1 | /* -*- Mode: C; c-file-style: "python" -*- */
|
---|
2 |
|
---|
3 | #include <Python.h>
|
---|
4 | #include <locale.h>
|
---|
5 |
|
---|
6 | /* Case-insensitive string match used for nan and inf detection; t should be
|
---|
7 | lower-case. Returns 1 for a successful match, 0 otherwise. */
|
---|
8 |
|
---|
9 | static int
|
---|
10 | case_insensitive_match(const char *s, const char *t)
|
---|
11 | {
|
---|
12 | while(*t && Py_TOLOWER(*s) == *t) {
|
---|
13 | s++;
|
---|
14 | t++;
|
---|
15 | }
|
---|
16 | return *t ? 0 : 1;
|
---|
17 | }
|
---|
18 |
|
---|
19 | /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
|
---|
20 | "infinity", with an optional leading sign of "+" or "-". On success,
|
---|
21 | return the NaN or Infinity as a double and set *endptr to point just beyond
|
---|
22 | the successfully parsed portion of the string. On failure, return -1.0 and
|
---|
23 | set *endptr to point to the start of the string. */
|
---|
24 |
|
---|
25 | double
|
---|
26 | _Py_parse_inf_or_nan(const char *p, char **endptr)
|
---|
27 | {
|
---|
28 | double retval;
|
---|
29 | const char *s;
|
---|
30 | int negate = 0;
|
---|
31 |
|
---|
32 | s = p;
|
---|
33 | if (*s == '-') {
|
---|
34 | negate = 1;
|
---|
35 | s++;
|
---|
36 | }
|
---|
37 | else if (*s == '+') {
|
---|
38 | s++;
|
---|
39 | }
|
---|
40 | if (case_insensitive_match(s, "inf")) {
|
---|
41 | s += 3;
|
---|
42 | if (case_insensitive_match(s, "inity"))
|
---|
43 | s += 5;
|
---|
44 | retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
|
---|
45 | }
|
---|
46 | #ifdef Py_NAN
|
---|
47 | else if (case_insensitive_match(s, "nan")) {
|
---|
48 | s += 3;
|
---|
49 | retval = negate ? -Py_NAN : Py_NAN;
|
---|
50 | }
|
---|
51 | #endif
|
---|
52 | else {
|
---|
53 | s = p;
|
---|
54 | retval = -1.0;
|
---|
55 | }
|
---|
56 | *endptr = (char *)s;
|
---|
57 | return retval;
|
---|
58 | }
|
---|
59 |
|
---|
60 | /**
|
---|
61 | * PyOS_ascii_strtod:
|
---|
62 | * @nptr: the string to convert to a numeric value.
|
---|
63 | * @endptr: if non-%NULL, it returns the character after
|
---|
64 | * the last character used in the conversion.
|
---|
65 | *
|
---|
66 | * Converts a string to a #gdouble value.
|
---|
67 | * This function behaves like the standard strtod() function
|
---|
68 | * does in the C locale. It does this without actually
|
---|
69 | * changing the current locale, since that would not be
|
---|
70 | * thread-safe.
|
---|
71 | *
|
---|
72 | * This function is typically used when reading configuration
|
---|
73 | * files or other non-user input that should be locale independent.
|
---|
74 | * To handle input from the user you should normally use the
|
---|
75 | * locale-sensitive system strtod() function.
|
---|
76 | *
|
---|
77 | * If the correct value would cause overflow, plus or minus %HUGE_VAL
|
---|
78 | * is returned (according to the sign of the value), and %ERANGE is
|
---|
79 | * stored in %errno. If the correct value would cause underflow,
|
---|
80 | * zero is returned and %ERANGE is stored in %errno.
|
---|
81 | * If memory allocation fails, %ENOMEM is stored in %errno.
|
---|
82 | *
|
---|
83 | * This function resets %errno before calling strtod() so that
|
---|
84 | * you can reliably detect overflow and underflow.
|
---|
85 | *
|
---|
86 | * Return value: the #gdouble value.
|
---|
87 | **/
|
---|
88 |
|
---|
89 | #ifndef PY_NO_SHORT_FLOAT_REPR
|
---|
90 |
|
---|
91 | double
|
---|
92 | _PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
93 | {
|
---|
94 | double result;
|
---|
95 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
96 |
|
---|
97 | assert(nptr != NULL);
|
---|
98 | /* Set errno to zero, so that we can distinguish zero results
|
---|
99 | and underflows */
|
---|
100 | errno = 0;
|
---|
101 |
|
---|
102 | _Py_SET_53BIT_PRECISION_START;
|
---|
103 | result = _Py_dg_strtod(nptr, endptr);
|
---|
104 | _Py_SET_53BIT_PRECISION_END;
|
---|
105 |
|
---|
106 | if (*endptr == nptr)
|
---|
107 | /* string might represent an inf or nan */
|
---|
108 | result = _Py_parse_inf_or_nan(nptr, endptr);
|
---|
109 |
|
---|
110 | return result;
|
---|
111 |
|
---|
112 | }
|
---|
113 |
|
---|
114 | #else
|
---|
115 |
|
---|
116 | /*
|
---|
117 | Use system strtod; since strtod is locale aware, we may
|
---|
118 | have to first fix the decimal separator.
|
---|
119 |
|
---|
120 | Note that unlike _Py_dg_strtod, the system strtod may not always give
|
---|
121 | correctly rounded results.
|
---|
122 | */
|
---|
123 |
|
---|
124 | double
|
---|
125 | _PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
126 | {
|
---|
127 | char *fail_pos;
|
---|
128 | double val = -1.0;
|
---|
129 | struct lconv *locale_data;
|
---|
130 | const char *decimal_point;
|
---|
131 | size_t decimal_point_len;
|
---|
132 | const char *p, *decimal_point_pos;
|
---|
133 | const char *end = NULL; /* Silence gcc */
|
---|
134 | const char *digits_pos = NULL;
|
---|
135 | int negate = 0;
|
---|
136 |
|
---|
137 | assert(nptr != NULL);
|
---|
138 |
|
---|
139 | fail_pos = NULL;
|
---|
140 |
|
---|
141 | locale_data = localeconv();
|
---|
142 | decimal_point = locale_data->decimal_point;
|
---|
143 | decimal_point_len = strlen(decimal_point);
|
---|
144 |
|
---|
145 | assert(decimal_point_len != 0);
|
---|
146 |
|
---|
147 | decimal_point_pos = NULL;
|
---|
148 |
|
---|
149 | /* Parse infinities and nans */
|
---|
150 | val = _Py_parse_inf_or_nan(nptr, endptr);
|
---|
151 | if (*endptr != nptr)
|
---|
152 | return val;
|
---|
153 |
|
---|
154 | /* Set errno to zero, so that we can distinguish zero results
|
---|
155 | and underflows */
|
---|
156 | errno = 0;
|
---|
157 |
|
---|
158 | /* We process the optional sign manually, then pass the remainder to
|
---|
159 | the system strtod. This ensures that the result of an underflow
|
---|
160 | has the correct sign. (bug #1725) */
|
---|
161 | p = nptr;
|
---|
162 | /* Process leading sign, if present */
|
---|
163 | if (*p == '-') {
|
---|
164 | negate = 1;
|
---|
165 | p++;
|
---|
166 | }
|
---|
167 | else if (*p == '+') {
|
---|
168 | p++;
|
---|
169 | }
|
---|
170 |
|
---|
171 | /* Some platform strtods accept hex floats; Python shouldn't (at the
|
---|
172 | moment), so we check explicitly for strings starting with '0x'. */
|
---|
173 | if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
|
---|
174 | goto invalid_string;
|
---|
175 |
|
---|
176 | /* Check that what's left begins with a digit or decimal point */
|
---|
177 | if (!Py_ISDIGIT(*p) && *p != '.')
|
---|
178 | goto invalid_string;
|
---|
179 |
|
---|
180 | digits_pos = p;
|
---|
181 | if (decimal_point[0] != '.' ||
|
---|
182 | decimal_point[1] != 0)
|
---|
183 | {
|
---|
184 | /* Look for a '.' in the input; if present, it'll need to be
|
---|
185 | swapped for the current locale's decimal point before we
|
---|
186 | call strtod. On the other hand, if we find the current
|
---|
187 | locale's decimal point then the input is invalid. */
|
---|
188 | while (Py_ISDIGIT(*p))
|
---|
189 | p++;
|
---|
190 |
|
---|
191 | if (*p == '.')
|
---|
192 | {
|
---|
193 | decimal_point_pos = p++;
|
---|
194 |
|
---|
195 | /* locate end of number */
|
---|
196 | while (Py_ISDIGIT(*p))
|
---|
197 | p++;
|
---|
198 |
|
---|
199 | if (*p == 'e' || *p == 'E')
|
---|
200 | p++;
|
---|
201 | if (*p == '+' || *p == '-')
|
---|
202 | p++;
|
---|
203 | while (Py_ISDIGIT(*p))
|
---|
204 | p++;
|
---|
205 | end = p;
|
---|
206 | }
|
---|
207 | else if (strncmp(p, decimal_point, decimal_point_len) == 0)
|
---|
208 | /* Python bug #1417699 */
|
---|
209 | goto invalid_string;
|
---|
210 | /* For the other cases, we need not convert the decimal
|
---|
211 | point */
|
---|
212 | }
|
---|
213 |
|
---|
214 | if (decimal_point_pos) {
|
---|
215 | char *copy, *c;
|
---|
216 | /* Create a copy of the input, with the '.' converted to the
|
---|
217 | locale-specific decimal point */
|
---|
218 | copy = (char *)PyMem_MALLOC(end - digits_pos +
|
---|
219 | 1 + decimal_point_len);
|
---|
220 | if (copy == NULL) {
|
---|
221 | *endptr = (char *)nptr;
|
---|
222 | errno = ENOMEM;
|
---|
223 | return val;
|
---|
224 | }
|
---|
225 |
|
---|
226 | c = copy;
|
---|
227 | memcpy(c, digits_pos, decimal_point_pos - digits_pos);
|
---|
228 | c += decimal_point_pos - digits_pos;
|
---|
229 | memcpy(c, decimal_point, decimal_point_len);
|
---|
230 | c += decimal_point_len;
|
---|
231 | memcpy(c, decimal_point_pos + 1,
|
---|
232 | end - (decimal_point_pos + 1));
|
---|
233 | c += end - (decimal_point_pos + 1);
|
---|
234 | *c = 0;
|
---|
235 |
|
---|
236 | val = strtod(copy, &fail_pos);
|
---|
237 |
|
---|
238 | if (fail_pos)
|
---|
239 | {
|
---|
240 | if (fail_pos > decimal_point_pos)
|
---|
241 | fail_pos = (char *)digits_pos +
|
---|
242 | (fail_pos - copy) -
|
---|
243 | (decimal_point_len - 1);
|
---|
244 | else
|
---|
245 | fail_pos = (char *)digits_pos +
|
---|
246 | (fail_pos - copy);
|
---|
247 | }
|
---|
248 |
|
---|
249 | PyMem_FREE(copy);
|
---|
250 |
|
---|
251 | }
|
---|
252 | else {
|
---|
253 | val = strtod(digits_pos, &fail_pos);
|
---|
254 | }
|
---|
255 |
|
---|
256 | if (fail_pos == digits_pos)
|
---|
257 | goto invalid_string;
|
---|
258 |
|
---|
259 | if (negate && fail_pos != nptr)
|
---|
260 | val = -val;
|
---|
261 | *endptr = fail_pos;
|
---|
262 |
|
---|
263 | return val;
|
---|
264 |
|
---|
265 | invalid_string:
|
---|
266 | *endptr = (char*)nptr;
|
---|
267 | errno = EINVAL;
|
---|
268 | return -1.0;
|
---|
269 | }
|
---|
270 |
|
---|
271 | #endif
|
---|
272 |
|
---|
273 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */
|
---|
274 |
|
---|
275 | double
|
---|
276 | PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
277 | {
|
---|
278 | char *fail_pos;
|
---|
279 | const char *p;
|
---|
280 | double x;
|
---|
281 |
|
---|
282 | if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
---|
283 | "PyOS_ascii_strtod and PyOS_ascii_atof are "
|
---|
284 | "deprecated. Use PyOS_string_to_double "
|
---|
285 | "instead.", 1) < 0)
|
---|
286 | return -1.0;
|
---|
287 |
|
---|
288 | /* _PyOS_ascii_strtod already does everything that we want,
|
---|
289 | except that it doesn't parse leading whitespace */
|
---|
290 | p = nptr;
|
---|
291 | while (Py_ISSPACE(*p))
|
---|
292 | p++;
|
---|
293 | x = _PyOS_ascii_strtod(p, &fail_pos);
|
---|
294 | if (fail_pos == p)
|
---|
295 | fail_pos = (char *)nptr;
|
---|
296 | if (endptr)
|
---|
297 | *endptr = (char *)fail_pos;
|
---|
298 | return x;
|
---|
299 | }
|
---|
300 |
|
---|
301 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */
|
---|
302 |
|
---|
303 | double
|
---|
304 | PyOS_ascii_atof(const char *nptr)
|
---|
305 | {
|
---|
306 | return PyOS_ascii_strtod(nptr, NULL);
|
---|
307 | }
|
---|
308 |
|
---|
309 | /* PyOS_string_to_double is the recommended replacement for the deprecated
|
---|
310 | PyOS_ascii_strtod and PyOS_ascii_atof functions. It converts a
|
---|
311 | null-terminated byte string s (interpreted as a string of ASCII characters)
|
---|
312 | to a float. The string should not have leading or trailing whitespace (in
|
---|
313 | contrast, PyOS_ascii_strtod allows leading whitespace but not trailing
|
---|
314 | whitespace). The conversion is independent of the current locale.
|
---|
315 |
|
---|
316 | If endptr is NULL, try to convert the whole string. Raise ValueError and
|
---|
317 | return -1.0 if the string is not a valid representation of a floating-point
|
---|
318 | number.
|
---|
319 |
|
---|
320 | If endptr is non-NULL, try to convert as much of the string as possible.
|
---|
321 | If no initial segment of the string is the valid representation of a
|
---|
322 | floating-point number then *endptr is set to point to the beginning of the
|
---|
323 | string, -1.0 is returned and again ValueError is raised.
|
---|
324 |
|
---|
325 | On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
|
---|
326 | if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
|
---|
327 | exception is raised. Otherwise, overflow_exception should point to a
|
---|
328 | a Python exception, this exception will be raised, -1.0 will be returned,
|
---|
329 | and *endptr will point just past the end of the converted value.
|
---|
330 |
|
---|
331 | If any other failure occurs (for example lack of memory), -1.0 is returned
|
---|
332 | and the appropriate Python exception will have been set.
|
---|
333 | */
|
---|
334 |
|
---|
335 | double
|
---|
336 | PyOS_string_to_double(const char *s,
|
---|
337 | char **endptr,
|
---|
338 | PyObject *overflow_exception)
|
---|
339 | {
|
---|
340 | double x, result=-1.0;
|
---|
341 | char *fail_pos;
|
---|
342 |
|
---|
343 | errno = 0;
|
---|
344 | PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0)
|
---|
345 | x = _PyOS_ascii_strtod(s, &fail_pos);
|
---|
346 | PyFPE_END_PROTECT(x)
|
---|
347 |
|
---|
348 | if (errno == ENOMEM) {
|
---|
349 | PyErr_NoMemory();
|
---|
350 | fail_pos = (char *)s;
|
---|
351 | }
|
---|
352 | else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
|
---|
353 | PyErr_Format(PyExc_ValueError,
|
---|
354 | "could not convert string to float: "
|
---|
355 | "%.200s", s);
|
---|
356 | else if (fail_pos == s)
|
---|
357 | PyErr_Format(PyExc_ValueError,
|
---|
358 | "could not convert string to float: "
|
---|
359 | "%.200s", s);
|
---|
360 | else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
|
---|
361 | PyErr_Format(overflow_exception,
|
---|
362 | "value too large to convert to float: "
|
---|
363 | "%.200s", s);
|
---|
364 | else
|
---|
365 | result = x;
|
---|
366 |
|
---|
367 | if (endptr != NULL)
|
---|
368 | *endptr = fail_pos;
|
---|
369 | return result;
|
---|
370 | }
|
---|
371 |
|
---|
372 | /* Given a string that may have a decimal point in the current
|
---|
373 | locale, change it back to a dot. Since the string cannot get
|
---|
374 | longer, no need for a maximum buffer size parameter. */
|
---|
375 | Py_LOCAL_INLINE(void)
|
---|
376 | change_decimal_from_locale_to_dot(char* buffer)
|
---|
377 | {
|
---|
378 | struct lconv *locale_data = localeconv();
|
---|
379 | const char *decimal_point = locale_data->decimal_point;
|
---|
380 |
|
---|
381 | if (decimal_point[0] != '.' || decimal_point[1] != 0) {
|
---|
382 | size_t decimal_point_len = strlen(decimal_point);
|
---|
383 |
|
---|
384 | if (*buffer == '+' || *buffer == '-')
|
---|
385 | buffer++;
|
---|
386 | while (Py_ISDIGIT(*buffer))
|
---|
387 | buffer++;
|
---|
388 | if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
|
---|
389 | *buffer = '.';
|
---|
390 | buffer++;
|
---|
391 | if (decimal_point_len > 1) {
|
---|
392 | /* buffer needs to get smaller */
|
---|
393 | size_t rest_len = strlen(buffer +
|
---|
394 | (decimal_point_len - 1));
|
---|
395 | memmove(buffer,
|
---|
396 | buffer + (decimal_point_len - 1),
|
---|
397 | rest_len);
|
---|
398 | buffer[rest_len] = 0;
|
---|
399 | }
|
---|
400 | }
|
---|
401 | }
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | /* From the C99 standard, section 7.19.6:
|
---|
406 | The exponent always contains at least two digits, and only as many more digits
|
---|
407 | as necessary to represent the exponent.
|
---|
408 | */
|
---|
409 | #define MIN_EXPONENT_DIGITS 2
|
---|
410 |
|
---|
411 | /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
|
---|
412 | in length. */
|
---|
413 | Py_LOCAL_INLINE(void)
|
---|
414 | ensure_minimum_exponent_length(char* buffer, size_t buf_size)
|
---|
415 | {
|
---|
416 | char *p = strpbrk(buffer, "eE");
|
---|
417 | if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
|
---|
418 | char *start = p + 2;
|
---|
419 | int exponent_digit_cnt = 0;
|
---|
420 | int leading_zero_cnt = 0;
|
---|
421 | int in_leading_zeros = 1;
|
---|
422 | int significant_digit_cnt;
|
---|
423 |
|
---|
424 | /* Skip over the exponent and the sign. */
|
---|
425 | p += 2;
|
---|
426 |
|
---|
427 | /* Find the end of the exponent, keeping track of leading
|
---|
428 | zeros. */
|
---|
429 | while (*p && Py_ISDIGIT(*p)) {
|
---|
430 | if (in_leading_zeros && *p == '0')
|
---|
431 | ++leading_zero_cnt;
|
---|
432 | if (*p != '0')
|
---|
433 | in_leading_zeros = 0;
|
---|
434 | ++p;
|
---|
435 | ++exponent_digit_cnt;
|
---|
436 | }
|
---|
437 |
|
---|
438 | significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
|
---|
439 | if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
|
---|
440 | /* If there are 2 exactly digits, we're done,
|
---|
441 | regardless of what they contain */
|
---|
442 | }
|
---|
443 | else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
|
---|
444 | int extra_zeros_cnt;
|
---|
445 |
|
---|
446 | /* There are more than 2 digits in the exponent. See
|
---|
447 | if we can delete some of the leading zeros */
|
---|
448 | if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
|
---|
449 | significant_digit_cnt = MIN_EXPONENT_DIGITS;
|
---|
450 | extra_zeros_cnt = exponent_digit_cnt -
|
---|
451 | significant_digit_cnt;
|
---|
452 |
|
---|
453 | /* Delete extra_zeros_cnt worth of characters from the
|
---|
454 | front of the exponent */
|
---|
455 | assert(extra_zeros_cnt >= 0);
|
---|
456 |
|
---|
457 | /* Add one to significant_digit_cnt to copy the
|
---|
458 | trailing 0 byte, thus setting the length */
|
---|
459 | memmove(start,
|
---|
460 | start + extra_zeros_cnt,
|
---|
461 | significant_digit_cnt + 1);
|
---|
462 | }
|
---|
463 | else {
|
---|
464 | /* If there are fewer than 2 digits, add zeros
|
---|
465 | until there are 2, if there's enough room */
|
---|
466 | int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
|
---|
467 | if (start + zeros + exponent_digit_cnt + 1
|
---|
468 | < buffer + buf_size) {
|
---|
469 | memmove(start + zeros, start,
|
---|
470 | exponent_digit_cnt + 1);
|
---|
471 | memset(start, '0', zeros);
|
---|
472 | }
|
---|
473 | }
|
---|
474 | }
|
---|
475 | }
|
---|
476 |
|
---|
477 | /* Remove trailing zeros after the decimal point from a numeric string; also
|
---|
478 | remove the decimal point if all digits following it are zero. The numeric
|
---|
479 | string must end in '\0', and should not have any leading or trailing
|
---|
480 | whitespace. Assumes that the decimal point is '.'. */
|
---|
481 | Py_LOCAL_INLINE(void)
|
---|
482 | remove_trailing_zeros(char *buffer)
|
---|
483 | {
|
---|
484 | char *old_fraction_end, *new_fraction_end, *end, *p;
|
---|
485 |
|
---|
486 | p = buffer;
|
---|
487 | if (*p == '-' || *p == '+')
|
---|
488 | /* Skip leading sign, if present */
|
---|
489 | ++p;
|
---|
490 | while (Py_ISDIGIT(*p))
|
---|
491 | ++p;
|
---|
492 |
|
---|
493 | /* if there's no decimal point there's nothing to do */
|
---|
494 | if (*p++ != '.')
|
---|
495 | return;
|
---|
496 |
|
---|
497 | /* scan any digits after the point */
|
---|
498 | while (Py_ISDIGIT(*p))
|
---|
499 | ++p;
|
---|
500 | old_fraction_end = p;
|
---|
501 |
|
---|
502 | /* scan up to ending '\0' */
|
---|
503 | while (*p != '\0')
|
---|
504 | p++;
|
---|
505 | /* +1 to make sure that we move the null byte as well */
|
---|
506 | end = p+1;
|
---|
507 |
|
---|
508 | /* scan back from fraction_end, looking for removable zeros */
|
---|
509 | p = old_fraction_end;
|
---|
510 | while (*(p-1) == '0')
|
---|
511 | --p;
|
---|
512 | /* and remove point if we've got that far */
|
---|
513 | if (*(p-1) == '.')
|
---|
514 | --p;
|
---|
515 | new_fraction_end = p;
|
---|
516 |
|
---|
517 | memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
|
---|
518 | }
|
---|
519 |
|
---|
520 | /* Ensure that buffer has a decimal point in it. The decimal point will not
|
---|
521 | be in the current locale, it will always be '.'. Don't add a decimal point
|
---|
522 | if an exponent is present. Also, convert to exponential notation where
|
---|
523 | adding a '.0' would produce too many significant digits (see issue 5864).
|
---|
524 |
|
---|
525 | Returns a pointer to the fixed buffer, or NULL on failure.
|
---|
526 | */
|
---|
527 | Py_LOCAL_INLINE(char *)
|
---|
528 | ensure_decimal_point(char* buffer, size_t buf_size, int precision)
|
---|
529 | {
|
---|
530 | int digit_count, insert_count = 0, convert_to_exp = 0;
|
---|
531 | char *chars_to_insert, *digits_start;
|
---|
532 |
|
---|
533 | /* search for the first non-digit character */
|
---|
534 | char *p = buffer;
|
---|
535 | if (*p == '-' || *p == '+')
|
---|
536 | /* Skip leading sign, if present. I think this could only
|
---|
537 | ever be '-', but it can't hurt to check for both. */
|
---|
538 | ++p;
|
---|
539 | digits_start = p;
|
---|
540 | while (*p && Py_ISDIGIT(*p))
|
---|
541 | ++p;
|
---|
542 | digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);
|
---|
543 |
|
---|
544 | if (*p == '.') {
|
---|
545 | if (Py_ISDIGIT(*(p+1))) {
|
---|
546 | /* Nothing to do, we already have a decimal
|
---|
547 | point and a digit after it */
|
---|
548 | }
|
---|
549 | else {
|
---|
550 | /* We have a decimal point, but no following
|
---|
551 | digit. Insert a zero after the decimal. */
|
---|
552 | /* can't ever get here via PyOS_double_to_string */
|
---|
553 | assert(precision == -1);
|
---|
554 | ++p;
|
---|
555 | chars_to_insert = "0";
|
---|
556 | insert_count = 1;
|
---|
557 | }
|
---|
558 | }
|
---|
559 | else if (!(*p == 'e' || *p == 'E')) {
|
---|
560 | /* Don't add ".0" if we have an exponent. */
|
---|
561 | if (digit_count == precision) {
|
---|
562 | /* issue 5864: don't add a trailing .0 in the case
|
---|
563 | where the '%g'-formatted result already has as many
|
---|
564 | significant digits as were requested. Switch to
|
---|
565 | exponential notation instead. */
|
---|
566 | convert_to_exp = 1;
|
---|
567 | /* no exponent, no point, and we shouldn't land here
|
---|
568 | for infs and nans, so we must be at the end of the
|
---|
569 | string. */
|
---|
570 | assert(*p == '\0');
|
---|
571 | }
|
---|
572 | else {
|
---|
573 | assert(precision == -1 || digit_count < precision);
|
---|
574 | chars_to_insert = ".0";
|
---|
575 | insert_count = 2;
|
---|
576 | }
|
---|
577 | }
|
---|
578 | if (insert_count) {
|
---|
579 | size_t buf_len = strlen(buffer);
|
---|
580 | if (buf_len + insert_count + 1 >= buf_size) {
|
---|
581 | /* If there is not enough room in the buffer
|
---|
582 | for the additional text, just skip it. It's
|
---|
583 | not worth generating an error over. */
|
---|
584 | }
|
---|
585 | else {
|
---|
586 | memmove(p + insert_count, p,
|
---|
587 | buffer + strlen(buffer) - p + 1);
|
---|
588 | memcpy(p, chars_to_insert, insert_count);
|
---|
589 | }
|
---|
590 | }
|
---|
591 | if (convert_to_exp) {
|
---|
592 | int written;
|
---|
593 | size_t buf_avail;
|
---|
594 | p = digits_start;
|
---|
595 | /* insert decimal point */
|
---|
596 | assert(digit_count >= 1);
|
---|
597 | memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
|
---|
598 | p[1] = '.';
|
---|
599 | p += digit_count+1;
|
---|
600 | assert(p <= buf_size+buffer);
|
---|
601 | buf_avail = buf_size+buffer-p;
|
---|
602 | if (buf_avail == 0)
|
---|
603 | return NULL;
|
---|
604 | /* Add exponent. It's okay to use lower case 'e': we only
|
---|
605 | arrive here as a result of using the empty format code or
|
---|
606 | repr/str builtins and those never want an upper case 'E' */
|
---|
607 | written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
|
---|
608 | if (!(0 <= written &&
|
---|
609 | written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
|
---|
610 | /* output truncated, or something else bad happened */
|
---|
611 | return NULL;
|
---|
612 | remove_trailing_zeros(buffer);
|
---|
613 | }
|
---|
614 | return buffer;
|
---|
615 | }
|
---|
616 |
|
---|
617 | /* see FORMATBUFLEN in unicodeobject.c */
|
---|
618 | #define FLOAT_FORMATBUFLEN 120
|
---|
619 |
|
---|
620 | /**
|
---|
621 | * PyOS_ascii_formatd:
|
---|
622 | * @buffer: A buffer to place the resulting string in
|
---|
623 | * @buf_size: The length of the buffer.
|
---|
624 | * @format: The printf()-style format to use for the
|
---|
625 | * code to use for converting.
|
---|
626 | * @d: The #gdouble to convert
|
---|
627 | *
|
---|
628 | * Converts a #gdouble to a string, using the '.' as
|
---|
629 | * decimal point. To format the number you pass in
|
---|
630 | * a printf()-style format string. Allowed conversion
|
---|
631 | * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
|
---|
632 | *
|
---|
633 | * 'Z' is the same as 'g', except it always has a decimal and
|
---|
634 | * at least one digit after the decimal.
|
---|
635 | *
|
---|
636 | * Return value: The pointer to the buffer with the converted string.
|
---|
637 | * On failure returns NULL but does not set any Python exception.
|
---|
638 | **/
|
---|
639 | char *
|
---|
640 | _PyOS_ascii_formatd(char *buffer,
|
---|
641 | size_t buf_size,
|
---|
642 | const char *format,
|
---|
643 | double d,
|
---|
644 | int precision)
|
---|
645 | {
|
---|
646 | char format_char;
|
---|
647 | size_t format_len = strlen(format);
|
---|
648 |
|
---|
649 | /* Issue 2264: code 'Z' requires copying the format. 'Z' is 'g', but
|
---|
650 | also with at least one character past the decimal. */
|
---|
651 | char tmp_format[FLOAT_FORMATBUFLEN];
|
---|
652 |
|
---|
653 | /* The last character in the format string must be the format char */
|
---|
654 | format_char = format[format_len - 1];
|
---|
655 |
|
---|
656 | if (format[0] != '%')
|
---|
657 | return NULL;
|
---|
658 |
|
---|
659 | /* I'm not sure why this test is here. It's ensuring that the format
|
---|
660 | string after the first character doesn't have a single quote, a
|
---|
661 | lowercase l, or a percent. This is the reverse of the commented-out
|
---|
662 | test about 10 lines ago. */
|
---|
663 | if (strpbrk(format + 1, "'l%"))
|
---|
664 | return NULL;
|
---|
665 |
|
---|
666 | /* Also curious about this function is that it accepts format strings
|
---|
667 | like "%xg", which are invalid for floats. In general, the
|
---|
668 | interface to this function is not very good, but changing it is
|
---|
669 | difficult because it's a public API. */
|
---|
670 |
|
---|
671 | if (!(format_char == 'e' || format_char == 'E' ||
|
---|
672 | format_char == 'f' || format_char == 'F' ||
|
---|
673 | format_char == 'g' || format_char == 'G' ||
|
---|
674 | format_char == 'Z'))
|
---|
675 | return NULL;
|
---|
676 |
|
---|
677 | /* Map 'Z' format_char to 'g', by copying the format string and
|
---|
678 | replacing the final char with a 'g' */
|
---|
679 | if (format_char == 'Z') {
|
---|
680 | if (format_len + 1 >= sizeof(tmp_format)) {
|
---|
681 | /* The format won't fit in our copy. Error out. In
|
---|
682 | practice, this will never happen and will be
|
---|
683 | detected by returning NULL */
|
---|
684 | return NULL;
|
---|
685 | }
|
---|
686 | strcpy(tmp_format, format);
|
---|
687 | tmp_format[format_len - 1] = 'g';
|
---|
688 | format = tmp_format;
|
---|
689 | }
|
---|
690 |
|
---|
691 |
|
---|
692 | /* Have PyOS_snprintf do the hard work */
|
---|
693 | PyOS_snprintf(buffer, buf_size, format, d);
|
---|
694 |
|
---|
695 | /* Do various fixups on the return string */
|
---|
696 |
|
---|
697 | /* Get the current locale, and find the decimal point string.
|
---|
698 | Convert that string back to a dot. */
|
---|
699 | change_decimal_from_locale_to_dot(buffer);
|
---|
700 |
|
---|
701 | /* If an exponent exists, ensure that the exponent is at least
|
---|
702 | MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
|
---|
703 | for the extra zeros. Also, if there are more than
|
---|
704 | MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
|
---|
705 | back to MIN_EXPONENT_DIGITS */
|
---|
706 | ensure_minimum_exponent_length(buffer, buf_size);
|
---|
707 |
|
---|
708 | /* If format_char is 'Z', make sure we have at least one character
|
---|
709 | after the decimal point (and make sure we have a decimal point);
|
---|
710 | also switch to exponential notation in some edge cases where the
|
---|
711 | extra character would produce more significant digits that we
|
---|
712 | really want. */
|
---|
713 | if (format_char == 'Z')
|
---|
714 | buffer = ensure_decimal_point(buffer, buf_size, precision);
|
---|
715 |
|
---|
716 | return buffer;
|
---|
717 | }
|
---|
718 |
|
---|
719 | char *
|
---|
720 | PyOS_ascii_formatd(char *buffer,
|
---|
721 | size_t buf_size,
|
---|
722 | const char *format,
|
---|
723 | double d)
|
---|
724 | {
|
---|
725 | if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
---|
726 | "PyOS_ascii_formatd is deprecated, "
|
---|
727 | "use PyOS_double_to_string instead", 1) < 0)
|
---|
728 | return NULL;
|
---|
729 |
|
---|
730 | return _PyOS_ascii_formatd(buffer, buf_size, format, d, -1);
|
---|
731 | }
|
---|
732 |
|
---|
733 | #ifdef PY_NO_SHORT_FLOAT_REPR
|
---|
734 |
|
---|
735 | /* The fallback code to use if _Py_dg_dtoa is not available. */
|
---|
736 |
|
---|
737 | PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
---|
738 | char format_code,
|
---|
739 | int precision,
|
---|
740 | int flags,
|
---|
741 | int *type)
|
---|
742 | {
|
---|
743 | char format[32];
|
---|
744 | Py_ssize_t bufsize;
|
---|
745 | char *buf;
|
---|
746 | int t, exp;
|
---|
747 | int upper = 0;
|
---|
748 |
|
---|
749 | /* Validate format_code, and map upper and lower case */
|
---|
750 | switch (format_code) {
|
---|
751 | case 'e': /* exponent */
|
---|
752 | case 'f': /* fixed */
|
---|
753 | case 'g': /* general */
|
---|
754 | break;
|
---|
755 | case 'E':
|
---|
756 | upper = 1;
|
---|
757 | format_code = 'e';
|
---|
758 | break;
|
---|
759 | case 'F':
|
---|
760 | upper = 1;
|
---|
761 | format_code = 'f';
|
---|
762 | break;
|
---|
763 | case 'G':
|
---|
764 | upper = 1;
|
---|
765 | format_code = 'g';
|
---|
766 | break;
|
---|
767 | case 'r': /* repr format */
|
---|
768 | /* Supplied precision is unused, must be 0. */
|
---|
769 | if (precision != 0) {
|
---|
770 | PyErr_BadInternalCall();
|
---|
771 | return NULL;
|
---|
772 | }
|
---|
773 | /* The repr() precision (17 significant decimal digits) is the
|
---|
774 | minimal number that is guaranteed to have enough precision
|
---|
775 | so that if the number is read back in the exact same binary
|
---|
776 | value is recreated. This is true for IEEE floating point
|
---|
777 | by design, and also happens to work for all other modern
|
---|
778 | hardware. */
|
---|
779 | precision = 17;
|
---|
780 | format_code = 'g';
|
---|
781 | break;
|
---|
782 | default:
|
---|
783 | PyErr_BadInternalCall();
|
---|
784 | return NULL;
|
---|
785 | }
|
---|
786 |
|
---|
787 | /* Here's a quick-and-dirty calculation to figure out how big a buffer
|
---|
788 | we need. In general, for a finite float we need:
|
---|
789 |
|
---|
790 | 1 byte for each digit of the decimal significand, and
|
---|
791 |
|
---|
792 | 1 for a possible sign
|
---|
793 | 1 for a possible decimal point
|
---|
794 | 2 for a possible [eE][+-]
|
---|
795 | 1 for each digit of the exponent; if we allow 19 digits
|
---|
796 | total then we're safe up to exponents of 2**63.
|
---|
797 | 1 for the trailing nul byte
|
---|
798 |
|
---|
799 | This gives a total of 24 + the number of digits in the significand,
|
---|
800 | and the number of digits in the significand is:
|
---|
801 |
|
---|
802 | for 'g' format: at most precision, except possibly
|
---|
803 | when precision == 0, when it's 1.
|
---|
804 | for 'e' format: precision+1
|
---|
805 | for 'f' format: precision digits after the point, at least 1
|
---|
806 | before. To figure out how many digits appear before the point
|
---|
807 | we have to examine the size of the number. If fabs(val) < 1.0
|
---|
808 | then there will be only one digit before the point. If
|
---|
809 | fabs(val) >= 1.0, then there are at most
|
---|
810 |
|
---|
811 | 1+floor(log10(ceiling(fabs(val))))
|
---|
812 |
|
---|
813 | digits before the point (where the 'ceiling' allows for the
|
---|
814 | possibility that the rounding rounds the integer part of val
|
---|
815 | up). A safe upper bound for the above quantity is
|
---|
816 | 1+floor(exp/3), where exp is the unique integer such that 0.5
|
---|
817 | <= fabs(val)/2**exp < 1.0. This exp can be obtained from
|
---|
818 | frexp.
|
---|
819 |
|
---|
820 | So we allow room for precision+1 digits for all formats, plus an
|
---|
821 | extra floor(exp/3) digits for 'f' format.
|
---|
822 |
|
---|
823 | */
|
---|
824 |
|
---|
825 | if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
|
---|
826 | /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
|
---|
827 | bufsize = 5;
|
---|
828 | else {
|
---|
829 | bufsize = 25 + precision;
|
---|
830 | if (format_code == 'f' && fabs(val) >= 1.0) {
|
---|
831 | frexp(val, &exp);
|
---|
832 | bufsize += exp/3;
|
---|
833 | }
|
---|
834 | }
|
---|
835 |
|
---|
836 | buf = PyMem_Malloc(bufsize);
|
---|
837 | if (buf == NULL) {
|
---|
838 | PyErr_NoMemory();
|
---|
839 | return NULL;
|
---|
840 | }
|
---|
841 |
|
---|
842 | /* Handle nan and inf. */
|
---|
843 | if (Py_IS_NAN(val)) {
|
---|
844 | strcpy(buf, "nan");
|
---|
845 | t = Py_DTST_NAN;
|
---|
846 | } else if (Py_IS_INFINITY(val)) {
|
---|
847 | if (copysign(1., val) == 1.)
|
---|
848 | strcpy(buf, "inf");
|
---|
849 | else
|
---|
850 | strcpy(buf, "-inf");
|
---|
851 | t = Py_DTST_INFINITE;
|
---|
852 | } else {
|
---|
853 | t = Py_DTST_FINITE;
|
---|
854 | if (flags & Py_DTSF_ADD_DOT_0)
|
---|
855 | format_code = 'Z';
|
---|
856 |
|
---|
857 | PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
|
---|
858 | (flags & Py_DTSF_ALT ? "#" : ""), precision,
|
---|
859 | format_code);
|
---|
860 | _PyOS_ascii_formatd(buf, bufsize, format, val, precision);
|
---|
861 | }
|
---|
862 |
|
---|
863 | /* Add sign when requested. It's convenient (esp. when formatting
|
---|
864 | complex numbers) to include a sign even for inf and nan. */
|
---|
865 | if (flags & Py_DTSF_SIGN && buf[0] != '-') {
|
---|
866 | size_t len = strlen(buf);
|
---|
867 | /* the bufsize calculations above should ensure that we've got
|
---|
868 | space to add a sign */
|
---|
869 | assert((size_t)bufsize >= len+2);
|
---|
870 | memmove(buf+1, buf, len+1);
|
---|
871 | buf[0] = '+';
|
---|
872 | }
|
---|
873 | if (upper) {
|
---|
874 | /* Convert to upper case. */
|
---|
875 | char *p1;
|
---|
876 | for (p1 = buf; *p1; p1++)
|
---|
877 | *p1 = Py_TOUPPER(*p1);
|
---|
878 | }
|
---|
879 |
|
---|
880 | if (type)
|
---|
881 | *type = t;
|
---|
882 | return buf;
|
---|
883 | }
|
---|
884 |
|
---|
885 | #else
|
---|
886 |
|
---|
887 | /* _Py_dg_dtoa is available. */
|
---|
888 |
|
---|
889 | /* I'm using a lookup table here so that I don't have to invent a non-locale
|
---|
890 | specific way to convert to uppercase */
|
---|
891 | #define OFS_INF 0
|
---|
892 | #define OFS_NAN 1
|
---|
893 | #define OFS_E 2
|
---|
894 |
|
---|
895 | /* The lengths of these are known to the code below, so don't change them */
|
---|
896 | static char *lc_float_strings[] = {
|
---|
897 | "inf",
|
---|
898 | "nan",
|
---|
899 | "e",
|
---|
900 | };
|
---|
901 | static char *uc_float_strings[] = {
|
---|
902 | "INF",
|
---|
903 | "NAN",
|
---|
904 | "E",
|
---|
905 | };
|
---|
906 |
|
---|
907 |
|
---|
908 | /* Convert a double d to a string, and return a PyMem_Malloc'd block of
|
---|
909 | memory contain the resulting string.
|
---|
910 |
|
---|
911 | Arguments:
|
---|
912 | d is the double to be converted
|
---|
913 | format_code is one of 'e', 'f', 'g', 'r'. 'e', 'f' and 'g'
|
---|
914 | correspond to '%e', '%f' and '%g'; 'r' corresponds to repr.
|
---|
915 | mode is one of '0', '2' or '3', and is completely determined by
|
---|
916 | format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
|
---|
917 | precision is the desired precision
|
---|
918 | always_add_sign is nonzero if a '+' sign should be included for positive
|
---|
919 | numbers
|
---|
920 | add_dot_0_if_integer is nonzero if integers in non-exponential form
|
---|
921 | should have ".0" added. Only applies to format codes 'r' and 'g'.
|
---|
922 | use_alt_formatting is nonzero if alternative formatting should be
|
---|
923 | used. Only applies to format codes 'e', 'f' and 'g'. For code 'g',
|
---|
924 | at most one of use_alt_formatting and add_dot_0_if_integer should
|
---|
925 | be nonzero.
|
---|
926 | type, if non-NULL, will be set to one of these constants to identify
|
---|
927 | the type of the 'd' argument:
|
---|
928 | Py_DTST_FINITE
|
---|
929 | Py_DTST_INFINITE
|
---|
930 | Py_DTST_NAN
|
---|
931 |
|
---|
932 | Returns a PyMem_Malloc'd block of memory containing the resulting string,
|
---|
933 | or NULL on error. If NULL is returned, the Python error has been set.
|
---|
934 | */
|
---|
935 |
|
---|
936 | static char *
|
---|
937 | format_float_short(double d, char format_code,
|
---|
938 | int mode, Py_ssize_t precision,
|
---|
939 | int always_add_sign, int add_dot_0_if_integer,
|
---|
940 | int use_alt_formatting, char **float_strings, int *type)
|
---|
941 | {
|
---|
942 | char *buf = NULL;
|
---|
943 | char *p = NULL;
|
---|
944 | Py_ssize_t bufsize = 0;
|
---|
945 | char *digits, *digits_end;
|
---|
946 | int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
|
---|
947 | Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
|
---|
948 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
949 |
|
---|
950 | /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
|
---|
951 | Must be matched by a call to _Py_dg_freedtoa. */
|
---|
952 | _Py_SET_53BIT_PRECISION_START;
|
---|
953 | digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
|
---|
954 | &digits_end);
|
---|
955 | _Py_SET_53BIT_PRECISION_END;
|
---|
956 |
|
---|
957 | decpt = (Py_ssize_t)decpt_as_int;
|
---|
958 | if (digits == NULL) {
|
---|
959 | /* The only failure mode is no memory. */
|
---|
960 | PyErr_NoMemory();
|
---|
961 | goto exit;
|
---|
962 | }
|
---|
963 | assert(digits_end != NULL && digits_end >= digits);
|
---|
964 | digits_len = digits_end - digits;
|
---|
965 |
|
---|
966 | if (digits_len && !Py_ISDIGIT(digits[0])) {
|
---|
967 | /* Infinities and nans here; adapt Gay's output,
|
---|
968 | so convert Infinity to inf and NaN to nan, and
|
---|
969 | ignore sign of nan. Then return. */
|
---|
970 |
|
---|
971 | /* ignore the actual sign of a nan */
|
---|
972 | if (digits[0] == 'n' || digits[0] == 'N')
|
---|
973 | sign = 0;
|
---|
974 |
|
---|
975 | /* We only need 5 bytes to hold the result "+inf\0" . */
|
---|
976 | bufsize = 5; /* Used later in an assert. */
|
---|
977 | buf = (char *)PyMem_Malloc(bufsize);
|
---|
978 | if (buf == NULL) {
|
---|
979 | PyErr_NoMemory();
|
---|
980 | goto exit;
|
---|
981 | }
|
---|
982 | p = buf;
|
---|
983 |
|
---|
984 | if (sign == 1) {
|
---|
985 | *p++ = '-';
|
---|
986 | }
|
---|
987 | else if (always_add_sign) {
|
---|
988 | *p++ = '+';
|
---|
989 | }
|
---|
990 | if (digits[0] == 'i' || digits[0] == 'I') {
|
---|
991 | strncpy(p, float_strings[OFS_INF], 3);
|
---|
992 | p += 3;
|
---|
993 |
|
---|
994 | if (type)
|
---|
995 | *type = Py_DTST_INFINITE;
|
---|
996 | }
|
---|
997 | else if (digits[0] == 'n' || digits[0] == 'N') {
|
---|
998 | strncpy(p, float_strings[OFS_NAN], 3);
|
---|
999 | p += 3;
|
---|
1000 |
|
---|
1001 | if (type)
|
---|
1002 | *type = Py_DTST_NAN;
|
---|
1003 | }
|
---|
1004 | else {
|
---|
1005 | /* shouldn't get here: Gay's code should always return
|
---|
1006 | something starting with a digit, an 'I', or 'N' */
|
---|
1007 | strncpy(p, "ERR", 3);
|
---|
1008 | p += 3;
|
---|
1009 | assert(0);
|
---|
1010 | }
|
---|
1011 | goto exit;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | /* The result must be finite (not inf or nan). */
|
---|
1015 | if (type)
|
---|
1016 | *type = Py_DTST_FINITE;
|
---|
1017 |
|
---|
1018 |
|
---|
1019 | /* We got digits back, format them. We may need to pad 'digits'
|
---|
1020 | either on the left or right (or both) with extra zeros, so in
|
---|
1021 | general the resulting string has the form
|
---|
1022 |
|
---|
1023 | [<sign>]<zeros><digits><zeros>[<exponent>]
|
---|
1024 |
|
---|
1025 | where either of the <zeros> pieces could be empty, and there's a
|
---|
1026 | decimal point that could appear either in <digits> or in the
|
---|
1027 | leading or trailing <zeros>.
|
---|
1028 |
|
---|
1029 | Imagine an infinite 'virtual' string vdigits, consisting of the
|
---|
1030 | string 'digits' (starting at index 0) padded on both the left and
|
---|
1031 | right with infinite strings of zeros. We want to output a slice
|
---|
1032 |
|
---|
1033 | vdigits[vdigits_start : vdigits_end]
|
---|
1034 |
|
---|
1035 | of this virtual string. Thus if vdigits_start < 0 then we'll end
|
---|
1036 | up producing some leading zeros; if vdigits_end > digits_len there
|
---|
1037 | will be trailing zeros in the output. The next section of code
|
---|
1038 | determines whether to use an exponent or not, figures out the
|
---|
1039 | position 'decpt' of the decimal point, and computes 'vdigits_start'
|
---|
1040 | and 'vdigits_end'. */
|
---|
1041 | vdigits_end = digits_len;
|
---|
1042 | switch (format_code) {
|
---|
1043 | case 'e':
|
---|
1044 | use_exp = 1;
|
---|
1045 | vdigits_end = precision;
|
---|
1046 | break;
|
---|
1047 | case 'f':
|
---|
1048 | vdigits_end = decpt + precision;
|
---|
1049 | break;
|
---|
1050 | case 'g':
|
---|
1051 | if (decpt <= -4 || decpt >
|
---|
1052 | (add_dot_0_if_integer ? precision-1 : precision))
|
---|
1053 | use_exp = 1;
|
---|
1054 | if (use_alt_formatting)
|
---|
1055 | vdigits_end = precision;
|
---|
1056 | break;
|
---|
1057 | case 'r':
|
---|
1058 | /* convert to exponential format at 1e16. We used to convert
|
---|
1059 | at 1e17, but that gives odd-looking results for some values
|
---|
1060 | when a 16-digit 'shortest' repr is padded with bogus zeros.
|
---|
1061 | For example, repr(2e16+8) would give 20000000000000010.0;
|
---|
1062 | the true value is 20000000000000008.0. */
|
---|
1063 | if (decpt <= -4 || decpt > 16)
|
---|
1064 | use_exp = 1;
|
---|
1065 | break;
|
---|
1066 | default:
|
---|
1067 | PyErr_BadInternalCall();
|
---|
1068 | goto exit;
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | /* if using an exponent, reset decimal point position to 1 and adjust
|
---|
1072 | exponent accordingly.*/
|
---|
1073 | if (use_exp) {
|
---|
1074 | exp = decpt - 1;
|
---|
1075 | decpt = 1;
|
---|
1076 | }
|
---|
1077 | /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
|
---|
1078 | decpt < vdigits_end if add_dot_0_if_integer and no exponent */
|
---|
1079 | vdigits_start = decpt <= 0 ? decpt-1 : 0;
|
---|
1080 | if (!use_exp && add_dot_0_if_integer)
|
---|
1081 | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
|
---|
1082 | else
|
---|
1083 | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
|
---|
1084 |
|
---|
1085 | /* double check inequalities */
|
---|
1086 | assert(vdigits_start <= 0 &&
|
---|
1087 | 0 <= digits_len &&
|
---|
1088 | digits_len <= vdigits_end);
|
---|
1089 | /* decimal point should be in (vdigits_start, vdigits_end] */
|
---|
1090 | assert(vdigits_start < decpt && decpt <= vdigits_end);
|
---|
1091 |
|
---|
1092 | /* Compute an upper bound how much memory we need. This might be a few
|
---|
1093 | chars too long, but no big deal. */
|
---|
1094 | bufsize =
|
---|
1095 | /* sign, decimal point and trailing 0 byte */
|
---|
1096 | 3 +
|
---|
1097 |
|
---|
1098 | /* total digit count (including zero padding on both sides) */
|
---|
1099 | (vdigits_end - vdigits_start) +
|
---|
1100 |
|
---|
1101 | /* exponent "e+100", max 3 numerical digits */
|
---|
1102 | (use_exp ? 5 : 0);
|
---|
1103 |
|
---|
1104 | /* Now allocate the memory and initialize p to point to the start of
|
---|
1105 | it. */
|
---|
1106 | buf = (char *)PyMem_Malloc(bufsize);
|
---|
1107 | if (buf == NULL) {
|
---|
1108 | PyErr_NoMemory();
|
---|
1109 | goto exit;
|
---|
1110 | }
|
---|
1111 | p = buf;
|
---|
1112 |
|
---|
1113 | /* Add a negative sign if negative, and a plus sign if non-negative
|
---|
1114 | and always_add_sign is true. */
|
---|
1115 | if (sign == 1)
|
---|
1116 | *p++ = '-';
|
---|
1117 | else if (always_add_sign)
|
---|
1118 | *p++ = '+';
|
---|
1119 |
|
---|
1120 | /* note that exactly one of the three 'if' conditions is true,
|
---|
1121 | so we include exactly one decimal point */
|
---|
1122 | /* Zero padding on left of digit string */
|
---|
1123 | if (decpt <= 0) {
|
---|
1124 | memset(p, '0', decpt-vdigits_start);
|
---|
1125 | p += decpt - vdigits_start;
|
---|
1126 | *p++ = '.';
|
---|
1127 | memset(p, '0', 0-decpt);
|
---|
1128 | p += 0-decpt;
|
---|
1129 | }
|
---|
1130 | else {
|
---|
1131 | memset(p, '0', 0-vdigits_start);
|
---|
1132 | p += 0 - vdigits_start;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | /* Digits, with included decimal point */
|
---|
1136 | if (0 < decpt && decpt <= digits_len) {
|
---|
1137 | strncpy(p, digits, decpt-0);
|
---|
1138 | p += decpt-0;
|
---|
1139 | *p++ = '.';
|
---|
1140 | strncpy(p, digits+decpt, digits_len-decpt);
|
---|
1141 | p += digits_len-decpt;
|
---|
1142 | }
|
---|
1143 | else {
|
---|
1144 | strncpy(p, digits, digits_len);
|
---|
1145 | p += digits_len;
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /* And zeros on the right */
|
---|
1149 | if (digits_len < decpt) {
|
---|
1150 | memset(p, '0', decpt-digits_len);
|
---|
1151 | p += decpt-digits_len;
|
---|
1152 | *p++ = '.';
|
---|
1153 | memset(p, '0', vdigits_end-decpt);
|
---|
1154 | p += vdigits_end-decpt;
|
---|
1155 | }
|
---|
1156 | else {
|
---|
1157 | memset(p, '0', vdigits_end-digits_len);
|
---|
1158 | p += vdigits_end-digits_len;
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | /* Delete a trailing decimal pt unless using alternative formatting. */
|
---|
1162 | if (p[-1] == '.' && !use_alt_formatting)
|
---|
1163 | p--;
|
---|
1164 |
|
---|
1165 | /* Now that we've done zero padding, add an exponent if needed. */
|
---|
1166 | if (use_exp) {
|
---|
1167 | *p++ = float_strings[OFS_E][0];
|
---|
1168 | exp_len = sprintf(p, "%+.02d", exp);
|
---|
1169 | p += exp_len;
|
---|
1170 | }
|
---|
1171 | exit:
|
---|
1172 | if (buf) {
|
---|
1173 | *p = '\0';
|
---|
1174 | /* It's too late if this fails, as we've already stepped on
|
---|
1175 | memory that isn't ours. But it's an okay debugging test. */
|
---|
1176 | assert(p-buf < bufsize);
|
---|
1177 | }
|
---|
1178 | if (digits)
|
---|
1179 | _Py_dg_freedtoa(digits);
|
---|
1180 |
|
---|
1181 | return buf;
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 |
|
---|
1185 | PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
---|
1186 | char format_code,
|
---|
1187 | int precision,
|
---|
1188 | int flags,
|
---|
1189 | int *type)
|
---|
1190 | {
|
---|
1191 | char **float_strings = lc_float_strings;
|
---|
1192 | int mode;
|
---|
1193 |
|
---|
1194 | /* Validate format_code, and map upper and lower case. Compute the
|
---|
1195 | mode and make any adjustments as needed. */
|
---|
1196 | switch (format_code) {
|
---|
1197 | /* exponent */
|
---|
1198 | case 'E':
|
---|
1199 | float_strings = uc_float_strings;
|
---|
1200 | format_code = 'e';
|
---|
1201 | /* Fall through. */
|
---|
1202 | case 'e':
|
---|
1203 | mode = 2;
|
---|
1204 | precision++;
|
---|
1205 | break;
|
---|
1206 |
|
---|
1207 | /* fixed */
|
---|
1208 | case 'F':
|
---|
1209 | float_strings = uc_float_strings;
|
---|
1210 | format_code = 'f';
|
---|
1211 | /* Fall through. */
|
---|
1212 | case 'f':
|
---|
1213 | mode = 3;
|
---|
1214 | break;
|
---|
1215 |
|
---|
1216 | /* general */
|
---|
1217 | case 'G':
|
---|
1218 | float_strings = uc_float_strings;
|
---|
1219 | format_code = 'g';
|
---|
1220 | /* Fall through. */
|
---|
1221 | case 'g':
|
---|
1222 | mode = 2;
|
---|
1223 | /* precision 0 makes no sense for 'g' format; interpret as 1 */
|
---|
1224 | if (precision == 0)
|
---|
1225 | precision = 1;
|
---|
1226 | break;
|
---|
1227 |
|
---|
1228 | /* repr format */
|
---|
1229 | case 'r':
|
---|
1230 | mode = 0;
|
---|
1231 | /* Supplied precision is unused, must be 0. */
|
---|
1232 | if (precision != 0) {
|
---|
1233 | PyErr_BadInternalCall();
|
---|
1234 | return NULL;
|
---|
1235 | }
|
---|
1236 | break;
|
---|
1237 |
|
---|
1238 | default:
|
---|
1239 | PyErr_BadInternalCall();
|
---|
1240 | return NULL;
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | return format_float_short(val, format_code, mode, precision,
|
---|
1244 | flags & Py_DTSF_SIGN,
|
---|
1245 | flags & Py_DTSF_ADD_DOT_0,
|
---|
1246 | flags & Py_DTSF_ALT,
|
---|
1247 | float_strings, type);
|
---|
1248 | }
|
---|
1249 | #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */
|
---|