source: branches/samba-3.0/source/lib/ufc.c@ 457

Last change on this file since 457 was 1, checked in by Paul Smedley, 18 years ago

Initial code import

File size: 21.8 KB
Line 
1/*
2 This bit of code was derived from the UFC-crypt package which
3 carries the following copyright
4
5 Modified for use by Samba by Andrew Tridgell, October 1994
6
7 Note that this routine is only faster on some machines. Under Linux 1.1.51
8 libc 4.5.26 I actually found this routine to be slightly slower.
9
10 Under SunOS I found a huge speedup by using these routines
11 (a factor of 20 or so)
12
13 Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
14 that this crypt routine may sometimes get the wrong answer. Only
15 use UFC_CRYT if you really need it.
16
17*/
18
19#include "includes.h"
20
21#ifndef HAVE_CRYPT
22
23/*
24 * UFC-crypt: ultra fast crypt(3) implementation
25 *
26 * Copyright (C) 1991-1998, Free Software Foundation, Inc.
27 *
28 * This library is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU Library General Public
30 * License as published by the Free Software Foundation; either
31 * version 2 of the License, or (at your option) any later version.
32 *
33 * This library is distributed in the hope that it will be useful,
34 * but WITHOUT ANY WARRANTY; without even the implied warranty of
35 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
36 * Library General Public License for more details.
37 *
38 * You should have received a copy of the GNU Library General Public
39 * License along with this library; if not, write to the Free
40 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
41 *
42 * @(#)crypt_util.c 2.31 02/08/92
43 *
44 * Support routines
45 *
46 */
47
48
49#ifndef long32
50#define long32 int32
51#endif
52
53#ifndef long64
54#define long64 int64
55#endif
56
57#ifndef ufc_long
58#define ufc_long unsigned
59#endif
60
61#ifndef _UFC_64_
62#define _UFC_32_
63#endif
64
65/*
66 * Permutation done once on the 56 bit
67 * key derived from the original 8 byte ASCII key.
68 */
69static int pc1[56] = {
70 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
71 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
72 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
73 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
74};
75
76/*
77 * How much to rotate each 28 bit half of the pc1 permutated
78 * 56 bit key before using pc2 to give the i' key
79 */
80static int rots[16] = {
81 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
82};
83
84/*
85 * Permutation giving the key
86 * of the i' DES round
87 */
88static int pc2[48] = {
89 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
90 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
91 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
92 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
93};
94
95/*
96 * The E expansion table which selects
97 * bits from the 32 bit intermediate result.
98 */
99static int esel[48] = {
100 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
101 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
102 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
103 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
104};
105static int e_inverse[64];
106
107/*
108 * Permutation done on the
109 * result of sbox lookups
110 */
111static int perm32[32] = {
112 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
113 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
114};
115
116/*
117 * The sboxes
118 */
119static int sbox[8][4][16]= {
120 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
121 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
122 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
123 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
124 },
125
126 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
127 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
128 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
129 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
130 },
131
132 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
133 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
134 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
135 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
136 },
137
138 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
139 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
140 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
141 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
142 },
143
144 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
145 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
146 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
147 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
148 },
149
150 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
151 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
152 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
153 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
154 },
155
156 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
157 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
158 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
159 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
160 },
161
162 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
163 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
164 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
165 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
166 }
167};
168
169/*
170 * This is the final
171 * permutation matrix
172 */
173static int final_perm[64] = {
174 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
175 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
176 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
177 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
178};
179
180/*
181 * The 16 DES keys in BITMASK format
182 */
183#ifdef _UFC_32_
184long32 _ufc_keytab[16][2];
185#endif
186
187#ifdef _UFC_64_
188long64 _ufc_keytab[16];
189#endif
190
191
192#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
193#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
194
195/* Macro to set a bit (0..23) */
196#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
197
198/*
199 * sb arrays:
200 *
201 * Workhorses of the inner loop of the DES implementation.
202 * They do sbox lookup, shifting of this value, 32 bit
203 * permutation and E permutation for the next round.
204 *
205 * Kept in 'BITMASK' format.
206 */
207
208#ifdef _UFC_32_
209long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
210static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
211#endif
212
213#ifdef _UFC_64_
214long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
215static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
216#endif
217
218/*
219 * eperm32tab: do 32 bit permutation and E selection
220 *
221 * The first index is the byte number in the 32 bit value to be permuted
222 * - second - is the value of this byte
223 * - third - selects the two 32 bit values
224 *
225 * The table is used and generated internally in init_des to speed it up
226 */
227static ufc_long eperm32tab[4][256][2];
228
229/*
230 * do_pc1: permform pc1 permutation in the key schedule generation.
231 *
232 * The first index is the byte number in the 8 byte ASCII key
233 * - second - - the two 28 bits halfs of the result
234 * - third - selects the 7 bits actually used of each byte
235 *
236 * The result is kept with 28 bit per 32 bit with the 4 most significant
237 * bits zero.
238 */
239static ufc_long do_pc1[8][2][128];
240
241/*
242 * do_pc2: permform pc2 permutation in the key schedule generation.
243 *
244 * The first index is the septet number in the two 28 bit intermediate values
245 * - second - - - septet values
246 *
247 * Knowledge of the structure of the pc2 permutation is used.
248 *
249 * The result is kept with 28 bit per 32 bit with the 4 most significant
250 * bits zero.
251 */
252static ufc_long do_pc2[8][128];
253
254/*
255 * efp: undo an extra e selection and do final
256 * permutation giving the DES result.
257 *
258 * Invoked 6 bit a time on two 48 bit values
259 * giving two 32 bit longs.
260 */
261static ufc_long efp[16][64][2];
262
263static unsigned char bytemask[8] = {
264 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
265};
266
267static ufc_long longmask[32] = {
268 0x80000000, 0x40000000, 0x20000000, 0x10000000,
269 0x08000000, 0x04000000, 0x02000000, 0x01000000,
270 0x00800000, 0x00400000, 0x00200000, 0x00100000,
271 0x00080000, 0x00040000, 0x00020000, 0x00010000,
272 0x00008000, 0x00004000, 0x00002000, 0x00001000,
273 0x00000800, 0x00000400, 0x00000200, 0x00000100,
274 0x00000080, 0x00000040, 0x00000020, 0x00000010,
275 0x00000008, 0x00000004, 0x00000002, 0x00000001
276};
277
278
279/*
280 * Silly rewrite of 'bzero'. I do so
281 * because some machines don't have
282 * bzero and some don't have memset.
283 */
284
285static void clearmem(char *start, int cnt)
286 { while(cnt--)
287 *start++ = '\0';
288 }
289
290static int initialized = 0;
291
292/* lookup a 6 bit value in sbox */
293
294#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
295
296/*
297 * Initialize unit - may be invoked directly
298 * by fcrypt users.
299 */
300
301static void ufc_init_des(void)
302 { int comes_from_bit;
303 int bit, sg;
304 ufc_long j;
305 ufc_long mask1, mask2;
306
307 /*
308 * Create the do_pc1 table used
309 * to affect pc1 permutation
310 * when generating keys
311 */
312 for(bit = 0; bit < 56; bit++) {
313 comes_from_bit = pc1[bit] - 1;
314 mask1 = bytemask[comes_from_bit % 8 + 1];
315 mask2 = longmask[bit % 28 + 4];
316 for(j = 0; j < 128; j++) {
317 if(j & mask1)
318 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
319 }
320 }
321
322 /*
323 * Create the do_pc2 table used
324 * to affect pc2 permutation when
325 * generating keys
326 */
327 for(bit = 0; bit < 48; bit++) {
328 comes_from_bit = pc2[bit] - 1;
329 mask1 = bytemask[comes_from_bit % 7 + 1];
330 mask2 = BITMASK(bit % 24);
331 for(j = 0; j < 128; j++) {
332 if(j & mask1)
333 do_pc2[comes_from_bit / 7][j] |= mask2;
334 }
335 }
336
337 /*
338 * Now generate the table used to do combined
339 * 32 bit permutation and e expansion
340 *
341 * We use it because we have to permute 16384 32 bit
342 * longs into 48 bit in order to initialize sb.
343 *
344 * Looping 48 rounds per permutation becomes
345 * just too slow...
346 *
347 */
348
349 clearmem((char*)eperm32tab, sizeof(eperm32tab));
350
351 for(bit = 0; bit < 48; bit++) {
352 ufc_long inner_mask1,comes_from;
353
354 comes_from = perm32[esel[bit]-1]-1;
355 inner_mask1 = bytemask[comes_from % 8];
356
357 for(j = 256; j--;) {
358 if(j & inner_mask1)
359 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
360 }
361 }
362
363 /*
364 * Create the sb tables:
365 *
366 * For each 12 bit segment of an 48 bit intermediate
367 * result, the sb table precomputes the two 4 bit
368 * values of the sbox lookups done with the two 6
369 * bit halves, shifts them to their proper place,
370 * sends them through perm32 and finally E expands
371 * them so that they are ready for the next
372 * DES round.
373 *
374 */
375 for(sg = 0; sg < 4; sg++) {
376 int j1, j2;
377 int s1, s2;
378
379 for(j1 = 0; j1 < 64; j1++) {
380 s1 = s_lookup(2 * sg, j1);
381 for(j2 = 0; j2 < 64; j2++) {
382 ufc_long to_permute, inx;
383
384 s2 = s_lookup(2 * sg + 1, j2);
385 to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
386
387#ifdef _UFC_32_
388 inx = ((j1 << 6) | j2) << 1;
389 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
390 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
391 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
392 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
393 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
394 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
395 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
396 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
397#endif
398#ifdef _UFC_64_
399 inx = ((j1 << 6) | j2);
400 sb[sg][inx] =
401 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
402 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
403 sb[sg][inx] |=
404 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
405 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
406 sb[sg][inx] |=
407 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
408 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
409 sb[sg][inx] |=
410 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
411 (long64)eperm32tab[3][(to_permute) & 0xff][1];
412#endif
413 }
414 }
415 }
416
417 /*
418 * Create an inverse matrix for esel telling
419 * where to plug out bits if undoing it
420 */
421 for(bit=48; bit--;) {
422 e_inverse[esel[bit] - 1 ] = bit;
423 e_inverse[esel[bit] - 1 + 32] = bit + 48;
424 }
425
426 /*
427 * create efp: the matrix used to
428 * undo the E expansion and effect final permutation
429 */
430 clearmem((char*)efp, sizeof efp);
431 for(bit = 0; bit < 64; bit++) {
432 int o_bit, o_long;
433 ufc_long word_value, inner_mask1, inner_mask2;
434 int comes_from_f_bit, comes_from_e_bit;
435 int comes_from_word, bit_within_word;
436
437 /* See where bit i belongs in the two 32 bit long's */
438 o_long = bit / 32; /* 0..1 */
439 o_bit = bit % 32; /* 0..31 */
440
441 /*
442 * And find a bit in the e permutated value setting this bit.
443 *
444 * Note: the e selection may have selected the same bit several
445 * times. By the initialization of e_inverse, we only look
446 * for one specific instance.
447 */
448 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
449 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
450 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
451 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
452
453 inner_mask1 = longmask[bit_within_word + 26];
454 inner_mask2 = longmask[o_bit];
455
456 for(word_value = 64; word_value--;) {
457 if(word_value & inner_mask1)
458 efp[comes_from_word][word_value][o_long] |= inner_mask2;
459 }
460 }
461 initialized++;
462 }
463
464/*
465 * Process the elements of the sb table permuting the
466 * bits swapped in the expansion by the current salt.
467 */
468
469#ifdef _UFC_32_
470static void shuffle_sb(long32 *k, ufc_long saltbits)
471 { ufc_long j;
472 long32 x;
473 for(j=4096; j--;) {
474 x = (k[0] ^ k[1]) & (long32)saltbits;
475 *k++ ^= x;
476 *k++ ^= x;
477 }
478 }
479#endif
480
481#ifdef _UFC_64_
482static void shuffle_sb(long64 *k, ufc_long saltbits)
483 { ufc_long j;
484 long64 x;
485 for(j=4096; j--;) {
486 x = ((*k >> 32) ^ *k) & (long64)saltbits;
487 *k++ ^= (x << 32) | x;
488 }
489 }
490#endif
491
492/*
493 * Setup the unit for a new salt
494 * Hopefully we'll not see a new salt in each crypt call.
495 */
496
497static unsigned char current_salt[3] = "&&"; /* invalid value */
498static ufc_long current_saltbits = 0;
499static int direction = 0;
500
501static void setup_salt(const char *s1)
502 { ufc_long i, j, saltbits;
503 const unsigned char *s2 = (const unsigned char *)s1;
504
505 if(!initialized)
506 ufc_init_des();
507
508 if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
509 return;
510 current_salt[0] = s2[0]; current_salt[1] = s2[1];
511
512 /*
513 * This is the only crypt change to DES:
514 * entries are swapped in the expansion table
515 * according to the bits set in the salt.
516 */
517 saltbits = 0;
518 for(i = 0; i < 2; i++) {
519 long c=ascii_to_bin(s2[i]);
520 if(c < 0 || c > 63)
521 c = 0;
522 for(j = 0; j < 6; j++) {
523 if((c >> j) & 0x1)
524 saltbits |= BITMASK(6 * i + j);
525 }
526 }
527
528 /*
529 * Permute the sb table values
530 * to reflect the changed e
531 * selection table
532 */
533 shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
534 shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
535 shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
536 shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
537
538 current_saltbits = saltbits;
539 }
540
541static void ufc_mk_keytab(char *key)
542 { ufc_long v1, v2, *k1;
543 int i;
544#ifdef _UFC_32_
545 long32 v, *k2 = &_ufc_keytab[0][0];
546#endif
547#ifdef _UFC_64_
548 long64 v, *k2 = &_ufc_keytab[0];
549#endif
550
551 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
552 for(i = 8; i--;) {
553 v1 |= k1[*key & 0x7f]; k1 += 128;
554 v2 |= k1[*key++ & 0x7f]; k1 += 128;
555 }
556
557 for(i = 0; i < 16; i++) {
558 k1 = &do_pc2[0][0];
559
560 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
561 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
562 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
563 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
564 v |= k1[(v1 ) & 0x7f]; k1 += 128;
565
566#ifdef _UFC_32_
567 *k2++ = v;
568 v = 0;
569#endif
570#ifdef _UFC_64_
571 v <<= 32;
572#endif
573
574 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
575 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
576 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
577 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
578 v |= k1[(v2 ) & 0x7f];
579
580 *k2++ = v;
581 }
582
583 direction = 0;
584 }
585
586/*
587 * Undo an extra E selection and do final permutations
588 */
589
590ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
591 { ufc_long v1, v2, x;
592 static ufc_long ary[2];
593
594 x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
595 x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
596
597 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
598
599 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
600 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
601 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
602 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
603
604 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
605 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
606 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
607 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
608
609 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
610 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
611 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
612 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
613
614 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
615 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
616 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
617 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
618
619 ary[0] = v1; ary[1] = v2;
620 return ary;
621 }
622
623/*
624 * crypt only: convert from 64 bit to 11 bit ASCII
625 * prefixing with the salt
626 */
627
628static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
629 { static char outbuf[14];
630 int i, s;
631
632 outbuf[0] = salt[0];
633 outbuf[1] = salt[1] ? salt[1] : salt[0];
634
635 for(i = 0; i < 5; i++)
636 outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
637
638 s = (v2 & 0xf) << 2;
639 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
640
641 for(i = 5; i < 10; i++)
642 outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
643
644 outbuf[12] = bin_to_ascii(s);
645 outbuf[13] = 0;
646
647 return outbuf;
648 }
649
650/*
651 * UNIX crypt function
652 */
653
654static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
655
656char *ufc_crypt(const char *key,const char *salt)
657 { ufc_long *s;
658 char ktab[9];
659
660 /*
661 * Hack DES tables according to salt
662 */
663 setup_salt(salt);
664
665 /*
666 * Setup key schedule
667 */
668 clearmem(ktab, sizeof ktab);
669 StrnCpy(ktab, key, 8);
670 ufc_mk_keytab(ktab);
671
672 /*
673 * Go for the 25 DES encryptions
674 */
675 s = _ufc_doit((ufc_long)0, (ufc_long)0,
676 (ufc_long)0, (ufc_long)0, (ufc_long)25);
677
678 /*
679 * And convert back to 6 bit ASCII
680 */
681 return output_conversion(s[0], s[1], salt);
682 }
683
684
685#ifdef _UFC_32_
686
687/*
688 * 32 bit version
689 */
690
691extern long32 _ufc_keytab[16][2];
692extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
693
694#define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
695
696static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
697 { int i;
698 long32 s, *k;
699
700 while(itr--) {
701 k = &_ufc_keytab[0][0];
702 for(i=8; i--; ) {
703 s = *k++ ^ r1;
704 l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
705 l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
706 s = *k++ ^ r2;
707 l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
708 l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
709
710 s = *k++ ^ l1;
711 r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
712 r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
713 s = *k++ ^ l2;
714 r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
715 r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
716 }
717 s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
718 }
719 return _ufc_dofinalperm(l1, l2, r1, r2);
720 }
721
722#endif
723
724#ifdef _UFC_64_
725
726/*
727 * 64 bit version
728 */
729
730extern long64 _ufc_keytab[16];
731extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
732
733#define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
734
735static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
736 { int i;
737 long64 l, r, s, *k;
738
739 l = (((long64)l1) << 32) | ((long64)l2);
740 r = (((long64)r1) << 32) | ((long64)r2);
741
742 while(itr--) {
743 k = &_ufc_keytab[0];
744 for(i=8; i--; ) {
745 s = *k++ ^ r;
746 l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
747 l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
748 l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
749 l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
750
751 s = *k++ ^ l;
752 r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
753 r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
754 r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
755 r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
756 }
757 s=l; l=r; r=s;
758 }
759
760 l1 = l >> 32; l2 = l & 0xffffffff;
761 r1 = r >> 32; r2 = r & 0xffffffff;
762 return _ufc_dofinalperm(l1, l2, r1, r2);
763 }
764
765#endif
766
767
768#else
769 int ufc_dummy_procedure(void);
770 int ufc_dummy_procedure(void) {return 0;}
771#endif
Note: See TracBrowser for help on using the repository browser.