1 | /*
|
---|
2 | Unix SMB/CIFS implementation.
|
---|
3 | time handling functions
|
---|
4 |
|
---|
5 | Copyright (C) Andrew Tridgell 1992-2004
|
---|
6 | Copyright (C) Stefan (metze) Metzmacher 2002
|
---|
7 |
|
---|
8 | This program is free software; you can redistribute it and/or modify
|
---|
9 | it under the terms of the GNU General Public License as published by
|
---|
10 | the Free Software Foundation; either version 3 of the License, or
|
---|
11 | (at your option) any later version.
|
---|
12 |
|
---|
13 | This program is distributed in the hope that it will be useful,
|
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | GNU General Public License for more details.
|
---|
17 |
|
---|
18 | You should have received a copy of the GNU General Public License
|
---|
19 | along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #include "includes.h"
|
---|
23 | #include "system/time.h"
|
---|
24 |
|
---|
25 | /**
|
---|
26 | * @file
|
---|
27 | * @brief time handling functions
|
---|
28 | */
|
---|
29 |
|
---|
30 | #if (SIZEOF_LONG == 8)
|
---|
31 | #define TIME_FIXUP_CONSTANT_INT 11644473600L
|
---|
32 | #elif (SIZEOF_LONG_LONG == 8)
|
---|
33 | #define TIME_FIXUP_CONSTANT_INT 11644473600LL
|
---|
34 | #endif
|
---|
35 |
|
---|
36 |
|
---|
37 |
|
---|
38 | /**
|
---|
39 | External access to time_t_min and time_t_max.
|
---|
40 | **/
|
---|
41 | _PUBLIC_ time_t get_time_t_max(void)
|
---|
42 | {
|
---|
43 | return TIME_T_MAX;
|
---|
44 | }
|
---|
45 |
|
---|
46 | /**
|
---|
47 | a gettimeofday wrapper
|
---|
48 | **/
|
---|
49 | _PUBLIC_ void GetTimeOfDay(struct timeval *tval)
|
---|
50 | {
|
---|
51 | #ifdef HAVE_GETTIMEOFDAY_TZ
|
---|
52 | gettimeofday(tval,NULL);
|
---|
53 | #else
|
---|
54 | gettimeofday(tval);
|
---|
55 | #endif
|
---|
56 | }
|
---|
57 |
|
---|
58 |
|
---|
59 | #define TIME_FIXUP_CONSTANT 11644473600LL
|
---|
60 |
|
---|
61 | time_t convert_timespec_to_time_t(struct timespec ts)
|
---|
62 | {
|
---|
63 | /* 1 ns == 1,000,000,000 - one thousand millionths of a second.
|
---|
64 | increment if it's greater than 500 millionth of a second. */
|
---|
65 | if (ts.tv_nsec > 500000000) {
|
---|
66 | return ts.tv_sec + 1;
|
---|
67 | }
|
---|
68 | return ts.tv_sec;
|
---|
69 | }
|
---|
70 |
|
---|
71 | struct timespec convert_time_t_to_timespec(time_t t)
|
---|
72 | {
|
---|
73 | struct timespec ts;
|
---|
74 | ts.tv_sec = t;
|
---|
75 | ts.tv_nsec = 0;
|
---|
76 | return ts;
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 |
|
---|
81 | /**
|
---|
82 | Interpret an 8 byte "filetime" structure to a time_t
|
---|
83 | It's originally in "100ns units since jan 1st 1601"
|
---|
84 |
|
---|
85 | An 8 byte value of 0xffffffffffffffff will be returned as a timespec of
|
---|
86 |
|
---|
87 | tv_sec = 0
|
---|
88 | tv_nsec = 0;
|
---|
89 |
|
---|
90 | Returns GMT.
|
---|
91 | **/
|
---|
92 | time_t nt_time_to_unix(NTTIME nt)
|
---|
93 | {
|
---|
94 | return convert_timespec_to_time_t(nt_time_to_unix_timespec(&nt));
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | /**
|
---|
99 | put a 8 byte filetime from a time_t
|
---|
100 | This takes GMT as input
|
---|
101 | **/
|
---|
102 | _PUBLIC_ void unix_to_nt_time(NTTIME *nt, time_t t)
|
---|
103 | {
|
---|
104 | uint64_t t2;
|
---|
105 |
|
---|
106 | if (t == (time_t)-1) {
|
---|
107 | *nt = (NTTIME)-1LL;
|
---|
108 | return;
|
---|
109 | }
|
---|
110 |
|
---|
111 | if (t == TIME_T_MAX) {
|
---|
112 | *nt = 0x7fffffffffffffffLL;
|
---|
113 | return;
|
---|
114 | }
|
---|
115 |
|
---|
116 | if (t == 0) {
|
---|
117 | *nt = 0;
|
---|
118 | return;
|
---|
119 | }
|
---|
120 |
|
---|
121 | t2 = t;
|
---|
122 | t2 += TIME_FIXUP_CONSTANT_INT;
|
---|
123 | t2 *= 1000*1000*10;
|
---|
124 |
|
---|
125 | *nt = t2;
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | /**
|
---|
130 | check if it's a null unix time
|
---|
131 | **/
|
---|
132 | _PUBLIC_ bool null_time(time_t t)
|
---|
133 | {
|
---|
134 | return t == 0 ||
|
---|
135 | t == (time_t)0xFFFFFFFF ||
|
---|
136 | t == (time_t)-1;
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | /**
|
---|
141 | check if it's a null NTTIME
|
---|
142 | **/
|
---|
143 | _PUBLIC_ bool null_nttime(NTTIME t)
|
---|
144 | {
|
---|
145 | return t == 0 || t == (NTTIME)-1;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /*******************************************************************
|
---|
149 | create a 16 bit dos packed date
|
---|
150 | ********************************************************************/
|
---|
151 | static uint16_t make_dos_date1(struct tm *t)
|
---|
152 | {
|
---|
153 | uint16_t ret=0;
|
---|
154 | ret = (((unsigned int)(t->tm_mon+1)) >> 3) | ((t->tm_year-80) << 1);
|
---|
155 | ret = ((ret&0xFF)<<8) | (t->tm_mday | (((t->tm_mon+1) & 0x7) << 5));
|
---|
156 | return ret;
|
---|
157 | }
|
---|
158 |
|
---|
159 | /*******************************************************************
|
---|
160 | create a 16 bit dos packed time
|
---|
161 | ********************************************************************/
|
---|
162 | static uint16_t make_dos_time1(struct tm *t)
|
---|
163 | {
|
---|
164 | uint16_t ret=0;
|
---|
165 | ret = ((((unsigned int)t->tm_min >> 3)&0x7) | (((unsigned int)t->tm_hour) << 3));
|
---|
166 | ret = ((ret&0xFF)<<8) | ((t->tm_sec/2) | ((t->tm_min & 0x7) << 5));
|
---|
167 | return ret;
|
---|
168 | }
|
---|
169 |
|
---|
170 | /*******************************************************************
|
---|
171 | create a 32 bit dos packed date/time from some parameters
|
---|
172 | This takes a GMT time and returns a packed localtime structure
|
---|
173 | ********************************************************************/
|
---|
174 | static uint32_t make_dos_date(time_t unixdate, int zone_offset)
|
---|
175 | {
|
---|
176 | struct tm *t;
|
---|
177 | uint32_t ret=0;
|
---|
178 |
|
---|
179 | if (unixdate == 0) {
|
---|
180 | return 0;
|
---|
181 | }
|
---|
182 |
|
---|
183 | unixdate -= zone_offset;
|
---|
184 |
|
---|
185 | t = gmtime(&unixdate);
|
---|
186 | if (!t) {
|
---|
187 | return 0xFFFFFFFF;
|
---|
188 | }
|
---|
189 |
|
---|
190 | ret = make_dos_date1(t);
|
---|
191 | ret = ((ret&0xFFFF)<<16) | make_dos_time1(t);
|
---|
192 |
|
---|
193 | return ret;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /**
|
---|
197 | put a dos date into a buffer (time/date format)
|
---|
198 | This takes GMT time and puts local time in the buffer
|
---|
199 | **/
|
---|
200 | _PUBLIC_ void push_dos_date(uint8_t *buf, int offset, time_t unixdate, int zone_offset)
|
---|
201 | {
|
---|
202 | uint32_t x = make_dos_date(unixdate, zone_offset);
|
---|
203 | SIVAL(buf,offset,x);
|
---|
204 | }
|
---|
205 |
|
---|
206 | /**
|
---|
207 | put a dos date into a buffer (date/time format)
|
---|
208 | This takes GMT time and puts local time in the buffer
|
---|
209 | **/
|
---|
210 | _PUBLIC_ void push_dos_date2(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
211 | {
|
---|
212 | uint32_t x;
|
---|
213 | x = make_dos_date(unixdate, zone_offset);
|
---|
214 | x = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
215 | SIVAL(buf,offset,x);
|
---|
216 | }
|
---|
217 |
|
---|
218 | /**
|
---|
219 | put a dos 32 bit "unix like" date into a buffer. This routine takes
|
---|
220 | GMT and converts it to LOCAL time before putting it (most SMBs assume
|
---|
221 | localtime for this sort of date)
|
---|
222 | **/
|
---|
223 | _PUBLIC_ void push_dos_date3(uint8_t *buf,int offset,time_t unixdate, int zone_offset)
|
---|
224 | {
|
---|
225 | if (!null_time(unixdate)) {
|
---|
226 | unixdate -= zone_offset;
|
---|
227 | }
|
---|
228 | SIVAL(buf,offset,unixdate);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /*******************************************************************
|
---|
232 | interpret a 32 bit dos packed date/time to some parameters
|
---|
233 | ********************************************************************/
|
---|
234 | void interpret_dos_date(uint32_t date,int *year,int *month,int *day,int *hour,int *minute,int *second)
|
---|
235 | {
|
---|
236 | uint32_t p0,p1,p2,p3;
|
---|
237 |
|
---|
238 | p0=date&0xFF; p1=((date&0xFF00)>>8)&0xFF;
|
---|
239 | p2=((date&0xFF0000)>>16)&0xFF; p3=((date&0xFF000000)>>24)&0xFF;
|
---|
240 |
|
---|
241 | *second = 2*(p0 & 0x1F);
|
---|
242 | *minute = ((p0>>5)&0xFF) + ((p1&0x7)<<3);
|
---|
243 | *hour = (p1>>3)&0xFF;
|
---|
244 | *day = (p2&0x1F);
|
---|
245 | *month = ((p2>>5)&0xFF) + ((p3&0x1)<<3) - 1;
|
---|
246 | *year = ((p3>>1)&0xFF) + 80;
|
---|
247 | }
|
---|
248 |
|
---|
249 | /**
|
---|
250 | create a unix date (int GMT) from a dos date (which is actually in
|
---|
251 | localtime)
|
---|
252 | **/
|
---|
253 | _PUBLIC_ time_t pull_dos_date(const uint8_t *date_ptr, int zone_offset)
|
---|
254 | {
|
---|
255 | uint32_t dos_date=0;
|
---|
256 | struct tm t;
|
---|
257 | time_t ret;
|
---|
258 |
|
---|
259 | dos_date = IVAL(date_ptr,0);
|
---|
260 |
|
---|
261 | if (dos_date == 0) return (time_t)0;
|
---|
262 |
|
---|
263 | interpret_dos_date(dos_date,&t.tm_year,&t.tm_mon,
|
---|
264 | &t.tm_mday,&t.tm_hour,&t.tm_min,&t.tm_sec);
|
---|
265 | t.tm_isdst = -1;
|
---|
266 |
|
---|
267 | ret = timegm(&t);
|
---|
268 |
|
---|
269 | ret += zone_offset;
|
---|
270 |
|
---|
271 | return ret;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /**
|
---|
275 | like make_unix_date() but the words are reversed
|
---|
276 | **/
|
---|
277 | _PUBLIC_ time_t pull_dos_date2(const uint8_t *date_ptr, int zone_offset)
|
---|
278 | {
|
---|
279 | uint32_t x,x2;
|
---|
280 |
|
---|
281 | x = IVAL(date_ptr,0);
|
---|
282 | x2 = ((x&0xFFFF)<<16) | ((x&0xFFFF0000)>>16);
|
---|
283 | SIVAL(&x,0,x2);
|
---|
284 |
|
---|
285 | return pull_dos_date((const uint8_t *)&x, zone_offset);
|
---|
286 | }
|
---|
287 |
|
---|
288 | /**
|
---|
289 | create a unix GMT date from a dos date in 32 bit "unix like" format
|
---|
290 | these generally arrive as localtimes, with corresponding DST
|
---|
291 | **/
|
---|
292 | _PUBLIC_ time_t pull_dos_date3(const uint8_t *date_ptr, int zone_offset)
|
---|
293 | {
|
---|
294 | time_t t = (time_t)IVAL(date_ptr,0);
|
---|
295 | if (!null_time(t)) {
|
---|
296 | t += zone_offset;
|
---|
297 | }
|
---|
298 | return t;
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 | /**
|
---|
303 | return a HTTP/1.0 time string
|
---|
304 | **/
|
---|
305 | _PUBLIC_ char *http_timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
306 | {
|
---|
307 | char *buf;
|
---|
308 | char tempTime[60];
|
---|
309 | struct tm *tm = localtime(&t);
|
---|
310 |
|
---|
311 | if (t == TIME_T_MAX) {
|
---|
312 | return talloc_strdup(mem_ctx, "never");
|
---|
313 | }
|
---|
314 |
|
---|
315 | if (!tm) {
|
---|
316 | return talloc_asprintf(mem_ctx,"%ld seconds since the Epoch",(long)t);
|
---|
317 | }
|
---|
318 |
|
---|
319 | #ifndef HAVE_STRFTIME
|
---|
320 | buf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
321 | if (buf[strlen(buf)-1] == '\n') {
|
---|
322 | buf[strlen(buf)-1] = 0;
|
---|
323 | }
|
---|
324 | #else
|
---|
325 | strftime(tempTime, sizeof(tempTime)-1, "%a, %d %b %Y %H:%M:%S %Z", tm);
|
---|
326 | buf = talloc_strdup(mem_ctx, tempTime);
|
---|
327 | #endif /* !HAVE_STRFTIME */
|
---|
328 |
|
---|
329 | return buf;
|
---|
330 | }
|
---|
331 |
|
---|
332 | /**
|
---|
333 | Return the date and time as a string
|
---|
334 | **/
|
---|
335 | _PUBLIC_ char *timestring(TALLOC_CTX *mem_ctx, time_t t)
|
---|
336 | {
|
---|
337 | char *TimeBuf;
|
---|
338 | char tempTime[80];
|
---|
339 | struct tm *tm;
|
---|
340 |
|
---|
341 | tm = localtime(&t);
|
---|
342 | if (!tm) {
|
---|
343 | return talloc_asprintf(mem_ctx,
|
---|
344 | "%ld seconds since the Epoch",
|
---|
345 | (long)t);
|
---|
346 | }
|
---|
347 |
|
---|
348 | #ifdef HAVE_STRFTIME
|
---|
349 | /* some versions of gcc complain about using %c. This is a bug
|
---|
350 | in the gcc warning, not a bug in this code. See a recent
|
---|
351 | strftime() manual page for details.
|
---|
352 | */
|
---|
353 | strftime(tempTime,sizeof(tempTime)-1,"%c %Z",tm);
|
---|
354 | TimeBuf = talloc_strdup(mem_ctx, tempTime);
|
---|
355 | #else
|
---|
356 | TimeBuf = talloc_strdup(mem_ctx, asctime(tm));
|
---|
357 | #endif
|
---|
358 |
|
---|
359 | return TimeBuf;
|
---|
360 | }
|
---|
361 |
|
---|
362 | /**
|
---|
363 | return a talloced string representing a NTTIME for human consumption
|
---|
364 | */
|
---|
365 | _PUBLIC_ const char *nt_time_string(TALLOC_CTX *mem_ctx, NTTIME nt)
|
---|
366 | {
|
---|
367 | time_t t;
|
---|
368 | if (nt == 0) {
|
---|
369 | return "NTTIME(0)";
|
---|
370 | }
|
---|
371 | t = nt_time_to_unix(nt);
|
---|
372 | return timestring(mem_ctx, t);
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 | /**
|
---|
377 | put a NTTIME into a packet
|
---|
378 | */
|
---|
379 | _PUBLIC_ void push_nttime(uint8_t *base, uint16_t offset, NTTIME t)
|
---|
380 | {
|
---|
381 | SBVAL(base, offset, t);
|
---|
382 | }
|
---|
383 |
|
---|
384 | /**
|
---|
385 | pull a NTTIME from a packet
|
---|
386 | */
|
---|
387 | _PUBLIC_ NTTIME pull_nttime(uint8_t *base, uint16_t offset)
|
---|
388 | {
|
---|
389 | NTTIME ret = BVAL(base, offset);
|
---|
390 | return ret;
|
---|
391 | }
|
---|
392 |
|
---|
393 | /**
|
---|
394 | return (tv1 - tv2) in microseconds
|
---|
395 | */
|
---|
396 | _PUBLIC_ int64_t usec_time_diff(const struct timeval *tv1, const struct timeval *tv2)
|
---|
397 | {
|
---|
398 | int64_t sec_diff = tv1->tv_sec - tv2->tv_sec;
|
---|
399 | return (sec_diff * 1000000) + (int64_t)(tv1->tv_usec - tv2->tv_usec);
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | /**
|
---|
404 | return a zero timeval
|
---|
405 | */
|
---|
406 | _PUBLIC_ struct timeval timeval_zero(void)
|
---|
407 | {
|
---|
408 | struct timeval tv;
|
---|
409 | tv.tv_sec = 0;
|
---|
410 | tv.tv_usec = 0;
|
---|
411 | return tv;
|
---|
412 | }
|
---|
413 |
|
---|
414 | /**
|
---|
415 | return true if a timeval is zero
|
---|
416 | */
|
---|
417 | _PUBLIC_ bool timeval_is_zero(const struct timeval *tv)
|
---|
418 | {
|
---|
419 | return tv->tv_sec == 0 && tv->tv_usec == 0;
|
---|
420 | }
|
---|
421 |
|
---|
422 | /**
|
---|
423 | return a timeval for the current time
|
---|
424 | */
|
---|
425 | _PUBLIC_ struct timeval timeval_current(void)
|
---|
426 | {
|
---|
427 | struct timeval tv;
|
---|
428 | GetTimeOfDay(&tv);
|
---|
429 | return tv;
|
---|
430 | }
|
---|
431 |
|
---|
432 | /**
|
---|
433 | return a timeval struct with the given elements
|
---|
434 | */
|
---|
435 | _PUBLIC_ struct timeval timeval_set(uint32_t secs, uint32_t usecs)
|
---|
436 | {
|
---|
437 | struct timeval tv;
|
---|
438 | tv.tv_sec = secs;
|
---|
439 | tv.tv_usec = usecs;
|
---|
440 | return tv;
|
---|
441 | }
|
---|
442 |
|
---|
443 |
|
---|
444 | /**
|
---|
445 | return a timeval ofs microseconds after tv
|
---|
446 | */
|
---|
447 | _PUBLIC_ struct timeval timeval_add(const struct timeval *tv,
|
---|
448 | uint32_t secs, uint32_t usecs)
|
---|
449 | {
|
---|
450 | struct timeval tv2 = *tv;
|
---|
451 | const unsigned int million = 1000000;
|
---|
452 | tv2.tv_sec += secs;
|
---|
453 | tv2.tv_usec += usecs;
|
---|
454 | tv2.tv_sec += tv2.tv_usec / million;
|
---|
455 | tv2.tv_usec = tv2.tv_usec % million;
|
---|
456 | return tv2;
|
---|
457 | }
|
---|
458 |
|
---|
459 | /**
|
---|
460 | return the sum of two timeval structures
|
---|
461 | */
|
---|
462 | struct timeval timeval_sum(const struct timeval *tv1,
|
---|
463 | const struct timeval *tv2)
|
---|
464 | {
|
---|
465 | return timeval_add(tv1, tv2->tv_sec, tv2->tv_usec);
|
---|
466 | }
|
---|
467 |
|
---|
468 | /**
|
---|
469 | return a timeval secs/usecs into the future
|
---|
470 | */
|
---|
471 | _PUBLIC_ struct timeval timeval_current_ofs(uint32_t secs, uint32_t usecs)
|
---|
472 | {
|
---|
473 | struct timeval tv = timeval_current();
|
---|
474 | return timeval_add(&tv, secs, usecs);
|
---|
475 | }
|
---|
476 |
|
---|
477 | /**
|
---|
478 | compare two timeval structures.
|
---|
479 | Return -1 if tv1 < tv2
|
---|
480 | Return 0 if tv1 == tv2
|
---|
481 | Return 1 if tv1 > tv2
|
---|
482 | */
|
---|
483 | _PUBLIC_ int timeval_compare(const struct timeval *tv1, const struct timeval *tv2)
|
---|
484 | {
|
---|
485 | if (tv1->tv_sec > tv2->tv_sec) return 1;
|
---|
486 | if (tv1->tv_sec < tv2->tv_sec) return -1;
|
---|
487 | if (tv1->tv_usec > tv2->tv_usec) return 1;
|
---|
488 | if (tv1->tv_usec < tv2->tv_usec) return -1;
|
---|
489 | return 0;
|
---|
490 | }
|
---|
491 |
|
---|
492 | /**
|
---|
493 | return true if a timer is in the past
|
---|
494 | */
|
---|
495 | _PUBLIC_ bool timeval_expired(const struct timeval *tv)
|
---|
496 | {
|
---|
497 | struct timeval tv2 = timeval_current();
|
---|
498 | if (tv2.tv_sec > tv->tv_sec) return true;
|
---|
499 | if (tv2.tv_sec < tv->tv_sec) return false;
|
---|
500 | return (tv2.tv_usec >= tv->tv_usec);
|
---|
501 | }
|
---|
502 |
|
---|
503 | /**
|
---|
504 | return the number of seconds elapsed between two times
|
---|
505 | */
|
---|
506 | _PUBLIC_ double timeval_elapsed2(const struct timeval *tv1, const struct timeval *tv2)
|
---|
507 | {
|
---|
508 | return (tv2->tv_sec - tv1->tv_sec) +
|
---|
509 | (tv2->tv_usec - tv1->tv_usec)*1.0e-6;
|
---|
510 | }
|
---|
511 |
|
---|
512 | /**
|
---|
513 | return the number of seconds elapsed since a given time
|
---|
514 | */
|
---|
515 | _PUBLIC_ double timeval_elapsed(const struct timeval *tv)
|
---|
516 | {
|
---|
517 | struct timeval tv2 = timeval_current();
|
---|
518 | return timeval_elapsed2(tv, &tv2);
|
---|
519 | }
|
---|
520 |
|
---|
521 | /**
|
---|
522 | return the lesser of two timevals
|
---|
523 | */
|
---|
524 | _PUBLIC_ struct timeval timeval_min(const struct timeval *tv1,
|
---|
525 | const struct timeval *tv2)
|
---|
526 | {
|
---|
527 | if (tv1->tv_sec < tv2->tv_sec) return *tv1;
|
---|
528 | if (tv1->tv_sec > tv2->tv_sec) return *tv2;
|
---|
529 | if (tv1->tv_usec < tv2->tv_usec) return *tv1;
|
---|
530 | return *tv2;
|
---|
531 | }
|
---|
532 |
|
---|
533 | /**
|
---|
534 | return the greater of two timevals
|
---|
535 | */
|
---|
536 | _PUBLIC_ struct timeval timeval_max(const struct timeval *tv1,
|
---|
537 | const struct timeval *tv2)
|
---|
538 | {
|
---|
539 | if (tv1->tv_sec > tv2->tv_sec) return *tv1;
|
---|
540 | if (tv1->tv_sec < tv2->tv_sec) return *tv2;
|
---|
541 | if (tv1->tv_usec > tv2->tv_usec) return *tv1;
|
---|
542 | return *tv2;
|
---|
543 | }
|
---|
544 |
|
---|
545 | /**
|
---|
546 | return the difference between two timevals as a timeval
|
---|
547 | if tv1 comes after tv2, then return a zero timeval
|
---|
548 | (this is *tv2 - *tv1)
|
---|
549 | */
|
---|
550 | _PUBLIC_ struct timeval timeval_until(const struct timeval *tv1,
|
---|
551 | const struct timeval *tv2)
|
---|
552 | {
|
---|
553 | struct timeval t;
|
---|
554 | if (timeval_compare(tv1, tv2) >= 0) {
|
---|
555 | return timeval_zero();
|
---|
556 | }
|
---|
557 | t.tv_sec = tv2->tv_sec - tv1->tv_sec;
|
---|
558 | if (tv1->tv_usec > tv2->tv_usec) {
|
---|
559 | t.tv_sec--;
|
---|
560 | t.tv_usec = 1000000 - (tv1->tv_usec - tv2->tv_usec);
|
---|
561 | } else {
|
---|
562 | t.tv_usec = tv2->tv_usec - tv1->tv_usec;
|
---|
563 | }
|
---|
564 | return t;
|
---|
565 | }
|
---|
566 |
|
---|
567 |
|
---|
568 | /**
|
---|
569 | convert a timeval to a NTTIME
|
---|
570 | */
|
---|
571 | _PUBLIC_ NTTIME timeval_to_nttime(const struct timeval *tv)
|
---|
572 | {
|
---|
573 | return 10*(tv->tv_usec +
|
---|
574 | ((TIME_FIXUP_CONSTANT + (uint64_t)tv->tv_sec) * 1000000));
|
---|
575 | }
|
---|
576 |
|
---|
577 | /**
|
---|
578 | convert a NTTIME to a timeval
|
---|
579 | */
|
---|
580 | _PUBLIC_ void nttime_to_timeval(struct timeval *tv, NTTIME t)
|
---|
581 | {
|
---|
582 | if (tv == NULL) return;
|
---|
583 |
|
---|
584 | t += 10/2;
|
---|
585 | t /= 10;
|
---|
586 | t -= TIME_FIXUP_CONSTANT*1000*1000;
|
---|
587 |
|
---|
588 | tv->tv_sec = t / 1000000;
|
---|
589 |
|
---|
590 | if (TIME_T_MIN > tv->tv_sec || tv->tv_sec > TIME_T_MAX) {
|
---|
591 | tv->tv_sec = 0;
|
---|
592 | tv->tv_usec = 0;
|
---|
593 | return;
|
---|
594 | }
|
---|
595 |
|
---|
596 | tv->tv_usec = t - tv->tv_sec*1000000;
|
---|
597 | }
|
---|
598 |
|
---|
599 | /*******************************************************************
|
---|
600 | yield the difference between *A and *B, in seconds, ignoring leap seconds
|
---|
601 | ********************************************************************/
|
---|
602 | static int tm_diff(struct tm *a, struct tm *b)
|
---|
603 | {
|
---|
604 | int ay = a->tm_year + (1900 - 1);
|
---|
605 | int by = b->tm_year + (1900 - 1);
|
---|
606 | int intervening_leap_days =
|
---|
607 | (ay/4 - by/4) - (ay/100 - by/100) + (ay/400 - by/400);
|
---|
608 | int years = ay - by;
|
---|
609 | int days = 365*years + intervening_leap_days + (a->tm_yday - b->tm_yday);
|
---|
610 | int hours = 24*days + (a->tm_hour - b->tm_hour);
|
---|
611 | int minutes = 60*hours + (a->tm_min - b->tm_min);
|
---|
612 | int seconds = 60*minutes + (a->tm_sec - b->tm_sec);
|
---|
613 |
|
---|
614 | return seconds;
|
---|
615 | }
|
---|
616 |
|
---|
617 |
|
---|
618 | int extra_time_offset=0;
|
---|
619 |
|
---|
620 | /**
|
---|
621 | return the UTC offset in seconds west of UTC, or 0 if it cannot be determined
|
---|
622 | */
|
---|
623 | _PUBLIC_ int get_time_zone(time_t t)
|
---|
624 | {
|
---|
625 | struct tm *tm = gmtime(&t);
|
---|
626 | struct tm tm_utc;
|
---|
627 | if (!tm)
|
---|
628 | return 0;
|
---|
629 | tm_utc = *tm;
|
---|
630 | tm = localtime(&t);
|
---|
631 | if (!tm)
|
---|
632 | return 0;
|
---|
633 | return tm_diff(&tm_utc,tm)+60*extra_time_offset;
|
---|
634 | }
|
---|
635 |
|
---|
636 | struct timespec nt_time_to_unix_timespec(NTTIME *nt)
|
---|
637 | {
|
---|
638 | int64_t d;
|
---|
639 | struct timespec ret;
|
---|
640 |
|
---|
641 | if (*nt == 0 || *nt == (int64_t)-1) {
|
---|
642 | ret.tv_sec = 0;
|
---|
643 | ret.tv_nsec = 0;
|
---|
644 | return ret;
|
---|
645 | }
|
---|
646 |
|
---|
647 | d = (int64_t)*nt;
|
---|
648 | /* d is now in 100ns units, since jan 1st 1601".
|
---|
649 | Save off the ns fraction. */
|
---|
650 |
|
---|
651 | /*
|
---|
652 | * Take the last seven decimal digits and multiply by 100.
|
---|
653 | * to convert from 100ns units to 1ns units.
|
---|
654 | */
|
---|
655 | ret.tv_nsec = (long) ((d % (1000 * 1000 * 10)) * 100);
|
---|
656 |
|
---|
657 | /* Convert to seconds */
|
---|
658 | d /= 1000*1000*10;
|
---|
659 |
|
---|
660 | /* Now adjust by 369 years to make the secs since 1970 */
|
---|
661 | d -= TIME_FIXUP_CONSTANT_INT;
|
---|
662 |
|
---|
663 | if (d <= (int64_t)TIME_T_MIN) {
|
---|
664 | ret.tv_sec = TIME_T_MIN;
|
---|
665 | ret.tv_nsec = 0;
|
---|
666 | return ret;
|
---|
667 | }
|
---|
668 |
|
---|
669 | if (d >= (int64_t)TIME_T_MAX) {
|
---|
670 | ret.tv_sec = TIME_T_MAX;
|
---|
671 | ret.tv_nsec = 0;
|
---|
672 | return ret;
|
---|
673 | }
|
---|
674 |
|
---|
675 | ret.tv_sec = (time_t)d;
|
---|
676 | return ret;
|
---|
677 | }
|
---|
678 |
|
---|
679 |
|
---|
680 | /**
|
---|
681 | check if 2 NTTIMEs are equal.
|
---|
682 | */
|
---|
683 | bool nt_time_equal(NTTIME *t1, NTTIME *t2)
|
---|
684 | {
|
---|
685 | return *t1 == *t2;
|
---|
686 | }
|
---|
687 |
|
---|
688 | /**
|
---|
689 | Check if it's a null timespec.
|
---|
690 | **/
|
---|
691 |
|
---|
692 | bool null_timespec(struct timespec ts)
|
---|
693 | {
|
---|
694 | return ts.tv_sec == 0 ||
|
---|
695 | ts.tv_sec == (time_t)0xFFFFFFFF ||
|
---|
696 | ts.tv_sec == (time_t)-1;
|
---|
697 | }
|
---|
698 |
|
---|
699 |
|
---|