
1091#define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
1092void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1093#endif
1094
1095#ifdef DOXYGEN
1096/**
1097 * @brief Allocate an array.
1098 *
1099 * @param[in] ctx The talloc context to hang the result off.
1100 *
1101 * @param[in] size The size of an array element.
1102 *
1103 * @param[in] count The number of elements you want to allocate.
1104 *
1105 * @return The allocated result, NULL on error.
1106 */
1107void *talloc_array_size(const void *ctx, size_t size, unsigned count);
1108#else
1109#define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
1110#endif
1111
1112#ifdef DOXYGEN
1113/**
1114 * @brief Allocate an array into a typed pointer.
1115 *
1116 * The macro should be used when you have a pointer to an array and want to
1117 * allocate memory of an array to point at with this pointer. When compiling
1118 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
1119 * and talloc_get_name() will return the current location in the source file
1120 * and not the type.
1121 *
1122 * @param[in] ctx The talloc context to hang the result off.
1123 *
1124 * @param[in] ptr The pointer you want to assign the result to.
1125 *
1126 * @param[in] count The number of elements you want to allocate.
1127 *
1128 * @return The allocated memory chunk, properly casted. NULL on
1129 * error.
1130 */
1131void *talloc_array_ptrtype(const void *ctx, const void *ptr, unsigned count);
1132#else
1133#define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
1134#endif
1135
1136#ifdef DOXYGEN
1137/**
1138 * @brief Get the number of elements in a talloc'ed array.
1139 *
1140 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
1141 * necessary to store the number of elements explicitly.
1142 *
1143 * @param[in] ctx The allocated array.
1144 *
1145 * @return The number of elements in ctx.
1146 */
1147size_t talloc_array_length(const void *ctx);
1148#else
1149#define talloc_array_length(ctx) (talloc_get_size(ctx)/sizeof(*ctx))
1150#endif
1151
1152#ifdef DOXYGEN
1153/**
1154 * @brief Allocate a zero-initialized array
1155 *
1156 * @param[in] ctx The talloc context to hang the result off.
1157 *
1158 * @param[in] type The type that we want to allocate.
1159 *
1160 * @param[in] count The number of "type" elements you want to allocate.
1161 *
1162 * @return The allocated result casted to "type *", NULL on error.
1163 *
1164 * The talloc_zero_array() macro is equivalent to:
1165 *
1166 * @code
1167 * ptr = talloc_array(ctx, type, count);
1168 * if (ptr) memset(ptr, sizeof(type) * count);
1169 * @endcode
1170 */
1171void *talloc_zero_array(const void *ctx, #type, unsigned count);
1172#else
1173#define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
1174void *_talloc_zero_array(const void *ctx,
1175 size_t el_size,
1176 unsigned count,
1177 const char *name);
1178#endif
1179
1180#ifdef DOXYGEN
1181/**
1182 * @brief Change the size of a talloc array.
1183 *
1184 * The macro changes the size of a talloc pointer. The 'count' argument is the
1185 * number of elements of type 'type' that you want the resulting pointer to
1186 * hold.
1187 *
1188 * talloc_realloc() has the following equivalences:
1189 *
1190 * @code
1191 * talloc_realloc(ctx, NULL, type, 1) ==> talloc(ctx, type);
1192 * talloc_realloc(ctx, NULL, type, N) ==> talloc_array(ctx, type, N);
1193 * talloc_realloc(ctx, ptr, type, 0) ==> talloc_free(ptr);
1194 * @endcode
1195 *
1196 * The "context" argument is only used if "ptr" is NULL, otherwise it is
1197 * ignored.
1198 *
1199 * @param[in] ctx The parent context used if ptr is NULL.
1200 *
1201 * @param[in] ptr The chunk to be resized.
1202 *
1203 * @param[in] type The type of the array element inside ptr.
1204 *
1205 * @param[in] count The intended number of array elements.
1206 *
1207 * @return The new array, NULL on error. The call will fail either
1208 * due to a lack of memory, or because the pointer has more
1209 * than one parent (see talloc_reference()).
1210 */
1211void *talloc_realloc(const void *ctx, void *ptr, #type, size_t count);
1212#else
1213#define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
1214void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1215#endif
1216
1217#ifdef DOXYGEN
1218/**
1219 * @brief Untyped realloc to change the size of a talloc array.
1220 *
1221 * The macro is useful when the type is not known so the typesafe
1222 * talloc_realloc() cannot be used.
1223 *
1224 * @param[in] ctx The parent context used if 'ptr' is NULL.
1225 *
1226 * @param[in] ptr The chunk to be resized.
1227 *
1228 * @param[in] size The new chunk size.
1229 *
1230 * @return The new array, NULL on error.
1231 */
1232void *talloc_realloc_size(const void *ctx, void *ptr, size_t size);
1233#else
1234#define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
1235void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
1236#endif
1237
1238/**
1239 * @brief Provide a function version of talloc_realloc_size.
1240 *
1241 * This is a non-macro version of talloc_realloc(), which is useful as
1242 * libraries sometimes want a ralloc function pointer. A realloc()
1243 * implementation encapsulates the functionality of malloc(), free() and
1244 * realloc() in one call, which is why it is useful to be able to pass around
1245 * a single function pointer.
1246 *
1247 * @param[in] context The parent context used if ptr is NULL.
1248 *
1249 * @param[in] ptr The chunk to be resized.
1250 *
1251 * @param[in] size The new chunk size.
1252 *
1253 * @return The new chunk, NULL on error.
1254 */
1255void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1256
1257/* @} ******************************************************************/
1258
1259/**
1260 * @defgroup talloc_string The talloc string functions.
1261 * @ingroup talloc
1262 *
1263 * talloc string allocation and manipulation functions.
1264 * @{
1265 */
1266
1267/**
1268 * @brief Duplicate a string into a talloc chunk.
1269 *
1270 * This function is equivalent to:
1271 *
1272 * @code
1273 * ptr = talloc_size(ctx, strlen(p)+1);
1274 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1275 * @endcode
1276 *
1277 * This functions sets the name of the new pointer to the passed
1278 * string. This is equivalent to:
1279 *
1280 * @code
1281 * talloc_set_name_const(ptr, ptr)
1282 * @endcode
1283 *
1284 * @param[in] t The talloc context to hang the result off.
1285 *
1286 * @param[in] p The string you want to duplicate.
1287 *
1288 * @return The duplicated string, NULL on error.
1289 */
1290char *talloc_strdup(const void *t, const char *p);
1291
1292/**
1293 * @brief Append a string to given string and duplicate the result.
1294 *
1295 * @param[in] s The destination to append to.
1296 *
1297 * @param[in] a The string you want to append.
1298 *
1299 * @return The duplicated string, NULL on error.
1300 *
1301 * @see talloc_strdup()
1302 */
1303char *talloc_strdup_append(char *s, const char *a);
1304
1305/**
1306 * @brief Append a string to a given buffer and duplicate the result.
1307 *
1308 * @param[in] s The destination buffer to append to.
1309 *
1310 * @param[in] a The string you want to append.
1311 *
1312 * @return The duplicated string, NULL on error.
1313 *
1314 * @see talloc_strdup()
1315 */
1316char *talloc_strdup_append_buffer(char *s, const char *a);
1317
1318/**
1319 * @brief Duplicate a length-limited string into a talloc chunk.
1320 *
1321 * This function is the talloc equivalent of the C library function strndup(3).
1322 *
1323 * This functions sets the name of the new pointer to the passed string. This is
1324 * equivalent to:
1325 *
1326 * @code
1327 * talloc_set_name_const(ptr, ptr)
1328 * @endcode
1329 *
1330 * @param[in] t The talloc context to hang the result off.
1331 *
1332 * @param[in] p The string you want to duplicate.
1333 *
1334 * @param[in] n The maximum string length to duplicate.
1335 *
1336 * @return The duplicated string, NULL on error.
1337 */
1338char *talloc_strndup(const void *t, const char *p, size_t n);
1339
1340/**
1341 * @brief Append at most n characters of a string to given string and duplicate
1342 * the result.
1343 *
1344 * @param[in] s The destination string to append to.
1345 *
1346 * @param[in] a The source string you want to append.
1347 *
1348 * @param[in] n The number of characters you want to append from the
1349 * string.
1350 *
1351 * @return The duplicated string, NULL on error.
1352 *
1353 * @see talloc_strndup()
1354 */
1355char *talloc_strndup_append(char *s, const char *a, size_t n);
1356
1357/**
1358 * @brief Append at most n characters of a string to given buffer and duplicate
1359 * the result.
1360 *
1361 * @param[in] s The destination buffer to append to.
1362 *
1363 * @param[in] a The source string you want to append.
1364 *
1365 * @param[in] n The number of characters you want to append from the
1366 * string.
1367 *
1368 * @return The duplicated string, NULL on error.
1369 *
1370 * @see talloc_strndup()
1371 */
1372char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1373
1374/**
1375 * @brief Format a string given a va_list.
1376 *
1377 * This function is the talloc equivalent of the C library function
1378 * vasprintf(3).
1379 *
1380 * This functions sets the name of the new pointer to the new string. This is
1381 * equivalent to:
1382 *
1383 * @code
1384 * talloc_set_name_const(ptr, ptr)
1385 * @endcode
1386 *
1387 * @param[in] t The talloc context to hang the result off.
1388 *
1389 * @param[in] fmt The format string.
1390 *
1391 * @param[in] ap The parameters used to fill fmt.
1392 *
1393 * @return The formatted string, NULL on error.
1394 */
1395char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1396
1397/**
1398 * @brief Format a string given a va_list and append it to the given destination
1399 * string.
1400 *
1401 * @param[in] s The destination string to append to.
1402 *
1403 * @param[in] fmt The format string.
1404 *
1405 * @param[in] ap The parameters used to fill fmt.
1406 *
1407 * @return The formatted string, NULL on error.
1408 *
1409 * @see talloc_vasprintf()
1410 */
1411char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1412
1413/**
1414 * @brief Format a string given a va_list and append it to the given destination
1415 * buffer.
1416 *
1417 * @param[in] s The destination buffer to append to.
1418 *
1419 * @param[in] fmt The format string.
1420 *
1421 * @param[in] ap The parameters used to fill fmt.
1422 *
1423 * @return The formatted string, NULL on error.
1424 *
1425 * @see talloc_vasprintf()
1426 */
1427char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1428
1429/**
1430 * @brief Format a string.
1431 *
1432 * This function is the talloc equivalent of the C library function asprintf(3).
1433 *
1434 * This functions sets the name of the new pointer to the new string. This is
1435 * equivalent to:
1436 *
1437 * @code
1438 * talloc_set_name_const(ptr, ptr)
1439 * @endcode
1440 *
1441 * @param[in] t The talloc context to hang the result off.
1442 *
1443 * @param[in] fmt The format string.
1444 *
1445 * @param[in] ... The parameters used to fill fmt.
1446 *
1447 * @return The formatted string, NULL on error.
1448 */
1449char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1450
1451/**
1452 * @brief Append a formatted string to another string.
1453 *
1454 * This function appends the given formatted string to the given string. Use
1455 * this variant when the string in the current talloc buffer may have been
1456 * truncated in length.
1457 *
1458 * This functions sets the name of the new pointer to the new
1459 * string. This is equivalent to:
1460 *
1461 * @code
1462 * talloc_set_name_const(ptr, ptr)
1463 * @endcode
1464 *
1465 * @param[in] s The string to append to.
1466 *
1467 * @param[in] fmt The format string.
1468 *
1469 * @param[in] ... The parameters used to fill fmt.
1470 *
1471 * @return The formatted string, NULL on error.
1472 */
1473char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1474
1475/**
1476 * @brief Append a formatted string to another string.
1477 *
1478 * @param[in] s The string to append to
1479 *
1480 * @param[in] fmt The format string.
1481 *
1482 * @param[in] ... The parameters used to fill fmt.
1483 *
1484 * @return The formatted string, NULL on error.
1485 */
1486char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1487
1488/* @} ******************************************************************/
1489
1490/**
1491 * @defgroup talloc_debug The talloc debugging support functions
1492 * @ingroup talloc
1493 *
1494 * To aid memory debugging, talloc contains routines to inspect the currently
1495 * allocated memory hierarchy.
1496 *
1497 * @{
1498 */
1499
1500/**
1501 * @brief Walk a complete talloc hierarchy.
1502 *
1503 * This provides a more flexible reports than talloc_report(). It
1504 * will recursively call the callback for the entire tree of memory
1505 * referenced by the pointer. References in the tree are passed with
1506 * is_ref = 1 and the pointer that is referenced.
1507 *
1508 * You can pass NULL for the pointer, in which case a report is
1509 * printed for the top level memory context, but only if
1510 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
1511 * has been called.
1512 *
1513 * The recursion is stopped when depth >= max_depth.
1514 * max_depth = -1 means only stop at leaf nodes.
1515 *
1516 * @param[in] ptr The talloc chunk.
1517 *
1518 * @param[in] depth Internal parameter to control recursion. Call with 0.
1519 *
1520 * @param[in] max_depth Maximum recursion level.
1521 *
1522 * @param[in] callback Function to be called on every chunk.
1523 *
1524 * @param[in] private_data Private pointer passed to callback.
1525 */
1526void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
1527 void (*callback)(const void *ptr,
1528 int depth, int max_depth,
1529 int is_ref,
1530 void *private_data),
1531 void *private_data);
1532
1533/**
1534 * @brief Print a talloc hierarchy.
1535 *
1536 * This provides a more flexible reports than talloc_report(). It
1537 * will let you specify the depth and max_depth.
1538 *
1539 * @param[in] ptr The talloc chunk.
1540 *
1541 * @param[in] depth Internal parameter to control recursion. Call with 0.
1542 *
1543 * @param[in] max_depth Maximum recursion level.
1544 *
1545 * @param[in] f The file handle to print to.
1546 */
1547void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
1548
1549/**
1550 * @brief Print a summary report of all memory used by ptr.
1551 *
1552 * This provides a more detailed report than talloc_report(). It will
1553 * recursively print the entire tree of memory referenced by the
1554 * pointer. References in the tree are shown by giving the name of the
1555 * pointer that is referenced.
1556 *
1557 * You can pass NULL for the pointer, in which case a report is printed
1558 * for the top level memory context, but only if
1559 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1560 * been called.
1561 *
1562 * @param[in] ptr The talloc chunk.
1563 *
1564 * @param[in] f The file handle to print to.
1565 *
1566 * Example:
1567 * @code
1568 * unsigned int *a, *b;
1569 * a = talloc(NULL, unsigned int);
1570 * b = talloc(a, unsigned int);
1571 * fprintf(stderr, "Dumping memory tree for a:\n");
1572 * talloc_report_full(a, stderr);
1573 * @endcode
1574 *
1575 * @see talloc_report()
1576 */
1577void talloc_report_full(const void *ptr, FILE *f);
1578
1579/**
1580 * @brief Print a summary report of all memory used by ptr.
1581 *
1582 * This function prints a summary report of all memory used by ptr. One line of
1583 * report is printed for each immediate child of ptr, showing the total memory
1584 * and number of blocks used by that child.
1585 *
1586 * You can pass NULL for the pointer, in which case a report is printed
1587 * for the top level memory context, but only if talloc_enable_leak_report()
1588 * or talloc_enable_leak_report_full() has been called.
1589 *
1590 * @param[in] ptr The talloc chunk.
1591 *
1592 * @param[in] f The file handle to print to.
1593 *
1594 * Example:
1595 * @code
1596 * unsigned int *a, *b;
1597 * a = talloc(NULL, unsigned int);
1598 * b = talloc(a, unsigned int);
1599 * fprintf(stderr, "Summary of memory tree for a:\n");
1600 * talloc_report(a, stderr);
1601 * @endcode
1602 *
1603 * @see talloc_report_full()
1604 */
1605void talloc_report(const void *ptr, FILE *f);
1606
1607/**
1608 * @brief Enable tracking the use of NULL memory contexts.
1609 *
1610 * This enables tracking of the NULL memory context without enabling leak
1611 * reporting on exit. Useful for when you want to do your own leak
1612 * reporting call via talloc_report_null_full();
1613 */
1614void talloc_enable_null_tracking(void);
1615
1616/**
1617 * @brief Enable tracking the use of NULL memory contexts.
1618 *
1619 * This enables tracking of the NULL memory context without enabling leak
1620 * reporting on exit. Useful for when you want to do your own leak
1621 * reporting call via talloc_report_null_full();
1622 */
1623void talloc_enable_null_tracking_no_autofree(void);
1624
1625/**
1626 * @brief Disable tracking of the NULL memory context.
1627 *
1628 * This disables tracking of the NULL memory context.
1629 */
1630void talloc_disable_null_tracking(void);
1631
1632/**
1633 * @brief Enable leak report when a program exits.
1634 *
1635 * This enables calling of talloc_report(NULL, stderr) when the program
1636 * exits. In Samba4 this is enabled by using the --leak-report command
1637 * line option.
1638 *
1639 * For it to be useful, this function must be called before any other
1640 * talloc function as it establishes a "null context" that acts as the
1641 * top of the tree. If you don't call this function first then passing
1642 * NULL to talloc_report() or talloc_report_full() won't give you the
1643 * full tree printout.
1644 *
1645 * Here is a typical talloc report:
1646 *
1647 * @code
1648 * talloc report on 'null_context' (total 267 bytes in 15 blocks)
1649 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1650 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1651 * iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1652 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1653 * iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1654 * iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1655 * iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1656 * @endcode
1657 */
1658void talloc_enable_leak_report(void);
1659
1660/**
1661 * @brief Enable full leak report when a program exits.
1662 *
1663 * This enables calling of talloc_report_full(NULL, stderr) when the
1664 * program exits. In Samba4 this is enabled by using the
1665 * --leak-report-full command line option.
1666 *
1667 * For it to be useful, this function must be called before any other
1668 * talloc function as it establishes a "null context" that acts as the
1669 * top of the tree. If you don't call this function first then passing
1670 * NULL to talloc_report() or talloc_report_full() won't give you the
1671 * full tree printout.
1672 *
1673 * Here is a typical full report:
1674 *
1675 * @code
1676 * full talloc report on 'root' (total 18 bytes in 8 blocks)
1677 * p1 contains 18 bytes in 7 blocks (ref 0)
1678 * r1 contains 13 bytes in 2 blocks (ref 0)
1679 * reference to: p2
1680 * p2 contains 1 bytes in 1 blocks (ref 1)
1681 * x3 contains 1 bytes in 1 blocks (ref 0)
1682 * x2 contains 1 bytes in 1 blocks (ref 0)
1683 * x1 contains 1 bytes in 1 blocks (ref 0)
1684 * @endcode
1685 */
1686void talloc_enable_leak_report_full(void);
1687
1688/* @} ******************************************************************/
1689
1690void talloc_set_abort_fn(void (*abort_fn)(const char *reason));
1691void talloc_set_log_fn(void (*log_fn)(const char *message));
1692void talloc_set_log_stderr(void);
1693
1694#if TALLOC_DEPRECATED
1695#define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
1696#define talloc_p(ctx, type) talloc(ctx, type)
1697#define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
1698#define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
1699#define talloc_destroy(ctx) talloc_free(ctx)
1700#define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
1701#endif
1702
1703#ifndef TALLOC_MAX_DEPTH
1704#define TALLOC_MAX_DEPTH 10000
1705#endif
1706
1707#ifdef __cplusplus
1708} /* end of extern "C" */
1709#endif
1710
1711#endif
Note: See TracBrowser for help on using the repository browser.