1 | /* adler32.c -- compute the Adler-32 checksum of a data stream
|
---|
2 | * Copyright (C) 1995-2004 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | */
|
---|
5 |
|
---|
6 | /* @(#) $Id$ */
|
---|
7 |
|
---|
8 | #include "zutil.h"
|
---|
9 |
|
---|
10 | #define BASE 65521UL /* largest prime smaller than 65536 */
|
---|
11 | #define NMAX 5552
|
---|
12 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
---|
13 |
|
---|
14 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
---|
15 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
---|
16 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
---|
17 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
---|
18 | #define DO16(buf) DO8(buf,0); DO8(buf,8);
|
---|
19 |
|
---|
20 | /* use NO_DIVIDE if your processor does not do division in hardware */
|
---|
21 | #ifdef NO_DIVIDE
|
---|
22 | # define MOD(a) \
|
---|
23 | do { \
|
---|
24 | if (a >= (BASE << 16)) a -= (BASE << 16); \
|
---|
25 | if (a >= (BASE << 15)) a -= (BASE << 15); \
|
---|
26 | if (a >= (BASE << 14)) a -= (BASE << 14); \
|
---|
27 | if (a >= (BASE << 13)) a -= (BASE << 13); \
|
---|
28 | if (a >= (BASE << 12)) a -= (BASE << 12); \
|
---|
29 | if (a >= (BASE << 11)) a -= (BASE << 11); \
|
---|
30 | if (a >= (BASE << 10)) a -= (BASE << 10); \
|
---|
31 | if (a >= (BASE << 9)) a -= (BASE << 9); \
|
---|
32 | if (a >= (BASE << 8)) a -= (BASE << 8); \
|
---|
33 | if (a >= (BASE << 7)) a -= (BASE << 7); \
|
---|
34 | if (a >= (BASE << 6)) a -= (BASE << 6); \
|
---|
35 | if (a >= (BASE << 5)) a -= (BASE << 5); \
|
---|
36 | if (a >= (BASE << 4)) a -= (BASE << 4); \
|
---|
37 | if (a >= (BASE << 3)) a -= (BASE << 3); \
|
---|
38 | if (a >= (BASE << 2)) a -= (BASE << 2); \
|
---|
39 | if (a >= (BASE << 1)) a -= (BASE << 1); \
|
---|
40 | if (a >= BASE) a -= BASE; \
|
---|
41 | } while (0)
|
---|
42 | # define MOD4(a) \
|
---|
43 | do { \
|
---|
44 | if (a >= (BASE << 4)) a -= (BASE << 4); \
|
---|
45 | if (a >= (BASE << 3)) a -= (BASE << 3); \
|
---|
46 | if (a >= (BASE << 2)) a -= (BASE << 2); \
|
---|
47 | if (a >= (BASE << 1)) a -= (BASE << 1); \
|
---|
48 | if (a >= BASE) a -= BASE; \
|
---|
49 | } while (0)
|
---|
50 | #else
|
---|
51 | # define MOD(a) a %= BASE
|
---|
52 | # define MOD4(a) a %= BASE
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | /* ========================================================================= */
|
---|
56 | uLong ZEXPORT adler32(adler, buf, len)
|
---|
57 | uLong adler;
|
---|
58 | const Bytef *buf;
|
---|
59 | uInt len;
|
---|
60 | {
|
---|
61 | unsigned long sum2;
|
---|
62 | unsigned n;
|
---|
63 |
|
---|
64 | /* split Adler-32 into component sums */
|
---|
65 | sum2 = (adler >> 16) & 0xffff;
|
---|
66 | adler &= 0xffff;
|
---|
67 |
|
---|
68 | /* in case user likes doing a byte at a time, keep it fast */
|
---|
69 | if (len == 1) {
|
---|
70 | adler += buf[0];
|
---|
71 | if (adler >= BASE)
|
---|
72 | adler -= BASE;
|
---|
73 | sum2 += adler;
|
---|
74 | if (sum2 >= BASE)
|
---|
75 | sum2 -= BASE;
|
---|
76 | return adler | (sum2 << 16);
|
---|
77 | }
|
---|
78 |
|
---|
79 | /* initial Adler-32 value (deferred check for len == 1 speed) */
|
---|
80 | if (buf == Z_NULL)
|
---|
81 | return 1L;
|
---|
82 |
|
---|
83 | /* in case short lengths are provided, keep it somewhat fast */
|
---|
84 | if (len < 16) {
|
---|
85 | while (len--) {
|
---|
86 | adler += *buf++;
|
---|
87 | sum2 += adler;
|
---|
88 | }
|
---|
89 | if (adler >= BASE)
|
---|
90 | adler -= BASE;
|
---|
91 | MOD4(sum2); /* only added so many BASE's */
|
---|
92 | return adler | (sum2 << 16);
|
---|
93 | }
|
---|
94 |
|
---|
95 | /* do length NMAX blocks -- requires just one modulo operation */
|
---|
96 | while (len >= NMAX) {
|
---|
97 | len -= NMAX;
|
---|
98 | n = NMAX / 16; /* NMAX is divisible by 16 */
|
---|
99 | do {
|
---|
100 | DO16(buf); /* 16 sums unrolled */
|
---|
101 | buf += 16;
|
---|
102 | } while (--n);
|
---|
103 | MOD(adler);
|
---|
104 | MOD(sum2);
|
---|
105 | }
|
---|
106 |
|
---|
107 | /* do remaining bytes (less than NMAX, still just one modulo) */
|
---|
108 | if (len) { /* avoid modulos if none remaining */
|
---|
109 | while (len >= 16) {
|
---|
110 | len -= 16;
|
---|
111 | DO16(buf);
|
---|
112 | buf += 16;
|
---|
113 | }
|
---|
114 | while (len--) {
|
---|
115 | adler += *buf++;
|
---|
116 | sum2 += adler;
|
---|
117 | }
|
---|
118 | MOD(adler);
|
---|
119 | MOD(sum2);
|
---|
120 | }
|
---|
121 |
|
---|
122 | /* return recombined sums */
|
---|
123 | return adler | (sum2 << 16);
|
---|
124 | }
|
---|
125 |
|
---|
126 | /* ========================================================================= */
|
---|
127 | uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
---|
128 | uLong adler1;
|
---|
129 | uLong adler2;
|
---|
130 | z_off_t len2;
|
---|
131 | {
|
---|
132 | unsigned long sum1;
|
---|
133 | unsigned long sum2;
|
---|
134 | unsigned rem;
|
---|
135 |
|
---|
136 | /* the derivation of this formula is left as an exercise for the reader */
|
---|
137 | rem = (unsigned)(len2 % BASE);
|
---|
138 | sum1 = adler1 & 0xffff;
|
---|
139 | sum2 = rem * sum1;
|
---|
140 | MOD(sum2);
|
---|
141 | sum1 += (adler2 & 0xffff) + BASE - 1;
|
---|
142 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
---|
143 | if (sum1 > BASE) sum1 -= BASE;
|
---|
144 | if (sum1 > BASE) sum1 -= BASE;
|
---|
145 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
|
---|
146 | if (sum2 > BASE) sum2 -= BASE;
|
---|
147 | return sum1 | (sum2 << 16);
|
---|
148 | }
|
---|