[206] | 1 | #if defined(HAVE_UNISTD_H)
|
---|
| 2 | #include <unistd.h>
|
---|
| 3 | #endif
|
---|
| 4 |
|
---|
| 5 | #include <sys/types.h>
|
---|
| 6 |
|
---|
| 7 | #ifdef HAVE_STRING_H
|
---|
| 8 | #include <string.h>
|
---|
| 9 | #endif
|
---|
| 10 |
|
---|
| 11 | #ifdef HAVE_STRINGS_H
|
---|
| 12 | #include <strings.h>
|
---|
| 13 | #endif
|
---|
| 14 |
|
---|
| 15 | #if !defined(HAVE_CRYPT)
|
---|
| 16 |
|
---|
| 17 | /*
|
---|
| 18 | This bit of code was derived from the UFC-crypt package which
|
---|
| 19 | carries the following copyright
|
---|
| 20 |
|
---|
| 21 | Modified for use by Samba by Andrew Tridgell, October 1994
|
---|
| 22 |
|
---|
| 23 | Note that this routine is only faster on some machines. Under Linux 1.1.51
|
---|
| 24 | libc 4.5.26 I actually found this routine to be slightly slower.
|
---|
| 25 |
|
---|
| 26 | Under SunOS I found a huge speedup by using these routines
|
---|
| 27 | (a factor of 20 or so)
|
---|
| 28 |
|
---|
| 29 | Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
|
---|
| 30 | that this crypt routine may sometimes get the wrong answer. Only
|
---|
| 31 | use UFC_CRYT if you really need it.
|
---|
| 32 |
|
---|
| 33 | */
|
---|
| 34 |
|
---|
| 35 | /*
|
---|
| 36 | * UFC-crypt: ultra fast crypt(3) implementation
|
---|
| 37 | *
|
---|
| 38 | * Copyright (C) 1991-1998, Free Software Foundation, Inc.
|
---|
| 39 | *
|
---|
| 40 | * This library is free software; you can redistribute it and/or
|
---|
| 41 | * modify it under the terms of the GNU Lesser General Public
|
---|
| 42 | * License as published by the Free Software Foundation; either
|
---|
| 43 | * version 3 of the License, or (at your option) any later version.
|
---|
| 44 | *
|
---|
| 45 | * This library is distributed in the hope that it will be useful,
|
---|
| 46 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 47 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
| 48 | * Library General Public License for more details.
|
---|
| 49 | *
|
---|
| 50 | * You should have received a copy of the GNU Lesser General Public
|
---|
| 51 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
| 52 | *
|
---|
| 53 | * @(#)crypt_util.c 2.31 02/08/92
|
---|
| 54 | *
|
---|
| 55 | * Support routines
|
---|
| 56 | *
|
---|
| 57 | */
|
---|
| 58 |
|
---|
| 59 |
|
---|
| 60 | #ifndef long32
|
---|
| 61 | #if (SIZEOF_INT == 4)
|
---|
| 62 | #define long32 int
|
---|
| 63 | #elif (SIZEOF_LONG == 4)
|
---|
| 64 | #define long32 long
|
---|
| 65 | #elif (SIZEOF_SHORT == 4)
|
---|
| 66 | #define long32 short
|
---|
| 67 | #else
|
---|
| 68 | /* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */
|
---|
| 69 | #define long32 int
|
---|
| 70 | #endif
|
---|
| 71 | #endif
|
---|
| 72 |
|
---|
| 73 | #ifndef long64
|
---|
| 74 | #ifdef HAVE_LONGLONG
|
---|
| 75 | #define long64 long long long
|
---|
| 76 | #endif
|
---|
| 77 | #endif
|
---|
| 78 |
|
---|
| 79 | #ifndef ufc_long
|
---|
| 80 | #define ufc_long unsigned
|
---|
| 81 | #endif
|
---|
| 82 |
|
---|
| 83 | #ifndef _UFC_64_
|
---|
| 84 | #define _UFC_32_
|
---|
| 85 | #endif
|
---|
| 86 |
|
---|
| 87 | /*
|
---|
| 88 | * Permutation done once on the 56 bit
|
---|
| 89 | * key derived from the original 8 byte ASCII key.
|
---|
| 90 | */
|
---|
| 91 | static int pc1[56] = {
|
---|
| 92 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
---|
| 93 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
---|
| 94 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
---|
| 95 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
---|
| 96 | };
|
---|
| 97 |
|
---|
| 98 | /*
|
---|
| 99 | * How much to rotate each 28 bit half of the pc1 permutated
|
---|
| 100 | * 56 bit key before using pc2 to give the i' key
|
---|
| 101 | */
|
---|
| 102 | static int rots[16] = {
|
---|
| 103 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
---|
| 104 | };
|
---|
| 105 |
|
---|
| 106 | /*
|
---|
| 107 | * Permutation giving the key
|
---|
| 108 | * of the i' DES round
|
---|
| 109 | */
|
---|
| 110 | static int pc2[48] = {
|
---|
| 111 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
---|
| 112 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
---|
| 113 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
---|
| 114 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
---|
| 115 | };
|
---|
| 116 |
|
---|
| 117 | /*
|
---|
| 118 | * The E expansion table which selects
|
---|
| 119 | * bits from the 32 bit intermediate result.
|
---|
| 120 | */
|
---|
| 121 | static int esel[48] = {
|
---|
| 122 | 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
|
---|
| 123 | 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
|
---|
| 124 | 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
|
---|
| 125 | 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
|
---|
| 126 | };
|
---|
| 127 | static int e_inverse[64];
|
---|
| 128 |
|
---|
| 129 | /*
|
---|
| 130 | * Permutation done on the
|
---|
| 131 | * result of sbox lookups
|
---|
| 132 | */
|
---|
| 133 | static int perm32[32] = {
|
---|
| 134 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
---|
| 135 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
---|
| 136 | };
|
---|
| 137 |
|
---|
| 138 | /*
|
---|
| 139 | * The sboxes
|
---|
| 140 | */
|
---|
| 141 | static int sbox[8][4][16]= {
|
---|
| 142 | { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
|
---|
| 143 | { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
|
---|
| 144 | { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
|
---|
| 145 | { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
|
---|
| 146 | },
|
---|
| 147 |
|
---|
| 148 | { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
|
---|
| 149 | { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
|
---|
| 150 | { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
|
---|
| 151 | { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
|
---|
| 152 | },
|
---|
| 153 |
|
---|
| 154 | { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
|
---|
| 155 | { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
|
---|
| 156 | { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
|
---|
| 157 | { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
|
---|
| 158 | },
|
---|
| 159 |
|
---|
| 160 | { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
|
---|
| 161 | { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
|
---|
| 162 | { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
|
---|
| 163 | { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
|
---|
| 164 | },
|
---|
| 165 |
|
---|
| 166 | { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
|
---|
| 167 | { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
|
---|
| 168 | { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
|
---|
| 169 | { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
|
---|
| 170 | },
|
---|
| 171 |
|
---|
| 172 | { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
|
---|
| 173 | { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
|
---|
| 174 | { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
|
---|
| 175 | { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
|
---|
| 176 | },
|
---|
| 177 |
|
---|
| 178 | { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
|
---|
| 179 | { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
|
---|
| 180 | { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
|
---|
| 181 | { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
|
---|
| 182 | },
|
---|
| 183 |
|
---|
| 184 | { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
|
---|
| 185 | { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
|
---|
| 186 | { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
|
---|
| 187 | { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
|
---|
| 188 | }
|
---|
| 189 | };
|
---|
| 190 |
|
---|
| 191 | /*
|
---|
| 192 | * This is the final
|
---|
| 193 | * permutation matrix
|
---|
| 194 | */
|
---|
| 195 | static int final_perm[64] = {
|
---|
| 196 | 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
|
---|
| 197 | 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
|
---|
| 198 | 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
|
---|
| 199 | 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
|
---|
| 200 | };
|
---|
| 201 |
|
---|
| 202 | /*
|
---|
| 203 | * The 16 DES keys in BITMASK format
|
---|
| 204 | */
|
---|
| 205 | #ifdef _UFC_32_
|
---|
| 206 | long32 _ufc_keytab[16][2];
|
---|
| 207 | #endif
|
---|
| 208 |
|
---|
| 209 | #ifdef _UFC_64_
|
---|
| 210 | long64 _ufc_keytab[16];
|
---|
| 211 | #endif
|
---|
| 212 |
|
---|
| 213 |
|
---|
| 214 | #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
|
---|
| 215 | #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
|
---|
| 216 |
|
---|
| 217 | /* Macro to set a bit (0..23) */
|
---|
| 218 | #define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
|
---|
| 219 |
|
---|
| 220 | /*
|
---|
| 221 | * sb arrays:
|
---|
| 222 | *
|
---|
| 223 | * Workhorses of the inner loop of the DES implementation.
|
---|
| 224 | * They do sbox lookup, shifting of this value, 32 bit
|
---|
| 225 | * permutation and E permutation for the next round.
|
---|
| 226 | *
|
---|
| 227 | * Kept in 'BITMASK' format.
|
---|
| 228 | */
|
---|
| 229 |
|
---|
| 230 | #ifdef _UFC_32_
|
---|
| 231 | long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
|
---|
| 232 | static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
---|
| 233 | #endif
|
---|
| 234 |
|
---|
| 235 | #ifdef _UFC_64_
|
---|
| 236 | long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
|
---|
| 237 | static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
|
---|
| 238 | #endif
|
---|
| 239 |
|
---|
| 240 | /*
|
---|
| 241 | * eperm32tab: do 32 bit permutation and E selection
|
---|
| 242 | *
|
---|
| 243 | * The first index is the byte number in the 32 bit value to be permuted
|
---|
| 244 | * - second - is the value of this byte
|
---|
| 245 | * - third - selects the two 32 bit values
|
---|
| 246 | *
|
---|
| 247 | * The table is used and generated internally in init_des to speed it up
|
---|
| 248 | */
|
---|
| 249 | static ufc_long eperm32tab[4][256][2];
|
---|
| 250 |
|
---|
| 251 | /*
|
---|
| 252 | * do_pc1: permform pc1 permutation in the key schedule generation.
|
---|
| 253 | *
|
---|
| 254 | * The first index is the byte number in the 8 byte ASCII key
|
---|
| 255 | * - second - - the two 28 bits halfs of the result
|
---|
| 256 | * - third - selects the 7 bits actually used of each byte
|
---|
| 257 | *
|
---|
| 258 | * The result is kept with 28 bit per 32 bit with the 4 most significant
|
---|
| 259 | * bits zero.
|
---|
| 260 | */
|
---|
| 261 | static ufc_long do_pc1[8][2][128];
|
---|
| 262 |
|
---|
| 263 | /*
|
---|
| 264 | * do_pc2: permform pc2 permutation in the key schedule generation.
|
---|
| 265 | *
|
---|
| 266 | * The first index is the septet number in the two 28 bit intermediate values
|
---|
| 267 | * - second - - - septet values
|
---|
| 268 | *
|
---|
| 269 | * Knowledge of the structure of the pc2 permutation is used.
|
---|
| 270 | *
|
---|
| 271 | * The result is kept with 28 bit per 32 bit with the 4 most significant
|
---|
| 272 | * bits zero.
|
---|
| 273 | */
|
---|
| 274 | static ufc_long do_pc2[8][128];
|
---|
| 275 |
|
---|
| 276 | /*
|
---|
| 277 | * efp: undo an extra e selection and do final
|
---|
| 278 | * permutation giving the DES result.
|
---|
| 279 | *
|
---|
| 280 | * Invoked 6 bit a time on two 48 bit values
|
---|
| 281 | * giving two 32 bit longs.
|
---|
| 282 | */
|
---|
| 283 | static ufc_long efp[16][64][2];
|
---|
| 284 |
|
---|
| 285 | static unsigned char bytemask[8] = {
|
---|
| 286 | 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
|
---|
| 287 | };
|
---|
| 288 |
|
---|
| 289 | static ufc_long longmask[32] = {
|
---|
| 290 | 0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
---|
| 291 | 0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
---|
| 292 | 0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
---|
| 293 | 0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
---|
| 294 | 0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
---|
| 295 | 0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
---|
| 296 | 0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
---|
| 297 | 0x00000008, 0x00000004, 0x00000002, 0x00000001
|
---|
| 298 | };
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | /*
|
---|
| 302 | * Silly rewrite of 'bzero'. I do so
|
---|
| 303 | * because some machines don't have
|
---|
| 304 | * bzero and some don't have memset.
|
---|
| 305 | */
|
---|
| 306 |
|
---|
| 307 | static void clearmem(char *start, int cnt)
|
---|
| 308 | { while(cnt--)
|
---|
| 309 | *start++ = '\0';
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | static int initialized = 0;
|
---|
| 313 |
|
---|
| 314 | /* lookup a 6 bit value in sbox */
|
---|
| 315 |
|
---|
| 316 | #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
|
---|
| 317 |
|
---|
| 318 | /*
|
---|
| 319 | * Initialize unit - may be invoked directly
|
---|
| 320 | * by fcrypt users.
|
---|
| 321 | */
|
---|
| 322 |
|
---|
| 323 | static void ufc_init_des(void)
|
---|
| 324 | { int comes_from_bit;
|
---|
| 325 | int bit, sg;
|
---|
| 326 | ufc_long j;
|
---|
| 327 | ufc_long mask1, mask2;
|
---|
| 328 |
|
---|
| 329 | /*
|
---|
| 330 | * Create the do_pc1 table used
|
---|
| 331 | * to affect pc1 permutation
|
---|
| 332 | * when generating keys
|
---|
| 333 | */
|
---|
| 334 | for(bit = 0; bit < 56; bit++) {
|
---|
| 335 | comes_from_bit = pc1[bit] - 1;
|
---|
| 336 | mask1 = bytemask[comes_from_bit % 8 + 1];
|
---|
| 337 | mask2 = longmask[bit % 28 + 4];
|
---|
| 338 | for(j = 0; j < 128; j++) {
|
---|
| 339 | if(j & mask1)
|
---|
| 340 | do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | /*
|
---|
| 345 | * Create the do_pc2 table used
|
---|
| 346 | * to affect pc2 permutation when
|
---|
| 347 | * generating keys
|
---|
| 348 | */
|
---|
| 349 | for(bit = 0; bit < 48; bit++) {
|
---|
| 350 | comes_from_bit = pc2[bit] - 1;
|
---|
| 351 | mask1 = bytemask[comes_from_bit % 7 + 1];
|
---|
| 352 | mask2 = BITMASK(bit % 24);
|
---|
| 353 | for(j = 0; j < 128; j++) {
|
---|
| 354 | if(j & mask1)
|
---|
| 355 | do_pc2[comes_from_bit / 7][j] |= mask2;
|
---|
| 356 | }
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | /*
|
---|
| 360 | * Now generate the table used to do combined
|
---|
| 361 | * 32 bit permutation and e expansion
|
---|
| 362 | *
|
---|
| 363 | * We use it because we have to permute 16384 32 bit
|
---|
| 364 | * longs into 48 bit in order to initialize sb.
|
---|
| 365 | *
|
---|
| 366 | * Looping 48 rounds per permutation becomes
|
---|
| 367 | * just too slow...
|
---|
| 368 | *
|
---|
| 369 | */
|
---|
| 370 |
|
---|
| 371 | clearmem((char*)eperm32tab, sizeof(eperm32tab));
|
---|
| 372 |
|
---|
| 373 | for(bit = 0; bit < 48; bit++) {
|
---|
| 374 | ufc_long inner_mask1,comes_from;
|
---|
| 375 |
|
---|
| 376 | comes_from = perm32[esel[bit]-1]-1;
|
---|
| 377 | inner_mask1 = bytemask[comes_from % 8];
|
---|
| 378 |
|
---|
| 379 | for(j = 256; j--;) {
|
---|
| 380 | if(j & inner_mask1)
|
---|
| 381 | eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
|
---|
| 382 | }
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | /*
|
---|
| 386 | * Create the sb tables:
|
---|
| 387 | *
|
---|
| 388 | * For each 12 bit segment of an 48 bit intermediate
|
---|
| 389 | * result, the sb table precomputes the two 4 bit
|
---|
| 390 | * values of the sbox lookups done with the two 6
|
---|
| 391 | * bit halves, shifts them to their proper place,
|
---|
| 392 | * sends them through perm32 and finally E expands
|
---|
| 393 | * them so that they are ready for the next
|
---|
| 394 | * DES round.
|
---|
| 395 | *
|
---|
| 396 | */
|
---|
| 397 | for(sg = 0; sg < 4; sg++) {
|
---|
| 398 | int j1, j2;
|
---|
| 399 | int s1, s2;
|
---|
| 400 |
|
---|
| 401 | for(j1 = 0; j1 < 64; j1++) {
|
---|
| 402 | s1 = s_lookup(2 * sg, j1);
|
---|
| 403 | for(j2 = 0; j2 < 64; j2++) {
|
---|
| 404 | ufc_long to_permute, inx;
|
---|
| 405 |
|
---|
| 406 | s2 = s_lookup(2 * sg + 1, j2);
|
---|
| 407 | to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
|
---|
| 408 |
|
---|
| 409 | #ifdef _UFC_32_
|
---|
| 410 | inx = ((j1 << 6) | j2) << 1;
|
---|
| 411 | sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
|
---|
| 412 | sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
---|
| 413 | sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
|
---|
| 414 | sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
---|
| 415 | sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
|
---|
| 416 | sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
---|
| 417 | sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
|
---|
| 418 | sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
|
---|
| 419 | #endif
|
---|
| 420 | #ifdef _UFC_64_
|
---|
| 421 | inx = ((j1 << 6) | j2);
|
---|
| 422 | sb[sg][inx] =
|
---|
| 423 | ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
|
---|
| 424 | (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
|
---|
| 425 | sb[sg][inx] |=
|
---|
| 426 | ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
|
---|
| 427 | (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
|
---|
| 428 | sb[sg][inx] |=
|
---|
| 429 | ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
|
---|
| 430 | (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
|
---|
| 431 | sb[sg][inx] |=
|
---|
| 432 | ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
|
---|
| 433 | (long64)eperm32tab[3][(to_permute) & 0xff][1];
|
---|
| 434 | #endif
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 | /*
|
---|
| 440 | * Create an inverse matrix for esel telling
|
---|
| 441 | * where to plug out bits if undoing it
|
---|
| 442 | */
|
---|
| 443 | for(bit=48; bit--;) {
|
---|
| 444 | e_inverse[esel[bit] - 1 ] = bit;
|
---|
| 445 | e_inverse[esel[bit] - 1 + 32] = bit + 48;
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | /*
|
---|
| 449 | * create efp: the matrix used to
|
---|
| 450 | * undo the E expansion and effect final permutation
|
---|
| 451 | */
|
---|
| 452 | clearmem((char*)efp, sizeof efp);
|
---|
| 453 | for(bit = 0; bit < 64; bit++) {
|
---|
| 454 | int o_bit, o_long;
|
---|
| 455 | ufc_long word_value, inner_mask1, inner_mask2;
|
---|
| 456 | int comes_from_f_bit, comes_from_e_bit;
|
---|
| 457 | int comes_from_word, bit_within_word;
|
---|
| 458 |
|
---|
| 459 | /* See where bit i belongs in the two 32 bit long's */
|
---|
| 460 | o_long = bit / 32; /* 0..1 */
|
---|
| 461 | o_bit = bit % 32; /* 0..31 */
|
---|
| 462 |
|
---|
| 463 | /*
|
---|
| 464 | * And find a bit in the e permutated value setting this bit.
|
---|
| 465 | *
|
---|
| 466 | * Note: the e selection may have selected the same bit several
|
---|
| 467 | * times. By the initialization of e_inverse, we only look
|
---|
| 468 | * for one specific instance.
|
---|
| 469 | */
|
---|
| 470 | comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
|
---|
| 471 | comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
|
---|
| 472 | comes_from_word = comes_from_e_bit / 6; /* 0..15 */
|
---|
| 473 | bit_within_word = comes_from_e_bit % 6; /* 0..5 */
|
---|
| 474 |
|
---|
| 475 | inner_mask1 = longmask[bit_within_word + 26];
|
---|
| 476 | inner_mask2 = longmask[o_bit];
|
---|
| 477 |
|
---|
| 478 | for(word_value = 64; word_value--;) {
|
---|
| 479 | if(word_value & inner_mask1)
|
---|
| 480 | efp[comes_from_word][word_value][o_long] |= inner_mask2;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | initialized++;
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | /*
|
---|
| 487 | * Process the elements of the sb table permuting the
|
---|
| 488 | * bits swapped in the expansion by the current salt.
|
---|
| 489 | */
|
---|
| 490 |
|
---|
| 491 | #ifdef _UFC_32_
|
---|
| 492 | static void shuffle_sb(long32 *k, ufc_long saltbits)
|
---|
| 493 | { ufc_long j;
|
---|
| 494 | long32 x;
|
---|
| 495 | for(j=4096; j--;) {
|
---|
| 496 | x = (k[0] ^ k[1]) & (long32)saltbits;
|
---|
| 497 | *k++ ^= x;
|
---|
| 498 | *k++ ^= x;
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 | #endif
|
---|
| 502 |
|
---|
| 503 | #ifdef _UFC_64_
|
---|
| 504 | static void shuffle_sb(long64 *k, ufc_long saltbits)
|
---|
| 505 | { ufc_long j;
|
---|
| 506 | long64 x;
|
---|
| 507 | for(j=4096; j--;) {
|
---|
| 508 | x = ((*k >> 32) ^ *k) & (long64)saltbits;
|
---|
| 509 | *k++ ^= (x << 32) | x;
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 | #endif
|
---|
| 513 |
|
---|
| 514 | /*
|
---|
| 515 | * Setup the unit for a new salt
|
---|
| 516 | * Hopefully we'll not see a new salt in each crypt call.
|
---|
| 517 | */
|
---|
| 518 |
|
---|
| 519 | static unsigned char current_salt[3] = "&&"; /* invalid value */
|
---|
| 520 | static ufc_long current_saltbits = 0;
|
---|
| 521 | static int direction = 0;
|
---|
| 522 |
|
---|
| 523 | static void setup_salt(const char *s1)
|
---|
| 524 | { ufc_long i, j, saltbits;
|
---|
| 525 | const unsigned char *s2 = (const unsigned char *)s1;
|
---|
| 526 |
|
---|
| 527 | if(!initialized)
|
---|
| 528 | ufc_init_des();
|
---|
| 529 |
|
---|
| 530 | if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
|
---|
| 531 | return;
|
---|
| 532 | current_salt[0] = s2[0]; current_salt[1] = s2[1];
|
---|
| 533 |
|
---|
| 534 | /*
|
---|
| 535 | * This is the only crypt change to DES:
|
---|
| 536 | * entries are swapped in the expansion table
|
---|
| 537 | * according to the bits set in the salt.
|
---|
| 538 | */
|
---|
| 539 | saltbits = 0;
|
---|
| 540 | for(i = 0; i < 2; i++) {
|
---|
| 541 | long c=ascii_to_bin(s2[i]);
|
---|
| 542 | if(c < 0 || c > 63)
|
---|
| 543 | c = 0;
|
---|
| 544 | for(j = 0; j < 6; j++) {
|
---|
| 545 | if((c >> j) & 0x1)
|
---|
| 546 | saltbits |= BITMASK(6 * i + j);
|
---|
| 547 | }
|
---|
| 548 | }
|
---|
| 549 |
|
---|
| 550 | /*
|
---|
| 551 | * Permute the sb table values
|
---|
| 552 | * to reflect the changed e
|
---|
| 553 | * selection table
|
---|
| 554 | */
|
---|
| 555 | shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
|
---|
| 556 | shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
|
---|
| 557 | shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
|
---|
| 558 | shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
|
---|
| 559 |
|
---|
| 560 | current_saltbits = saltbits;
|
---|
| 561 | }
|
---|
| 562 |
|
---|
| 563 | static void ufc_mk_keytab(char *key)
|
---|
| 564 | { ufc_long v1, v2, *k1;
|
---|
| 565 | int i;
|
---|
| 566 | #ifdef _UFC_32_
|
---|
| 567 | long32 v, *k2 = &_ufc_keytab[0][0];
|
---|
| 568 | #endif
|
---|
| 569 | #ifdef _UFC_64_
|
---|
| 570 | long64 v, *k2 = &_ufc_keytab[0];
|
---|
| 571 | #endif
|
---|
| 572 |
|
---|
| 573 | v1 = v2 = 0; k1 = &do_pc1[0][0][0];
|
---|
| 574 | for(i = 8; i--;) {
|
---|
| 575 | v1 |= k1[*key & 0x7f]; k1 += 128;
|
---|
| 576 | v2 |= k1[*key++ & 0x7f]; k1 += 128;
|
---|
| 577 | }
|
---|
| 578 |
|
---|
| 579 | for(i = 0; i < 16; i++) {
|
---|
| 580 | k1 = &do_pc2[0][0];
|
---|
| 581 |
|
---|
| 582 | v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
|
---|
| 583 | v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
|
---|
| 584 | v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
|
---|
| 585 | v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
|
---|
| 586 | v |= k1[(v1 ) & 0x7f]; k1 += 128;
|
---|
| 587 |
|
---|
| 588 | #ifdef _UFC_32_
|
---|
| 589 | *k2++ = v;
|
---|
| 590 | v = 0;
|
---|
| 591 | #endif
|
---|
| 592 | #ifdef _UFC_64_
|
---|
| 593 | v <<= 32;
|
---|
| 594 | #endif
|
---|
| 595 |
|
---|
| 596 | v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
|
---|
| 597 | v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
|
---|
| 598 | v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
|
---|
| 599 | v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
|
---|
| 600 | v |= k1[(v2 ) & 0x7f];
|
---|
| 601 |
|
---|
| 602 | *k2++ = v;
|
---|
| 603 | }
|
---|
| 604 |
|
---|
| 605 | direction = 0;
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | /*
|
---|
| 609 | * Undo an extra E selection and do final permutations
|
---|
| 610 | */
|
---|
| 611 |
|
---|
| 612 | ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
|
---|
| 613 | { ufc_long v1, v2, x;
|
---|
| 614 | static ufc_long ary[2];
|
---|
| 615 |
|
---|
| 616 | x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
|
---|
| 617 | x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
|
---|
| 618 |
|
---|
| 619 | v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
|
---|
| 620 |
|
---|
| 621 | v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
|
---|
| 622 | v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
|
---|
| 623 | v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
|
---|
| 624 | v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
|
---|
| 625 |
|
---|
| 626 | v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
|
---|
| 627 | v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
|
---|
| 628 | v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
|
---|
| 629 | v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
|
---|
| 630 |
|
---|
| 631 | v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
|
---|
| 632 | v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
|
---|
| 633 | v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
|
---|
| 634 | v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
|
---|
| 635 |
|
---|
| 636 | v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
|
---|
| 637 | v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
|
---|
| 638 | v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
|
---|
| 639 | v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
|
---|
| 640 |
|
---|
| 641 | ary[0] = v1; ary[1] = v2;
|
---|
| 642 | return ary;
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | /*
|
---|
| 646 | * crypt only: convert from 64 bit to 11 bit ASCII
|
---|
| 647 | * prefixing with the salt
|
---|
| 648 | */
|
---|
| 649 |
|
---|
| 650 | static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
|
---|
| 651 | { static char outbuf[14];
|
---|
| 652 | int i, s;
|
---|
| 653 |
|
---|
| 654 | outbuf[0] = salt[0];
|
---|
| 655 | outbuf[1] = salt[1] ? salt[1] : salt[0];
|
---|
| 656 |
|
---|
| 657 | for(i = 0; i < 5; i++)
|
---|
| 658 | outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
|
---|
| 659 |
|
---|
| 660 | s = (v2 & 0xf) << 2;
|
---|
| 661 | v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
|
---|
| 662 |
|
---|
| 663 | for(i = 5; i < 10; i++)
|
---|
| 664 | outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
|
---|
| 665 |
|
---|
| 666 | outbuf[12] = bin_to_ascii(s);
|
---|
| 667 | outbuf[13] = 0;
|
---|
| 668 |
|
---|
| 669 | return outbuf;
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | /*
|
---|
| 673 | * UNIX crypt function
|
---|
| 674 | */
|
---|
| 675 |
|
---|
| 676 | static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
|
---|
| 677 |
|
---|
| 678 | char *ufc_crypt(const char *key,const char *salt)
|
---|
| 679 | { ufc_long *s;
|
---|
| 680 | char ktab[9];
|
---|
| 681 |
|
---|
| 682 | /*
|
---|
| 683 | * Hack DES tables according to salt
|
---|
| 684 | */
|
---|
| 685 | setup_salt(salt);
|
---|
| 686 |
|
---|
| 687 | /*
|
---|
| 688 | * Setup key schedule
|
---|
| 689 | */
|
---|
| 690 | clearmem(ktab, sizeof ktab);
|
---|
| 691 | strncpy(ktab, key, 8);
|
---|
| 692 | ufc_mk_keytab(ktab);
|
---|
| 693 |
|
---|
| 694 | /*
|
---|
| 695 | * Go for the 25 DES encryptions
|
---|
| 696 | */
|
---|
| 697 | s = _ufc_doit((ufc_long)0, (ufc_long)0,
|
---|
| 698 | (ufc_long)0, (ufc_long)0, (ufc_long)25);
|
---|
| 699 |
|
---|
| 700 | /*
|
---|
| 701 | * And convert back to 6 bit ASCII
|
---|
| 702 | */
|
---|
| 703 | return output_conversion(s[0], s[1], salt);
|
---|
| 704 | }
|
---|
| 705 |
|
---|
| 706 |
|
---|
| 707 | #ifdef _UFC_32_
|
---|
| 708 |
|
---|
| 709 | /*
|
---|
| 710 | * 32 bit version
|
---|
| 711 | */
|
---|
| 712 |
|
---|
| 713 | extern long32 _ufc_keytab[16][2];
|
---|
| 714 | extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
---|
| 715 |
|
---|
| 716 | #define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
|
---|
| 717 |
|
---|
| 718 | static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
---|
| 719 | { int i;
|
---|
| 720 | long32 s, *k;
|
---|
| 721 |
|
---|
| 722 | while(itr--) {
|
---|
| 723 | k = &_ufc_keytab[0][0];
|
---|
| 724 | for(i=8; i--; ) {
|
---|
| 725 | s = *k++ ^ r1;
|
---|
| 726 | l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
---|
| 727 | l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
|
---|
| 728 | s = *k++ ^ r2;
|
---|
| 729 | l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
---|
| 730 | l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
|
---|
| 731 |
|
---|
| 732 | s = *k++ ^ l1;
|
---|
| 733 | r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
|
---|
| 734 | r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
|
---|
| 735 | s = *k++ ^ l2;
|
---|
| 736 | r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
|
---|
| 737 | r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
|
---|
| 738 | }
|
---|
| 739 | s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
|
---|
| 740 | }
|
---|
| 741 | return _ufc_dofinalperm(l1, l2, r1, r2);
|
---|
| 742 | }
|
---|
| 743 |
|
---|
| 744 | #endif
|
---|
| 745 |
|
---|
| 746 | #ifdef _UFC_64_
|
---|
| 747 |
|
---|
| 748 | /*
|
---|
| 749 | * 64 bit version
|
---|
| 750 | */
|
---|
| 751 |
|
---|
| 752 | extern long64 _ufc_keytab[16];
|
---|
| 753 | extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
|
---|
| 754 |
|
---|
| 755 | #define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
|
---|
| 756 |
|
---|
| 757 | static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
|
---|
| 758 | { int i;
|
---|
| 759 | long64 l, r, s, *k;
|
---|
| 760 |
|
---|
| 761 | l = (((long64)l1) << 32) | ((long64)l2);
|
---|
| 762 | r = (((long64)r1) << 32) | ((long64)r2);
|
---|
| 763 |
|
---|
| 764 | while(itr--) {
|
---|
| 765 | k = &_ufc_keytab[0];
|
---|
| 766 | for(i=8; i--; ) {
|
---|
| 767 | s = *k++ ^ r;
|
---|
| 768 | l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
---|
| 769 | l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
---|
| 770 | l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
---|
| 771 | l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
---|
| 772 |
|
---|
| 773 | s = *k++ ^ l;
|
---|
| 774 | r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
|
---|
| 775 | r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
|
---|
| 776 | r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
|
---|
| 777 | r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
|
---|
| 778 | }
|
---|
| 779 | s=l; l=r; r=s;
|
---|
| 780 | }
|
---|
| 781 |
|
---|
| 782 | l1 = l >> 32; l2 = l & 0xffffffff;
|
---|
| 783 | r1 = r >> 32; r2 = r & 0xffffffff;
|
---|
| 784 | return _ufc_dofinalperm(l1, l2, r1, r2);
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | #endif
|
---|
| 788 |
|
---|
| 789 | #define crypt ufc_crypt
|
---|
| 790 | #endif
|
---|
| 791 |
|
---|
| 792 | main()
|
---|
| 793 | {
|
---|
| 794 | char passwd[9];
|
---|
| 795 | char salt[9];
|
---|
| 796 | char c_out1[256];
|
---|
| 797 | char c_out2[256];
|
---|
| 798 |
|
---|
| 799 | char expected_out[14];
|
---|
| 800 |
|
---|
| 801 | strcpy(expected_out, "12yJ.Of/NQ.Pk");
|
---|
| 802 | strcpy(passwd, "12345678");
|
---|
| 803 | strcpy(salt, "12345678");
|
---|
| 804 |
|
---|
| 805 | strcpy(c_out1, crypt(passwd, salt));
|
---|
| 806 | salt[2] = '\0';
|
---|
| 807 | strcpy(c_out2, crypt(passwd, salt));
|
---|
| 808 |
|
---|
| 809 | /*
|
---|
| 810 | * If the non-trucated salt fails but the
|
---|
| 811 | * truncated salt succeeds then exit 1.
|
---|
| 812 | */
|
---|
| 813 |
|
---|
| 814 | if((strcmp(c_out1, expected_out) != 0) &&
|
---|
| 815 | (strcmp(c_out2, expected_out) == 0))
|
---|
| 816 | exit(1);
|
---|
| 817 |
|
---|
| 818 | #ifdef HAVE_BIGCRYPT
|
---|
| 819 | /*
|
---|
| 820 | * Try the same with bigcrypt...
|
---|
| 821 | */
|
---|
| 822 |
|
---|
| 823 | {
|
---|
| 824 | char big_passwd[17];
|
---|
| 825 | char big_salt[17];
|
---|
| 826 | char big_c_out1[256];
|
---|
| 827 | char big_c_out2[256];
|
---|
| 828 | char big_expected_out[27];
|
---|
| 829 |
|
---|
| 830 | strcpy(big_passwd, "1234567812345678");
|
---|
| 831 | strcpy(big_salt, "1234567812345678");
|
---|
| 832 | strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM");
|
---|
| 833 |
|
---|
| 834 | strcpy(big_c_out1, bigcrypt(big_passwd, big_salt));
|
---|
| 835 | big_salt[2] = '\0';
|
---|
| 836 | strcpy(big_c_out2, bigcrypt(big_passwd, big_salt));
|
---|
| 837 |
|
---|
| 838 | /*
|
---|
| 839 | * If the non-trucated salt fails but the
|
---|
| 840 | * truncated salt succeeds then exit 1.
|
---|
| 841 | */
|
---|
| 842 |
|
---|
| 843 | if((strcmp(big_c_out1, big_expected_out) != 0) &&
|
---|
| 844 | (strcmp(big_c_out2, big_expected_out) == 0))
|
---|
| 845 | exit(1);
|
---|
| 846 |
|
---|
| 847 | }
|
---|
| 848 | #endif
|
---|
| 849 |
|
---|
| 850 | exit(0);
|
---|
| 851 | }
|
---|