source: branches/samba-3.5.x/lib/util/asn1.c@ 940

Last change on this file since 940 was 599, checked in by Herwig Bauernfeind, 14 years ago

Samba 3.5: Update trunk to 3.5.9

File size: 20.5 KB
Line 
1/*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
18*/
19
20#include "includes.h"
21#include "../lib/util/asn1.h"
22
23/* allocate an asn1 structure */
24struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx)
25{
26 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
27 if (ret == NULL) {
28 DEBUG(0,("asn1_init failed! out of memory\n"));
29 }
30 return ret;
31}
32
33/* free an asn1 structure */
34void asn1_free(struct asn1_data *data)
35{
36 talloc_free(data);
37}
38
39/* write to the ASN1 buffer, advancing the buffer pointer */
40bool asn1_write(struct asn1_data *data, const void *p, int len)
41{
42 if (data->has_error) return false;
43 if (data->length < data->ofs+len) {
44 uint8_t *newp;
45 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
46 if (!newp) {
47 asn1_free(data);
48 data->has_error = true;
49 return false;
50 }
51 data->data = newp;
52 data->length = data->ofs+len;
53 }
54 memcpy(data->data + data->ofs, p, len);
55 data->ofs += len;
56 return true;
57}
58
59/* useful fn for writing a uint8_t */
60bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
61{
62 return asn1_write(data, &v, 1);
63}
64
65/* push a tag onto the asn1 data buffer. Used for nested structures */
66bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
67{
68 struct nesting *nesting;
69
70 asn1_write_uint8(data, tag);
71 nesting = talloc(data, struct nesting);
72 if (!nesting) {
73 data->has_error = true;
74 return false;
75 }
76
77 nesting->start = data->ofs;
78 nesting->next = data->nesting;
79 data->nesting = nesting;
80 return asn1_write_uint8(data, 0xff);
81}
82
83/* pop a tag */
84bool asn1_pop_tag(struct asn1_data *data)
85{
86 struct nesting *nesting;
87 size_t len;
88
89 nesting = data->nesting;
90
91 if (!nesting) {
92 data->has_error = true;
93 return false;
94 }
95 len = data->ofs - (nesting->start+1);
96 /* yes, this is ugly. We don't know in advance how many bytes the length
97 of a tag will take, so we assumed 1 byte. If we were wrong then we
98 need to correct our mistake */
99 if (len > 0xFFFFFF) {
100 data->data[nesting->start] = 0x84;
101 if (!asn1_write_uint8(data, 0)) return false;
102 if (!asn1_write_uint8(data, 0)) return false;
103 if (!asn1_write_uint8(data, 0)) return false;
104 if (!asn1_write_uint8(data, 0)) return false;
105 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
106 data->data[nesting->start+1] = (len>>24) & 0xFF;
107 data->data[nesting->start+2] = (len>>16) & 0xFF;
108 data->data[nesting->start+3] = (len>>8) & 0xFF;
109 data->data[nesting->start+4] = len&0xff;
110 } else if (len > 0xFFFF) {
111 data->data[nesting->start] = 0x83;
112 if (!asn1_write_uint8(data, 0)) return false;
113 if (!asn1_write_uint8(data, 0)) return false;
114 if (!asn1_write_uint8(data, 0)) return false;
115 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
116 data->data[nesting->start+1] = (len>>16) & 0xFF;
117 data->data[nesting->start+2] = (len>>8) & 0xFF;
118 data->data[nesting->start+3] = len&0xff;
119 } else if (len > 255) {
120 data->data[nesting->start] = 0x82;
121 if (!asn1_write_uint8(data, 0)) return false;
122 if (!asn1_write_uint8(data, 0)) return false;
123 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
124 data->data[nesting->start+1] = len>>8;
125 data->data[nesting->start+2] = len&0xff;
126 } else if (len > 127) {
127 data->data[nesting->start] = 0x81;
128 if (!asn1_write_uint8(data, 0)) return false;
129 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
130 data->data[nesting->start+1] = len;
131 } else {
132 data->data[nesting->start] = len;
133 }
134
135 data->nesting = nesting->next;
136 talloc_free(nesting);
137 return true;
138}
139
140/* "i" is the one's complement representation, as is the normal result of an
141 * implicit signed->unsigned conversion */
142
143static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
144{
145 uint8_t lowest = i & 0xFF;
146
147 i = i >> 8;
148 if (i != 0)
149 if (!push_int_bigendian(data, i, negative))
150 return false;
151
152 if (data->nesting->start+1 == data->ofs) {
153
154 /* We did not write anything yet, looking at the highest
155 * valued byte */
156
157 if (negative) {
158 /* Don't write leading 0xff's */
159 if (lowest == 0xFF)
160 return true;
161
162 if ((lowest & 0x80) == 0) {
163 /* The only exception for a leading 0xff is if
164 * the highest bit is 0, which would indicate
165 * a positive value */
166 if (!asn1_write_uint8(data, 0xff))
167 return false;
168 }
169 } else {
170 if (lowest & 0x80) {
171 /* The highest bit of a positive integer is 1,
172 * this would indicate a negative number. Push
173 * a 0 to indicate a positive one */
174 if (!asn1_write_uint8(data, 0))
175 return false;
176 }
177 }
178 }
179
180 return asn1_write_uint8(data, lowest);
181}
182
183/* write an Integer without the tag framing. Needed for example for the LDAP
184 * Abandon Operation */
185
186bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
187{
188 if (i == -1) {
189 /* -1 is special as it consists of all-0xff bytes. In
190 push_int_bigendian this is the only case that is not
191 properly handled, as all 0xff bytes would be handled as
192 leading ones to be ignored. */
193 return asn1_write_uint8(data, 0xff);
194 } else {
195 return push_int_bigendian(data, i, i<0);
196 }
197}
198
199
200/* write an integer */
201bool asn1_write_Integer(struct asn1_data *data, int i)
202{
203 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
204 if (!asn1_write_implicit_Integer(data, i)) return false;
205 return asn1_pop_tag(data);
206}
207
208/* write a BIT STRING */
209bool asn1_write_BitString(struct asn1_data *data, const void *p, size_t length, uint8_t padding)
210{
211 if (!asn1_push_tag(data, ASN1_BIT_STRING)) return false;
212 if (!asn1_write_uint8(data, padding)) return false;
213 if (!asn1_write(data, p, length)) return false;
214 return asn1_pop_tag(data);
215}
216
217bool ber_write_OID_String(DATA_BLOB *blob, const char *OID)
218{
219 uint_t v, v2;
220 const char *p = (const char *)OID;
221 char *newp;
222 int i;
223
224 v = strtoul(p, &newp, 10);
225 if (newp[0] != '.') return false;
226 p = newp + 1;
227
228 v2 = strtoul(p, &newp, 10);
229 if (newp[0] != '.') return false;
230 p = newp + 1;
231
232 /*the ber representation can't use more space then the string one */
233 *blob = data_blob(NULL, strlen(OID));
234 if (!blob->data) return false;
235
236 blob->data[0] = 40*v + v2;
237
238 i = 1;
239 while (*p) {
240 v = strtoul(p, &newp, 10);
241 if (newp[0] == '.') {
242 p = newp + 1;
243 } else if (newp[0] == '\0') {
244 p = newp;
245 } else {
246 data_blob_free(blob);
247 return false;
248 }
249 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
250 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
251 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
252 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
253 blob->data[i++] = (v&0x7f);
254 }
255
256 blob->length = i;
257
258 return true;
259}
260
261/* write an object ID to a ASN1 buffer */
262bool asn1_write_OID(struct asn1_data *data, const char *OID)
263{
264 DATA_BLOB blob;
265
266 if (!asn1_push_tag(data, ASN1_OID)) return false;
267
268 if (!ber_write_OID_String(&blob, OID)) {
269 data->has_error = true;
270 return false;
271 }
272
273 if (!asn1_write(data, blob.data, blob.length)) {
274 data_blob_free(&blob);
275 data->has_error = true;
276 return false;
277 }
278 data_blob_free(&blob);
279 return asn1_pop_tag(data);
280}
281
282/* write an octet string */
283bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
284{
285 asn1_push_tag(data, ASN1_OCTET_STRING);
286 asn1_write(data, p, length);
287 asn1_pop_tag(data);
288 return !data->has_error;
289}
290
291/* write a LDAP string */
292bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
293{
294 asn1_write(data, s, strlen(s));
295 return !data->has_error;
296}
297
298/* write a LDAP string from a DATA_BLOB */
299bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
300{
301 asn1_write(data, s->data, s->length);
302 return !data->has_error;
303}
304
305/* write a general string */
306bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
307{
308 asn1_push_tag(data, ASN1_GENERAL_STRING);
309 asn1_write_LDAPString(data, s);
310 asn1_pop_tag(data);
311 return !data->has_error;
312}
313
314bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
315{
316 asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num));
317 asn1_write(data, blob->data, blob->length);
318 asn1_pop_tag(data);
319 return !data->has_error;
320}
321
322/* write a BOOLEAN */
323bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
324{
325 asn1_push_tag(data, ASN1_BOOLEAN);
326 asn1_write_uint8(data, v ? 0xFF : 0);
327 asn1_pop_tag(data);
328 return !data->has_error;
329}
330
331bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
332{
333 uint8_t tmp = 0;
334 asn1_start_tag(data, ASN1_BOOLEAN);
335 asn1_read_uint8(data, &tmp);
336 if (tmp == 0xFF) {
337 *v = true;
338 } else {
339 *v = false;
340 }
341 asn1_end_tag(data);
342 return !data->has_error;
343}
344
345/* write a BOOLEAN in a simple context */
346bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
347{
348 asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context));
349 asn1_write_uint8(data, v ? 0xFF : 0);
350 asn1_pop_tag(data);
351 return !data->has_error;
352}
353
354bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
355{
356 uint8_t tmp = 0;
357 asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context));
358 asn1_read_uint8(data, &tmp);
359 if (tmp == 0xFF) {
360 *v = true;
361 } else {
362 *v = false;
363 }
364 asn1_end_tag(data);
365 return !data->has_error;
366}
367
368/* check a BOOLEAN */
369bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
370{
371 uint8_t b = 0;
372
373 asn1_read_uint8(data, &b);
374 if (b != ASN1_BOOLEAN) {
375 data->has_error = true;
376 return false;
377 }
378 asn1_read_uint8(data, &b);
379 if (b != v) {
380 data->has_error = true;
381 return false;
382 }
383 return !data->has_error;
384}
385
386
387/* load a struct asn1_data structure with a lump of data, ready to be parsed */
388bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
389{
390 ZERO_STRUCTP(data);
391 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
392 if (!data->data) {
393 data->has_error = true;
394 return false;
395 }
396 data->length = blob.length;
397 return true;
398}
399
400/* Peek into an ASN1 buffer, not advancing the pointer */
401bool asn1_peek(struct asn1_data *data, void *p, int len)
402{
403 if (data->has_error)
404 return false;
405
406 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
407 return false;
408
409 if (data->ofs + len > data->length) {
410 /* we need to mark the buffer as consumed, so the caller knows
411 this was an out of data error, and not a decode error */
412 data->ofs = data->length;
413 return false;
414 }
415
416 memcpy(p, data->data + data->ofs, len);
417 return true;
418}
419
420/* read from a ASN1 buffer, advancing the buffer pointer */
421bool asn1_read(struct asn1_data *data, void *p, int len)
422{
423 if (!asn1_peek(data, p, len)) {
424 data->has_error = true;
425 return false;
426 }
427
428 data->ofs += len;
429 return true;
430}
431
432/* read a uint8_t from a ASN1 buffer */
433bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
434{
435 return asn1_read(data, v, 1);
436}
437
438bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
439{
440 return asn1_peek(data, v, 1);
441}
442
443bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
444{
445 uint8_t b;
446
447 if (asn1_tag_remaining(data) <= 0) {
448 return false;
449 }
450
451 if (!asn1_peek_uint8(data, &b))
452 return false;
453
454 return (b == tag);
455}
456
457/* start reading a nested asn1 structure */
458bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
459{
460 uint8_t b;
461 struct nesting *nesting;
462
463 if (!asn1_read_uint8(data, &b))
464 return false;
465
466 if (b != tag) {
467 data->has_error = true;
468 return false;
469 }
470 nesting = talloc(data, struct nesting);
471 if (!nesting) {
472 data->has_error = true;
473 return false;
474 }
475
476 if (!asn1_read_uint8(data, &b)) {
477 return false;
478 }
479
480 if (b & 0x80) {
481 int n = b & 0x7f;
482 if (!asn1_read_uint8(data, &b))
483 return false;
484 nesting->taglen = b;
485 while (n > 1) {
486 if (!asn1_read_uint8(data, &b))
487 return false;
488 nesting->taglen = (nesting->taglen << 8) | b;
489 n--;
490 }
491 } else {
492 nesting->taglen = b;
493 }
494 nesting->start = data->ofs;
495 nesting->next = data->nesting;
496 data->nesting = nesting;
497 if (asn1_tag_remaining(data) == -1) {
498 return false;
499 }
500 return !data->has_error;
501}
502
503/* stop reading a tag */
504bool asn1_end_tag(struct asn1_data *data)
505{
506 struct nesting *nesting;
507
508 /* make sure we read it all */
509 if (asn1_tag_remaining(data) != 0) {
510 data->has_error = true;
511 return false;
512 }
513
514 nesting = data->nesting;
515
516 if (!nesting) {
517 data->has_error = true;
518 return false;
519 }
520
521 data->nesting = nesting->next;
522 talloc_free(nesting);
523 return true;
524}
525
526/* work out how many bytes are left in this nested tag */
527int asn1_tag_remaining(struct asn1_data *data)
528{
529 int remaining;
530 if (data->has_error) {
531 return -1;
532 }
533
534 if (!data->nesting) {
535 data->has_error = true;
536 return -1;
537 }
538 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
539 if (remaining > (data->length - data->ofs)) {
540 data->has_error = true;
541 return -1;
542 }
543 return remaining;
544}
545
546/* read an object ID from a data blob */
547bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, const char **OID)
548{
549 int i;
550 uint8_t *b;
551 uint_t v;
552 char *tmp_oid = NULL;
553
554 if (blob.length < 2) return false;
555
556 b = blob.data;
557
558 tmp_oid = talloc_asprintf(mem_ctx, "%u", b[0]/40);
559 if (!tmp_oid) goto nomem;
560 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", b[0]%40);
561 if (!tmp_oid) goto nomem;
562
563 for(i = 1, v = 0; i < blob.length; i++) {
564 v = (v<<7) | (b[i]&0x7f);
565 if ( ! (b[i] & 0x80)) {
566 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", v);
567 v = 0;
568 }
569 if (!tmp_oid) goto nomem;
570 }
571
572 if (v != 0) {
573 talloc_free(tmp_oid);
574 return false;
575 }
576
577 *OID = tmp_oid;
578 return true;
579
580nomem:
581 return false;
582}
583
584/* read an object ID from a ASN1 buffer */
585bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, const char **OID)
586{
587 DATA_BLOB blob;
588 int len;
589
590 if (!asn1_start_tag(data, ASN1_OID)) return false;
591
592 len = asn1_tag_remaining(data);
593 if (len < 0) {
594 data->has_error = true;
595 return false;
596 }
597
598 blob = data_blob(NULL, len);
599 if (!blob.data) {
600 data->has_error = true;
601 return false;
602 }
603
604 asn1_read(data, blob.data, len);
605 asn1_end_tag(data);
606 if (data->has_error) {
607 data_blob_free(&blob);
608 return false;
609 }
610
611 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
612 data->has_error = true;
613 data_blob_free(&blob);
614 return false;
615 }
616
617 data_blob_free(&blob);
618 return true;
619}
620
621/* check that the next object ID is correct */
622bool asn1_check_OID(struct asn1_data *data, const char *OID)
623{
624 const char *id;
625
626 if (!asn1_read_OID(data, data, &id)) return false;
627
628 if (strcmp(id, OID) != 0) {
629 talloc_free(discard_const(id));
630 data->has_error = true;
631 return false;
632 }
633 talloc_free(discard_const(id));
634 return true;
635}
636
637/* read a LDAPString from a ASN1 buffer */
638bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
639{
640 int len;
641 len = asn1_tag_remaining(data);
642 if (len < 0) {
643 data->has_error = true;
644 return false;
645 }
646 *s = talloc_array(mem_ctx, char, len+1);
647 if (! *s) {
648 data->has_error = true;
649 return false;
650 }
651 asn1_read(data, *s, len);
652 (*s)[len] = 0;
653 return !data->has_error;
654}
655
656
657/* read a GeneralString from a ASN1 buffer */
658bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
659{
660 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
661 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
662 return asn1_end_tag(data);
663}
664
665
666/* read a octet string blob */
667bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
668{
669 int len;
670 ZERO_STRUCTP(blob);
671 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
672 len = asn1_tag_remaining(data);
673 if (len < 0) {
674 data->has_error = true;
675 return false;
676 }
677 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
678 if (!blob->data) {
679 data->has_error = true;
680 return false;
681 }
682 asn1_read(data, blob->data, len);
683 asn1_end_tag(data);
684 blob->length--;
685 blob->data[len] = 0;
686
687 if (data->has_error) {
688 data_blob_free(blob);
689 *blob = data_blob_null;
690 return false;
691 }
692 return true;
693}
694
695bool asn1_read_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
696{
697 int len;
698 ZERO_STRUCTP(blob);
699 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
700 len = asn1_tag_remaining(data);
701 if (len < 0) {
702 data->has_error = true;
703 return false;
704 }
705 *blob = data_blob(NULL, len);
706 if ((len != 0) && (!blob->data)) {
707 data->has_error = true;
708 return false;
709 }
710 asn1_read(data, blob->data, len);
711 asn1_end_tag(data);
712 return !data->has_error;
713}
714
715/* read an integer without tag*/
716bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
717{
718 uint8_t b;
719 bool first_byte = true;
720 *i = 0;
721
722 while (!data->has_error && asn1_tag_remaining(data)>0) {
723 if (!asn1_read_uint8(data, &b)) return false;
724 if (first_byte) {
725 if (b & 0x80) {
726 /* Number is negative.
727 Set i to -1 for sign extend. */
728 *i = -1;
729 }
730 first_byte = false;
731 }
732 *i = (*i << 8) + b;
733 }
734 return !data->has_error;
735
736}
737
738/* read an integer */
739bool asn1_read_Integer(struct asn1_data *data, int *i)
740{
741 *i = 0;
742
743 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
744 if (!asn1_read_implicit_Integer(data, i)) return false;
745 return asn1_end_tag(data);
746}
747
748/* read a BIT STRING */
749bool asn1_read_BitString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob, uint8_t *padding)
750{
751 int len;
752 ZERO_STRUCTP(blob);
753 if (!asn1_start_tag(data, ASN1_BIT_STRING)) return false;
754 len = asn1_tag_remaining(data);
755 if (len < 0) {
756 data->has_error = true;
757 return false;
758 }
759 if (!asn1_read_uint8(data, padding)) return false;
760
761 *blob = data_blob_talloc(mem_ctx, NULL, len);
762 if (!blob->data) {
763 data->has_error = true;
764 return false;
765 }
766 if (asn1_read(data, blob->data, len - 1)) {
767 blob->length--;
768 blob->data[len] = 0;
769 asn1_end_tag(data);
770 }
771
772 if (data->has_error) {
773 data_blob_free(blob);
774 *blob = data_blob_null;
775 *padding = 0;
776 return false;
777 }
778 return true;
779}
780
781/* read an integer */
782bool asn1_read_enumerated(struct asn1_data *data, int *v)
783{
784 *v = 0;
785
786 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
787 while (!data->has_error && asn1_tag_remaining(data)>0) {
788 uint8_t b;
789 asn1_read_uint8(data, &b);
790 *v = (*v << 8) + b;
791 }
792 return asn1_end_tag(data);
793}
794
795/* check a enumerated value is correct */
796bool asn1_check_enumerated(struct asn1_data *data, int v)
797{
798 uint8_t b;
799 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
800 asn1_read_uint8(data, &b);
801 asn1_end_tag(data);
802
803 if (v != b)
804 data->has_error = false;
805
806 return !data->has_error;
807}
808
809/* write an enumerated value to the stream */
810bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
811{
812 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
813 asn1_write_uint8(data, v);
814 asn1_pop_tag(data);
815 return !data->has_error;
816}
817
818/*
819 Get us the data just written without copying
820*/
821bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
822{
823 if (asn1->has_error) {
824 return false;
825 }
826 if (asn1->nesting != NULL) {
827 return false;
828 }
829 blob->data = asn1->data;
830 blob->length = asn1->length;
831 return true;
832}
833
834/*
835 Fill in an asn1 struct without making a copy
836*/
837void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
838{
839 ZERO_STRUCTP(data);
840 data->data = buf;
841 data->length = len;
842}
843
844/*
845 check if a ASN.1 blob is a full tag
846*/
847NTSTATUS asn1_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
848{
849 struct asn1_data *asn1 = asn1_init(NULL);
850 int size;
851
852 NT_STATUS_HAVE_NO_MEMORY(asn1);
853
854 asn1->data = blob.data;
855 asn1->length = blob.length;
856 asn1_start_tag(asn1, tag);
857 if (asn1->has_error) {
858 talloc_free(asn1);
859 return STATUS_MORE_ENTRIES;
860 }
861 size = asn1_tag_remaining(asn1) + asn1->ofs;
862
863 talloc_free(asn1);
864
865 if (size > blob.length) {
866 return STATUS_MORE_ENTRIES;
867 }
868
869 *packet_size = size;
870 return NT_STATUS_OK;
871}
Note: See TracBrowser for help on using the repository browser.