1 | /*
|
---|
2 | Unix SMB/CIFS implementation.
|
---|
3 | SMB Byte handling
|
---|
4 | Copyright (C) Andrew Tridgell 1992-1998
|
---|
5 |
|
---|
6 | This program is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 3 of the License, or
|
---|
9 | (at your option) any later version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | #ifndef _BYTEORDER_H
|
---|
21 | #define _BYTEORDER_H
|
---|
22 |
|
---|
23 | /*
|
---|
24 | This file implements macros for machine independent short and
|
---|
25 | int manipulation
|
---|
26 |
|
---|
27 | Here is a description of this file that I emailed to the samba list once:
|
---|
28 |
|
---|
29 | > I am confused about the way that byteorder.h works in Samba. I have
|
---|
30 | > looked at it, and I would have thought that you might make a distinction
|
---|
31 | > between LE and BE machines, but you only seem to distinguish between 386
|
---|
32 | > and all other architectures.
|
---|
33 | >
|
---|
34 | > Can you give me a clue?
|
---|
35 |
|
---|
36 | sure.
|
---|
37 |
|
---|
38 | The distinction between 386 and other architectures is only there as
|
---|
39 | an optimisation. You can take it out completely and it will make no
|
---|
40 | difference. The routines (macros) in byteorder.h are totally byteorder
|
---|
41 | independent. The 386 optimsation just takes advantage of the fact that
|
---|
42 | the x86 processors don't care about alignment, so we don't have to
|
---|
43 | align ints on int boundaries etc. If there are other processors out
|
---|
44 | there that aren't alignment sensitive then you could also define
|
---|
45 | CAREFUL_ALIGNMENT=0 on those processors as well.
|
---|
46 |
|
---|
47 | Ok, now to the macros themselves. I'll take a simple example, say we
|
---|
48 | want to extract a 2 byte integer from a SMB packet and put it into a
|
---|
49 | type called uint16_t that is in the local machines byte order, and you
|
---|
50 | want to do it with only the assumption that uint16_t is _at_least_ 16
|
---|
51 | bits long (this last condition is very important for architectures
|
---|
52 | that don't have any int types that are 2 bytes long)
|
---|
53 |
|
---|
54 | You do this:
|
---|
55 |
|
---|
56 | #define CVAL(buf,pos) (((uint8_t *)(buf))[pos])
|
---|
57 | #define PVAL(buf,pos) ((uint_t)CVAL(buf,pos))
|
---|
58 | #define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
---|
59 |
|
---|
60 | then to extract a uint16_t value at offset 25 in a buffer you do this:
|
---|
61 |
|
---|
62 | char *buffer = foo_bar();
|
---|
63 | uint16_t xx = SVAL(buffer,25);
|
---|
64 |
|
---|
65 | We are using the byteoder independence of the ANSI C bitshifts to do
|
---|
66 | the work. A good optimising compiler should turn this into efficient
|
---|
67 | code, especially if it happens to have the right byteorder :-)
|
---|
68 |
|
---|
69 | I know these macros can be made a bit tidier by removing some of the
|
---|
70 | casts, but you need to look at byteorder.h as a whole to see the
|
---|
71 | reasoning behind them. byteorder.h defines the following macros:
|
---|
72 |
|
---|
73 | SVAL(buf,pos) - extract a 2 byte SMB value
|
---|
74 | IVAL(buf,pos) - extract a 4 byte SMB value
|
---|
75 | BVAL(buf,pos) - extract a 8 byte SMB value
|
---|
76 | SVALS(buf,pos) - signed version of SVAL()
|
---|
77 | IVALS(buf,pos) - signed version of IVAL()
|
---|
78 | BVALS(buf,pos) - signed version of BVAL()
|
---|
79 |
|
---|
80 | SSVAL(buf,pos,val) - put a 2 byte SMB value into a buffer
|
---|
81 | SIVAL(buf,pos,val) - put a 4 byte SMB value into a buffer
|
---|
82 | SBVAL(buf,pos,val) - put a 8 byte SMB value into a buffer
|
---|
83 | SSVALS(buf,pos,val) - signed version of SSVAL()
|
---|
84 | SIVALS(buf,pos,val) - signed version of SIVAL()
|
---|
85 | SBVALS(buf,pos,val) - signed version of SBVAL()
|
---|
86 |
|
---|
87 | RSVAL(buf,pos) - like SVAL() but for NMB byte ordering
|
---|
88 | RSVALS(buf,pos) - like SVALS() but for NMB byte ordering
|
---|
89 | RIVAL(buf,pos) - like IVAL() but for NMB byte ordering
|
---|
90 | RIVALS(buf,pos) - like IVALS() but for NMB byte ordering
|
---|
91 | RSSVAL(buf,pos,val) - like SSVAL() but for NMB ordering
|
---|
92 | RSIVAL(buf,pos,val) - like SIVAL() but for NMB ordering
|
---|
93 | RSIVALS(buf,pos,val) - like SIVALS() but for NMB ordering
|
---|
94 |
|
---|
95 | it also defines lots of intermediate macros, just ignore those :-)
|
---|
96 |
|
---|
97 | */
|
---|
98 |
|
---|
99 |
|
---|
100 | /*
|
---|
101 | on powerpc we can use the magic instructions to load/store
|
---|
102 | in little endian
|
---|
103 | */
|
---|
104 | #if (defined(__powerpc__) && defined(__GNUC__))
|
---|
105 | static __inline__ uint16_t ld_le16(const uint16_t *addr)
|
---|
106 | {
|
---|
107 | uint16_t val;
|
---|
108 | __asm__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
|
---|
109 | return val;
|
---|
110 | }
|
---|
111 |
|
---|
112 | static __inline__ void st_le16(uint16_t *addr, const uint16_t val)
|
---|
113 | {
|
---|
114 | __asm__ ("sthbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
|
---|
115 | }
|
---|
116 |
|
---|
117 | static __inline__ uint32_t ld_le32(const uint32_t *addr)
|
---|
118 | {
|
---|
119 | uint32_t val;
|
---|
120 | __asm__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (addr), "m" (*addr));
|
---|
121 | return val;
|
---|
122 | }
|
---|
123 |
|
---|
124 | static __inline__ void st_le32(uint32_t *addr, const uint32_t val)
|
---|
125 | {
|
---|
126 | __asm__ ("stwbrx %1,0,%2" : "=m" (*addr) : "r" (val), "r" (addr));
|
---|
127 | }
|
---|
128 | #define HAVE_ASM_BYTEORDER 1
|
---|
129 | #else
|
---|
130 | #define HAVE_ASM_BYTEORDER 0
|
---|
131 | #endif
|
---|
132 |
|
---|
133 |
|
---|
134 |
|
---|
135 | #undef CAREFUL_ALIGNMENT
|
---|
136 |
|
---|
137 | /* we know that the 386 can handle misalignment and has the "right"
|
---|
138 | byteorder */
|
---|
139 | #if defined(__i386__)
|
---|
140 | #define CAREFUL_ALIGNMENT 0
|
---|
141 | #endif
|
---|
142 |
|
---|
143 | #ifndef CAREFUL_ALIGNMENT
|
---|
144 | #define CAREFUL_ALIGNMENT 1
|
---|
145 | #endif
|
---|
146 |
|
---|
147 | #define CVAL(buf,pos) ((uint_t)(((const uint8_t *)(buf))[pos]))
|
---|
148 | #define CVAL_NC(buf,pos) (((uint8_t *)(buf))[pos]) /* Non-const version of CVAL */
|
---|
149 | #define PVAL(buf,pos) (CVAL(buf,pos))
|
---|
150 | #define SCVAL(buf,pos,val) (CVAL_NC(buf,pos) = (val))
|
---|
151 |
|
---|
152 | #if HAVE_ASM_BYTEORDER
|
---|
153 |
|
---|
154 | #define _PTRPOS(buf,pos) (((const uint8_t *)(buf))+(pos))
|
---|
155 | #define SVAL(buf,pos) ld_le16((const uint16_t *)_PTRPOS(buf,pos))
|
---|
156 | #define IVAL(buf,pos) ld_le32((const uint32_t *)_PTRPOS(buf,pos))
|
---|
157 | #define SSVAL(buf,pos,val) st_le16((uint16_t *)_PTRPOS(buf,pos), val)
|
---|
158 | #define SIVAL(buf,pos,val) st_le32((uint32_t *)_PTRPOS(buf,pos), val)
|
---|
159 | #define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
|
---|
160 | #define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
|
---|
161 | #define SSVALS(buf,pos,val) SSVAL((buf),(pos),((int16_t)(val)))
|
---|
162 | #define SIVALS(buf,pos,val) SIVAL((buf),(pos),((int32_t)(val)))
|
---|
163 |
|
---|
164 | #elif CAREFUL_ALIGNMENT
|
---|
165 |
|
---|
166 | #define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
|
---|
167 | #define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
|
---|
168 | #define SSVALX(buf,pos,val) (CVAL_NC(buf,pos)=(uint8_t)((val)&0xFF),CVAL_NC(buf,pos+1)=(uint8_t)((val)>>8))
|
---|
169 | #define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
|
---|
170 | #define SVALS(buf,pos) ((int16_t)SVAL(buf,pos))
|
---|
171 | #define IVALS(buf,pos) ((int32_t)IVAL(buf,pos))
|
---|
172 | #define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16_t)(val)))
|
---|
173 | #define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32_t)(val)))
|
---|
174 | #define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16_t)(val)))
|
---|
175 | #define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32_t)(val)))
|
---|
176 |
|
---|
177 | #else /* not CAREFUL_ALIGNMENT */
|
---|
178 |
|
---|
179 | /* this handles things for architectures like the 386 that can handle
|
---|
180 | alignment errors */
|
---|
181 | /*
|
---|
182 | WARNING: This section is dependent on the length of int16_t and int32_t
|
---|
183 | being correct
|
---|
184 | */
|
---|
185 |
|
---|
186 | /* get single value from an SMB buffer */
|
---|
187 | #define SVAL(buf,pos) (*(const uint16_t *)((const char *)(buf) + (pos)))
|
---|
188 | #define SVAL_NC(buf,pos) (*(uint16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
---|
189 | #define IVAL(buf,pos) (*(const uint32_t *)((const char *)(buf) + (pos)))
|
---|
190 | #define IVAL_NC(buf,pos) (*(uint32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
---|
191 | #define SVALS(buf,pos) (*(const int16_t *)((const char *)(buf) + (pos)))
|
---|
192 | #define SVALS_NC(buf,pos) (*(int16_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
---|
193 | #define IVALS(buf,pos) (*(const int32_t *)((const char *)(buf) + (pos)))
|
---|
194 | #define IVALS_NC(buf,pos) (*(int32_t *)((char *)(buf) + (pos))) /* Non const version of above. */
|
---|
195 |
|
---|
196 | /* store single value in an SMB buffer */
|
---|
197 | #define SSVAL(buf,pos,val) SVAL_NC(buf,pos)=((uint16_t)(val))
|
---|
198 | #define SIVAL(buf,pos,val) IVAL_NC(buf,pos)=((uint32_t)(val))
|
---|
199 | #define SSVALS(buf,pos,val) SVALS_NC(buf,pos)=((int16_t)(val))
|
---|
200 | #define SIVALS(buf,pos,val) IVALS_NC(buf,pos)=((int32_t)(val))
|
---|
201 |
|
---|
202 | #endif /* not CAREFUL_ALIGNMENT */
|
---|
203 |
|
---|
204 | /* now the reverse routines - these are used in nmb packets (mostly) */
|
---|
205 | #define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
|
---|
206 | #define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
|
---|
207 |
|
---|
208 | #define RSVAL(buf,pos) SREV(SVAL(buf,pos))
|
---|
209 | #define RSVALS(buf,pos) SREV(SVALS(buf,pos))
|
---|
210 | #define RIVAL(buf,pos) IREV(IVAL(buf,pos))
|
---|
211 | #define RIVALS(buf,pos) IREV(IVALS(buf,pos))
|
---|
212 | #define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
|
---|
213 | #define RSSVALS(buf,pos,val) SSVALS(buf,pos,SREV(val))
|
---|
214 | #define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
|
---|
215 | #define RSIVALS(buf,pos,val) SIVALS(buf,pos,IREV(val))
|
---|
216 |
|
---|
217 | /* Alignment macros. */
|
---|
218 | #define ALIGN4(p,base) ((p) + ((4 - (PTR_DIFF((p), (base)) & 3)) & 3))
|
---|
219 | #define ALIGN2(p,base) ((p) + ((2 - (PTR_DIFF((p), (base)) & 1)) & 1))
|
---|
220 |
|
---|
221 |
|
---|
222 | /* macros for accessing SMB protocol elements */
|
---|
223 | #define VWV(vwv) ((vwv)*2)
|
---|
224 |
|
---|
225 | /* 64 bit macros */
|
---|
226 | #define BVAL(p, ofs) (IVAL(p,ofs) | (((uint64_t)IVAL(p,(ofs)+4)) << 32))
|
---|
227 | #define BVALS(p, ofs) ((int64_t)BVAL(p,ofs))
|
---|
228 | #define SBVAL(p, ofs, v) (SIVAL(p,ofs,(v)&0xFFFFFFFF), SIVAL(p,(ofs)+4,((uint64_t)(v))>>32))
|
---|
229 | #define SBVALS(p, ofs, v) (SBVAL(p,ofs,(uint64_t)v))
|
---|
230 |
|
---|
231 | #endif /* _BYTEORDER_H */
|
---|