Changeset 391 for python/trunk/Mac/Modules/cg
- Timestamp:
- Mar 19, 2014, 11:31:01 PM (11 years ago)
- Location:
- python/trunk
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
python/trunk
-
Property svn:mergeinfo
set to
/python/vendor/Python-2.7.6 merged eligible /python/vendor/current merged eligible
-
Property svn:mergeinfo
set to
-
python/trunk/Mac/Modules/cg/CFMLateImport.c
r2 r391 1 1 /* 2 File:CFMLateImport.c3 4 Contains:Implementation of CFM late import library.5 6 Written by:Quinn7 8 Copyright:Copyright © 1999 by Apple Computer, Inc., all rights reserved.9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 2 File: CFMLateImport.c 3 4 Contains: Implementation of CFM late import library. 5 6 Written by: Quinn 7 8 Copyright: Copyright © 1999 by Apple Computer, Inc., all rights reserved. 9 10 You may incorporate this Apple sample source code into your program(s) without 11 restriction. This Apple sample source code has been provided "AS IS" and the 12 responsibility for its operation is yours. You are not permitted to redistribute 13 this Apple sample source code as "Apple sample source code" after having made 14 changes. If you're going to re-distribute the source, we require that you make 15 it clear in the source that the code was descended from Apple sample source 16 code, but that you've made changes. 17 18 Change History (most recent first): 19 20 <13> 24/9/01 Quinn Fixes to compile with C++ activated. 21 <12> 21/9/01 Quinn [2710489] Fix typo in the comments for FragmentLookup. 22 <11> 21/9/01 Quinn Changes for CWPro7 Mach-O build. 23 <10> 19/9/01 Quinn Corrected implementation of kPEFRelocSmBySection. Added 24 implementations of kPEFRelocSetPosition and kPEFRelocLgByImport 25 (from code contributed by Eric Grant, Ned Holbrook, and Steve 26 Kalkwarf), although I can't test them yet. 27 <9> 19/9/01 Quinn We now handle unpacked data sections, courtesy of some code from 28 Ned Holbrook. 29 <8> 19/9/01 Quinn Minor fixes for the previous checkin. Updated some comments and 30 killed some dead code. 31 <7> 19/9/01 Quinn Simplified API and implementation after a suggestion by Eric 32 Grant. You no longer have to CFM export a dummy function; you 33 can just pass in the address of your fragment's init routine. 34 <6> 15/2/01 Quinn Modify compile-time warnings to complain if you try to build 35 this module into a Mach-O binary. 36 <5> 5/2/01 Quinn Removed redundant assignment in CFMLateImportCore. 37 <4> 30/11/00 Quinn Added comment about future of data symbols in CF. 38 <3> 16/11/00 Quinn Allow symbol finding via a callback and use that to implement 39 CFBundle support. 40 <2> 18/10/99 Quinn Renamed CFMLateImport to CFMLateImportLibrary to allow for 41 possible future API expansion. 42 <1> 15/6/99 Quinn First checked in. 43 43 */ 44 44 … … 67 67 68 68 #if ! MORE_FRAMEWORK_INCLUDES 69 70 69 #include <CodeFragments.h> 70 #include <PEFBinaryFormat.h> 71 71 #endif 72 72 … … 87 87 88 88 #if TARGET_RT_MAC_MACHO 89 89 #error CFMLateImport is not suitable for use in a Mach-O project. 90 90 #elif !TARGET_RT_MAC_CFM || !TARGET_CPU_PPC 91 91 #error CFMLateImport has not been qualified for 68K or CFM-68K use. 92 92 #endif 93 93 … … 96 96 97 97 static OSStatus FSReadAtOffset(SInt16 refNum, SInt32 offset, SInt32 count, void *buffer) 98 99 100 101 102 103 104 105 { 106 107 108 109 110 111 112 113 114 98 // A convenient wrapper around PBRead which has two advantages 99 // over FSRead. First, it takes count as a value parameter. 100 // Second, it reads from an arbitrary offset into the file, 101 // which avoids a bunch of SetFPos calls. 102 // 103 // I guess this should go into "MoreFiles.h", but I'm not sure 104 // how we're going to integrate such a concept into MIB yet. 105 { 106 ParamBlockRec pb; 107 108 pb.ioParam.ioRefNum = refNum; 109 pb.ioParam.ioBuffer = (Ptr) buffer; 110 pb.ioParam.ioReqCount = count; 111 pb.ioParam.ioPosMode = fsFromStart; 112 pb.ioParam.ioPosOffset = offset; 113 114 return PBReadSync(&pb); 115 115 } 116 116 … … 125 125 126 126 struct FragToFixInfo { 127 CFragSystem7DiskFlatLocator locator;// How to find the fragment's container.128 CFragConnectionID connID;// CFM connection to the fragment.129 CFragInitFunction initRoutine;// The CFM init routine for the fragment.130 PEFContainerHeader containerHeader;// The CFM header, read in from the container.131 PEFSectionHeader *sectionHeaders;// The CFM section headers. A pointer block containing an array of containerHeader.sectionCount elements.132 PEFLoaderInfoHeader *loaderSection;// The entire CFM loader section in a pointer block.133 SInt16 fileRef;// A read-only path to the CFM container. We keep this here because one that one routine needs to read from the container.134 void *section0Base;// The base address of section 0, which we go through hoops to calculate.135 void *section1Base;// The base address of section 1, which we go through hoops to calculate.136 Boolean disposeSectionPointers;// See below.127 CFragSystem7DiskFlatLocator locator; // How to find the fragment's container. 128 CFragConnectionID connID; // CFM connection to the fragment. 129 CFragInitFunction initRoutine; // The CFM init routine for the fragment. 130 PEFContainerHeader containerHeader; // The CFM header, read in from the container. 131 PEFSectionHeader *sectionHeaders; // The CFM section headers. A pointer block containing an array of containerHeader.sectionCount elements. 132 PEFLoaderInfoHeader *loaderSection; // The entire CFM loader section in a pointer block. 133 SInt16 fileRef; // A read-only path to the CFM container. We keep this here because one that one routine needs to read from the container. 134 void *section0Base; // The base address of section 0, which we go through hoops to calculate. 135 void *section1Base; // The base address of section 1, which we go through hoops to calculate. 136 Boolean disposeSectionPointers; // See below. 137 137 }; 138 138 typedef struct FragToFixInfo FragToFixInfo; … … 152 152 153 153 static OSStatus ReadContainerBasics(FragToFixInfo *fragToFix) 154 155 156 157 158 159 160 161 162 163 164 165 166 167 { 168 OSStatuserr;169 UInt16sectionIndex;170 Booleanfound;171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 fragToFix->containerHeader.sectionCount * sizeof(PEFSectionHeader), 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 err = FSReadAtOffset(fragToFix->fileRef, 232 233 fragToFix->sectionHeaders[sectionIndex].containerLength, 234 235 } 236 237 238 239 240 241 154 // Reads some basic information from the container of the 155 // fragment to fix and stores it in various fields of 156 // fragToFix. This includes: 157 // 158 // o containerHeader -- The contain header itself. 159 // o sectionHeaders -- The array of section headers (in a newly allocated pointer block). 160 // o loaderSection -- The entire loader section (in a newly allocated pointer block). 161 // 162 // Also sets disposeSectionPointers to indicate whether 163 // the last two pointers should be disposed of. 164 // 165 // Finally, it leaves the container file open for later 166 // folks who want to read data from it. 167 { 168 OSStatus err; 169 UInt16 sectionIndex; 170 Boolean found; 171 172 MoreAssertQ(fragToFix != nil); 173 MoreAssertQ(fragToFix->locator.fileSpec != nil); 174 MoreAssertQ(fragToFix->connID != nil); 175 MoreAssertQ(fragToFix->loaderSection == nil); 176 MoreAssertQ(fragToFix->sectionHeaders == nil); 177 MoreAssertQ(fragToFix->fileRef == 0); 178 179 fragToFix->disposeSectionPointers = true; 180 181 // Open up the file, read the container head, then read in 182 // all the section headers, then go looking through the 183 // section headers for the loader section (PEF defines 184 // that there can be only one). 185 186 err = FSpOpenDF(fragToFix->locator.fileSpec, fsRdPerm, &fragToFix->fileRef); 187 if (err == noErr) { 188 err = FSReadAtOffset(fragToFix->fileRef, 189 fragToFix->locator.offset, 190 sizeof(fragToFix->containerHeader), 191 &fragToFix->containerHeader); 192 if (err == noErr) { 193 if ( fragToFix->containerHeader.tag1 != kPEFTag1 194 || fragToFix->containerHeader.tag2 != kPEFTag2 195 || fragToFix->containerHeader.architecture != kCompiledCFragArch 196 || fragToFix->containerHeader.formatVersion != kPEFVersion) { 197 err = cfragFragmentFormatErr; 198 } 199 } 200 if (err == noErr) { 201 fragToFix->sectionHeaders = (PEFSectionHeader *) NewPtr(fragToFix->containerHeader.sectionCount * sizeof(PEFSectionHeader)); 202 err = MemError(); 203 } 204 if (err == noErr) { 205 err = FSReadAtOffset(fragToFix->fileRef, 206 fragToFix->locator.offset + sizeof(fragToFix->containerHeader), 207 fragToFix->containerHeader.sectionCount * sizeof(PEFSectionHeader), 208 fragToFix->sectionHeaders); 209 } 210 if (err == noErr) { 211 sectionIndex = 0; 212 found = false; 213 while ( sectionIndex < fragToFix->containerHeader.sectionCount && ! found ) { 214 found = (fragToFix->sectionHeaders[sectionIndex].sectionKind == kPEFLoaderSection); 215 if ( ! found ) { 216 sectionIndex += 1; 217 } 218 } 219 } 220 if (err == noErr && ! found) { 221 err = cfragNoSectionErr; 222 } 223 224 // Now read allocate a pointer block and read the loader section into it. 225 226 if (err == noErr) { 227 fragToFix->loaderSection = (PEFLoaderInfoHeader *) NewPtr(fragToFix->sectionHeaders[sectionIndex].containerLength); 228 err = MemError(); 229 } 230 if (err == noErr) { 231 err = FSReadAtOffset(fragToFix->fileRef, 232 fragToFix->locator.offset + fragToFix->sectionHeaders[sectionIndex].containerOffset, 233 fragToFix->sectionHeaders[sectionIndex].containerLength, 234 fragToFix->loaderSection); 235 } 236 } 237 238 // No clean up. The client must init fragToFix to zeros and then 239 // clean up regardless of whether we return an error. 240 241 return err; 242 242 } 243 243 244 244 static UInt32 DecodeVCountValue(const UInt8 *start, UInt32 *outCount) 245 // Given a pointer to the start of a variable length PEF value, 246 // work out the value (in *outCount). Returns the number of bytes 247 248 { 249 UInt8 *bytePtr;250 UInt8byte;251 UInt32count;252 253 254 255 256 257 258 259 260 261 262 263 245 // Given a pointer to the start of a variable length PEF value, 246 // work out the value (in *outCount). Returns the number of bytes 247 // consumed by the value. 248 { 249 UInt8 * bytePtr; 250 UInt8 byte; 251 UInt32 count; 252 253 bytePtr = (UInt8 *)start; 254 255 // Code taken from "PEFBinaryFormat.h". 256 count = 0; 257 do { 258 byte = *bytePtr++; 259 count = (count << kPEFPkDataVCountShift) | (byte & kPEFPkDataVCountMask); 260 } while ((byte & kPEFPkDataVCountEndMask) != 0); 261 262 *outCount = count; 263 return bytePtr - start; 264 264 } 265 265 266 266 static UInt32 DecodeInstrCountValue(const UInt8 *inOpStart, UInt32 *outCount) 267 // Given a pointer to the start of an opcode (inOpStart), work out the 268 // count argument for that opcode (*outCount). Returns the number of 269 270 { 271 272 273 274 275 276 277 278 279 280 281 282 283 284 267 // Given a pointer to the start of an opcode (inOpStart), work out the 268 // count argument for that opcode (*outCount). Returns the number of 269 // bytes consumed by the opcode and count combination. 270 { 271 MoreAssertQ(inOpStart != nil); 272 MoreAssertQ(outCount != nil); 273 274 if (PEFPkDataCount5(*inOpStart) != 0) 275 { 276 // Simple case, count encoded in opcode. 277 *outCount = PEFPkDataCount5(*inOpStart); 278 return 1; 279 } 280 else 281 { 282 // Variable-length case. 283 return 1 + DecodeVCountValue(inOpStart + 1, outCount); 284 } 285 285 } 286 286 287 287 static OSStatus UnpackPEFDataSection(const UInt8 * const packedData, UInt32 packedSize, 288 289 { 290 OSErrerr;291 UInt32offset;292 UInt8opCode;293 UInt8 *unpackCursor;294 295 296 297 298 299 // The following asserts assume that the client allocated the memory with NewPtr, 300 // which may not always be true. However, the asserts' value in preventing accidental 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 UInt32count;318 319 320 321 322 323 324 325 326 327 328 UInt32blockSize;329 330 331 332 333 334 335 336 337 338 339 340 UInt32blockSize;341 UInt32repeatCount;342 343 344 345 346 repeatCount += 1;// stored value is (repeatCount - 1)347 348 349 350 351 352 353 354 355 356 357 358 UInt32commonSize;359 UInt32customSize;360 UInt32repeatCount;361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 UInt32commonSize;388 UInt32customSize;389 UInt32repeatCount;390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 288 UInt8 * const unpackedData, UInt32 unpackedSize) 289 { 290 OSErr err; 291 UInt32 offset; 292 UInt8 opCode; 293 UInt8 * unpackCursor; 294 295 MoreAssertQ(packedData != nil); 296 MoreAssertQ(unpackedData != nil); 297 MoreAssertQ(unpackedSize >= packedSize); 298 299 // The following asserts assume that the client allocated the memory with NewPtr, 300 // which may not always be true. However, the asserts' value in preventing accidental 301 // memory block overruns outweighs the possible maintenance effort. 302 303 MoreAssertQ( packedSize == GetPtrSize( (Ptr) packedData ) ); 304 MoreAssertQ( unpackedSize == GetPtrSize( (Ptr) unpackedData) ); 305 306 err = noErr; 307 offset = 0; 308 unpackCursor = unpackedData; 309 while (offset < packedSize) { 310 MoreAssertQ(unpackCursor < &unpackedData[unpackedSize]); 311 312 opCode = packedData[offset]; 313 314 switch (PEFPkDataOpcode(opCode)) { 315 case kPEFPkDataZero: 316 { 317 UInt32 count; 318 319 offset += DecodeInstrCountValue(&packedData[offset], &count); 320 321 MoreBlockZero(unpackCursor, count); 322 unpackCursor += count; 323 } 324 break; 325 326 case kPEFPkDataBlock: 327 { 328 UInt32 blockSize; 329 330 offset += DecodeInstrCountValue(&packedData[offset], &blockSize); 331 332 BlockMoveData(&packedData[offset], unpackCursor, blockSize); 333 unpackCursor += blockSize; 334 offset += blockSize; 335 } 336 break; 337 338 case kPEFPkDataRepeat: 339 { 340 UInt32 blockSize; 341 UInt32 repeatCount; 342 UInt32 loopCounter; 343 344 offset += DecodeInstrCountValue(&packedData[offset], &blockSize); 345 offset += DecodeVCountValue(&packedData[offset], &repeatCount); 346 repeatCount += 1; // stored value is (repeatCount - 1) 347 348 for (loopCounter = 0; loopCounter < repeatCount; loopCounter++) { 349 BlockMoveData(&packedData[offset], unpackCursor, blockSize); 350 unpackCursor += blockSize; 351 } 352 offset += blockSize; 353 } 354 break; 355 356 case kPEFPkDataRepeatBlock: 357 { 358 UInt32 commonSize; 359 UInt32 customSize; 360 UInt32 repeatCount; 361 const UInt8 *commonData; 362 const UInt8 *customData; 363 UInt32 loopCounter; 364 365 offset += DecodeInstrCountValue(&packedData[offset], &commonSize); 366 offset += DecodeVCountValue(&packedData[offset], &customSize); 367 offset += DecodeVCountValue(&packedData[offset], &repeatCount); 368 369 commonData = &packedData[offset]; 370 customData = &packedData[offset + commonSize]; 371 372 for (loopCounter = 0; loopCounter < repeatCount; loopCounter++) { 373 BlockMoveData(commonData, unpackCursor, commonSize); 374 unpackCursor += commonSize; 375 BlockMoveData(customData, unpackCursor, customSize); 376 unpackCursor += customSize; 377 customData += customSize; 378 } 379 BlockMoveData(commonData, unpackCursor, commonSize); 380 unpackCursor += commonSize; 381 offset += (repeatCount * (commonSize + customSize)) + commonSize; 382 } 383 break; 384 385 case kPEFPkDataRepeatZero: 386 { 387 UInt32 commonSize; 388 UInt32 customSize; 389 UInt32 repeatCount; 390 const UInt8 *customData; 391 UInt32 loopCounter; 392 393 offset += DecodeInstrCountValue(&packedData[offset], &commonSize); 394 offset += DecodeVCountValue(&packedData[offset], &customSize); 395 offset += DecodeVCountValue(&packedData[offset], &repeatCount); 396 397 customData = &packedData[offset]; 398 399 for (loopCounter = 0; loopCounter < repeatCount; loopCounter++) { 400 MoreBlockZero(unpackCursor, commonSize); 401 unpackCursor += commonSize; 402 BlockMoveData(customData, unpackCursor, customSize); 403 unpackCursor += customSize; 404 customData += customSize; 405 } 406 MoreBlockZero(unpackCursor, commonSize); 407 unpackCursor += commonSize; 408 offset += repeatCount * customSize; 409 } 410 break; 411 412 default: 413 #if MORE_DEBUG 414 DebugStr("\pUnpackPEFDataSection: Unexpected data opcode"); 415 #endif 416 err = cfragFragmentCorruptErr; 417 goto leaveNow; 418 break; 419 } 420 } 421 422 422 leaveNow: 423 424 } 425 426 /* 427 428 429 430 431 432 433 434 you're not CFM. [And you don't have access to the private CFM APis for 435 436 437 438 439 440 441 442 443 444 445 446 447 But these niceties are besides the point: I'm doing something tricky 448 because I don't have a nice API for getting section base addresses. 449 450 451 452 The technique is very sneaky (thanks to Eric Grant). The fragment to 453 fix necessarily has a CFM init routine (because it needs that routine 454 in order to capture the fragment location and connection ID). Thus the 455 fragment to fix must have a TVector in its data section. TVectors are 456 interesting because they're made up of two words. The first is a pointer 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 Finding the relocated contents of the TVector is easy; I simply 478 require the client to pass in a pointer to its init routine. 479 A routine pointer is a TVector pointer, so you can just cast it 480 481 482 483 484 yields the section number and offset where the init routine's unrelocated 485 486 423 return err; 424 } 425 426 /* SetupSectionBaseAddresses Rationale 427 ----------------------------------- 428 429 OK, here's where things get weird. In order to run the relocation 430 engine, I need to be able to find the base address of an instantiated 431 section of the fragment we're fixing up given only its section number. 432 This isn't hard for CFM to do because it's the one that instantiated the 433 sections in the first place. It's surprisingly difficult to do if 434 you're not CFM. [And you don't have access to the private CFM APis for 435 doing it.] 436 437 [Alan Lillich is going to kill me when he reads this! I should point out 438 that TVector's don't have to contain two words, they can be longer, 439 and that the second word isn't necessarily a TOC pointer, it's 440 just that the calling conventions require that it be put in the 441 TOC register when the code is called. 442 443 Furthermore, the code section isn't always section 0, and the data 444 section isn't always section 1, and there can be zero to many sections 445 of each type. 446 447 But these niceties are besides the point: I'm doing something tricky 448 because I don't have a nice API for getting section base addresses. 449 If I had a nice API for doing that, none of this code would exist. 450 ] 451 452 The technique is very sneaky (thanks to Eric Grant). The fragment to 453 fix necessarily has a CFM init routine (because it needs that routine 454 in order to capture the fragment location and connection ID). Thus the 455 fragment to fix must have a TVector in its data section. TVectors are 456 interesting because they're made up of two words. The first is a pointer 457 to the code that implements the routine; the second is a pointer to the TOC 458 for the fragment that's exporting the TVector. How TVectors are 459 created is interesting too. On disk, a TVector consists of two words, 460 the first being the offset from the start of the code section to the 461 routine, the second being the offset from the start of the data section 462 to the TOC base. When CFM prepares a TVector, it applies the following 463 transform: 464 465 tvector.codePtr = tvector.codeOffset + base of code section 466 tvector.tocPtr = tvector.tocOffset + base of data section 467 468 Now, you can reverse these questions to make them: 469 470 base of code section = tvector.codePtr - tvector.codeOffset 471 base of data section = tvector.dataPtr - tvector.dataOffset 472 473 So if you can find the relocated contents of the TVector and 474 find the original offsets that made up the TVector, you can then 475 calculate the base address of both the code and data sections. 476 477 Finding the relocated contents of the TVector is easy; I simply 478 require the client to pass in a pointer to its init routine. 479 A routine pointer is a TVector pointer, so you can just cast it 480 and extract the pair of words. 481 482 Finding the original offsets is a trickier. My technique is to 483 look up the init routine in the fragment's loader info header. This 484 yields the section number and offset where the init routine's unrelocated 485 TVector exists. Once I have that, I can just read the unrelocated TVector 486 out of the file and extract the offsets. 487 487 */ 488 488 489 489 struct TVector { 490 491 490 void *codePtr; 491 void *tocPtr; 492 492 }; 493 493 typedef struct TVector TVector; 494 494 495 495 static OSStatus SetupSectionBaseAddresses(FragToFixInfo *fragToFix) 496 497 498 499 500 501 // 1. Find the contents of the relocated TVector of the 502 // fragment's initialisation routine, provided to us by 503 504 505 // 2. Find the contents of the non-relocated TVector by 506 // looking it up in the PEF loader info header and then 507 508 // This yields the offsets from the section bases for 509 510 511 // 3.Subtract 2 from 3.512 { 513 OSStatuserr;514 TVector *relocatedExport;515 SInt32initSection;516 UInt32initOffset;517 PEFSectionHeader *initSectionHeader;518 PtrpackedDataSection;519 PtrunpackedDataSection;520 TVectororiginalOffsets;521 522 523 524 525 526 527 // First find the init routine's TVector, which gives us the relocated 528 529 530 531 532 533 534 // Now find the init routine's TVector's offsets in the data section on 535 // disk. This gives us the raw offsets from the data and code section 536 537 538 539 540 541 542 543 544 545 MoreAssertQ( initSection >= 0 );// Negative indexes are pseudo-sections which are just not allowed!546 547 548 549 550 // If the data section is packed, unpack it to a temporary buffer and then get the 551 // original offsets from that buffer. If the data section is unpacked, just read 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 err = FSReadAtOffset(fragToFix->fileRef,570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 err = FSReadAtOffset(fragToFix->fileRef, 592 593 594 595 sizeof(TVector), 596 597 598 599 600 601 602 // Do the maths to subtract the unrelocated offsets from the current address 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 496 // This routine initialises the section0Base and section1Base 497 // base fields of fragToFix to the base addresses of the 498 // instantiated fragment represented by the other fields 499 // of fragToFix. The process works in three states: 500 // 501 // 1. Find the contents of the relocated TVector of the 502 // fragment's initialisation routine, provided to us by 503 // the caller. 504 // 505 // 2. Find the contents of the non-relocated TVector by 506 // looking it up in the PEF loader info header and then 507 // using that to read the TVector contents from disk. 508 // This yields the offsets from the section bases for 509 // the init routine. 510 // 511 // 3. Subtract 2 from 3. 512 { 513 OSStatus err; 514 TVector * relocatedExport; 515 SInt32 initSection; 516 UInt32 initOffset; 517 PEFSectionHeader * initSectionHeader; 518 Ptr packedDataSection; 519 Ptr unpackedDataSection; 520 TVector originalOffsets; 521 522 packedDataSection = nil; 523 unpackedDataSection = nil; 524 525 // Step 1. 526 527 // First find the init routine's TVector, which gives us the relocated 528 // offsets of the init routine into the data and code sections. 529 530 relocatedExport = (TVector *) fragToFix->initRoutine; 531 532 // Step 2. 533 534 // Now find the init routine's TVector's offsets in the data section on 535 // disk. This gives us the raw offsets from the data and code section 536 // of the beginning of the init routine. 537 538 err = noErr; 539 initSection = fragToFix->loaderSection->initSection; 540 initOffset = fragToFix->loaderSection->initOffset; 541 if (initSection == -1) { 542 err = cfragFragmentUsageErr; 543 } 544 if (err == noErr) { 545 MoreAssertQ( initSection >= 0 ); // Negative indexes are pseudo-sections which are just not allowed! 546 MoreAssertQ( initSection < fragToFix->containerHeader.sectionCount ); 547 548 initSectionHeader = &fragToFix->sectionHeaders[initSection]; 549 550 // If the data section is packed, unpack it to a temporary buffer and then get the 551 // original offsets from that buffer. If the data section is unpacked, just read 552 // the original offsets directly off the disk. 553 554 if ( initSectionHeader->sectionKind == kPEFPackedDataSection ) { 555 556 // Allocate space for packed and unpacked copies of the section. 557 558 packedDataSection = NewPtr(initSectionHeader->containerLength); 559 err = MemError(); 560 561 if (err == noErr) { 562 unpackedDataSection = NewPtr(initSectionHeader->unpackedLength); 563 err = MemError(); 564 } 565 566 // Read the contents of the packed section. 567 568 if (err == noErr) { 569 err = FSReadAtOffset( fragToFix->fileRef, 570 fragToFix->locator.offset 571 + initSectionHeader->containerOffset, 572 initSectionHeader->containerLength, 573 packedDataSection); 574 } 575 576 // Unpack the data into the unpacked section. 577 578 if (err == noErr) { 579 err = UnpackPEFDataSection( (UInt8 *) packedDataSection, initSectionHeader->containerLength, 580 (UInt8 *) unpackedDataSection, initSectionHeader->unpackedLength); 581 } 582 583 // Extract the init routine's TVector from the unpacked section. 584 585 if (err == noErr) { 586 BlockMoveData(unpackedDataSection + initOffset, &originalOffsets, sizeof(TVector)); 587 } 588 589 } else { 590 MoreAssertQ(fragToFix->sectionHeaders[initSection].sectionKind == kPEFUnpackedDataSection); 591 err = FSReadAtOffset(fragToFix->fileRef, 592 fragToFix->locator.offset 593 + fragToFix->sectionHeaders[initSection].containerOffset 594 + initOffset, 595 sizeof(TVector), 596 &originalOffsets); 597 } 598 } 599 600 // Step 3. 601 602 // Do the maths to subtract the unrelocated offsets from the current address 603 // to get the base address. 604 605 if (err == noErr) { 606 fragToFix->section0Base = ((char *) relocatedExport->codePtr) - (UInt32) originalOffsets.codePtr; 607 fragToFix->section1Base = ((char *) relocatedExport->tocPtr) - (UInt32) originalOffsets.tocPtr; 608 } 609 610 // Clean up. 611 612 if (packedDataSection != nil) { 613 DisposePtr(packedDataSection); 614 MoreAssertQ( MemError() == noErr ); 615 } 616 if (unpackedDataSection != nil) { 617 DisposePtr(unpackedDataSection); 618 MoreAssertQ( MemError() == noErr ); 619 } 620 return err; 621 621 } 622 622 623 623 static void *GetSectionBaseAddress(const FragToFixInfo *fragToFix, UInt16 sectionIndex) 624 625 626 627 628 629 630 631 632 { 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 624 // This routine returns the base of the instantiated section 625 // whose index is sectionIndex. This routine is the evil twin 626 // of SetupSectionBaseAddresses. It simply returns the values 627 // for section 0 and 1 that we derived in SetupSectionBaseAddresses. 628 // In a real implementation, this routine would call CFM API 629 // to get this information, and SetupSectionBaseAddresses would 630 // not exist, but CFM does not export the necessary APIs to 631 // third parties. 632 { 633 void *result; 634 635 MoreAssertQ(fragToFix != nil); 636 MoreAssertQ(fragToFix->containerHeader.tag1 == kPEFTag1); 637 638 switch (sectionIndex) { 639 case 0: 640 result = fragToFix->section0Base; 641 break; 642 case 1: 643 result = fragToFix->section1Base; 644 break; 645 default: 646 result = nil; 647 break; 648 } 649 return result; 650 650 } 651 651 652 652 653 653 static OSStatus FindImportLibrary(PEFLoaderInfoHeader *loaderSection, const char *libraryName, PEFImportedLibrary **importLibrary) 654 655 656 657 { 658 OSStatuserr;659 UInt32librariesRemaining;660 PEFImportedLibrary*thisImportLibrary;661 Booleanfound;662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 + loaderSection->loaderStringsOffset 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 654 // This routine finds the import library description (PEFImportedLibrary) 655 // for the import library libraryName in the PEF loader section. 656 // It sets *importLibrary to the address of the description. 657 { 658 OSStatus err; 659 UInt32 librariesRemaining; 660 PEFImportedLibrary *thisImportLibrary; 661 Boolean found; 662 663 MoreAssertQ(loaderSection != nil); 664 MoreAssertQ(libraryName != nil); 665 MoreAssertQ(importLibrary != nil); 666 667 // Loop through each import library looking for a matching name. 668 669 // Initialise thisImportLibrary to point to the byte after the 670 // end of the loader section's header. 671 672 thisImportLibrary = (PEFImportedLibrary *) (loaderSection + 1); 673 librariesRemaining = loaderSection->importedLibraryCount; 674 found = false; 675 while ( librariesRemaining > 0 && ! found ) { 676 // PEF defines that import library names will have 677 // a null terminator, so we can just use strcmp. 678 found = (strcmp( libraryName, 679 ((char *)loaderSection) 680 + loaderSection->loaderStringsOffset 681 + thisImportLibrary->nameOffset) == 0); 682 // *** Remove ANSI strcmp eventually. 683 if ( ! found ) { 684 thisImportLibrary += 1; 685 librariesRemaining -= 1; 686 } 687 } 688 689 if (found) { 690 *importLibrary = thisImportLibrary; 691 err = noErr; 692 } else { 693 *importLibrary = nil; 694 err = cfragNoLibraryErr; 695 } 696 return err; 697 697 } 698 698 699 699 static OSStatus LookupSymbol(CFMLateImportLookupProc lookup, void *refCon, 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 { 717 OSStatuserr;718 UInt32*importSymbolTable;719 UInt32symbolStringOffset;720 BooleansymbolIsWeak;721 CFragSymbolClasssymbolClass;722 char*symbolStringAddress;723 Str255symbolString;724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 symbolString[0] = strlen(symbolStringAddress);// *** remove ANSI strlen748 749 750 751 752 753 754 755 756 757 758 759 760 761 700 PEFLoaderInfoHeader *loaderSection, 701 UInt32 symbolIndex, 702 UInt32 *symbolValue) 703 // This routine is used to look up a symbol during relocation. 704 // "lookup" is a client callback and refCon is its argument. 705 // Typically refCon is the CFM connection to the library that is 706 // substituting for the weak linked library. loaderSection 707 // is a pointer to the loader section of the fragment to fix up. 708 // symbolIndex is the index of the imported symbol in the loader section. 709 // The routine sets the word pointed to by symbolValue to the 710 // value of the symbol. 711 // 712 // The routine works by using symbolIndex to index into the imported 713 // symbol table to find the offset of the symbol's name in the string 714 // table. It then looks up the symbol by calling the client's "lookup" 715 // function and passes the resulting symbol address back in symbolValue. 716 { 717 OSStatus err; 718 UInt32 *importSymbolTable; 719 UInt32 symbolStringOffset; 720 Boolean symbolIsWeak; 721 CFragSymbolClass symbolClass; 722 char *symbolStringAddress; 723 Str255 symbolString; 724 725 MoreAssertQ(lookup != nil); 726 MoreAssertQ(loaderSection != nil); 727 MoreAssertQ(symbolIndex < loaderSection->totalImportedSymbolCount); 728 MoreAssertQ(symbolValue != nil); 729 730 // Find the base of the imported symbol table. 731 732 importSymbolTable = (UInt32 *)(((char *)(loaderSection + 1)) + (loaderSection->importedLibraryCount * sizeof(PEFImportedLibrary))); 733 734 // Grab the appropriate entry out of the table and 735 // extract the information from that entry. 736 737 symbolStringOffset = importSymbolTable[symbolIndex]; 738 symbolClass = PEFImportedSymbolClass(symbolStringOffset); 739 symbolIsWeak = ((symbolClass & kPEFWeakImportSymMask) != 0); 740 symbolClass = symbolClass & ~kPEFWeakImportSymMask; 741 symbolStringOffset = PEFImportedSymbolNameOffset(symbolStringOffset); 742 743 // Find the string for the symbol in the strings table and 744 // extract it from the table into a Pascal string on the stack. 745 746 symbolStringAddress = ((char *)loaderSection) + loaderSection->loaderStringsOffset + symbolStringOffset; 747 symbolString[0] = strlen(symbolStringAddress); // *** remove ANSI strlen 748 BlockMoveData(symbolStringAddress, &symbolString[1], symbolString[0]); 749 750 // Look up the symbol in substitute library. If it fails, return 751 // a 0 value and check whether the error is fatal (a strong linked 752 // symbol) or benign (a weak linked symbol). 753 754 err = lookup(symbolString, symbolClass, (void **) symbolValue, refCon); 755 if (err != noErr) { 756 *symbolValue = 0; 757 if (symbolIsWeak) { 758 err = noErr; 759 } 760 } 761 return err; 762 762 } 763 763 … … 772 772 773 773 struct EngineState { 774 UInt32 currentReloc;// Index of current relocation opcodes775 UInt32 terminatingReloc;// Index of relocation opcodes which terminates relocation776 UInt32 *sectionBase;// Start of the section777 UInt32 *relocAddress;// Address within the section where the relocations are to be performed778 UInt32 importIndex;// Symbol index, which is used to access an imported symbol's address779 void *sectionC;// Memory address of an instantiated section within the PEF container; this variable is used by relocation opcodes that relocate section addresses780 void *sectionD;// Memory address of an instantiated section within the PEF container; this variable is used by relocation opcodes that relocate section addresses774 UInt32 currentReloc; // Index of current relocation opcodes 775 UInt32 terminatingReloc; // Index of relocation opcodes which terminates relocation 776 UInt32 *sectionBase; // Start of the section 777 UInt32 *relocAddress; // Address within the section where the relocations are to be performed 778 UInt32 importIndex; // Symbol index, which is used to access an imported symbol's address 779 void *sectionC; // Memory address of an instantiated section within the PEF container; this variable is used by relocation opcodes that relocate section addresses 780 void *sectionD; // Memory address of an instantiated section within the PEF container; this variable is used by relocation opcodes that relocate section addresses 781 781 }; 782 782 typedef struct EngineState EngineState; … … 787 787 788 788 static OSStatus InitEngineState(const FragToFixInfo *fragToFix, 789 790 791 792 793 794 795 796 797 798 { 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 MoreAssertQ(relocHeader->reservedA == 0);// PEF spec says it must be; we check to try to catch bugs in calculation of relocHeader822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 // 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 789 UInt16 relocHeaderIndex, 790 EngineState *state) 791 // This routine initialises the engine state suitably for 792 // running the relocation opcodes for the section whose 793 // index is relocHeaderIndex. relocHeaderIndex is not a 794 // a section number. See the comment where it's used below 795 // for details. The routine basically fills out all the fields 796 // in the EngineState structure as described by 797 // "Mac OS Runtime Architectures". 798 { 799 OSStatus err; 800 PEFLoaderRelocationHeader *relocHeader; 801 802 MoreAssertQ(fragToFix != nil); 803 MoreAssertQ(state != nil); 804 805 // This bit is tricky. relocHeaderIndex is an index into the relocation 806 // header table, starting at relocSectionCount (which is in the loader 807 // section header) for the first relocated section and decrementing 808 // down to 1 for the last relocated section. I find the relocation 809 // header by using relocHeaderIndex as a index backwards from the 810 // start of the relocation opcodes (ie relocInstrOffset). If you 811 // look at the diagram of the layout of the container in 812 // "PEFBinaryFormat.h", you'll see that the relocation opcodes 813 // immediately follow the relocation headers. 814 // 815 // I did this because the alternative (starting at the loader 816 // header and stepping past the import library table and the 817 // import symbol table) was a pain. 818 819 relocHeader = (PEFLoaderRelocationHeader *) (((char *) fragToFix->loaderSection) + fragToFix->loaderSection->relocInstrOffset - relocHeaderIndex * sizeof(PEFLoaderRelocationHeader)); 820 821 MoreAssertQ(relocHeader->reservedA == 0); // PEF spec says it must be; we check to try to catch bugs in calculation of relocHeader 822 823 state->currentReloc = relocHeader->firstRelocOffset; 824 state->terminatingReloc = relocHeader->firstRelocOffset + relocHeader->relocCount; 825 state->sectionBase = (UInt32 *) GetSectionBaseAddress(fragToFix, relocHeader->sectionIndex); 826 state->relocAddress = state->sectionBase; 827 state->importIndex = 0; 828 829 // From "Mac OS Runtime Architectures": 830 // 831 // The sectionC and sectionD variables actually contain the 832 // memory address of an instantiated section minus the 833 // default address for that section. The default address for a 834 // section is contained in the defaultAddress field of the 835 // section header. However, in almost all cases the default 836 // address should be 0, so the simplified definition suffices. 837 // 838 // In the debug version, we drop into MacsBug if this weird case 839 // ever executes because it's more likely we made a mistake than 840 // we encountered a section with a default address. 841 842 state->sectionC = GetSectionBaseAddress(fragToFix, 0); 843 if (state->sectionC != nil) { 844 #if MORE_DEBUG 845 if (fragToFix->sectionHeaders[0].defaultAddress != 0) { 846 DebugStr("\pInitEngineState: Executing weird case."); 847 } 848 #endif 849 (char *) state->sectionC -= fragToFix->sectionHeaders[0].defaultAddress; 850 } 851 state->sectionD = GetSectionBaseAddress(fragToFix, 1); 852 if (state->sectionD != nil) { 853 #if MORE_DEBUG 854 if (fragToFix->sectionHeaders[1].defaultAddress != 0) { 855 DebugStr("\pInitEngineState: Executing weird case."); 856 } 857 #endif 858 (char *) state->sectionD -= fragToFix->sectionHeaders[1].defaultAddress; 859 } 860 861 err = noErr; 862 if (state->relocAddress == nil) { 863 err = cfragFragmentUsageErr; 864 } 865 return err; 866 866 } 867 867 … … 872 872 static UInt8 kPEFRelocBasicOpcodes[kPEFRelocBasicOpcodeRange] = { PEFMaskedBasicOpcodes }; 873 873 874 static OSStatus RunRelocationEngine(const FragToFixInfo *fragToFix, 875 PEFImportedLibrary *importLibrary, 876 877 878 879 880 881 882 883 884 { 885 OSStatuserr;886 EngineStatestate;887 UInt16sectionsLeftToRelocate;888 UInt32totalRelocs;889 UInt16*relocInstrTable;890 UInt16opCode;891 892 893 894 895 896 MoreAssertQ(fragToFix->section0Base != nil);// Technically, having a nil for these two is not a problem, ...897 MoreAssertQ(fragToFix->section1Base != nil);// but in practise it a wildly deviant case and we should know about it.898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 // bounds test, ie 946 947 948 949 950 951 952 953 954 955 // a) I haven't got a way to generate them in a PEF container that I can 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 // Lot's of folks have tried various interpretations of the description of 1089 // this opCode in "Mac OS Runtime Architectures" (which states "This instruction 1090 1091 // I eventually dug into the CFM source code to find my interpretation, which 1092 // I believe is correct. The key point is tht the offset is relative to 1093 1094 1095 1096 1097 1098 1099 // Extract offset based on the most significant 10 bits in opCode and 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 874 static OSStatus RunRelocationEngine(const FragToFixInfo *fragToFix, 875 PEFImportedLibrary *importLibrary, 876 CFMLateImportLookupProc lookup, void *refCon) 877 // This is where the rubber really hits the. Given a fully 878 // populated fragToFix structure, the import library description 879 // of the weak imported library we're resolving, and a connection 880 // to the library we're going to substitute it, re-execute the 881 // relocation instructions (CFM has already executed them once) 882 // but only *do* instructions (ie store the change to the data section) 883 // that CFM skipped because the weak symbols were missing. 884 { 885 OSStatus err; 886 EngineState state; 887 UInt16 sectionsLeftToRelocate; 888 UInt32 totalRelocs; 889 UInt16 *relocInstrTable; 890 UInt16 opCode; 891 892 MoreAssertQ(fragToFix != nil); 893 MoreAssertQ(fragToFix->containerHeader.tag1 == kPEFTag1); 894 MoreAssertQ(fragToFix->sectionHeaders != nil); 895 MoreAssertQ(fragToFix->loaderSection != nil); 896 MoreAssertQ(fragToFix->section0Base != nil); // Technically, having a nil for these two is not a problem, ... 897 MoreAssertQ(fragToFix->section1Base != nil); // but in practise it a wildly deviant case and we should know about it. 898 MoreAssertQ(importLibrary != nil); 899 MoreAssertQ(lookup != nil); 900 901 // Before entering the loop, work out some information in advance. 902 903 // totalRelocs is only used for debugging, to make sure our 904 // relocation PC (state.currentReloc) doesn't run wild. 905 906 totalRelocs = (fragToFix->loaderSection->loaderStringsOffset - fragToFix->loaderSection->relocInstrOffset) / sizeof(UInt16); 907 908 // relocInstrTable is the base address of the table of relocation 909 // instructions in the fragment to fix. 910 911 relocInstrTable = (UInt16 *)((char *) fragToFix->loaderSection + fragToFix->loaderSection->relocInstrOffset); 912 913 // sectionsLeftToRelocate is the loop counter for the outer loop. 914 915 MoreAssertQ(fragToFix->loaderSection->relocSectionCount <= 0x0FFFF); 916 sectionsLeftToRelocate = fragToFix->loaderSection->relocSectionCount; 917 918 // Now let's run the relocation engine. We run it once per 919 // section in the table. Each time around, we init the engine 920 // and then loop again, this time executing individual opcodes. 921 // The opcode loop terminates when the relocation PC 922 // (state.currentReloc) hits the final opcode (state.terminatingReloc). 923 924 // Note: 925 // One design decision I made was to totally re-init the engine state 926 // for each section. The CFM spec is unclear as to whether you're supposed 927 // to totally re-init the engine state, or just re-init the section-specific 928 // state (ie currentReloc, terminatingReloc, and relocAddress). I hope this 929 // is correct, but it's hard to test without having a fragment with multiple 930 // relocated sections, which is difficult to create. 931 932 // How do I decide which opcodes should be effective (ie make changes to 933 // the section being relocated) and which opcodes should just be executed 934 // for their side effects (ie updated state.relocAddress or state.importIndex)? 935 // The answer is both simple and subtle. Opcodes whose actions are dependent 936 // on a symbol that was in the weak linked library are effective, those that 937 // an independent of those symbols are not. The only opcodes that use 938 // symbolic values are kPEFRelocImportRun and kPEFRelocSmByImport, and 939 // these are only if the symbol is in the weak linked library. 940 // All other cases are executed for their side effects only. 941 // 942 // How do I determine if a symbol is in the weak linked library? 943 // Well I know the symbol's index and I know the lower bound and count 944 // of the symbols in the weak linked library, so I just do a simple 945 // bounds test, ie 946 // 947 // firstImportedSymbol <= importIndex < firstImportedSymbol + importedSymbolCount 948 949 // From this code, it's relatively easy to see which relocation opcodes 950 // aren't implemented. If you ever encounter one, you'll find yourself 951 // in MacsBug with a message telling you which opcode was found. The 952 // two big groups of opcodes I skipped were the large format opcodes 953 // and the repeating opcodes. I skipped them because: 954 // 955 // a) I haven't got a way to generate them in a PEF container that I can 956 // test against. Without that, there's no way I could be assured that 957 // the code worked. 958 // 959 // b) I'm lazy. 960 961 err = noErr; 962 while ( sectionsLeftToRelocate > 0 ) { 963 err = InitEngineState(fragToFix, sectionsLeftToRelocate, &state); 964 if (err != noErr) { 965 goto leaveNow; 966 } 967 968 while ( state.currentReloc != state.terminatingReloc ) { 969 970 MoreAssertQ( state.currentReloc < totalRelocs ); 971 972 opCode = relocInstrTable[state.currentReloc]; 973 switch ( PEFRelocBasicOpcode(opCode) ) { 974 case kPEFRelocBySectDWithSkip: 975 { 976 UInt16 skipCount; 977 UInt16 relocCount; 978 979 skipCount = ((opCode >> 6) & 0x00FF); 980 relocCount = (opCode & 0x003F); 981 state.relocAddress += skipCount; 982 state.relocAddress += relocCount; 983 } 984 break; 985 case kPEFRelocBySectC: 986 case kPEFRelocBySectD: 987 { 988 UInt16 runLength; 989 990 runLength = (opCode & 0x01FF) + 1; 991 state.relocAddress += runLength; 992 } 993 break; 994 case kPEFRelocTVector12: 995 { 996 UInt16 runLength; 997 998 runLength = (opCode & 0x01FF) + 1; 999 state.relocAddress += (runLength * 3); 1000 } 1001 break; 1002 case kPEFRelocTVector8: 1003 case kPEFRelocVTable8: 1004 { 1005 UInt16 runLength; 1006 1007 runLength = (opCode & 0x01FF) + 1; 1008 state.relocAddress += (runLength * 2); 1009 } 1010 break; 1011 case kPEFRelocImportRun: 1012 { 1013 UInt32 symbolValue; 1014 UInt16 runLength; 1015 1016 runLength = (opCode & 0x01FF) + 1; 1017 while (runLength > 0) { 1018 if ( state.importIndex >= importLibrary->firstImportedSymbol && state.importIndex < (importLibrary->firstImportedSymbol + importLibrary->importedSymbolCount) ) { 1019 err = LookupSymbol(lookup, refCon, fragToFix->loaderSection, state.importIndex, &symbolValue); 1020 if (err != noErr) { 1021 goto leaveNow; 1022 } 1023 *(state.relocAddress) += symbolValue; 1024 } 1025 state.importIndex += 1; 1026 state.relocAddress += 1; 1027 runLength -= 1; 1028 } 1029 } 1030 break; 1031 case kPEFRelocSmByImport: 1032 { 1033 UInt32 symbolValue; 1034 UInt32 index; 1035 1036 index = (opCode & 0x01FF); 1037 if ( index >= importLibrary->firstImportedSymbol && index < (importLibrary->firstImportedSymbol + importLibrary->importedSymbolCount) ) { 1038 err = LookupSymbol(lookup, refCon, fragToFix->loaderSection, index, &symbolValue); 1039 if (err != noErr) { 1040 goto leaveNow; 1041 } 1042 *(state.relocAddress) += symbolValue; 1043 } 1044 state.importIndex = index + 1; 1045 state.relocAddress += 1; 1046 } 1047 break; 1048 case kPEFRelocSmSetSectC: 1049 { 1050 UInt32 index; 1051 1052 index = (opCode & 0x01FF); 1053 state.sectionC = GetSectionBaseAddress(fragToFix, index); 1054 MoreAssertQ(state.sectionC != nil); 1055 } 1056 break; 1057 case kPEFRelocSmSetSectD: 1058 { 1059 UInt32 index; 1060 1061 index = (opCode & 0x01FF); 1062 state.sectionD = GetSectionBaseAddress(fragToFix, index); 1063 MoreAssertQ(state.sectionD != nil); 1064 } 1065 break; 1066 case kPEFRelocSmBySection: 1067 state.relocAddress += 1; 1068 break; 1069 case kPEFRelocIncrPosition: 1070 { 1071 UInt16 offset; 1072 1073 offset = (opCode & 0x0FFF) + 1; 1074 ((char *) state.relocAddress) += offset; 1075 } 1076 break; 1077 case kPEFRelocSmRepeat: 1078 #if MORE_DEBUG 1079 DebugStr("\pRunRelocationEngine: kPEFRelocSmRepeat not yet implemented"); 1080 #endif 1081 err = unimpErr; 1082 goto leaveNow; 1083 break; 1084 case kPEFRelocSetPosition: 1085 { 1086 UInt32 offset; 1087 1088 // Lot's of folks have tried various interpretations of the description of 1089 // this opCode in "Mac OS Runtime Architectures" (which states "This instruction 1090 // sets relocAddress to the address of the section offset offset." *smile*). 1091 // I eventually dug into the CFM source code to find my interpretation, which 1092 // I believe is correct. The key point is tht the offset is relative to 1093 // the start of the section for which these relocations are being performed. 1094 1095 // Skip to next reloc word, which is the second chunk of the offset. 1096 1097 state.currentReloc += 1; 1098 1099 // Extract offset based on the most significant 10 bits in opCode and 1100 // the next significant 16 bits in the next reloc word. 1101 1102 offset = PEFRelocSetPosFullOffset(opCode, relocInstrTable[state.currentReloc]); 1103 1104 state.relocAddress = (UInt32 *) ( ((char *) state.sectionBase) + offset); 1105 } 1106 break; 1107 case kPEFRelocLgByImport: 1108 { 1109 UInt32 symbolValue; 1110 UInt32 index; 1111 1112 // Get the 26 bit symbol index from the current and next reloc words. 1113 1114 state.currentReloc += 1; 1115 index = PEFRelocLgByImportFullIndex(opCode, relocInstrTable[state.currentReloc]); 1116 1117 if ( index >= importLibrary->firstImportedSymbol && index < (importLibrary->firstImportedSymbol + importLibrary->importedSymbolCount) ) { 1118 err = LookupSymbol(lookup, refCon, fragToFix->loaderSection, index, &symbolValue); 1119 if (err != noErr) { 1120 goto leaveNow; 1121 } 1122 *(state.relocAddress) += symbolValue; 1123 } 1124 state.importIndex = index + 1; 1125 state.relocAddress += 1; 1126 } 1127 break; 1128 case kPEFRelocLgRepeat: 1129 #if MORE_DEBUG 1130 DebugStr("\pRunRelocationEngine: kPEFRelocLgRepeat not yet implemented"); 1131 #endif 1132 err = unimpErr; 1133 goto leaveNow; 1134 break; 1135 case kPEFRelocLgSetOrBySection: 1136 #if MORE_DEBUG 1137 DebugStr("\pRunRelocationEngine: kPEFRelocLgSetOrBySection not yet implemented"); 1138 #endif 1139 err = unimpErr; 1140 goto leaveNow; 1141 break; 1142 case kPEFRelocUndefinedOpcode: 1143 err = cfragFragmentCorruptErr; 1144 goto leaveNow; 1145 break; 1146 default: 1147 MoreAssertQ(false); 1148 err = cfragFragmentCorruptErr; 1149 goto leaveNow; 1150 break; 1151 } 1152 state.currentReloc += 1; 1153 } 1154 1155 sectionsLeftToRelocate -= 1; 1156 } 1157 1157 1158 1158 leaveNow: 1159 1159 return err; 1160 1160 } 1161 1161 1162 1162 extern pascal OSStatus CFMLateImportCore(const CFragSystem7DiskFlatLocator *fragToFixLocator, 1163 1164 1165 1166 1167 1168 1169 { 1170 1171 1172 1173 1174 1175 1176 MoreAssertQ(fragToFixLocator != nil); 1177 1178 1179 MoreAssertQ(weakLinkedLibraryName != nil); 1180 MoreAssertQ(lookup != nil); 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1163 CFragConnectionID fragToFixConnID, 1164 CFragInitFunction fragToFixInitRoutine, 1165 ConstStr255Param weakLinkedLibraryName, 1166 CFMLateImportLookupProc lookup, 1167 void *refCon) 1168 // See comments in interface part. 1169 { 1170 OSStatus err; 1171 OSStatus junk; 1172 FragToFixInfo fragToFix; 1173 PEFImportedLibrary *importLibrary; 1174 char weakLinkedLibraryNameCString[256]; 1175 1176 MoreAssertQ(fragToFixLocator != nil); 1177 MoreAssertQ(fragToFixConnID != nil); 1178 MoreAssertQ(fragToFixInitRoutine != nil); 1179 MoreAssertQ(weakLinkedLibraryName != nil); 1180 MoreAssertQ(lookup != nil); 1181 1182 // Fill out the bits of fragToFix which are passed in 1183 // by the client. 1184 1185 MoreBlockZero(&fragToFix, sizeof(fragToFix)); 1186 fragToFix.locator = *fragToFixLocator; 1187 fragToFix.connID = fragToFixConnID; 1188 fragToFix.initRoutine = fragToFixInitRoutine; 1189 1190 // Make a C string from weakLinkedLibraryName. 1191 1192 BlockMoveData(weakLinkedLibraryName + 1, weakLinkedLibraryNameCString, weakLinkedLibraryName[0]); 1193 weakLinkedLibraryNameCString[weakLinkedLibraryName[0]] = 0; 1194 1195 // Get the basic information from the fragment. 1196 // Fills out the containerHeader, sectionHeaders, loaderSection and fileRef fields 1197 // of fragToFix. 1198 1199 err = ReadContainerBasics(&fragToFix); 1200 1201 // Set up the base address fields in fragToFix (ie section0Base and section1Base) 1202 // by looking up our init routine (fragToFix.initRoutine) and subtracting 1203 // away the section offsets (which we get from the disk copy of the section) 1204 // to derive the bases of the sections themselves. 1205 1206 if (err == noErr) { 1207 err = SetupSectionBaseAddresses(&fragToFix); 1208 } 1209 1210 // Look inside the loader section for the import library description 1211 // of weakLinkedLibraryName. We need this to know the range of symbol 1212 // indexes we're going to fix up. 1213 1214 if (err == noErr) { 1215 err = FindImportLibrary(fragToFix.loaderSection, weakLinkedLibraryNameCString, &importLibrary); 1216 } 1217 1218 // Do a quick check to ensure that the library was actually imported weak. 1219 // If it wasn't, it doesn't make much sense to resolve its weak imports 1220 // later on. Resolving them again is likely to be bad. 1221 1222 if (err == noErr) { 1223 if ((importLibrary->options & kPEFWeakImportLibMask) == 0) { 1224 err = cfragFragmentUsageErr; 1225 } 1226 } 1227 1228 // Now run the main relocation engine. 1229 1230 if (err == noErr) { 1231 err = RunRelocationEngine(&fragToFix, importLibrary, lookup, refCon); 1232 } 1233 1234 // Clean up. 1235 1236 if (fragToFix.disposeSectionPointers) { 1237 if (fragToFix.fileRef != 0) { 1238 junk = FSClose(fragToFix.fileRef); 1239 MoreAssertQ(junk == noErr); 1240 } 1241 if (fragToFix.loaderSection != nil) { 1242 DisposePtr( (Ptr) fragToFix.loaderSection); 1243 MoreAssertQ(MemError() == noErr); 1244 } 1245 if (fragToFix.sectionHeaders != nil) { 1246 DisposePtr( (Ptr) fragToFix.sectionHeaders); 1247 MoreAssertQ(MemError() == noErr); 1248 } 1249 } 1250 return err; 1251 1251 } 1252 1252 1253 1253 static pascal OSStatus FragmentLookup(ConstStr255Param symName, CFragSymbolClass symClass, 1254 1255 // This is the CFMLateImportLookupProc callback used when 1256 1257 { 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 // If the symbol isn't of the right class, we act like we didn't 1273 // find it, but also assert in the debug build because weird things 1274 1275 1276 1277 1278 1279 1280 1281 1254 void **symAddr, void *refCon) 1255 // This is the CFMLateImportLookupProc callback used when 1256 // late importing from a CFM shared library. 1257 { 1258 OSStatus err; 1259 CFragConnectionID connIDToImport; 1260 CFragSymbolClass foundSymClass; 1261 1262 MoreAssertQ(symName != nil); 1263 MoreAssertQ(symAddr != nil); 1264 MoreAssertQ(refCon != nil); 1265 1266 connIDToImport = (CFragConnectionID) refCon; 1267 1268 // Shame there's no way to validate that connIDToImport is valid. 1269 1270 err = FindSymbol(connIDToImport, symName, (Ptr *) symAddr, &foundSymClass); 1271 if (err == noErr) { 1272 // If the symbol isn't of the right class, we act like we didn't 1273 // find it, but also assert in the debug build because weird things 1274 // are afoot. 1275 if (foundSymClass != symClass) { 1276 MoreAssertQ(false); 1277 *symAddr = nil; 1278 err = cfragNoSymbolErr; 1279 } 1280 } 1281 return err; 1282 1282 } 1283 1283 1284 1284 extern pascal OSStatus CFMLateImportLibrary(const CFragSystem7DiskFlatLocator *fragToFixLocator, 1285 1286 1287 1288 1289 1290 { 1291 1292 1293 1285 CFragConnectionID fragToFixConnID, 1286 CFragInitFunction fragToFixInitRoutine, 1287 ConstStr255Param weakLinkedLibraryName, 1288 CFragConnectionID connIDToImport) 1289 // See comments in interface part. 1290 { 1291 MoreAssertQ(connIDToImport != nil); 1292 return CFMLateImportCore(fragToFixLocator, fragToFixConnID, fragToFixInitRoutine, 1293 weakLinkedLibraryName, FragmentLookup, connIDToImport); 1294 1294 } 1295 1295 1296 1296 static pascal OSStatus BundleLookup(ConstStr255Param symName, CFragSymbolClass symClass, 1297 1298 // This is the CFMLateImportLookupProc callback used when 1299 1300 { 1301 OSStatuserr;1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 // We can only find function pointers because CFBundleGetFunctionPointerForName 1316 // only works for function pointers. So if the client is asking for something 1317 1318 // Also assert in the debug build because this shows a certain lack of 1319 1320 1321 1322 // (currently this is available to Apple internal developers as 1323 // CFBundleGetDataPointerForName). When the new API is available in a 1324 1325 1326 1327 1328 1329 1330 1331 1332 symNameStr = CFStringCreateWithPascalString(kCFAllocatorSystemDefault, 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1297 void **symAddr, void *refCon) 1298 // This is the CFMLateImportLookupProc callback used when 1299 // late importing from a CFBundle. 1300 { 1301 OSStatus err; 1302 CFBundleRef bundleToImport; 1303 CFStringRef symNameStr; 1304 1305 MoreAssertQ(symName != nil); 1306 MoreAssertQ(symAddr != nil); 1307 MoreAssertQ(refCon != nil); 1308 1309 symNameStr = nil; 1310 1311 bundleToImport = (CFBundleRef) refCon; 1312 1313 // Shame there's no way to validate that bundleToImport is really a bundle. 1314 1315 // We can only find function pointers because CFBundleGetFunctionPointerForName 1316 // only works for function pointers. So if the client is asking for something 1317 // other than a function pointer (ie TVector symbol) then we don't even true. 1318 // Also assert in the debug build because this shows a certain lack of 1319 // understanding on the part of the client. 1320 // 1321 // CF is being revise to support accessing data symbols using a new API 1322 // (currently this is available to Apple internal developers as 1323 // CFBundleGetDataPointerForName). When the new API is available in a 1324 // public header file I should revise this code to lift this restriction. 1325 1326 err = noErr; 1327 if (symClass != kTVectorCFragSymbol) { 1328 MoreAssertQ(false); 1329 err = cfragNoSymbolErr; 1330 } 1331 if (err == noErr) { 1332 symNameStr = CFStringCreateWithPascalString(kCFAllocatorSystemDefault, 1333 symName, kCFStringEncodingMacRoman); 1334 if (symNameStr == nil) { 1335 err = coreFoundationUnknownErr; 1336 } 1337 } 1338 if (err == noErr) { 1339 *symAddr = CFBundleGetFunctionPointerForName(bundleToImport, symNameStr); 1340 if (*symAddr == nil) { 1341 err = cfragNoSymbolErr; 1342 } 1343 } 1344 if (symNameStr != nil) { 1345 CFRelease(symNameStr); 1346 } 1347 return err; 1348 1348 } 1349 1349 1350 1350 extern pascal OSStatus CFMLateImportBundle(const CFragSystem7DiskFlatLocator *fragToFixLocator, 1351 1352 1353 1354 1355 1356 { 1357 1358 1359 1360 } 1351 CFragConnectionID fragToFixConnID, 1352 CFragInitFunction fragToFixInitRoutine, 1353 ConstStr255Param weakLinkedLibraryName, 1354 CFBundleRef bundleToImport) 1355 // See comments in interface part. 1356 { 1357 MoreAssertQ(bundleToImport != nil); 1358 return CFMLateImportCore(fragToFixLocator, fragToFixConnID, fragToFixInitRoutine, 1359 weakLinkedLibraryName, BundleLookup, bundleToImport); 1360 } -
python/trunk/Mac/Modules/cg/CFMLateImport.h
r2 r391 1 1 /* 2 File:CFMLateImport.h3 4 Contains:Interface to CFM late import library.5 6 Written by:Quinn7 8 Copyright:Copyright © 1999 by Apple Computer, Inc., all rights reserved.9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 File: CFMLateImport.h 3 4 Contains: Interface to CFM late import library. 5 6 Written by: Quinn 7 8 Copyright: Copyright © 1999 by Apple Computer, Inc., all rights reserved. 9 10 You may incorporate this Apple sample source code into your program(s) without 11 restriction. This Apple sample source code has been provided "AS IS" and the 12 responsibility for its operation is yours. You are not permitted to redistribute 13 this Apple sample source code as "Apple sample source code" after having made 14 changes. If you're going to re-distribute the source, we require that you make 15 it clear in the source that the code was descended from Apple sample source 16 code, but that you've made changes. 17 18 Change History (most recent first): 19 20 <6> 21/9/01 Quinn Changes for CWPro7 Mach-O build. 21 <5> 19/9/01 Quinn Change comments to reflect the fact that an unpacked data 22 section is no longer required. 23 <4> 19/9/01 Quinn Simplified API and implementation after a suggestion by Eric 24 Grant. You no longer have to CFM export a dummy function; you 25 can just pass in the address of your fragment's init routine. 26 <3> 16/11/00 Quinn Allow symbol finding via a callback and use that to implement 27 CFBundle support. 28 <2> 18/10/99 Quinn Renamed CFMLateImport to CFMLateImportLibrary to allow for 29 possible future API expansion. 30 <1> 15/6/99 Quinn First checked in. 31 31 */ 32 32 … … 42 42 43 43 #if ! MORE_FRAMEWORK_INCLUDES 44 45 46 47 44 #include <MacTypes.h> 45 #include <CodeFragments.h> 46 #include <Devices.h> 47 #include <CFBundle.h> 48 48 #endif 49 49 … … 54 54 #endif 55 55 56 /* 57 58 59 Q:What does this library do?60 A:It allows you to resolve a weak linked library at runtime,61 62 63 64 Q:Does the substituted library have to have the same name as the65 66 A:No.67 68 Q:What's this useful for?69 A:The most obvious example of where this is useful is when70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 applications that currently installs a dozen shared 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 going to be implemented ("crea;MySocketsDummy") and then, 113 114 115 116 117 56 /* FAQ 57 --- 58 59 Q: What does this library do? 60 A: It allows you to resolve a weak linked library at runtime, 61 by supply a CFM connection to the library that should substitute 62 for the weak linked one. 63 64 Q: Does the substituted library have to have the same name as the 65 weak linked library. 66 A: No. 67 68 Q: What's this useful for? 69 A: The most obvious example of where this is useful is when 70 you rely on shared libraries that the user might delete 71 or move. To can find the shared library (possibly even 72 using CatSearch), call GetDiskFragment to open a connection 73 to it, late import it using this library, and then the 74 rest of your code can continue to use the shared library 75 as if nothing had happened. No more defining thousands 76 of stub routines which call through routine pointers. 77 78 There are, however, numerous less obvious uses. You can 79 use this code to make a 'self repairing' application. If 80 the user removes your shared library from the Extensions 81 folder, the startup code for your application can offer 82 tor re-install it. If the user agrees, you can then 83 re-install your shared library, late import it, and then 84 continue running your application if nothing happened. 85 86 You can even use this code to free yourself from the 87 Extensions folder entirely. Say you have a suite of 88 applications that currently installs a dozen shared 89 libraries in the Extensions folder. You can move those 90 libraries to another folder entirely and each application's 91 startup code can track down the library (using an alias 92 in the Preferences file) and late import it. 93 94 An even cooler use is to provide easy abstraction layers. 95 Say you have a network code for both the MacTCP 96 API and the Open Transport API. Typically, you would be 97 force to do this by having an abstraction layer where every 98 routine contains a switch between MacTCP and OT. Your 99 OpenSocket routine might look like: 100 101 static int OpenSocket(void) 102 { 103 if (gOTAvailable) { 104 return OpenSocketOT(); 105 } else { 106 return OpenSocketMacTCP(); 107 } 108 } 109 110 With this code, you can avoid that entirely. Simply 111 weak link to a shared library that you know is never 112 going to be implemented ("crea;MySocketsDummy") and then, 113 at runtime, decide whether the system has MacTCP or OT 114 and late import the relevant real implementation 115 ("crea;MySocketsMacTCP" or "crea;MySocketsOT"). 116 One benefit of this approach is that only the MacTCP or 117 the OT code is resident in memory on any given system. 118 118 */ 119 119 120 120 typedef pascal OSStatus (*CFMLateImportLookupProc)(ConstStr255Param symName, CFragSymbolClass symClass, 121 122 123 // The routine is expected to look up the address of the symbol named 124 // symName and return it in *symAddr. The symbol should be of class 125 // symClass, although the callback decides whether a class mismatch is 126 // an error. refCon is an application defined value that was originally 127 128 129 // If this routine returns an error, a symbol address of 0 is assumed. 130 // If the symbol is marked as a weak import, the CFMLateImportCore will 131 // continue, otherwise the CFMLateImportCore routine will fail with the 132 133 121 void **symAddr, void *refCon); 122 // CFMLateImportLookupProc defines a callback for CFMLateImportCore. 123 // The routine is expected to look up the address of the symbol named 124 // symName and return it in *symAddr. The symbol should be of class 125 // symClass, although the callback decides whether a class mismatch is 126 // an error. refCon is an application defined value that was originally 127 // passed in to CFMLateImportCore. 128 // 129 // If this routine returns an error, a symbol address of 0 is assumed. 130 // If the symbol is marked as a weak import, the CFMLateImportCore will 131 // continue, otherwise the CFMLateImportCore routine will fail with the 132 // error. 133 134 134 extern pascal OSStatus CFMLateImportCore(const CFragSystem7DiskFlatLocator *fragToFixLocator, 135 136 137 138 139 140 // This routine will link you, at runtime, to some library 141 142 143 144 145 146 147 148 149 150 151 // code fragment. Typically you get this information from your 152 153 154 155 156 157 158 159 160 161 162 163 164 // The fragment to fix may have a packed data section. Packing the 165 // data section will reduce the size of your fragment on disk, but it 166 // will significantly increase the memory needed by this routine 167 // (it increases memory usage by the sum of the sizes of the packed 168 // and unpacked data section). See below for instructions on how to 169 170 171 172 // fragment initialiser routine. You necessarily have one of these 173 // because you need it to get values for the fragToFixLocator and 174 // fragToFixConnID parameters. Just pass its address in as a parameter 175 // as well. 176 177 178 179 180 181 182 183 184 // 4. lookup, refCon: A pointer to a callback function that the 185 // routine calls to look up the address of a symbol, and a refCon 186 187 188 189 190 191 192 193 194 195 196 197 198 199 // The extra memory taken when you use a packed data section is also an 200 // artifact of my workaround for the lack of CFM introspection APIs. In 201 // my opinion it's better to use an unpacked data section and consume more 202 // space on disk while saving memory. In CodeWarrior you can switch to an 203 // unpacked data section by checking the "Expand Uninitialized Data" 204 205 206 207 208 209 210 211 212 213 214 // is not found by the "lookup" callback, the routine will simple skip 215 // that symbol. If the symbol isn't marked as weak, the routine will fail 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 // memFullErr -- It's likely that this error is triggered by the memory 236 // needed to unpack your data section. Either make your 237 238 239 240 241 242 // to fix in memory. It allocates that memory using NewPtr and dispsoses of 243 244 135 CFragConnectionID fragToFixConnID, 136 CFragInitFunction fragToFixInitRoutine, 137 ConstStr255Param weakLinkedLibraryName, 138 CFMLateImportLookupProc lookup, 139 void *refCon); 140 // This routine will link you, at runtime, to some library 141 // that you were weak linked to and wasn't present when your 142 // fragment was prepared. As well as the obvious functionality 143 // of being able to resolve weak links after prepare time, 144 // this functionality can be put to a number of less obvious uses, 145 // some of which are discussed at the top of this header file. 146 // 147 // To call this routine, you need a number of pieces of information: 148 // 149 // 1. fragToFixLocator, fragToFixConnID: The location of your own 150 // code fragment on disk and the CFM connection ID to your own 151 // code fragment. Typically you get this information from your 152 // fragment's CFM init routine. You must ensure that 153 // fragToFixLocator->fileSpec points to an FSSpec of the 154 // file which holds your code fragment. 155 // 156 // IMPORTANT: 157 // The fact that you pass in a CFragSystem7DiskFlatLocator as the 158 // fragToFixLocator implies that the fragment to be fixed up must 159 // be in the data fork of a file. The code could be modified 160 // to remove this requirement, but on disk code fragments are the most 161 // common case. 162 // 163 // IMPORTANT: 164 // The fragment to fix may have a packed data section. Packing the 165 // data section will reduce the size of your fragment on disk, but it 166 // will significantly increase the memory needed by this routine 167 // (it increases memory usage by the sum of the sizes of the packed 168 // and unpacked data section). See below for instructions on how to 169 // create an unpacked data section. 170 // 171 // 2. fragToFixInitRoutine: A pointer to your own code fragment's 172 // fragment initialiser routine. You necessarily have one of these 173 // because you need it to get values for the fragToFixLocator and 174 // fragToFixConnID parameters. Just pass its address in as a parameter 175 // as well. 176 // 177 // 3. weakLinkedLibraryName: The name of the weak linked library which 178 // failed to link. You must have weak linked to this library. 179 // It is oxymoric for you to pass a strong linked library here, 180 // because your code would not have prepared if a strong linked 181 // library failed to prepare, and so you couldn't supply a valid 182 /// fragToFix. 183 // 184 // 4. lookup, refCon: A pointer to a callback function that the 185 // routine calls to look up the address of a symbol, and a refCon 186 // for that callback routine. 187 // 188 // Note: 189 // The fragToFixLocator and fragToFixInitRoutine parameters 190 // are artifacts of the way in which this functionality is implemented. 191 // In an ideal world, where CFM exported decent introspection APIs 192 // to third party developers, these parameters would not be necessary. 193 // If you're using this code inside Apple, you probably should investigate 194 // using the CFM private APIs for getting at the information these 195 // parameters are needed for. See the comments inside the implementation 196 // for more details. 197 // 198 // Note: 199 // The extra memory taken when you use a packed data section is also an 200 // artifact of my workaround for the lack of CFM introspection APIs. In 201 // my opinion it's better to use an unpacked data section and consume more 202 // space on disk while saving memory. In CodeWarrior you can switch to an 203 // unpacked data section by checking the "Expand Uninitialized Data" 204 // checkbox in the "PPC PEF" settings panel. In MPW, specified the 205 // "-packdata off" option to PPCLink. 206 // 207 // When the routine returns, any symbols that you imported from the 208 // library named weakLinkedLibraryName will be resolved to the address 209 // of the symbol provided by the "lookup" callback routine. 210 // 211 // It is possible for an unresolved import to remain unresolved after 212 // this routine returns. If the symbol import is marked as weak (as 213 // opposed to the library, which *must* be marked as weak) and the symbol 214 // is not found by the "lookup" callback, the routine will simple skip 215 // that symbol. If the symbol isn't marked as weak, the routine will fail 216 // in that case. 217 // 218 // Most of the possible error results are co-opted CFM errors. These 219 // include: 220 // 221 // cfragFragmentFormatErr -- The fragment to fix is is an unknown format. 222 // cfragNoSectionErr -- Could not find the loader section in the fragment to fix. 223 // cfragNoLibraryErr -- The fragment to fix is not weak linked to weakLinkedLibraryName. 224 // cfragFragmentUsageErr -- The fragment to fix doesn't have a data section. 225 // -- The fragment to fix is strong linked to weakLinkedLibraryName. 226 // -- The fragment doesn't have an init routine. 227 // cfragFragmentCorruptErr -- Encountered an undefined relocation opcode. 228 // unimpErr -- Encountered an unimplement relocation opcode. The 229 // relocation engine only implements a subset of the CFM 230 // relocation opcodes, the subset most commonly used by 231 // MPW and CodeWarrior PEF containers. If you encounter 232 // this error, you'll probably have to add the weird 233 // relocation opcode to the engine, which shouldn't be 234 // be too hard. 235 // memFullErr -- It's likely that this error is triggered by the memory 236 // needed to unpack your data section. Either make your 237 // data section smaller, or unpack it (see above). 238 // errors returned by FindSymbol 239 // errors returned by Memory Manager 240 // 241 // The routine needs enough memory to hold the loader section of the fragment 242 // to fix in memory. It allocates that memory using NewPtr and dispsoses of 243 // it before it returns. You may want to change the memory allocator, which 244 // is very simple. 245 245 246 246 extern pascal OSStatus CFMLateImportLibrary(const CFragSystem7DiskFlatLocator *fragToFixLocator, 247 248 249 250 251 // A wrapper around CFMLateImportCore that looks up symbols by calling 252 253 254 255 256 257 258 247 CFragConnectionID fragToFixConnID, 248 CFragInitFunction fragToFixInitRoutine, 249 ConstStr255Param weakLinkedLibraryName, 250 CFragConnectionID connIDToImport); 251 // A wrapper around CFMLateImportCore that looks up symbols by calling 252 // FindSymbol on a connection to a CFM library (connIDToImport). 253 // You can get this connection ID through any standard CFM API, for example 254 // GetSharedLibrary, GetDiskFragment, or GetMemFragment. 255 // 256 // IMPORTANT: 257 // The fragment name for connIDToImport *does not* have to match 258 // weakLinkedLibraryName. This is part of the power of this library. 259 259 260 260 extern pascal OSStatus CFMLateImportBundle(const CFragSystem7DiskFlatLocator *fragToFixLocator, 261 262 263 264 265 // A wrapper around CFMLateImportCore that looks up symbols by calling 266 // CFBundleGetFunctionPointerForName on a reference to a Core Foundation 267 // bundle (bundleToImport). You can get this reference through any 268 261 CFragConnectionID fragToFixConnID, 262 CFragInitFunction fragToFixInitRoutine, 263 ConstStr255Param weakLinkedLibraryName, 264 CFBundleRef bundleToImport); 265 // A wrapper around CFMLateImportCore that looks up symbols by calling 266 // CFBundleGetFunctionPointerForName on a reference to a Core Foundation 267 // bundle (bundleToImport). You can get this reference through any 268 // Core Foundation bundle API, for example CFBundleCreate. 269 269 270 270 #ifdef __cplusplus -
python/trunk/Mac/Modules/cg/_CGmodule.c
r2 r391 10 10 /* Macro to test whether a weak-loaded CFM function exists */ 11 11 #define PyMac_PRECHECK(rtn) do { if ( &rtn == NULL ) {\ 12 13 14 12 PyErr_SetString(PyExc_NotImplementedError, \ 13 "Not available in this shared library/OS version"); \ 14 return NULL; \ 15 15 }} while(0) 16 16 … … 27 27 { 28 28 29 30 31 29 return Py_BuildValue("(ff)", 30 itself->x, 31 itself->y); 32 32 } 33 33 … … 35 35 CGPoint_Convert(PyObject *v, CGPoint *p_itself) 36 36 { 37 38 39 40 41 37 if( !PyArg_Parse(v, "(ff)", 38 &p_itself->x, 39 &p_itself->y) ) 40 return 0; 41 return 1; 42 42 } 43 43 … … 45 45 { 46 46 47 48 49 50 51 47 return Py_BuildValue("(ffff)", 48 itself->origin.x, 49 itself->origin.y, 50 itself->size.width, 51 itself->size.height); 52 52 } 53 53 … … 55 55 CGRect_Convert(PyObject *v, CGRect *p_itself) 56 56 { 57 58 59 60 61 62 63 57 if( !PyArg_Parse(v, "(ffff)", 58 &p_itself->origin.x, 59 &p_itself->origin.y, 60 &p_itself->size.width, 61 &p_itself->size.height) ) 62 return 0; 63 return 1; 64 64 } 65 65 … … 67 67 { 68 68 69 70 71 72 73 74 75 69 return Py_BuildValue("(ffffff)", 70 itself->a, 71 itself->b, 72 itself->c, 73 itself->d, 74 itself->tx, 75 itself->ty); 76 76 } 77 77 … … 79 79 CGAffineTransform_Convert(PyObject *v, CGAffineTransform *p_itself) 80 80 { 81 82 83 84 85 86 87 88 89 81 if( !PyArg_Parse(v, "(ffffff)", 82 &p_itself->a, 83 &p_itself->b, 84 &p_itself->c, 85 &p_itself->d, 86 &p_itself->tx, 87 &p_itself->ty) ) 88 return 0; 89 return 1; 90 90 } 91 91 … … 99 99 100 100 typedef struct CGContextRefObject { 101 102 101 PyObject_HEAD 102 CGContextRef ob_itself; 103 103 } CGContextRefObject; 104 104 105 105 PyObject *CGContextRefObj_New(CGContextRef itself) 106 106 { 107 108 109 110 111 107 CGContextRefObject *it; 108 it = PyObject_NEW(CGContextRefObject, &CGContextRef_Type); 109 if (it == NULL) return NULL; 110 it->ob_itself = itself; 111 return (PyObject *)it; 112 112 } 113 113 114 114 int CGContextRefObj_Convert(PyObject *v, CGContextRef *p_itself) 115 115 { 116 117 118 119 120 121 122 116 if (!CGContextRefObj_Check(v)) 117 { 118 PyErr_SetString(PyExc_TypeError, "CGContextRef required"); 119 return 0; 120 } 121 *p_itself = ((CGContextRefObject *)v)->ob_itself; 122 return 1; 123 123 } 124 124 125 125 static void CGContextRefObj_dealloc(CGContextRefObject *self) 126 126 { 127 128 127 CGContextRelease(self->ob_itself); 128 self->ob_type->tp_free((PyObject *)self); 129 129 } 130 130 131 131 static PyObject *CGContextRefObj_CGContextSaveGState(CGContextRefObject *_self, PyObject *_args) 132 132 { 133 134 135 136 137 138 139 133 PyObject *_res = NULL; 134 if (!PyArg_ParseTuple(_args, "")) 135 return NULL; 136 CGContextSaveGState(_self->ob_itself); 137 Py_INCREF(Py_None); 138 _res = Py_None; 139 return _res; 140 140 } 141 141 142 142 static PyObject *CGContextRefObj_CGContextRestoreGState(CGContextRefObject *_self, PyObject *_args) 143 143 { 144 145 146 147 148 149 150 144 PyObject *_res = NULL; 145 if (!PyArg_ParseTuple(_args, "")) 146 return NULL; 147 CGContextRestoreGState(_self->ob_itself); 148 Py_INCREF(Py_None); 149 _res = Py_None; 150 return _res; 151 151 } 152 152 153 153 static PyObject *CGContextRefObj_CGContextScaleCTM(CGContextRefObject *_self, PyObject *_args) 154 154 { 155 156 157 158 159 160 161 162 163 164 165 166 167 155 PyObject *_res = NULL; 156 float sx; 157 float sy; 158 if (!PyArg_ParseTuple(_args, "ff", 159 &sx, 160 &sy)) 161 return NULL; 162 CGContextScaleCTM(_self->ob_itself, 163 sx, 164 sy); 165 Py_INCREF(Py_None); 166 _res = Py_None; 167 return _res; 168 168 } 169 169 170 170 static PyObject *CGContextRefObj_CGContextTranslateCTM(CGContextRefObject *_self, PyObject *_args) 171 171 { 172 173 174 175 176 177 178 179 180 181 182 183 184 172 PyObject *_res = NULL; 173 float tx; 174 float ty; 175 if (!PyArg_ParseTuple(_args, "ff", 176 &tx, 177 &ty)) 178 return NULL; 179 CGContextTranslateCTM(_self->ob_itself, 180 tx, 181 ty); 182 Py_INCREF(Py_None); 183 _res = Py_None; 184 return _res; 185 185 } 186 186 187 187 static PyObject *CGContextRefObj_CGContextRotateCTM(CGContextRefObject *_self, PyObject *_args) 188 188 { 189 190 191 192 193 194 195 196 197 198 189 PyObject *_res = NULL; 190 float angle; 191 if (!PyArg_ParseTuple(_args, "f", 192 &angle)) 193 return NULL; 194 CGContextRotateCTM(_self->ob_itself, 195 angle); 196 Py_INCREF(Py_None); 197 _res = Py_None; 198 return _res; 199 199 } 200 200 201 201 static PyObject *CGContextRefObj_CGContextConcatCTM(CGContextRefObject *_self, PyObject *_args) 202 202 { 203 204 205 206 207 208 209 210 211 212 203 PyObject *_res = NULL; 204 CGAffineTransform transform; 205 if (!PyArg_ParseTuple(_args, "O&", 206 CGAffineTransform_Convert, &transform)) 207 return NULL; 208 CGContextConcatCTM(_self->ob_itself, 209 transform); 210 Py_INCREF(Py_None); 211 _res = Py_None; 212 return _res; 213 213 } 214 214 215 215 static PyObject *CGContextRefObj_CGContextGetCTM(CGContextRefObject *_self, PyObject *_args) 216 216 { 217 218 219 220 221 222 223 224 217 PyObject *_res = NULL; 218 CGAffineTransform _rv; 219 if (!PyArg_ParseTuple(_args, "")) 220 return NULL; 221 _rv = CGContextGetCTM(_self->ob_itself); 222 _res = Py_BuildValue("O&", 223 CGAffineTransform_New, &_rv); 224 return _res; 225 225 } 226 226 227 227 static PyObject *CGContextRefObj_CGContextSetLineWidth(CGContextRefObject *_self, PyObject *_args) 228 228 { 229 230 231 232 233 234 235 236 237 238 229 PyObject *_res = NULL; 230 float width; 231 if (!PyArg_ParseTuple(_args, "f", 232 &width)) 233 return NULL; 234 CGContextSetLineWidth(_self->ob_itself, 235 width); 236 Py_INCREF(Py_None); 237 _res = Py_None; 238 return _res; 239 239 } 240 240 241 241 static PyObject *CGContextRefObj_CGContextSetLineCap(CGContextRefObject *_self, PyObject *_args) 242 242 { 243 244 245 246 247 248 249 250 251 252 243 PyObject *_res = NULL; 244 int cap; 245 if (!PyArg_ParseTuple(_args, "i", 246 &cap)) 247 return NULL; 248 CGContextSetLineCap(_self->ob_itself, 249 cap); 250 Py_INCREF(Py_None); 251 _res = Py_None; 252 return _res; 253 253 } 254 254 255 255 static PyObject *CGContextRefObj_CGContextSetLineJoin(CGContextRefObject *_self, PyObject *_args) 256 256 { 257 258 259 260 261 262 263 264 265 266 257 PyObject *_res = NULL; 258 int join; 259 if (!PyArg_ParseTuple(_args, "i", 260 &join)) 261 return NULL; 262 CGContextSetLineJoin(_self->ob_itself, 263 join); 264 Py_INCREF(Py_None); 265 _res = Py_None; 266 return _res; 267 267 } 268 268 269 269 static PyObject *CGContextRefObj_CGContextSetMiterLimit(CGContextRefObject *_self, PyObject *_args) 270 270 { 271 272 273 274 275 276 277 278 279 280 271 PyObject *_res = NULL; 272 float limit; 273 if (!PyArg_ParseTuple(_args, "f", 274 &limit)) 275 return NULL; 276 CGContextSetMiterLimit(_self->ob_itself, 277 limit); 278 Py_INCREF(Py_None); 279 _res = Py_None; 280 return _res; 281 281 } 282 282 283 283 static PyObject *CGContextRefObj_CGContextSetFlatness(CGContextRefObject *_self, PyObject *_args) 284 284 { 285 286 287 288 289 290 291 292 293 294 285 PyObject *_res = NULL; 286 float flatness; 287 if (!PyArg_ParseTuple(_args, "f", 288 &flatness)) 289 return NULL; 290 CGContextSetFlatness(_self->ob_itself, 291 flatness); 292 Py_INCREF(Py_None); 293 _res = Py_None; 294 return _res; 295 295 } 296 296 297 297 static PyObject *CGContextRefObj_CGContextSetAlpha(CGContextRefObject *_self, PyObject *_args) 298 298 { 299 300 301 302 303 304 305 306 307 308 299 PyObject *_res = NULL; 300 float alpha; 301 if (!PyArg_ParseTuple(_args, "f", 302 &alpha)) 303 return NULL; 304 CGContextSetAlpha(_self->ob_itself, 305 alpha); 306 Py_INCREF(Py_None); 307 _res = Py_None; 308 return _res; 309 309 } 310 310 311 311 static PyObject *CGContextRefObj_CGContextBeginPath(CGContextRefObject *_self, PyObject *_args) 312 312 { 313 314 315 316 317 318 319 313 PyObject *_res = NULL; 314 if (!PyArg_ParseTuple(_args, "")) 315 return NULL; 316 CGContextBeginPath(_self->ob_itself); 317 Py_INCREF(Py_None); 318 _res = Py_None; 319 return _res; 320 320 } 321 321 322 322 static PyObject *CGContextRefObj_CGContextMoveToPoint(CGContextRefObject *_self, PyObject *_args) 323 323 { 324 325 326 327 328 329 330 331 332 333 334 335 336 324 PyObject *_res = NULL; 325 float x; 326 float y; 327 if (!PyArg_ParseTuple(_args, "ff", 328 &x, 329 &y)) 330 return NULL; 331 CGContextMoveToPoint(_self->ob_itself, 332 x, 333 y); 334 Py_INCREF(Py_None); 335 _res = Py_None; 336 return _res; 337 337 } 338 338 339 339 static PyObject *CGContextRefObj_CGContextAddLineToPoint(CGContextRefObject *_self, PyObject *_args) 340 340 { 341 342 343 344 345 346 347 348 349 350 351 352 353 341 PyObject *_res = NULL; 342 float x; 343 float y; 344 if (!PyArg_ParseTuple(_args, "ff", 345 &x, 346 &y)) 347 return NULL; 348 CGContextAddLineToPoint(_self->ob_itself, 349 x, 350 y); 351 Py_INCREF(Py_None); 352 _res = Py_None; 353 return _res; 354 354 } 355 355 356 356 static PyObject *CGContextRefObj_CGContextAddCurveToPoint(CGContextRefObject *_self, PyObject *_args) 357 357 { 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 358 PyObject *_res = NULL; 359 float cp1x; 360 float cp1y; 361 float cp2x; 362 float cp2y; 363 float x; 364 float y; 365 if (!PyArg_ParseTuple(_args, "ffffff", 366 &cp1x, 367 &cp1y, 368 &cp2x, 369 &cp2y, 370 &x, 371 &y)) 372 return NULL; 373 CGContextAddCurveToPoint(_self->ob_itself, 374 cp1x, 375 cp1y, 376 cp2x, 377 cp2y, 378 x, 379 y); 380 Py_INCREF(Py_None); 381 _res = Py_None; 382 return _res; 383 383 } 384 384 385 385 static PyObject *CGContextRefObj_CGContextAddQuadCurveToPoint(CGContextRefObject *_self, PyObject *_args) 386 386 { 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 387 PyObject *_res = NULL; 388 float cpx; 389 float cpy; 390 float x; 391 float y; 392 if (!PyArg_ParseTuple(_args, "ffff", 393 &cpx, 394 &cpy, 395 &x, 396 &y)) 397 return NULL; 398 CGContextAddQuadCurveToPoint(_self->ob_itself, 399 cpx, 400 cpy, 401 x, 402 y); 403 Py_INCREF(Py_None); 404 _res = Py_None; 405 return _res; 406 406 } 407 407 408 408 static PyObject *CGContextRefObj_CGContextClosePath(CGContextRefObject *_self, PyObject *_args) 409 409 { 410 411 412 413 414 415 416 410 PyObject *_res = NULL; 411 if (!PyArg_ParseTuple(_args, "")) 412 return NULL; 413 CGContextClosePath(_self->ob_itself); 414 Py_INCREF(Py_None); 415 _res = Py_None; 416 return _res; 417 417 } 418 418 419 419 static PyObject *CGContextRefObj_CGContextAddRect(CGContextRefObject *_self, PyObject *_args) 420 420 { 421 422 423 424 425 426 427 428 429 430 421 PyObject *_res = NULL; 422 CGRect rect; 423 if (!PyArg_ParseTuple(_args, "O&", 424 CGRect_Convert, &rect)) 425 return NULL; 426 CGContextAddRect(_self->ob_itself, 427 rect); 428 Py_INCREF(Py_None); 429 _res = Py_None; 430 return _res; 431 431 } 432 432 433 433 static PyObject *CGContextRefObj_CGContextAddArc(CGContextRefObject *_self, PyObject *_args) 434 434 { 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 435 PyObject *_res = NULL; 436 float x; 437 float y; 438 float radius; 439 float startAngle; 440 float endAngle; 441 int clockwise; 442 if (!PyArg_ParseTuple(_args, "fffffi", 443 &x, 444 &y, 445 &radius, 446 &startAngle, 447 &endAngle, 448 &clockwise)) 449 return NULL; 450 CGContextAddArc(_self->ob_itself, 451 x, 452 y, 453 radius, 454 startAngle, 455 endAngle, 456 clockwise); 457 Py_INCREF(Py_None); 458 _res = Py_None; 459 return _res; 460 460 } 461 461 462 462 static PyObject *CGContextRefObj_CGContextAddArcToPoint(CGContextRefObject *_self, PyObject *_args) 463 463 { 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 464 PyObject *_res = NULL; 465 float x1; 466 float y1; 467 float x2; 468 float y2; 469 float radius; 470 if (!PyArg_ParseTuple(_args, "fffff", 471 &x1, 472 &y1, 473 &x2, 474 &y2, 475 &radius)) 476 return NULL; 477 CGContextAddArcToPoint(_self->ob_itself, 478 x1, 479 y1, 480 x2, 481 y2, 482 radius); 483 Py_INCREF(Py_None); 484 _res = Py_None; 485 return _res; 486 486 } 487 487 488 488 static PyObject *CGContextRefObj_CGContextIsPathEmpty(CGContextRefObject *_self, PyObject *_args) 489 489 { 490 491 492 493 494 495 496 497 490 PyObject *_res = NULL; 491 int _rv; 492 if (!PyArg_ParseTuple(_args, "")) 493 return NULL; 494 _rv = CGContextIsPathEmpty(_self->ob_itself); 495 _res = Py_BuildValue("i", 496 _rv); 497 return _res; 498 498 } 499 499 500 500 static PyObject *CGContextRefObj_CGContextGetPathCurrentPoint(CGContextRefObject *_self, PyObject *_args) 501 501 { 502 503 504 505 506 507 508 509 502 PyObject *_res = NULL; 503 CGPoint _rv; 504 if (!PyArg_ParseTuple(_args, "")) 505 return NULL; 506 _rv = CGContextGetPathCurrentPoint(_self->ob_itself); 507 _res = Py_BuildValue("O&", 508 CGPoint_New, &_rv); 509 return _res; 510 510 } 511 511 512 512 static PyObject *CGContextRefObj_CGContextGetPathBoundingBox(CGContextRefObject *_self, PyObject *_args) 513 513 { 514 515 516 517 518 519 520 521 514 PyObject *_res = NULL; 515 CGRect _rv; 516 if (!PyArg_ParseTuple(_args, "")) 517 return NULL; 518 _rv = CGContextGetPathBoundingBox(_self->ob_itself); 519 _res = Py_BuildValue("O&", 520 CGRect_New, &_rv); 521 return _res; 522 522 } 523 523 524 524 static PyObject *CGContextRefObj_CGContextDrawPath(CGContextRefObject *_self, PyObject *_args) 525 525 { 526 527 528 529 530 531 532 533 534 535 526 PyObject *_res = NULL; 527 int mode; 528 if (!PyArg_ParseTuple(_args, "i", 529 &mode)) 530 return NULL; 531 CGContextDrawPath(_self->ob_itself, 532 mode); 533 Py_INCREF(Py_None); 534 _res = Py_None; 535 return _res; 536 536 } 537 537 538 538 static PyObject *CGContextRefObj_CGContextFillPath(CGContextRefObject *_self, PyObject *_args) 539 539 { 540 541 542 543 544 545 546 540 PyObject *_res = NULL; 541 if (!PyArg_ParseTuple(_args, "")) 542 return NULL; 543 CGContextFillPath(_self->ob_itself); 544 Py_INCREF(Py_None); 545 _res = Py_None; 546 return _res; 547 547 } 548 548 549 549 static PyObject *CGContextRefObj_CGContextEOFillPath(CGContextRefObject *_self, PyObject *_args) 550 550 { 551 552 553 554 555 556 557 551 PyObject *_res = NULL; 552 if (!PyArg_ParseTuple(_args, "")) 553 return NULL; 554 CGContextEOFillPath(_self->ob_itself); 555 Py_INCREF(Py_None); 556 _res = Py_None; 557 return _res; 558 558 } 559 559 560 560 static PyObject *CGContextRefObj_CGContextStrokePath(CGContextRefObject *_self, PyObject *_args) 561 561 { 562 563 564 565 566 567 568 562 PyObject *_res = NULL; 563 if (!PyArg_ParseTuple(_args, "")) 564 return NULL; 565 CGContextStrokePath(_self->ob_itself); 566 Py_INCREF(Py_None); 567 _res = Py_None; 568 return _res; 569 569 } 570 570 571 571 static PyObject *CGContextRefObj_CGContextFillRect(CGContextRefObject *_self, PyObject *_args) 572 572 { 573 574 575 576 577 578 579 580 581 582 573 PyObject *_res = NULL; 574 CGRect rect; 575 if (!PyArg_ParseTuple(_args, "O&", 576 CGRect_Convert, &rect)) 577 return NULL; 578 CGContextFillRect(_self->ob_itself, 579 rect); 580 Py_INCREF(Py_None); 581 _res = Py_None; 582 return _res; 583 583 } 584 584 585 585 static PyObject *CGContextRefObj_CGContextStrokeRect(CGContextRefObject *_self, PyObject *_args) 586 586 { 587 588 589 590 591 592 593 594 595 596 587 PyObject *_res = NULL; 588 CGRect rect; 589 if (!PyArg_ParseTuple(_args, "O&", 590 CGRect_Convert, &rect)) 591 return NULL; 592 CGContextStrokeRect(_self->ob_itself, 593 rect); 594 Py_INCREF(Py_None); 595 _res = Py_None; 596 return _res; 597 597 } 598 598 599 599 static PyObject *CGContextRefObj_CGContextStrokeRectWithWidth(CGContextRefObject *_self, PyObject *_args) 600 600 { 601 602 603 604 605 606 607 608 609 610 611 612 613 601 PyObject *_res = NULL; 602 CGRect rect; 603 float width; 604 if (!PyArg_ParseTuple(_args, "O&f", 605 CGRect_Convert, &rect, 606 &width)) 607 return NULL; 608 CGContextStrokeRectWithWidth(_self->ob_itself, 609 rect, 610 width); 611 Py_INCREF(Py_None); 612 _res = Py_None; 613 return _res; 614 614 } 615 615 616 616 static PyObject *CGContextRefObj_CGContextClearRect(CGContextRefObject *_self, PyObject *_args) 617 617 { 618 619 620 621 622 623 624 625 626 627 618 PyObject *_res = NULL; 619 CGRect rect; 620 if (!PyArg_ParseTuple(_args, "O&", 621 CGRect_Convert, &rect)) 622 return NULL; 623 CGContextClearRect(_self->ob_itself, 624 rect); 625 Py_INCREF(Py_None); 626 _res = Py_None; 627 return _res; 628 628 } 629 629 630 630 static PyObject *CGContextRefObj_CGContextClip(CGContextRefObject *_self, PyObject *_args) 631 631 { 632 633 634 635 636 637 638 632 PyObject *_res = NULL; 633 if (!PyArg_ParseTuple(_args, "")) 634 return NULL; 635 CGContextClip(_self->ob_itself); 636 Py_INCREF(Py_None); 637 _res = Py_None; 638 return _res; 639 639 } 640 640 641 641 static PyObject *CGContextRefObj_CGContextEOClip(CGContextRefObject *_self, PyObject *_args) 642 642 { 643 644 645 646 647 648 649 643 PyObject *_res = NULL; 644 if (!PyArg_ParseTuple(_args, "")) 645 return NULL; 646 CGContextEOClip(_self->ob_itself); 647 Py_INCREF(Py_None); 648 _res = Py_None; 649 return _res; 650 650 } 651 651 652 652 static PyObject *CGContextRefObj_CGContextClipToRect(CGContextRefObject *_self, PyObject *_args) 653 653 { 654 655 656 657 658 659 660 661 662 663 654 PyObject *_res = NULL; 655 CGRect rect; 656 if (!PyArg_ParseTuple(_args, "O&", 657 CGRect_Convert, &rect)) 658 return NULL; 659 CGContextClipToRect(_self->ob_itself, 660 rect); 661 Py_INCREF(Py_None); 662 _res = Py_None; 663 return _res; 664 664 } 665 665 666 666 static PyObject *CGContextRefObj_CGContextSetGrayFillColor(CGContextRefObject *_self, PyObject *_args) 667 667 { 668 669 670 671 672 673 674 675 676 677 678 679 680 668 PyObject *_res = NULL; 669 float gray; 670 float alpha; 671 if (!PyArg_ParseTuple(_args, "ff", 672 &gray, 673 &alpha)) 674 return NULL; 675 CGContextSetGrayFillColor(_self->ob_itself, 676 gray, 677 alpha); 678 Py_INCREF(Py_None); 679 _res = Py_None; 680 return _res; 681 681 } 682 682 683 683 static PyObject *CGContextRefObj_CGContextSetGrayStrokeColor(CGContextRefObject *_self, PyObject *_args) 684 684 { 685 686 687 688 689 690 691 692 693 694 695 696 697 685 PyObject *_res = NULL; 686 float gray; 687 float alpha; 688 if (!PyArg_ParseTuple(_args, "ff", 689 &gray, 690 &alpha)) 691 return NULL; 692 CGContextSetGrayStrokeColor(_self->ob_itself, 693 gray, 694 alpha); 695 Py_INCREF(Py_None); 696 _res = Py_None; 697 return _res; 698 698 } 699 699 700 700 static PyObject *CGContextRefObj_CGContextSetRGBFillColor(CGContextRefObject *_self, PyObject *_args) 701 701 { 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 702 PyObject *_res = NULL; 703 float red; 704 float green; 705 float blue; 706 float alpha; 707 if (!PyArg_ParseTuple(_args, "ffff", 708 &red, 709 &green, 710 &blue, 711 &alpha)) 712 return NULL; 713 CGContextSetRGBFillColor(_self->ob_itself, 714 red, 715 green, 716 blue, 717 alpha); 718 Py_INCREF(Py_None); 719 _res = Py_None; 720 return _res; 721 721 } 722 722 723 723 static PyObject *CGContextRefObj_CGContextSetRGBStrokeColor(CGContextRefObject *_self, PyObject *_args) 724 724 { 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 725 PyObject *_res = NULL; 726 float red; 727 float green; 728 float blue; 729 float alpha; 730 if (!PyArg_ParseTuple(_args, "ffff", 731 &red, 732 &green, 733 &blue, 734 &alpha)) 735 return NULL; 736 CGContextSetRGBStrokeColor(_self->ob_itself, 737 red, 738 green, 739 blue, 740 alpha); 741 Py_INCREF(Py_None); 742 _res = Py_None; 743 return _res; 744 744 } 745 745 746 746 static PyObject *CGContextRefObj_CGContextSetCMYKFillColor(CGContextRefObject *_self, PyObject *_args) 747 747 { 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 748 PyObject *_res = NULL; 749 float cyan; 750 float magenta; 751 float yellow; 752 float black; 753 float alpha; 754 if (!PyArg_ParseTuple(_args, "fffff", 755 &cyan, 756 &magenta, 757 &yellow, 758 &black, 759 &alpha)) 760 return NULL; 761 CGContextSetCMYKFillColor(_self->ob_itself, 762 cyan, 763 magenta, 764 yellow, 765 black, 766 alpha); 767 Py_INCREF(Py_None); 768 _res = Py_None; 769 return _res; 770 770 } 771 771 772 772 static PyObject *CGContextRefObj_CGContextSetCMYKStrokeColor(CGContextRefObject *_self, PyObject *_args) 773 773 { 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 774 PyObject *_res = NULL; 775 float cyan; 776 float magenta; 777 float yellow; 778 float black; 779 float alpha; 780 if (!PyArg_ParseTuple(_args, "fffff", 781 &cyan, 782 &magenta, 783 &yellow, 784 &black, 785 &alpha)) 786 return NULL; 787 CGContextSetCMYKStrokeColor(_self->ob_itself, 788 cyan, 789 magenta, 790 yellow, 791 black, 792 alpha); 793 Py_INCREF(Py_None); 794 _res = Py_None; 795 return _res; 796 796 } 797 797 798 798 static PyObject *CGContextRefObj_CGContextGetInterpolationQuality(CGContextRefObject *_self, PyObject *_args) 799 799 { 800 801 802 803 804 805 806 807 800 PyObject *_res = NULL; 801 int _rv; 802 if (!PyArg_ParseTuple(_args, "")) 803 return NULL; 804 _rv = CGContextGetInterpolationQuality(_self->ob_itself); 805 _res = Py_BuildValue("i", 806 _rv); 807 return _res; 808 808 } 809 809 810 810 static PyObject *CGContextRefObj_CGContextSetInterpolationQuality(CGContextRefObject *_self, PyObject *_args) 811 811 { 812 813 814 815 816 817 818 819 820 821 812 PyObject *_res = NULL; 813 int quality; 814 if (!PyArg_ParseTuple(_args, "i", 815 &quality)) 816 return NULL; 817 CGContextSetInterpolationQuality(_self->ob_itself, 818 quality); 819 Py_INCREF(Py_None); 820 _res = Py_None; 821 return _res; 822 822 } 823 823 824 824 static PyObject *CGContextRefObj_CGContextSetCharacterSpacing(CGContextRefObject *_self, PyObject *_args) 825 825 { 826 827 828 829 830 831 832 833 834 835 826 PyObject *_res = NULL; 827 float spacing; 828 if (!PyArg_ParseTuple(_args, "f", 829 &spacing)) 830 return NULL; 831 CGContextSetCharacterSpacing(_self->ob_itself, 832 spacing); 833 Py_INCREF(Py_None); 834 _res = Py_None; 835 return _res; 836 836 } 837 837 838 838 static PyObject *CGContextRefObj_CGContextSetTextPosition(CGContextRefObject *_self, PyObject *_args) 839 839 { 840 841 842 843 844 845 846 847 848 849 850 851 852 840 PyObject *_res = NULL; 841 float x; 842 float y; 843 if (!PyArg_ParseTuple(_args, "ff", 844 &x, 845 &y)) 846 return NULL; 847 CGContextSetTextPosition(_self->ob_itself, 848 x, 849 y); 850 Py_INCREF(Py_None); 851 _res = Py_None; 852 return _res; 853 853 } 854 854 855 855 static PyObject *CGContextRefObj_CGContextGetTextPosition(CGContextRefObject *_self, PyObject *_args) 856 856 { 857 858 859 860 861 862 863 864 857 PyObject *_res = NULL; 858 CGPoint _rv; 859 if (!PyArg_ParseTuple(_args, "")) 860 return NULL; 861 _rv = CGContextGetTextPosition(_self->ob_itself); 862 _res = Py_BuildValue("O&", 863 CGPoint_New, &_rv); 864 return _res; 865 865 } 866 866 867 867 static PyObject *CGContextRefObj_CGContextSetTextMatrix(CGContextRefObject *_self, PyObject *_args) 868 868 { 869 870 871 872 873 874 875 876 877 878 869 PyObject *_res = NULL; 870 CGAffineTransform transform; 871 if (!PyArg_ParseTuple(_args, "O&", 872 CGAffineTransform_Convert, &transform)) 873 return NULL; 874 CGContextSetTextMatrix(_self->ob_itself, 875 transform); 876 Py_INCREF(Py_None); 877 _res = Py_None; 878 return _res; 879 879 } 880 880 881 881 static PyObject *CGContextRefObj_CGContextGetTextMatrix(CGContextRefObject *_self, PyObject *_args) 882 882 { 883 884 885 886 887 888 889 890 883 PyObject *_res = NULL; 884 CGAffineTransform _rv; 885 if (!PyArg_ParseTuple(_args, "")) 886 return NULL; 887 _rv = CGContextGetTextMatrix(_self->ob_itself); 888 _res = Py_BuildValue("O&", 889 CGAffineTransform_New, &_rv); 890 return _res; 891 891 } 892 892 893 893 static PyObject *CGContextRefObj_CGContextSetTextDrawingMode(CGContextRefObject *_self, PyObject *_args) 894 894 { 895 896 897 898 899 900 901 902 903 904 895 PyObject *_res = NULL; 896 int mode; 897 if (!PyArg_ParseTuple(_args, "i", 898 &mode)) 899 return NULL; 900 CGContextSetTextDrawingMode(_self->ob_itself, 901 mode); 902 Py_INCREF(Py_None); 903 _res = Py_None; 904 return _res; 905 905 } 906 906 907 907 static PyObject *CGContextRefObj_CGContextSetFontSize(CGContextRefObject *_self, PyObject *_args) 908 908 { 909 910 911 912 913 914 915 916 917 918 909 PyObject *_res = NULL; 910 float size; 911 if (!PyArg_ParseTuple(_args, "f", 912 &size)) 913 return NULL; 914 CGContextSetFontSize(_self->ob_itself, 915 size); 916 Py_INCREF(Py_None); 917 _res = Py_None; 918 return _res; 919 919 } 920 920 921 921 static PyObject *CGContextRefObj_CGContextSelectFont(CGContextRefObject *_self, PyObject *_args) 922 922 { 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 923 PyObject *_res = NULL; 924 char * name; 925 float size; 926 int textEncoding; 927 if (!PyArg_ParseTuple(_args, "sfi", 928 &name, 929 &size, 930 &textEncoding)) 931 return NULL; 932 CGContextSelectFont(_self->ob_itself, 933 name, 934 size, 935 textEncoding); 936 Py_INCREF(Py_None); 937 _res = Py_None; 938 return _res; 939 939 } 940 940 941 941 static PyObject *CGContextRefObj_CGContextShowText(CGContextRefObject *_self, PyObject *_args) 942 942 { 943 944 945 946 947 948 949 950 951 952 953 954 955 943 PyObject *_res = NULL; 944 char *cstring__in__; 945 long cstring__len__; 946 int cstring__in_len__; 947 if (!PyArg_ParseTuple(_args, "s#", 948 &cstring__in__, &cstring__in_len__)) 949 return NULL; 950 cstring__len__ = cstring__in_len__; 951 CGContextShowText(_self->ob_itself, 952 cstring__in__, cstring__len__); 953 Py_INCREF(Py_None); 954 _res = Py_None; 955 return _res; 956 956 } 957 957 958 958 static PyObject *CGContextRefObj_CGContextShowTextAtPoint(CGContextRefObject *_self, PyObject *_args) 959 959 { 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 960 PyObject *_res = NULL; 961 float x; 962 float y; 963 char *cstring__in__; 964 long cstring__len__; 965 int cstring__in_len__; 966 if (!PyArg_ParseTuple(_args, "ffs#", 967 &x, 968 &y, 969 &cstring__in__, &cstring__in_len__)) 970 return NULL; 971 cstring__len__ = cstring__in_len__; 972 CGContextShowTextAtPoint(_self->ob_itself, 973 x, 974 y, 975 cstring__in__, cstring__len__); 976 Py_INCREF(Py_None); 977 _res = Py_None; 978 return _res; 979 979 } 980 980 981 981 static PyObject *CGContextRefObj_CGContextEndPage(CGContextRefObject *_self, PyObject *_args) 982 982 { 983 984 985 986 987 988 989 983 PyObject *_res = NULL; 984 if (!PyArg_ParseTuple(_args, "")) 985 return NULL; 986 CGContextEndPage(_self->ob_itself); 987 Py_INCREF(Py_None); 988 _res = Py_None; 989 return _res; 990 990 } 991 991 992 992 static PyObject *CGContextRefObj_CGContextFlush(CGContextRefObject *_self, PyObject *_args) 993 993 { 994 995 996 997 998 999 1000 994 PyObject *_res = NULL; 995 if (!PyArg_ParseTuple(_args, "")) 996 return NULL; 997 CGContextFlush(_self->ob_itself); 998 Py_INCREF(Py_None); 999 _res = Py_None; 1000 return _res; 1001 1001 } 1002 1002 1003 1003 static PyObject *CGContextRefObj_CGContextSynchronize(CGContextRefObject *_self, PyObject *_args) 1004 1004 { 1005 1006 1007 1008 1009 1010 1011 1005 PyObject *_res = NULL; 1006 if (!PyArg_ParseTuple(_args, "")) 1007 return NULL; 1008 CGContextSynchronize(_self->ob_itself); 1009 Py_INCREF(Py_None); 1010 _res = Py_None; 1011 return _res; 1012 1012 } 1013 1013 1014 1014 static PyObject *CGContextRefObj_CGContextSetShouldAntialias(CGContextRefObject *_self, PyObject *_args) 1015 1015 { 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1016 PyObject *_res = NULL; 1017 int shouldAntialias; 1018 if (!PyArg_ParseTuple(_args, "i", 1019 &shouldAntialias)) 1020 return NULL; 1021 CGContextSetShouldAntialias(_self->ob_itself, 1022 shouldAntialias); 1023 Py_INCREF(Py_None); 1024 _res = Py_None; 1025 return _res; 1026 1026 } 1027 1027 … … 1029 1029 static PyObject *CGContextRefObj_SyncCGContextOriginWithPort(CGContextRefObject *_self, PyObject *_args) 1030 1030 { 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1031 PyObject *_res = NULL; 1032 CGrafPtr port; 1033 if (!PyArg_ParseTuple(_args, "O&", 1034 GrafObj_Convert, &port)) 1035 return NULL; 1036 SyncCGContextOriginWithPort(_self->ob_itself, 1037 port); 1038 Py_INCREF(Py_None); 1039 _res = Py_None; 1040 return _res; 1041 1041 } 1042 1042 1043 1043 static PyObject *CGContextRefObj_ClipCGContextToRegion(CGContextRefObject *_self, PyObject *_args) 1044 1044 { 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1045 PyObject *_res = NULL; 1046 Rect portRect; 1047 RgnHandle region; 1048 if (!PyArg_ParseTuple(_args, "O&O&", 1049 PyMac_GetRect, &portRect, 1050 ResObj_Convert, ®ion)) 1051 return NULL; 1052 ClipCGContextToRegion(_self->ob_itself, 1053 &portRect, 1054 region); 1055 Py_INCREF(Py_None); 1056 _res = Py_None; 1057 return _res; 1058 1058 } 1059 1059 #endif 1060 1060 1061 1061 static PyMethodDef CGContextRefObj_methods[] = { 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1062 {"CGContextSaveGState", (PyCFunction)CGContextRefObj_CGContextSaveGState, 1, 1063 PyDoc_STR("() -> None")}, 1064 {"CGContextRestoreGState", (PyCFunction)CGContextRefObj_CGContextRestoreGState, 1, 1065 PyDoc_STR("() -> None")}, 1066 {"CGContextScaleCTM", (PyCFunction)CGContextRefObj_CGContextScaleCTM, 1, 1067 PyDoc_STR("(float sx, float sy) -> None")}, 1068 {"CGContextTranslateCTM", (PyCFunction)CGContextRefObj_CGContextTranslateCTM, 1, 1069 PyDoc_STR("(float tx, float ty) -> None")}, 1070 {"CGContextRotateCTM", (PyCFunction)CGContextRefObj_CGContextRotateCTM, 1, 1071 PyDoc_STR("(float angle) -> None")}, 1072 {"CGContextConcatCTM", (PyCFunction)CGContextRefObj_CGContextConcatCTM, 1, 1073 PyDoc_STR("(CGAffineTransform transform) -> None")}, 1074 {"CGContextGetCTM", (PyCFunction)CGContextRefObj_CGContextGetCTM, 1, 1075 PyDoc_STR("() -> (CGAffineTransform _rv)")}, 1076 {"CGContextSetLineWidth", (PyCFunction)CGContextRefObj_CGContextSetLineWidth, 1, 1077 PyDoc_STR("(float width) -> None")}, 1078 {"CGContextSetLineCap", (PyCFunction)CGContextRefObj_CGContextSetLineCap, 1, 1079 PyDoc_STR("(int cap) -> None")}, 1080 {"CGContextSetLineJoin", (PyCFunction)CGContextRefObj_CGContextSetLineJoin, 1, 1081 PyDoc_STR("(int join) -> None")}, 1082 {"CGContextSetMiterLimit", (PyCFunction)CGContextRefObj_CGContextSetMiterLimit, 1, 1083 PyDoc_STR("(float limit) -> None")}, 1084 {"CGContextSetFlatness", (PyCFunction)CGContextRefObj_CGContextSetFlatness, 1, 1085 PyDoc_STR("(float flatness) -> None")}, 1086 {"CGContextSetAlpha", (PyCFunction)CGContextRefObj_CGContextSetAlpha, 1, 1087 PyDoc_STR("(float alpha) -> None")}, 1088 {"CGContextBeginPath", (PyCFunction)CGContextRefObj_CGContextBeginPath, 1, 1089 PyDoc_STR("() -> None")}, 1090 {"CGContextMoveToPoint", (PyCFunction)CGContextRefObj_CGContextMoveToPoint, 1, 1091 PyDoc_STR("(float x, float y) -> None")}, 1092 {"CGContextAddLineToPoint", (PyCFunction)CGContextRefObj_CGContextAddLineToPoint, 1, 1093 PyDoc_STR("(float x, float y) -> None")}, 1094 {"CGContextAddCurveToPoint", (PyCFunction)CGContextRefObj_CGContextAddCurveToPoint, 1, 1095 PyDoc_STR("(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y) -> None")}, 1096 {"CGContextAddQuadCurveToPoint", (PyCFunction)CGContextRefObj_CGContextAddQuadCurveToPoint, 1, 1097 PyDoc_STR("(float cpx, float cpy, float x, float y) -> None")}, 1098 {"CGContextClosePath", (PyCFunction)CGContextRefObj_CGContextClosePath, 1, 1099 PyDoc_STR("() -> None")}, 1100 {"CGContextAddRect", (PyCFunction)CGContextRefObj_CGContextAddRect, 1, 1101 PyDoc_STR("(CGRect rect) -> None")}, 1102 {"CGContextAddArc", (PyCFunction)CGContextRefObj_CGContextAddArc, 1, 1103 PyDoc_STR("(float x, float y, float radius, float startAngle, float endAngle, int clockwise) -> None")}, 1104 {"CGContextAddArcToPoint", (PyCFunction)CGContextRefObj_CGContextAddArcToPoint, 1, 1105 PyDoc_STR("(float x1, float y1, float x2, float y2, float radius) -> None")}, 1106 {"CGContextIsPathEmpty", (PyCFunction)CGContextRefObj_CGContextIsPathEmpty, 1, 1107 PyDoc_STR("() -> (int _rv)")}, 1108 {"CGContextGetPathCurrentPoint", (PyCFunction)CGContextRefObj_CGContextGetPathCurrentPoint, 1, 1109 PyDoc_STR("() -> (CGPoint _rv)")}, 1110 {"CGContextGetPathBoundingBox", (PyCFunction)CGContextRefObj_CGContextGetPathBoundingBox, 1, 1111 PyDoc_STR("() -> (CGRect _rv)")}, 1112 {"CGContextDrawPath", (PyCFunction)CGContextRefObj_CGContextDrawPath, 1, 1113 PyDoc_STR("(int mode) -> None")}, 1114 {"CGContextFillPath", (PyCFunction)CGContextRefObj_CGContextFillPath, 1, 1115 PyDoc_STR("() -> None")}, 1116 {"CGContextEOFillPath", (PyCFunction)CGContextRefObj_CGContextEOFillPath, 1, 1117 PyDoc_STR("() -> None")}, 1118 {"CGContextStrokePath", (PyCFunction)CGContextRefObj_CGContextStrokePath, 1, 1119 PyDoc_STR("() -> None")}, 1120 {"CGContextFillRect", (PyCFunction)CGContextRefObj_CGContextFillRect, 1, 1121 PyDoc_STR("(CGRect rect) -> None")}, 1122 {"CGContextStrokeRect", (PyCFunction)CGContextRefObj_CGContextStrokeRect, 1, 1123 PyDoc_STR("(CGRect rect) -> None")}, 1124 {"CGContextStrokeRectWithWidth", (PyCFunction)CGContextRefObj_CGContextStrokeRectWithWidth, 1, 1125 PyDoc_STR("(CGRect rect, float width) -> None")}, 1126 {"CGContextClearRect", (PyCFunction)CGContextRefObj_CGContextClearRect, 1, 1127 PyDoc_STR("(CGRect rect) -> None")}, 1128 {"CGContextClip", (PyCFunction)CGContextRefObj_CGContextClip, 1, 1129 PyDoc_STR("() -> None")}, 1130 {"CGContextEOClip", (PyCFunction)CGContextRefObj_CGContextEOClip, 1, 1131 PyDoc_STR("() -> None")}, 1132 {"CGContextClipToRect", (PyCFunction)CGContextRefObj_CGContextClipToRect, 1, 1133 PyDoc_STR("(CGRect rect) -> None")}, 1134 {"CGContextSetGrayFillColor", (PyCFunction)CGContextRefObj_CGContextSetGrayFillColor, 1, 1135 PyDoc_STR("(float gray, float alpha) -> None")}, 1136 {"CGContextSetGrayStrokeColor", (PyCFunction)CGContextRefObj_CGContextSetGrayStrokeColor, 1, 1137 PyDoc_STR("(float gray, float alpha) -> None")}, 1138 {"CGContextSetRGBFillColor", (PyCFunction)CGContextRefObj_CGContextSetRGBFillColor, 1, 1139 PyDoc_STR("(float red, float green, float blue, float alpha) -> None")}, 1140 {"CGContextSetRGBStrokeColor", (PyCFunction)CGContextRefObj_CGContextSetRGBStrokeColor, 1, 1141 PyDoc_STR("(float red, float green, float blue, float alpha) -> None")}, 1142 {"CGContextSetCMYKFillColor", (PyCFunction)CGContextRefObj_CGContextSetCMYKFillColor, 1, 1143 PyDoc_STR("(float cyan, float magenta, float yellow, float black, float alpha) -> None")}, 1144 {"CGContextSetCMYKStrokeColor", (PyCFunction)CGContextRefObj_CGContextSetCMYKStrokeColor, 1, 1145 PyDoc_STR("(float cyan, float magenta, float yellow, float black, float alpha) -> None")}, 1146 {"CGContextGetInterpolationQuality", (PyCFunction)CGContextRefObj_CGContextGetInterpolationQuality, 1, 1147 PyDoc_STR("() -> (int _rv)")}, 1148 {"CGContextSetInterpolationQuality", (PyCFunction)CGContextRefObj_CGContextSetInterpolationQuality, 1, 1149 PyDoc_STR("(int quality) -> None")}, 1150 {"CGContextSetCharacterSpacing", (PyCFunction)CGContextRefObj_CGContextSetCharacterSpacing, 1, 1151 PyDoc_STR("(float spacing) -> None")}, 1152 {"CGContextSetTextPosition", (PyCFunction)CGContextRefObj_CGContextSetTextPosition, 1, 1153 PyDoc_STR("(float x, float y) -> None")}, 1154 {"CGContextGetTextPosition", (PyCFunction)CGContextRefObj_CGContextGetTextPosition, 1, 1155 PyDoc_STR("() -> (CGPoint _rv)")}, 1156 {"CGContextSetTextMatrix", (PyCFunction)CGContextRefObj_CGContextSetTextMatrix, 1, 1157 PyDoc_STR("(CGAffineTransform transform) -> None")}, 1158 {"CGContextGetTextMatrix", (PyCFunction)CGContextRefObj_CGContextGetTextMatrix, 1, 1159 PyDoc_STR("() -> (CGAffineTransform _rv)")}, 1160 {"CGContextSetTextDrawingMode", (PyCFunction)CGContextRefObj_CGContextSetTextDrawingMode, 1, 1161 PyDoc_STR("(int mode) -> None")}, 1162 {"CGContextSetFontSize", (PyCFunction)CGContextRefObj_CGContextSetFontSize, 1, 1163 PyDoc_STR("(float size) -> None")}, 1164 {"CGContextSelectFont", (PyCFunction)CGContextRefObj_CGContextSelectFont, 1, 1165 PyDoc_STR("(char * name, float size, int textEncoding) -> None")}, 1166 {"CGContextShowText", (PyCFunction)CGContextRefObj_CGContextShowText, 1, 1167 PyDoc_STR("(Buffer cstring) -> None")}, 1168 {"CGContextShowTextAtPoint", (PyCFunction)CGContextRefObj_CGContextShowTextAtPoint, 1, 1169 PyDoc_STR("(float x, float y, Buffer cstring) -> None")}, 1170 {"CGContextEndPage", (PyCFunction)CGContextRefObj_CGContextEndPage, 1, 1171 PyDoc_STR("() -> None")}, 1172 {"CGContextFlush", (PyCFunction)CGContextRefObj_CGContextFlush, 1, 1173 PyDoc_STR("() -> None")}, 1174 {"CGContextSynchronize", (PyCFunction)CGContextRefObj_CGContextSynchronize, 1, 1175 PyDoc_STR("() -> None")}, 1176 {"CGContextSetShouldAntialias", (PyCFunction)CGContextRefObj_CGContextSetShouldAntialias, 1, 1177 PyDoc_STR("(int shouldAntialias) -> None")}, 1178 1178 #ifndef __LP64__ 1179 1180 1181 1182 1179 {"SyncCGContextOriginWithPort", (PyCFunction)CGContextRefObj_SyncCGContextOriginWithPort, 1, 1180 PyDoc_STR("(CGrafPtr port) -> None")}, 1181 {"ClipCGContextToRegion", (PyCFunction)CGContextRefObj_ClipCGContextToRegion, 1, 1182 PyDoc_STR("(Rect portRect, RgnHandle region) -> None")}, 1183 1183 #endif 1184 1184 {NULL, NULL, 0} 1185 1185 }; 1186 1186 … … 1199 1199 static PyObject *CGContextRefObj_tp_new(PyTypeObject *type, PyObject *_args, PyObject *_kwds) 1200 1200 { 1201 1202 1203 1204 1205 1206 1207 1208 1201 PyObject *_self; 1202 CGContextRef itself; 1203 char *kw[] = {"itself", 0}; 1204 1205 if (!PyArg_ParseTupleAndKeywords(_args, _kwds, "O&", kw, CGContextRefObj_Convert, &itself)) return NULL; 1206 if ((_self = type->tp_alloc(type, 0)) == NULL) return NULL; 1207 ((CGContextRefObject *)_self)->ob_itself = itself; 1208 return _self; 1209 1209 } 1210 1210 … … 1213 1213 1214 1214 PyTypeObject CGContextRef_Type = { 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1215 PyObject_HEAD_INIT(NULL) 1216 0, /*ob_size*/ 1217 "_CG.CGContextRef", /*tp_name*/ 1218 sizeof(CGContextRefObject), /*tp_basicsize*/ 1219 0, /*tp_itemsize*/ 1220 /* methods */ 1221 (destructor) CGContextRefObj_dealloc, /*tp_dealloc*/ 1222 0, /*tp_print*/ 1223 (getattrfunc)0, /*tp_getattr*/ 1224 (setattrfunc)0, /*tp_setattr*/ 1225 (cmpfunc) CGContextRefObj_compare, /*tp_compare*/ 1226 (reprfunc) CGContextRefObj_repr, /*tp_repr*/ 1227 (PyNumberMethods *)0, /* tp_as_number */ 1228 (PySequenceMethods *)0, /* tp_as_sequence */ 1229 (PyMappingMethods *)0, /* tp_as_mapping */ 1230 (hashfunc) CGContextRefObj_hash, /*tp_hash*/ 1231 0, /*tp_call*/ 1232 0, /*tp_str*/ 1233 PyObject_GenericGetAttr, /*tp_getattro*/ 1234 PyObject_GenericSetAttr, /*tp_setattro */ 1235 0, /*tp_as_buffer*/ 1236 Py_TPFLAGS_DEFAULT|Py_TPFLAGS_BASETYPE, /* tp_flags */ 1237 0, /*tp_doc*/ 1238 0, /*tp_traverse*/ 1239 0, /*tp_clear*/ 1240 0, /*tp_richcompare*/ 1241 0, /*tp_weaklistoffset*/ 1242 0, /*tp_iter*/ 1243 0, /*tp_iternext*/ 1244 CGContextRefObj_methods, /* tp_methods */ 1245 0, /*tp_members*/ 1246 CGContextRefObj_getsetlist, /*tp_getset*/ 1247 0, /*tp_base*/ 1248 0, /*tp_dict*/ 1249 0, /*tp_descr_get*/ 1250 0, /*tp_descr_set*/ 1251 0, /*tp_dictoffset*/ 1252 CGContextRefObj_tp_init, /* tp_init */ 1253 CGContextRefObj_tp_alloc, /* tp_alloc */ 1254 CGContextRefObj_tp_new, /* tp_new */ 1255 CGContextRefObj_tp_free, /* tp_free */ 1256 1256 }; 1257 1257 … … 1262 1262 static PyObject *CG_CreateCGContextForPort(PyObject *_self, PyObject *_args) 1263 1263 { 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1264 PyObject *_res = NULL; 1265 GrafPtr port; 1266 CGContextRef ctx; 1267 OSStatus _err; 1268 1269 if (!PyArg_ParseTuple(_args, "O&", GrafObj_Convert, &port)) 1270 return NULL; 1271 1272 _err = CreateCGContextForPort(port, &ctx); 1273 if (_err != noErr) 1274 if (_err != noErr) return PyMac_Error(_err); 1275 _res = Py_BuildValue("O&", CGContextRefObj_New, ctx); 1276 return _res; 1277 1277 1278 1278 } … … 1281 1281 static PyMethodDef CG_methods[] = { 1282 1282 #ifndef __LP64__ 1283 1284 1283 {"CreateCGContextForPort", (PyCFunction)CG_CreateCGContextForPort, 1, 1284 PyDoc_STR("(CGrafPtr) -> CGContextRef")}, 1285 1285 #endif 1286 1286 {NULL, NULL, 0} 1287 1287 }; 1288 1288 … … 1292 1292 void init_CG(void) 1293 1293 { 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1294 PyObject *m; 1295 PyObject *d; 1296 1297 1298 1299 1300 m = Py_InitModule("_CG", CG_methods); 1301 d = PyModule_GetDict(m); 1302 CG_Error = PyMac_GetOSErrException(); 1303 if (CG_Error == NULL || 1304 PyDict_SetItemString(d, "Error", CG_Error) != 0) 1305 return; 1306 CGContextRef_Type.ob_type = &PyType_Type; 1307 if (PyType_Ready(&CGContextRef_Type) < 0) return; 1308 Py_INCREF(&CGContextRef_Type); 1309 PyModule_AddObject(m, "CGContextRef", (PyObject *)&CGContextRef_Type); 1310 /* Backward-compatible name */ 1311 Py_INCREF(&CGContextRef_Type); 1312 PyModule_AddObject(m, "CGContextRefType", (PyObject *)&CGContextRef_Type); 1313 1313 } 1314 1314
Note:
See TracChangeset
for help on using the changeset viewer.