1 | /*
|
---|
2 | Unix SMB/CIFS implementation.
|
---|
3 |
|
---|
4 | trivial database library
|
---|
5 |
|
---|
6 | Copyright (C) Rusty Russell 2010
|
---|
7 |
|
---|
8 | ** NOTE! The following LGPL license applies to the tdb
|
---|
9 | ** library. This does NOT imply that all of Samba is released
|
---|
10 | ** under the LGPL
|
---|
11 |
|
---|
12 | This library is free software; you can redistribute it and/or
|
---|
13 | modify it under the terms of the GNU Lesser General Public
|
---|
14 | License as published by the Free Software Foundation; either
|
---|
15 | version 3 of the License, or (at your option) any later version.
|
---|
16 |
|
---|
17 | This library is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | Lesser General Public License for more details.
|
---|
21 |
|
---|
22 | You should have received a copy of the GNU Lesser General Public
|
---|
23 | License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
24 | */
|
---|
25 | #include "includes.h"
|
---|
26 |
|
---|
27 | /* This is based on the hash algorithm from gdbm */
|
---|
28 |
|
---|
29 |
|
---|
30 | #ifndef WORDS_BIGENDIAN
|
---|
31 | # define HASH_LITTLE_ENDIAN 1
|
---|
32 | # define HASH_BIG_ENDIAN 0
|
---|
33 | #else
|
---|
34 | # define HASH_LITTLE_ENDIAN 0
|
---|
35 | # define HASH_BIG_ENDIAN 1
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | /*
|
---|
39 | -------------------------------------------------------------------------------
|
---|
40 | lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
---|
41 |
|
---|
42 | These are functions for producing 32-bit hashes for hash table lookup.
|
---|
43 | hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
---|
44 | are externally useful functions. Routines to test the hash are included
|
---|
45 | if SELF_TEST is defined. You can use this free for any purpose. It's in
|
---|
46 | the public domain. It has no warranty.
|
---|
47 |
|
---|
48 | You probably want to use hashlittle(). hashlittle() and hashbig()
|
---|
49 | hash byte arrays. hashlittle() is is faster than hashbig() on
|
---|
50 | little-endian machines. Intel and AMD are little-endian machines.
|
---|
51 | On second thought, you probably want hashlittle2(), which is identical to
|
---|
52 | hashlittle() except it returns two 32-bit hashes for the price of one.
|
---|
53 | You could implement hashbig2() if you wanted but I haven't bothered here.
|
---|
54 |
|
---|
55 | If you want to find a hash of, say, exactly 7 integers, do
|
---|
56 | a = i1; b = i2; c = i3;
|
---|
57 | mix(a,b,c);
|
---|
58 | a += i4; b += i5; c += i6;
|
---|
59 | mix(a,b,c);
|
---|
60 | a += i7;
|
---|
61 | final(a,b,c);
|
---|
62 | then use c as the hash value. If you have a variable length array of
|
---|
63 | 4-byte integers to hash, use hash_word(). If you have a byte array (like
|
---|
64 | a character string), use hashlittle(). If you have several byte arrays, or
|
---|
65 | a mix of things, see the comments above hashlittle().
|
---|
66 |
|
---|
67 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
---|
68 | then mix those integers. This is fast (you can do a lot more thorough
|
---|
69 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
---|
70 | on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
---|
71 | */
|
---|
72 |
|
---|
73 | #define hashsize(n) ((uint32_t)1<<(n))
|
---|
74 | #define hashmask(n) (hashsize(n)-1)
|
---|
75 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
---|
76 |
|
---|
77 | /*
|
---|
78 | -------------------------------------------------------------------------------
|
---|
79 | mix -- mix 3 32-bit values reversibly.
|
---|
80 |
|
---|
81 | This is reversible, so any information in (a,b,c) before mix() is
|
---|
82 | still in (a,b,c) after mix().
|
---|
83 |
|
---|
84 | If four pairs of (a,b,c) inputs are run through mix(), or through
|
---|
85 | mix() in reverse, there are at least 32 bits of the output that
|
---|
86 | are sometimes the same for one pair and different for another pair.
|
---|
87 | This was tested for:
|
---|
88 | * pairs that differed by one bit, by two bits, in any combination
|
---|
89 | of top bits of (a,b,c), or in any combination of bottom bits of
|
---|
90 | (a,b,c).
|
---|
91 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
---|
92 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
---|
93 | is commonly produced by subtraction) look like a single 1-bit
|
---|
94 | difference.
|
---|
95 | * the base values were pseudorandom, all zero but one bit set, or
|
---|
96 | all zero plus a counter that starts at zero.
|
---|
97 |
|
---|
98 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
---|
99 | satisfy this are
|
---|
100 | 4 6 8 16 19 4
|
---|
101 | 9 15 3 18 27 15
|
---|
102 | 14 9 3 7 17 3
|
---|
103 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
---|
104 | for "differ" defined as + with a one-bit base and a two-bit delta. I
|
---|
105 | used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
---|
106 | the operations, constants, and arrangements of the variables.
|
---|
107 |
|
---|
108 | This does not achieve avalanche. There are input bits of (a,b,c)
|
---|
109 | that fail to affect some output bits of (a,b,c), especially of a. The
|
---|
110 | most thoroughly mixed value is c, but it doesn't really even achieve
|
---|
111 | avalanche in c.
|
---|
112 |
|
---|
113 | This allows some parallelism. Read-after-writes are good at doubling
|
---|
114 | the number of bits affected, so the goal of mixing pulls in the opposite
|
---|
115 | direction as the goal of parallelism. I did what I could. Rotates
|
---|
116 | seem to cost as much as shifts on every machine I could lay my hands
|
---|
117 | on, and rotates are much kinder to the top and bottom bits, so I used
|
---|
118 | rotates.
|
---|
119 | -------------------------------------------------------------------------------
|
---|
120 | */
|
---|
121 | #define mix(a,b,c) \
|
---|
122 | { \
|
---|
123 | a -= c; a ^= rot(c, 4); c += b; \
|
---|
124 | b -= a; b ^= rot(a, 6); a += c; \
|
---|
125 | c -= b; c ^= rot(b, 8); b += a; \
|
---|
126 | a -= c; a ^= rot(c,16); c += b; \
|
---|
127 | b -= a; b ^= rot(a,19); a += c; \
|
---|
128 | c -= b; c ^= rot(b, 4); b += a; \
|
---|
129 | }
|
---|
130 |
|
---|
131 | /*
|
---|
132 | -------------------------------------------------------------------------------
|
---|
133 | final -- final mixing of 3 32-bit values (a,b,c) into c
|
---|
134 |
|
---|
135 | Pairs of (a,b,c) values differing in only a few bits will usually
|
---|
136 | produce values of c that look totally different. This was tested for
|
---|
137 | * pairs that differed by one bit, by two bits, in any combination
|
---|
138 | of top bits of (a,b,c), or in any combination of bottom bits of
|
---|
139 | (a,b,c).
|
---|
140 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
---|
141 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
---|
142 | is commonly produced by subtraction) look like a single 1-bit
|
---|
143 | difference.
|
---|
144 | * the base values were pseudorandom, all zero but one bit set, or
|
---|
145 | all zero plus a counter that starts at zero.
|
---|
146 |
|
---|
147 | These constants passed:
|
---|
148 | 14 11 25 16 4 14 24
|
---|
149 | 12 14 25 16 4 14 24
|
---|
150 | and these came close:
|
---|
151 | 4 8 15 26 3 22 24
|
---|
152 | 10 8 15 26 3 22 24
|
---|
153 | 11 8 15 26 3 22 24
|
---|
154 | -------------------------------------------------------------------------------
|
---|
155 | */
|
---|
156 | #define final(a,b,c) \
|
---|
157 | { \
|
---|
158 | c ^= b; c -= rot(b,14); \
|
---|
159 | a ^= c; a -= rot(c,11); \
|
---|
160 | b ^= a; b -= rot(a,25); \
|
---|
161 | c ^= b; c -= rot(b,16); \
|
---|
162 | a ^= c; a -= rot(c,4); \
|
---|
163 | b ^= a; b -= rot(a,14); \
|
---|
164 | c ^= b; c -= rot(b,24); \
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | /*
|
---|
169 | -------------------------------------------------------------------------------
|
---|
170 | hashlittle() -- hash a variable-length key into a 32-bit value
|
---|
171 | k : the key (the unaligned variable-length array of bytes)
|
---|
172 | length : the length of the key, counting by bytes
|
---|
173 | val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
|
---|
174 | Returns a 32-bit value. Every bit of the key affects every bit of
|
---|
175 | the return value. Two keys differing by one or two bits will have
|
---|
176 | totally different hash values. Note that the return value is better
|
---|
177 | mixed than val2, so use that first.
|
---|
178 |
|
---|
179 | The best hash table sizes are powers of 2. There is no need to do
|
---|
180 | mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
---|
181 | use a bitmask. For example, if you need only 10 bits, do
|
---|
182 | h = (h & hashmask(10));
|
---|
183 | In which case, the hash table should have hashsize(10) elements.
|
---|
184 |
|
---|
185 | If you are hashing n strings (uint8_t **)k, do it like this:
|
---|
186 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
---|
187 |
|
---|
188 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
---|
189 | code any way you wish, private, educational, or commercial. It's free.
|
---|
190 |
|
---|
191 | Use for hash table lookup, or anything where one collision in 2^^32 is
|
---|
192 | acceptable. Do NOT use for cryptographic purposes.
|
---|
193 | -------------------------------------------------------------------------------
|
---|
194 | */
|
---|
195 |
|
---|
196 | static uint32_t hashlittle( const void *key, size_t length )
|
---|
197 | {
|
---|
198 | uint32_t a,b,c; /* internal state */
|
---|
199 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
---|
200 |
|
---|
201 | /* Set up the internal state */
|
---|
202 | a = b = c = 0xdeadbeef + ((uint32_t)length);
|
---|
203 |
|
---|
204 | u.ptr = key;
|
---|
205 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
---|
206 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
---|
207 | #ifdef VALGRIND
|
---|
208 | const uint8_t *k8;
|
---|
209 | #endif
|
---|
210 |
|
---|
211 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
---|
212 | while (length > 12)
|
---|
213 | {
|
---|
214 | a += k[0];
|
---|
215 | b += k[1];
|
---|
216 | c += k[2];
|
---|
217 | mix(a,b,c);
|
---|
218 | length -= 12;
|
---|
219 | k += 3;
|
---|
220 | }
|
---|
221 |
|
---|
222 | /*----------------------------- handle the last (probably partial) block */
|
---|
223 | /*
|
---|
224 | * "k[2]&0xffffff" actually reads beyond the end of the string, but
|
---|
225 | * then masks off the part it's not allowed to read. Because the
|
---|
226 | * string is aligned, the masked-off tail is in the same word as the
|
---|
227 | * rest of the string. Every machine with memory protection I've seen
|
---|
228 | * does it on word boundaries, so is OK with this. But VALGRIND will
|
---|
229 | * still catch it and complain. The masking trick does make the hash
|
---|
230 | * noticably faster for short strings (like English words).
|
---|
231 | */
|
---|
232 | #ifndef VALGRIND
|
---|
233 |
|
---|
234 | switch(length)
|
---|
235 | {
|
---|
236 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
---|
237 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
---|
238 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
---|
239 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
---|
240 | case 8 : b+=k[1]; a+=k[0]; break;
|
---|
241 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
---|
242 | case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
---|
243 | case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
---|
244 | case 4 : a+=k[0]; break;
|
---|
245 | case 3 : a+=k[0]&0xffffff; break;
|
---|
246 | case 2 : a+=k[0]&0xffff; break;
|
---|
247 | case 1 : a+=k[0]&0xff; break;
|
---|
248 | case 0 : return c; /* zero length strings require no mixing */
|
---|
249 | }
|
---|
250 |
|
---|
251 | #else /* make valgrind happy */
|
---|
252 |
|
---|
253 | k8 = (const uint8_t *)k;
|
---|
254 | switch(length)
|
---|
255 | {
|
---|
256 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
---|
257 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
---|
258 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
---|
259 | case 9 : c+=k8[8]; /* fall through */
|
---|
260 | case 8 : b+=k[1]; a+=k[0]; break;
|
---|
261 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
---|
262 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
---|
263 | case 5 : b+=k8[4]; /* fall through */
|
---|
264 | case 4 : a+=k[0]; break;
|
---|
265 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
---|
266 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
---|
267 | case 1 : a+=k8[0]; break;
|
---|
268 | case 0 : return c;
|
---|
269 | }
|
---|
270 |
|
---|
271 | #endif /* !valgrind */
|
---|
272 |
|
---|
273 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
---|
274 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
---|
275 | const uint8_t *k8;
|
---|
276 |
|
---|
277 | /*--------------- all but last block: aligned reads and different mixing */
|
---|
278 | while (length > 12)
|
---|
279 | {
|
---|
280 | a += k[0] + (((uint32_t)k[1])<<16);
|
---|
281 | b += k[2] + (((uint32_t)k[3])<<16);
|
---|
282 | c += k[4] + (((uint32_t)k[5])<<16);
|
---|
283 | mix(a,b,c);
|
---|
284 | length -= 12;
|
---|
285 | k += 6;
|
---|
286 | }
|
---|
287 |
|
---|
288 | /*----------------------------- handle the last (probably partial) block */
|
---|
289 | k8 = (const uint8_t *)k;
|
---|
290 | switch(length)
|
---|
291 | {
|
---|
292 | case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
---|
293 | b+=k[2]+(((uint32_t)k[3])<<16);
|
---|
294 | a+=k[0]+(((uint32_t)k[1])<<16);
|
---|
295 | break;
|
---|
296 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
---|
297 | case 10: c+=k[4];
|
---|
298 | b+=k[2]+(((uint32_t)k[3])<<16);
|
---|
299 | a+=k[0]+(((uint32_t)k[1])<<16);
|
---|
300 | break;
|
---|
301 | case 9 : c+=k8[8]; /* fall through */
|
---|
302 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
---|
303 | a+=k[0]+(((uint32_t)k[1])<<16);
|
---|
304 | break;
|
---|
305 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
---|
306 | case 6 : b+=k[2];
|
---|
307 | a+=k[0]+(((uint32_t)k[1])<<16);
|
---|
308 | break;
|
---|
309 | case 5 : b+=k8[4]; /* fall through */
|
---|
310 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
---|
311 | break;
|
---|
312 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
---|
313 | case 2 : a+=k[0];
|
---|
314 | break;
|
---|
315 | case 1 : a+=k8[0];
|
---|
316 | break;
|
---|
317 | case 0 : return c; /* zero length requires no mixing */
|
---|
318 | }
|
---|
319 |
|
---|
320 | } else { /* need to read the key one byte at a time */
|
---|
321 | const uint8_t *k = (const uint8_t *)key;
|
---|
322 |
|
---|
323 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
---|
324 | while (length > 12)
|
---|
325 | {
|
---|
326 | a += k[0];
|
---|
327 | a += ((uint32_t)k[1])<<8;
|
---|
328 | a += ((uint32_t)k[2])<<16;
|
---|
329 | a += ((uint32_t)k[3])<<24;
|
---|
330 | b += k[4];
|
---|
331 | b += ((uint32_t)k[5])<<8;
|
---|
332 | b += ((uint32_t)k[6])<<16;
|
---|
333 | b += ((uint32_t)k[7])<<24;
|
---|
334 | c += k[8];
|
---|
335 | c += ((uint32_t)k[9])<<8;
|
---|
336 | c += ((uint32_t)k[10])<<16;
|
---|
337 | c += ((uint32_t)k[11])<<24;
|
---|
338 | mix(a,b,c);
|
---|
339 | length -= 12;
|
---|
340 | k += 12;
|
---|
341 | }
|
---|
342 |
|
---|
343 | /*-------------------------------- last block: affect all 32 bits of (c) */
|
---|
344 | switch(length) /* all the case statements fall through */
|
---|
345 | {
|
---|
346 | case 12: c+=((uint32_t)k[11])<<24;
|
---|
347 | case 11: c+=((uint32_t)k[10])<<16;
|
---|
348 | case 10: c+=((uint32_t)k[9])<<8;
|
---|
349 | case 9 : c+=k[8];
|
---|
350 | case 8 : b+=((uint32_t)k[7])<<24;
|
---|
351 | case 7 : b+=((uint32_t)k[6])<<16;
|
---|
352 | case 6 : b+=((uint32_t)k[5])<<8;
|
---|
353 | case 5 : b+=k[4];
|
---|
354 | case 4 : a+=((uint32_t)k[3])<<24;
|
---|
355 | case 3 : a+=((uint32_t)k[2])<<16;
|
---|
356 | case 2 : a+=((uint32_t)k[1])<<8;
|
---|
357 | case 1 : a+=k[0];
|
---|
358 | break;
|
---|
359 | case 0 : return c;
|
---|
360 | }
|
---|
361 | }
|
---|
362 |
|
---|
363 | final(a,b,c);
|
---|
364 | return c;
|
---|
365 | }
|
---|
366 |
|
---|
367 | unsigned int jenkins_hash(TDB_DATA *key)
|
---|
368 | {
|
---|
369 | return hashlittle(key->dptr, key->dsize);
|
---|
370 | }
|
---|