1 | /* Long (arbitrary precision) integer object implementation */
|
---|
2 |
|
---|
3 | /* XXX The functional organization of this file is terrible */
|
---|
4 |
|
---|
5 | #include "Python.h"
|
---|
6 | #include "longintrepr.h"
|
---|
7 | #include "structseq.h"
|
---|
8 |
|
---|
9 | #include <float.h>
|
---|
10 | #include <ctype.h>
|
---|
11 | #include <stddef.h>
|
---|
12 |
|
---|
13 | /* For long multiplication, use the O(N**2) school algorithm unless
|
---|
14 | * both operands contain more than KARATSUBA_CUTOFF digits (this
|
---|
15 | * being an internal Python long digit, in base PyLong_BASE).
|
---|
16 | */
|
---|
17 | #define KARATSUBA_CUTOFF 70
|
---|
18 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
|
---|
19 |
|
---|
20 | /* For exponentiation, use the binary left-to-right algorithm
|
---|
21 | * unless the exponent contains more than FIVEARY_CUTOFF digits.
|
---|
22 | * In that case, do 5 bits at a time. The potential drawback is that
|
---|
23 | * a table of 2**5 intermediate results is computed.
|
---|
24 | */
|
---|
25 | #define FIVEARY_CUTOFF 8
|
---|
26 |
|
---|
27 | #define ABS(x) ((x) < 0 ? -(x) : (x))
|
---|
28 |
|
---|
29 | #undef MIN
|
---|
30 | #undef MAX
|
---|
31 | #define MAX(x, y) ((x) < (y) ? (y) : (x))
|
---|
32 | #define MIN(x, y) ((x) > (y) ? (y) : (x))
|
---|
33 |
|
---|
34 | #define SIGCHECK(PyTryBlock) \
|
---|
35 | do { \
|
---|
36 | if (--_Py_Ticker < 0) { \
|
---|
37 | _Py_Ticker = _Py_CheckInterval; \
|
---|
38 | if (PyErr_CheckSignals()) PyTryBlock \
|
---|
39 | } \
|
---|
40 | } while(0)
|
---|
41 |
|
---|
42 | /* Normalize (remove leading zeros from) a long int object.
|
---|
43 | Doesn't attempt to free the storage--in most cases, due to the nature
|
---|
44 | of the algorithms used, this could save at most be one word anyway. */
|
---|
45 |
|
---|
46 | static PyLongObject *
|
---|
47 | long_normalize(register PyLongObject *v)
|
---|
48 | {
|
---|
49 | Py_ssize_t j = ABS(Py_SIZE(v));
|
---|
50 | Py_ssize_t i = j;
|
---|
51 |
|
---|
52 | while (i > 0 && v->ob_digit[i-1] == 0)
|
---|
53 | --i;
|
---|
54 | if (i != j)
|
---|
55 | Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
|
---|
56 | return v;
|
---|
57 | }
|
---|
58 |
|
---|
59 | /* Allocate a new long int object with size digits.
|
---|
60 | Return NULL and set exception if we run out of memory. */
|
---|
61 |
|
---|
62 | #define MAX_LONG_DIGITS \
|
---|
63 | ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
|
---|
64 |
|
---|
65 | PyLongObject *
|
---|
66 | _PyLong_New(Py_ssize_t size)
|
---|
67 | {
|
---|
68 | if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
|
---|
69 | PyErr_SetString(PyExc_OverflowError,
|
---|
70 | "too many digits in integer");
|
---|
71 | return NULL;
|
---|
72 | }
|
---|
73 | /* coverity[ampersand_in_size] */
|
---|
74 | /* XXX(nnorwitz): PyObject_NEW_VAR / _PyObject_VAR_SIZE need to detect
|
---|
75 | overflow */
|
---|
76 | return PyObject_NEW_VAR(PyLongObject, &PyLong_Type, size);
|
---|
77 | }
|
---|
78 |
|
---|
79 | PyObject *
|
---|
80 | _PyLong_Copy(PyLongObject *src)
|
---|
81 | {
|
---|
82 | PyLongObject *result;
|
---|
83 | Py_ssize_t i;
|
---|
84 |
|
---|
85 | assert(src != NULL);
|
---|
86 | i = src->ob_size;
|
---|
87 | if (i < 0)
|
---|
88 | i = -(i);
|
---|
89 | result = _PyLong_New(i);
|
---|
90 | if (result != NULL) {
|
---|
91 | result->ob_size = src->ob_size;
|
---|
92 | while (--i >= 0)
|
---|
93 | result->ob_digit[i] = src->ob_digit[i];
|
---|
94 | }
|
---|
95 | return (PyObject *)result;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /* Create a new long int object from a C long int */
|
---|
99 |
|
---|
100 | PyObject *
|
---|
101 | PyLong_FromLong(long ival)
|
---|
102 | {
|
---|
103 | PyLongObject *v;
|
---|
104 | unsigned long abs_ival;
|
---|
105 | unsigned long t; /* unsigned so >> doesn't propagate sign bit */
|
---|
106 | int ndigits = 0;
|
---|
107 | int negative = 0;
|
---|
108 |
|
---|
109 | if (ival < 0) {
|
---|
110 | /* if LONG_MIN == -LONG_MAX-1 (true on most platforms) then
|
---|
111 | ANSI C says that the result of -ival is undefined when ival
|
---|
112 | == LONG_MIN. Hence the following workaround. */
|
---|
113 | abs_ival = (unsigned long)(-1-ival) + 1;
|
---|
114 | negative = 1;
|
---|
115 | }
|
---|
116 | else {
|
---|
117 | abs_ival = (unsigned long)ival;
|
---|
118 | }
|
---|
119 |
|
---|
120 | /* Count the number of Python digits.
|
---|
121 | We used to pick 5 ("big enough for anything"), but that's a
|
---|
122 | waste of time and space given that 5*15 = 75 bits are rarely
|
---|
123 | needed. */
|
---|
124 | t = abs_ival;
|
---|
125 | while (t) {
|
---|
126 | ++ndigits;
|
---|
127 | t >>= PyLong_SHIFT;
|
---|
128 | }
|
---|
129 | v = _PyLong_New(ndigits);
|
---|
130 | if (v != NULL) {
|
---|
131 | digit *p = v->ob_digit;
|
---|
132 | v->ob_size = negative ? -ndigits : ndigits;
|
---|
133 | t = abs_ival;
|
---|
134 | while (t) {
|
---|
135 | *p++ = (digit)(t & PyLong_MASK);
|
---|
136 | t >>= PyLong_SHIFT;
|
---|
137 | }
|
---|
138 | }
|
---|
139 | return (PyObject *)v;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /* Create a new long int object from a C unsigned long int */
|
---|
143 |
|
---|
144 | PyObject *
|
---|
145 | PyLong_FromUnsignedLong(unsigned long ival)
|
---|
146 | {
|
---|
147 | PyLongObject *v;
|
---|
148 | unsigned long t;
|
---|
149 | int ndigits = 0;
|
---|
150 |
|
---|
151 | /* Count the number of Python digits. */
|
---|
152 | t = (unsigned long)ival;
|
---|
153 | while (t) {
|
---|
154 | ++ndigits;
|
---|
155 | t >>= PyLong_SHIFT;
|
---|
156 | }
|
---|
157 | v = _PyLong_New(ndigits);
|
---|
158 | if (v != NULL) {
|
---|
159 | digit *p = v->ob_digit;
|
---|
160 | Py_SIZE(v) = ndigits;
|
---|
161 | while (ival) {
|
---|
162 | *p++ = (digit)(ival & PyLong_MASK);
|
---|
163 | ival >>= PyLong_SHIFT;
|
---|
164 | }
|
---|
165 | }
|
---|
166 | return (PyObject *)v;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /* Create a new long int object from a C double */
|
---|
170 |
|
---|
171 | PyObject *
|
---|
172 | PyLong_FromDouble(double dval)
|
---|
173 | {
|
---|
174 | PyLongObject *v;
|
---|
175 | double frac;
|
---|
176 | int i, ndig, expo, neg;
|
---|
177 | neg = 0;
|
---|
178 | if (Py_IS_INFINITY(dval)) {
|
---|
179 | PyErr_SetString(PyExc_OverflowError,
|
---|
180 | "cannot convert float infinity to integer");
|
---|
181 | return NULL;
|
---|
182 | }
|
---|
183 | if (Py_IS_NAN(dval)) {
|
---|
184 | PyErr_SetString(PyExc_ValueError,
|
---|
185 | "cannot convert float NaN to integer");
|
---|
186 | return NULL;
|
---|
187 | }
|
---|
188 | if (dval < 0.0) {
|
---|
189 | neg = 1;
|
---|
190 | dval = -dval;
|
---|
191 | }
|
---|
192 | frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
|
---|
193 | if (expo <= 0)
|
---|
194 | return PyLong_FromLong(0L);
|
---|
195 | ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
|
---|
196 | v = _PyLong_New(ndig);
|
---|
197 | if (v == NULL)
|
---|
198 | return NULL;
|
---|
199 | frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
|
---|
200 | for (i = ndig; --i >= 0; ) {
|
---|
201 | digit bits = (digit)frac;
|
---|
202 | v->ob_digit[i] = bits;
|
---|
203 | frac = frac - (double)bits;
|
---|
204 | frac = ldexp(frac, PyLong_SHIFT);
|
---|
205 | }
|
---|
206 | if (neg)
|
---|
207 | Py_SIZE(v) = -(Py_SIZE(v));
|
---|
208 | return (PyObject *)v;
|
---|
209 | }
|
---|
210 |
|
---|
211 | /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
|
---|
212 | * anything about what happens when a signed integer operation overflows,
|
---|
213 | * and some compilers think they're doing you a favor by being "clever"
|
---|
214 | * then. The bit pattern for the largest postive signed long is
|
---|
215 | * (unsigned long)LONG_MAX, and for the smallest negative signed long
|
---|
216 | * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
|
---|
217 | * However, some other compilers warn about applying unary minus to an
|
---|
218 | * unsigned operand. Hence the weird "0-".
|
---|
219 | */
|
---|
220 | #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
|
---|
221 | #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
|
---|
222 |
|
---|
223 | /* Get a C long int from a Python long or Python int object.
|
---|
224 | On overflow, returns -1 and sets *overflow to 1 or -1 depending
|
---|
225 | on the sign of the result. Otherwise *overflow is 0.
|
---|
226 |
|
---|
227 | For other errors (e.g., type error), returns -1 and sets an error
|
---|
228 | condition.
|
---|
229 | */
|
---|
230 |
|
---|
231 | long
|
---|
232 | PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
|
---|
233 | {
|
---|
234 | /* This version by Tim Peters */
|
---|
235 | register PyLongObject *v;
|
---|
236 | unsigned long x, prev;
|
---|
237 | long res;
|
---|
238 | Py_ssize_t i;
|
---|
239 | int sign;
|
---|
240 | int do_decref = 0; /* if nb_int was called */
|
---|
241 |
|
---|
242 | *overflow = 0;
|
---|
243 | if (vv == NULL) {
|
---|
244 | PyErr_BadInternalCall();
|
---|
245 | return -1;
|
---|
246 | }
|
---|
247 |
|
---|
248 | if(PyInt_Check(vv))
|
---|
249 | return PyInt_AsLong(vv);
|
---|
250 |
|
---|
251 | if (!PyLong_Check(vv)) {
|
---|
252 | PyNumberMethods *nb;
|
---|
253 | nb = vv->ob_type->tp_as_number;
|
---|
254 | if (nb == NULL || nb->nb_int == NULL) {
|
---|
255 | PyErr_SetString(PyExc_TypeError,
|
---|
256 | "an integer is required");
|
---|
257 | return -1;
|
---|
258 | }
|
---|
259 | vv = (*nb->nb_int) (vv);
|
---|
260 | if (vv == NULL)
|
---|
261 | return -1;
|
---|
262 | do_decref = 1;
|
---|
263 | if(PyInt_Check(vv)) {
|
---|
264 | res = PyInt_AsLong(vv);
|
---|
265 | goto exit;
|
---|
266 | }
|
---|
267 | if (!PyLong_Check(vv)) {
|
---|
268 | Py_DECREF(vv);
|
---|
269 | PyErr_SetString(PyExc_TypeError,
|
---|
270 | "nb_int should return int object");
|
---|
271 | return -1;
|
---|
272 | }
|
---|
273 | }
|
---|
274 |
|
---|
275 | res = -1;
|
---|
276 | v = (PyLongObject *)vv;
|
---|
277 | i = Py_SIZE(v);
|
---|
278 |
|
---|
279 | switch (i) {
|
---|
280 | case -1:
|
---|
281 | res = -(sdigit)v->ob_digit[0];
|
---|
282 | break;
|
---|
283 | case 0:
|
---|
284 | res = 0;
|
---|
285 | break;
|
---|
286 | case 1:
|
---|
287 | res = v->ob_digit[0];
|
---|
288 | break;
|
---|
289 | default:
|
---|
290 | sign = 1;
|
---|
291 | x = 0;
|
---|
292 | if (i < 0) {
|
---|
293 | sign = -1;
|
---|
294 | i = -(i);
|
---|
295 | }
|
---|
296 | while (--i >= 0) {
|
---|
297 | prev = x;
|
---|
298 | x = (x << PyLong_SHIFT) + v->ob_digit[i];
|
---|
299 | if ((x >> PyLong_SHIFT) != prev) {
|
---|
300 | *overflow = sign;
|
---|
301 | goto exit;
|
---|
302 | }
|
---|
303 | }
|
---|
304 | /* Haven't lost any bits, but casting to long requires extra
|
---|
305 | * care (see comment above).
|
---|
306 | */
|
---|
307 | if (x <= (unsigned long)LONG_MAX) {
|
---|
308 | res = (long)x * sign;
|
---|
309 | }
|
---|
310 | else if (sign < 0 && x == PY_ABS_LONG_MIN) {
|
---|
311 | res = LONG_MIN;
|
---|
312 | }
|
---|
313 | else {
|
---|
314 | *overflow = sign;
|
---|
315 | /* res is already set to -1 */
|
---|
316 | }
|
---|
317 | }
|
---|
318 | exit:
|
---|
319 | if (do_decref) {
|
---|
320 | Py_DECREF(vv);
|
---|
321 | }
|
---|
322 | return res;
|
---|
323 | }
|
---|
324 |
|
---|
325 | /* Get a C long int from a long int object.
|
---|
326 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
327 |
|
---|
328 | long
|
---|
329 | PyLong_AsLong(PyObject *obj)
|
---|
330 | {
|
---|
331 | int overflow;
|
---|
332 | long result = PyLong_AsLongAndOverflow(obj, &overflow);
|
---|
333 | if (overflow) {
|
---|
334 | /* XXX: could be cute and give a different
|
---|
335 | message for overflow == -1 */
|
---|
336 | PyErr_SetString(PyExc_OverflowError,
|
---|
337 | "Python int too large to convert to C long");
|
---|
338 | }
|
---|
339 | return result;
|
---|
340 | }
|
---|
341 |
|
---|
342 | /* Get a C int from a long int object or any object that has an __int__
|
---|
343 | method. Return -1 and set an error if overflow occurs. */
|
---|
344 |
|
---|
345 | int
|
---|
346 | _PyLong_AsInt(PyObject *obj)
|
---|
347 | {
|
---|
348 | int overflow;
|
---|
349 | long result = PyLong_AsLongAndOverflow(obj, &overflow);
|
---|
350 | if (overflow || result > INT_MAX || result < INT_MIN) {
|
---|
351 | /* XXX: could be cute and give a different
|
---|
352 | message for overflow == -1 */
|
---|
353 | PyErr_SetString(PyExc_OverflowError,
|
---|
354 | "Python int too large to convert to C int");
|
---|
355 | return -1;
|
---|
356 | }
|
---|
357 | return (int)result;
|
---|
358 | }
|
---|
359 |
|
---|
360 | /* Get a Py_ssize_t from a long int object.
|
---|
361 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
362 |
|
---|
363 | Py_ssize_t
|
---|
364 | PyLong_AsSsize_t(PyObject *vv) {
|
---|
365 | register PyLongObject *v;
|
---|
366 | size_t x, prev;
|
---|
367 | Py_ssize_t i;
|
---|
368 | int sign;
|
---|
369 |
|
---|
370 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
371 | PyErr_BadInternalCall();
|
---|
372 | return -1;
|
---|
373 | }
|
---|
374 | v = (PyLongObject *)vv;
|
---|
375 | i = v->ob_size;
|
---|
376 | sign = 1;
|
---|
377 | x = 0;
|
---|
378 | if (i < 0) {
|
---|
379 | sign = -1;
|
---|
380 | i = -(i);
|
---|
381 | }
|
---|
382 | while (--i >= 0) {
|
---|
383 | prev = x;
|
---|
384 | x = (x << PyLong_SHIFT) | v->ob_digit[i];
|
---|
385 | if ((x >> PyLong_SHIFT) != prev)
|
---|
386 | goto overflow;
|
---|
387 | }
|
---|
388 | /* Haven't lost any bits, but casting to a signed type requires
|
---|
389 | * extra care (see comment above).
|
---|
390 | */
|
---|
391 | if (x <= (size_t)PY_SSIZE_T_MAX) {
|
---|
392 | return (Py_ssize_t)x * sign;
|
---|
393 | }
|
---|
394 | else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
|
---|
395 | return PY_SSIZE_T_MIN;
|
---|
396 | }
|
---|
397 | /* else overflow */
|
---|
398 |
|
---|
399 | overflow:
|
---|
400 | PyErr_SetString(PyExc_OverflowError,
|
---|
401 | "long int too large to convert to int");
|
---|
402 | return -1;
|
---|
403 | }
|
---|
404 |
|
---|
405 | /* Get a C unsigned long int from a long int object.
|
---|
406 | Returns -1 and sets an error condition if overflow occurs. */
|
---|
407 |
|
---|
408 | unsigned long
|
---|
409 | PyLong_AsUnsignedLong(PyObject *vv)
|
---|
410 | {
|
---|
411 | register PyLongObject *v;
|
---|
412 | unsigned long x, prev;
|
---|
413 | Py_ssize_t i;
|
---|
414 |
|
---|
415 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
416 | if (vv != NULL && PyInt_Check(vv)) {
|
---|
417 | long val = PyInt_AsLong(vv);
|
---|
418 | if (val < 0) {
|
---|
419 | PyErr_SetString(PyExc_OverflowError,
|
---|
420 | "can't convert negative value "
|
---|
421 | "to unsigned long");
|
---|
422 | return (unsigned long) -1;
|
---|
423 | }
|
---|
424 | return val;
|
---|
425 | }
|
---|
426 | PyErr_BadInternalCall();
|
---|
427 | return (unsigned long) -1;
|
---|
428 | }
|
---|
429 | v = (PyLongObject *)vv;
|
---|
430 | i = Py_SIZE(v);
|
---|
431 | x = 0;
|
---|
432 | if (i < 0) {
|
---|
433 | PyErr_SetString(PyExc_OverflowError,
|
---|
434 | "can't convert negative value to unsigned long");
|
---|
435 | return (unsigned long) -1;
|
---|
436 | }
|
---|
437 | while (--i >= 0) {
|
---|
438 | prev = x;
|
---|
439 | x = (x << PyLong_SHIFT) | v->ob_digit[i];
|
---|
440 | if ((x >> PyLong_SHIFT) != prev) {
|
---|
441 | PyErr_SetString(PyExc_OverflowError,
|
---|
442 | "long int too large to convert");
|
---|
443 | return (unsigned long) -1;
|
---|
444 | }
|
---|
445 | }
|
---|
446 | return x;
|
---|
447 | }
|
---|
448 |
|
---|
449 | /* Get a C unsigned long int from a long int object, ignoring the high bits.
|
---|
450 | Returns -1 and sets an error condition if an error occurs. */
|
---|
451 |
|
---|
452 | unsigned long
|
---|
453 | PyLong_AsUnsignedLongMask(PyObject *vv)
|
---|
454 | {
|
---|
455 | register PyLongObject *v;
|
---|
456 | unsigned long x;
|
---|
457 | Py_ssize_t i;
|
---|
458 | int sign;
|
---|
459 |
|
---|
460 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
461 | if (vv != NULL && PyInt_Check(vv))
|
---|
462 | return PyInt_AsUnsignedLongMask(vv);
|
---|
463 | PyErr_BadInternalCall();
|
---|
464 | return (unsigned long) -1;
|
---|
465 | }
|
---|
466 | v = (PyLongObject *)vv;
|
---|
467 | i = v->ob_size;
|
---|
468 | sign = 1;
|
---|
469 | x = 0;
|
---|
470 | if (i < 0) {
|
---|
471 | sign = -1;
|
---|
472 | i = -i;
|
---|
473 | }
|
---|
474 | while (--i >= 0) {
|
---|
475 | x = (x << PyLong_SHIFT) | v->ob_digit[i];
|
---|
476 | }
|
---|
477 | return x * sign;
|
---|
478 | }
|
---|
479 |
|
---|
480 | int
|
---|
481 | _PyLong_Sign(PyObject *vv)
|
---|
482 | {
|
---|
483 | PyLongObject *v = (PyLongObject *)vv;
|
---|
484 |
|
---|
485 | assert(v != NULL);
|
---|
486 | assert(PyLong_Check(v));
|
---|
487 |
|
---|
488 | return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
|
---|
489 | }
|
---|
490 |
|
---|
491 | size_t
|
---|
492 | _PyLong_NumBits(PyObject *vv)
|
---|
493 | {
|
---|
494 | PyLongObject *v = (PyLongObject *)vv;
|
---|
495 | size_t result = 0;
|
---|
496 | Py_ssize_t ndigits;
|
---|
497 |
|
---|
498 | assert(v != NULL);
|
---|
499 | assert(PyLong_Check(v));
|
---|
500 | ndigits = ABS(Py_SIZE(v));
|
---|
501 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
|
---|
502 | if (ndigits > 0) {
|
---|
503 | digit msd = v->ob_digit[ndigits - 1];
|
---|
504 |
|
---|
505 | result = (ndigits - 1) * PyLong_SHIFT;
|
---|
506 | if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
|
---|
507 | goto Overflow;
|
---|
508 | do {
|
---|
509 | ++result;
|
---|
510 | if (result == 0)
|
---|
511 | goto Overflow;
|
---|
512 | msd >>= 1;
|
---|
513 | } while (msd);
|
---|
514 | }
|
---|
515 | return result;
|
---|
516 |
|
---|
517 | Overflow:
|
---|
518 | PyErr_SetString(PyExc_OverflowError, "long has too many bits "
|
---|
519 | "to express in a platform size_t");
|
---|
520 | return (size_t)-1;
|
---|
521 | }
|
---|
522 |
|
---|
523 | PyObject *
|
---|
524 | _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
|
---|
525 | int little_endian, int is_signed)
|
---|
526 | {
|
---|
527 | const unsigned char* pstartbyte; /* LSB of bytes */
|
---|
528 | int incr; /* direction to move pstartbyte */
|
---|
529 | const unsigned char* pendbyte; /* MSB of bytes */
|
---|
530 | size_t numsignificantbytes; /* number of bytes that matter */
|
---|
531 | Py_ssize_t ndigits; /* number of Python long digits */
|
---|
532 | PyLongObject* v; /* result */
|
---|
533 | Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
|
---|
534 |
|
---|
535 | if (n == 0)
|
---|
536 | return PyLong_FromLong(0L);
|
---|
537 |
|
---|
538 | if (little_endian) {
|
---|
539 | pstartbyte = bytes;
|
---|
540 | pendbyte = bytes + n - 1;
|
---|
541 | incr = 1;
|
---|
542 | }
|
---|
543 | else {
|
---|
544 | pstartbyte = bytes + n - 1;
|
---|
545 | pendbyte = bytes;
|
---|
546 | incr = -1;
|
---|
547 | }
|
---|
548 |
|
---|
549 | if (is_signed)
|
---|
550 | is_signed = *pendbyte >= 0x80;
|
---|
551 |
|
---|
552 | /* Compute numsignificantbytes. This consists of finding the most
|
---|
553 | significant byte. Leading 0 bytes are insignificant if the number
|
---|
554 | is positive, and leading 0xff bytes if negative. */
|
---|
555 | {
|
---|
556 | size_t i;
|
---|
557 | const unsigned char* p = pendbyte;
|
---|
558 | const int pincr = -incr; /* search MSB to LSB */
|
---|
559 | const unsigned char insignficant = is_signed ? 0xff : 0x00;
|
---|
560 |
|
---|
561 | for (i = 0; i < n; ++i, p += pincr) {
|
---|
562 | if (*p != insignficant)
|
---|
563 | break;
|
---|
564 | }
|
---|
565 | numsignificantbytes = n - i;
|
---|
566 | /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
|
---|
567 | actually has 2 significant bytes. OTOH, 0xff0001 ==
|
---|
568 | -0x00ffff, so we wouldn't *need* to bump it there; but we
|
---|
569 | do for 0xffff = -0x0001. To be safe without bothering to
|
---|
570 | check every case, bump it regardless. */
|
---|
571 | if (is_signed && numsignificantbytes < n)
|
---|
572 | ++numsignificantbytes;
|
---|
573 | }
|
---|
574 |
|
---|
575 | /* How many Python long digits do we need? We have
|
---|
576 | 8*numsignificantbytes bits, and each Python long digit has
|
---|
577 | PyLong_SHIFT bits, so it's the ceiling of the quotient. */
|
---|
578 | /* catch overflow before it happens */
|
---|
579 | if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
|
---|
580 | PyErr_SetString(PyExc_OverflowError,
|
---|
581 | "byte array too long to convert to int");
|
---|
582 | return NULL;
|
---|
583 | }
|
---|
584 | ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
|
---|
585 | v = _PyLong_New(ndigits);
|
---|
586 | if (v == NULL)
|
---|
587 | return NULL;
|
---|
588 |
|
---|
589 | /* Copy the bits over. The tricky parts are computing 2's-comp on
|
---|
590 | the fly for signed numbers, and dealing with the mismatch between
|
---|
591 | 8-bit bytes and (probably) 15-bit Python digits.*/
|
---|
592 | {
|
---|
593 | size_t i;
|
---|
594 | twodigits carry = 1; /* for 2's-comp calculation */
|
---|
595 | twodigits accum = 0; /* sliding register */
|
---|
596 | unsigned int accumbits = 0; /* number of bits in accum */
|
---|
597 | const unsigned char* p = pstartbyte;
|
---|
598 |
|
---|
599 | for (i = 0; i < numsignificantbytes; ++i, p += incr) {
|
---|
600 | twodigits thisbyte = *p;
|
---|
601 | /* Compute correction for 2's comp, if needed. */
|
---|
602 | if (is_signed) {
|
---|
603 | thisbyte = (0xff ^ thisbyte) + carry;
|
---|
604 | carry = thisbyte >> 8;
|
---|
605 | thisbyte &= 0xff;
|
---|
606 | }
|
---|
607 | /* Because we're going LSB to MSB, thisbyte is
|
---|
608 | more significant than what's already in accum,
|
---|
609 | so needs to be prepended to accum. */
|
---|
610 | accum |= (twodigits)thisbyte << accumbits;
|
---|
611 | accumbits += 8;
|
---|
612 | if (accumbits >= PyLong_SHIFT) {
|
---|
613 | /* There's enough to fill a Python digit. */
|
---|
614 | assert(idigit < ndigits);
|
---|
615 | v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
|
---|
616 | ++idigit;
|
---|
617 | accum >>= PyLong_SHIFT;
|
---|
618 | accumbits -= PyLong_SHIFT;
|
---|
619 | assert(accumbits < PyLong_SHIFT);
|
---|
620 | }
|
---|
621 | }
|
---|
622 | assert(accumbits < PyLong_SHIFT);
|
---|
623 | if (accumbits) {
|
---|
624 | assert(idigit < ndigits);
|
---|
625 | v->ob_digit[idigit] = (digit)accum;
|
---|
626 | ++idigit;
|
---|
627 | }
|
---|
628 | }
|
---|
629 |
|
---|
630 | Py_SIZE(v) = is_signed ? -idigit : idigit;
|
---|
631 | return (PyObject *)long_normalize(v);
|
---|
632 | }
|
---|
633 |
|
---|
634 | int
|
---|
635 | _PyLong_AsByteArray(PyLongObject* v,
|
---|
636 | unsigned char* bytes, size_t n,
|
---|
637 | int little_endian, int is_signed)
|
---|
638 | {
|
---|
639 | Py_ssize_t i; /* index into v->ob_digit */
|
---|
640 | Py_ssize_t ndigits; /* |v->ob_size| */
|
---|
641 | twodigits accum; /* sliding register */
|
---|
642 | unsigned int accumbits; /* # bits in accum */
|
---|
643 | int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
|
---|
644 | digit carry; /* for computing 2's-comp */
|
---|
645 | size_t j; /* # bytes filled */
|
---|
646 | unsigned char* p; /* pointer to next byte in bytes */
|
---|
647 | int pincr; /* direction to move p */
|
---|
648 |
|
---|
649 | assert(v != NULL && PyLong_Check(v));
|
---|
650 |
|
---|
651 | if (Py_SIZE(v) < 0) {
|
---|
652 | ndigits = -(Py_SIZE(v));
|
---|
653 | if (!is_signed) {
|
---|
654 | PyErr_SetString(PyExc_OverflowError,
|
---|
655 | "can't convert negative long to unsigned");
|
---|
656 | return -1;
|
---|
657 | }
|
---|
658 | do_twos_comp = 1;
|
---|
659 | }
|
---|
660 | else {
|
---|
661 | ndigits = Py_SIZE(v);
|
---|
662 | do_twos_comp = 0;
|
---|
663 | }
|
---|
664 |
|
---|
665 | if (little_endian) {
|
---|
666 | p = bytes;
|
---|
667 | pincr = 1;
|
---|
668 | }
|
---|
669 | else {
|
---|
670 | p = bytes + n - 1;
|
---|
671 | pincr = -1;
|
---|
672 | }
|
---|
673 |
|
---|
674 | /* Copy over all the Python digits.
|
---|
675 | It's crucial that every Python digit except for the MSD contribute
|
---|
676 | exactly PyLong_SHIFT bits to the total, so first assert that the long is
|
---|
677 | normalized. */
|
---|
678 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
|
---|
679 | j = 0;
|
---|
680 | accum = 0;
|
---|
681 | accumbits = 0;
|
---|
682 | carry = do_twos_comp ? 1 : 0;
|
---|
683 | for (i = 0; i < ndigits; ++i) {
|
---|
684 | digit thisdigit = v->ob_digit[i];
|
---|
685 | if (do_twos_comp) {
|
---|
686 | thisdigit = (thisdigit ^ PyLong_MASK) + carry;
|
---|
687 | carry = thisdigit >> PyLong_SHIFT;
|
---|
688 | thisdigit &= PyLong_MASK;
|
---|
689 | }
|
---|
690 | /* Because we're going LSB to MSB, thisdigit is more
|
---|
691 | significant than what's already in accum, so needs to be
|
---|
692 | prepended to accum. */
|
---|
693 | accum |= (twodigits)thisdigit << accumbits;
|
---|
694 |
|
---|
695 | /* The most-significant digit may be (probably is) at least
|
---|
696 | partly empty. */
|
---|
697 | if (i == ndigits - 1) {
|
---|
698 | /* Count # of sign bits -- they needn't be stored,
|
---|
699 | * although for signed conversion we need later to
|
---|
700 | * make sure at least one sign bit gets stored. */
|
---|
701 | digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
|
---|
702 | while (s != 0) {
|
---|
703 | s >>= 1;
|
---|
704 | accumbits++;
|
---|
705 | }
|
---|
706 | }
|
---|
707 | else
|
---|
708 | accumbits += PyLong_SHIFT;
|
---|
709 |
|
---|
710 | /* Store as many bytes as possible. */
|
---|
711 | while (accumbits >= 8) {
|
---|
712 | if (j >= n)
|
---|
713 | goto Overflow;
|
---|
714 | ++j;
|
---|
715 | *p = (unsigned char)(accum & 0xff);
|
---|
716 | p += pincr;
|
---|
717 | accumbits -= 8;
|
---|
718 | accum >>= 8;
|
---|
719 | }
|
---|
720 | }
|
---|
721 |
|
---|
722 | /* Store the straggler (if any). */
|
---|
723 | assert(accumbits < 8);
|
---|
724 | assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
|
---|
725 | if (accumbits > 0) {
|
---|
726 | if (j >= n)
|
---|
727 | goto Overflow;
|
---|
728 | ++j;
|
---|
729 | if (do_twos_comp) {
|
---|
730 | /* Fill leading bits of the byte with sign bits
|
---|
731 | (appropriately pretending that the long had an
|
---|
732 | infinite supply of sign bits). */
|
---|
733 | accum |= (~(twodigits)0) << accumbits;
|
---|
734 | }
|
---|
735 | *p = (unsigned char)(accum & 0xff);
|
---|
736 | p += pincr;
|
---|
737 | }
|
---|
738 | else if (j == n && n > 0 && is_signed) {
|
---|
739 | /* The main loop filled the byte array exactly, so the code
|
---|
740 | just above didn't get to ensure there's a sign bit, and the
|
---|
741 | loop below wouldn't add one either. Make sure a sign bit
|
---|
742 | exists. */
|
---|
743 | unsigned char msb = *(p - pincr);
|
---|
744 | int sign_bit_set = msb >= 0x80;
|
---|
745 | assert(accumbits == 0);
|
---|
746 | if (sign_bit_set == do_twos_comp)
|
---|
747 | return 0;
|
---|
748 | else
|
---|
749 | goto Overflow;
|
---|
750 | }
|
---|
751 |
|
---|
752 | /* Fill remaining bytes with copies of the sign bit. */
|
---|
753 | {
|
---|
754 | unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
|
---|
755 | for ( ; j < n; ++j, p += pincr)
|
---|
756 | *p = signbyte;
|
---|
757 | }
|
---|
758 |
|
---|
759 | return 0;
|
---|
760 |
|
---|
761 | Overflow:
|
---|
762 | PyErr_SetString(PyExc_OverflowError, "long too big to convert");
|
---|
763 | return -1;
|
---|
764 |
|
---|
765 | }
|
---|
766 |
|
---|
767 | /* Create a new long (or int) object from a C pointer */
|
---|
768 |
|
---|
769 | PyObject *
|
---|
770 | PyLong_FromVoidPtr(void *p)
|
---|
771 | {
|
---|
772 | #if SIZEOF_VOID_P <= SIZEOF_LONG
|
---|
773 | if ((long)p < 0)
|
---|
774 | return PyLong_FromUnsignedLong((unsigned long)p);
|
---|
775 | return PyInt_FromLong((long)p);
|
---|
776 | #else
|
---|
777 |
|
---|
778 | #ifndef HAVE_LONG_LONG
|
---|
779 | # error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
|
---|
780 | #endif
|
---|
781 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
|
---|
782 | # error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
|
---|
783 | #endif
|
---|
784 | /* optimize null pointers */
|
---|
785 | if (p == NULL)
|
---|
786 | return PyInt_FromLong(0);
|
---|
787 | return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)p);
|
---|
788 |
|
---|
789 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
|
---|
790 | }
|
---|
791 |
|
---|
792 | /* Get a C pointer from a long object (or an int object in some cases) */
|
---|
793 |
|
---|
794 | void *
|
---|
795 | PyLong_AsVoidPtr(PyObject *vv)
|
---|
796 | {
|
---|
797 | /* This function will allow int or long objects. If vv is neither,
|
---|
798 | then the PyLong_AsLong*() functions will raise the exception:
|
---|
799 | PyExc_SystemError, "bad argument to internal function"
|
---|
800 | */
|
---|
801 | #if SIZEOF_VOID_P <= SIZEOF_LONG
|
---|
802 | long x;
|
---|
803 |
|
---|
804 | if (PyInt_Check(vv))
|
---|
805 | x = PyInt_AS_LONG(vv);
|
---|
806 | else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
|
---|
807 | x = PyLong_AsLong(vv);
|
---|
808 | else
|
---|
809 | x = PyLong_AsUnsignedLong(vv);
|
---|
810 | #else
|
---|
811 |
|
---|
812 | #ifndef HAVE_LONG_LONG
|
---|
813 | # error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
|
---|
814 | #endif
|
---|
815 | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
|
---|
816 | # error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
|
---|
817 | #endif
|
---|
818 | PY_LONG_LONG x;
|
---|
819 |
|
---|
820 | if (PyInt_Check(vv))
|
---|
821 | x = PyInt_AS_LONG(vv);
|
---|
822 | else if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
|
---|
823 | x = PyLong_AsLongLong(vv);
|
---|
824 | else
|
---|
825 | x = PyLong_AsUnsignedLongLong(vv);
|
---|
826 |
|
---|
827 | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
|
---|
828 |
|
---|
829 | if (x == -1 && PyErr_Occurred())
|
---|
830 | return NULL;
|
---|
831 | return (void *)x;
|
---|
832 | }
|
---|
833 |
|
---|
834 | #ifdef HAVE_LONG_LONG
|
---|
835 |
|
---|
836 | /* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
|
---|
837 | * rewritten to use the newer PyLong_{As,From}ByteArray API.
|
---|
838 | */
|
---|
839 |
|
---|
840 | #define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
|
---|
841 | #define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
|
---|
842 |
|
---|
843 | /* Create a new long int object from a C PY_LONG_LONG int. */
|
---|
844 |
|
---|
845 | PyObject *
|
---|
846 | PyLong_FromLongLong(PY_LONG_LONG ival)
|
---|
847 | {
|
---|
848 | PyLongObject *v;
|
---|
849 | unsigned PY_LONG_LONG abs_ival;
|
---|
850 | unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */
|
---|
851 | int ndigits = 0;
|
---|
852 | int negative = 0;
|
---|
853 |
|
---|
854 | if (ival < 0) {
|
---|
855 | /* avoid signed overflow on negation; see comments
|
---|
856 | in PyLong_FromLong above. */
|
---|
857 | abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
|
---|
858 | negative = 1;
|
---|
859 | }
|
---|
860 | else {
|
---|
861 | abs_ival = (unsigned PY_LONG_LONG)ival;
|
---|
862 | }
|
---|
863 |
|
---|
864 | /* Count the number of Python digits.
|
---|
865 | We used to pick 5 ("big enough for anything"), but that's a
|
---|
866 | waste of time and space given that 5*15 = 75 bits are rarely
|
---|
867 | needed. */
|
---|
868 | t = abs_ival;
|
---|
869 | while (t) {
|
---|
870 | ++ndigits;
|
---|
871 | t >>= PyLong_SHIFT;
|
---|
872 | }
|
---|
873 | v = _PyLong_New(ndigits);
|
---|
874 | if (v != NULL) {
|
---|
875 | digit *p = v->ob_digit;
|
---|
876 | Py_SIZE(v) = negative ? -ndigits : ndigits;
|
---|
877 | t = abs_ival;
|
---|
878 | while (t) {
|
---|
879 | *p++ = (digit)(t & PyLong_MASK);
|
---|
880 | t >>= PyLong_SHIFT;
|
---|
881 | }
|
---|
882 | }
|
---|
883 | return (PyObject *)v;
|
---|
884 | }
|
---|
885 |
|
---|
886 | /* Create a new long int object from a C unsigned PY_LONG_LONG int. */
|
---|
887 |
|
---|
888 | PyObject *
|
---|
889 | PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
|
---|
890 | {
|
---|
891 | PyLongObject *v;
|
---|
892 | unsigned PY_LONG_LONG t;
|
---|
893 | int ndigits = 0;
|
---|
894 |
|
---|
895 | /* Count the number of Python digits. */
|
---|
896 | t = (unsigned PY_LONG_LONG)ival;
|
---|
897 | while (t) {
|
---|
898 | ++ndigits;
|
---|
899 | t >>= PyLong_SHIFT;
|
---|
900 | }
|
---|
901 | v = _PyLong_New(ndigits);
|
---|
902 | if (v != NULL) {
|
---|
903 | digit *p = v->ob_digit;
|
---|
904 | Py_SIZE(v) = ndigits;
|
---|
905 | while (ival) {
|
---|
906 | *p++ = (digit)(ival & PyLong_MASK);
|
---|
907 | ival >>= PyLong_SHIFT;
|
---|
908 | }
|
---|
909 | }
|
---|
910 | return (PyObject *)v;
|
---|
911 | }
|
---|
912 |
|
---|
913 | /* Create a new long int object from a C Py_ssize_t. */
|
---|
914 |
|
---|
915 | PyObject *
|
---|
916 | PyLong_FromSsize_t(Py_ssize_t ival)
|
---|
917 | {
|
---|
918 | Py_ssize_t bytes = ival;
|
---|
919 | int one = 1;
|
---|
920 | return _PyLong_FromByteArray((unsigned char *)&bytes,
|
---|
921 | SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 1);
|
---|
922 | }
|
---|
923 |
|
---|
924 | /* Create a new long int object from a C size_t. */
|
---|
925 |
|
---|
926 | PyObject *
|
---|
927 | PyLong_FromSize_t(size_t ival)
|
---|
928 | {
|
---|
929 | size_t bytes = ival;
|
---|
930 | int one = 1;
|
---|
931 | return _PyLong_FromByteArray((unsigned char *)&bytes,
|
---|
932 | SIZEOF_SIZE_T, IS_LITTLE_ENDIAN, 0);
|
---|
933 | }
|
---|
934 |
|
---|
935 | /* Get a C PY_LONG_LONG int from a long int object.
|
---|
936 | Return -1 and set an error if overflow occurs. */
|
---|
937 |
|
---|
938 | PY_LONG_LONG
|
---|
939 | PyLong_AsLongLong(PyObject *vv)
|
---|
940 | {
|
---|
941 | PY_LONG_LONG bytes;
|
---|
942 | int one = 1;
|
---|
943 | int res;
|
---|
944 |
|
---|
945 | if (vv == NULL) {
|
---|
946 | PyErr_BadInternalCall();
|
---|
947 | return -1;
|
---|
948 | }
|
---|
949 | if (!PyLong_Check(vv)) {
|
---|
950 | PyNumberMethods *nb;
|
---|
951 | PyObject *io;
|
---|
952 | if (PyInt_Check(vv))
|
---|
953 | return (PY_LONG_LONG)PyInt_AsLong(vv);
|
---|
954 | if ((nb = vv->ob_type->tp_as_number) == NULL ||
|
---|
955 | nb->nb_int == NULL) {
|
---|
956 | PyErr_SetString(PyExc_TypeError, "an integer is required");
|
---|
957 | return -1;
|
---|
958 | }
|
---|
959 | io = (*nb->nb_int) (vv);
|
---|
960 | if (io == NULL)
|
---|
961 | return -1;
|
---|
962 | if (PyInt_Check(io)) {
|
---|
963 | bytes = PyInt_AsLong(io);
|
---|
964 | Py_DECREF(io);
|
---|
965 | return bytes;
|
---|
966 | }
|
---|
967 | if (PyLong_Check(io)) {
|
---|
968 | bytes = PyLong_AsLongLong(io);
|
---|
969 | Py_DECREF(io);
|
---|
970 | return bytes;
|
---|
971 | }
|
---|
972 | Py_DECREF(io);
|
---|
973 | PyErr_SetString(PyExc_TypeError, "integer conversion failed");
|
---|
974 | return -1;
|
---|
975 | }
|
---|
976 |
|
---|
977 | res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
|
---|
978 | SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
|
---|
979 |
|
---|
980 | /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
|
---|
981 | if (res < 0)
|
---|
982 | return (PY_LONG_LONG)-1;
|
---|
983 | else
|
---|
984 | return bytes;
|
---|
985 | }
|
---|
986 |
|
---|
987 | /* Get a C unsigned PY_LONG_LONG int from a long int object.
|
---|
988 | Return -1 and set an error if overflow occurs. */
|
---|
989 |
|
---|
990 | unsigned PY_LONG_LONG
|
---|
991 | PyLong_AsUnsignedLongLong(PyObject *vv)
|
---|
992 | {
|
---|
993 | unsigned PY_LONG_LONG bytes;
|
---|
994 | int one = 1;
|
---|
995 | int res;
|
---|
996 |
|
---|
997 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
998 | PyErr_BadInternalCall();
|
---|
999 | return (unsigned PY_LONG_LONG)-1;
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
|
---|
1003 | SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
|
---|
1004 |
|
---|
1005 | /* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
|
---|
1006 | if (res < 0)
|
---|
1007 | return (unsigned PY_LONG_LONG)res;
|
---|
1008 | else
|
---|
1009 | return bytes;
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | /* Get a C unsigned long int from a long int object, ignoring the high bits.
|
---|
1013 | Returns -1 and sets an error condition if an error occurs. */
|
---|
1014 |
|
---|
1015 | unsigned PY_LONG_LONG
|
---|
1016 | PyLong_AsUnsignedLongLongMask(PyObject *vv)
|
---|
1017 | {
|
---|
1018 | register PyLongObject *v;
|
---|
1019 | unsigned PY_LONG_LONG x;
|
---|
1020 | Py_ssize_t i;
|
---|
1021 | int sign;
|
---|
1022 |
|
---|
1023 | if (vv == NULL || !PyLong_Check(vv)) {
|
---|
1024 | PyErr_BadInternalCall();
|
---|
1025 | return (unsigned long) -1;
|
---|
1026 | }
|
---|
1027 | v = (PyLongObject *)vv;
|
---|
1028 | i = v->ob_size;
|
---|
1029 | sign = 1;
|
---|
1030 | x = 0;
|
---|
1031 | if (i < 0) {
|
---|
1032 | sign = -1;
|
---|
1033 | i = -i;
|
---|
1034 | }
|
---|
1035 | while (--i >= 0) {
|
---|
1036 | x = (x << PyLong_SHIFT) | v->ob_digit[i];
|
---|
1037 | }
|
---|
1038 | return x * sign;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | /* Get a C long long int from a Python long or Python int object.
|
---|
1042 | On overflow, returns -1 and sets *overflow to 1 or -1 depending
|
---|
1043 | on the sign of the result. Otherwise *overflow is 0.
|
---|
1044 |
|
---|
1045 | For other errors (e.g., type error), returns -1 and sets an error
|
---|
1046 | condition.
|
---|
1047 | */
|
---|
1048 |
|
---|
1049 | PY_LONG_LONG
|
---|
1050 | PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
|
---|
1051 | {
|
---|
1052 | /* This version by Tim Peters */
|
---|
1053 | register PyLongObject *v;
|
---|
1054 | unsigned PY_LONG_LONG x, prev;
|
---|
1055 | PY_LONG_LONG res;
|
---|
1056 | Py_ssize_t i;
|
---|
1057 | int sign;
|
---|
1058 | int do_decref = 0; /* if nb_int was called */
|
---|
1059 |
|
---|
1060 | *overflow = 0;
|
---|
1061 | if (vv == NULL) {
|
---|
1062 | PyErr_BadInternalCall();
|
---|
1063 | return -1;
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | if (PyInt_Check(vv))
|
---|
1067 | return PyInt_AsLong(vv);
|
---|
1068 |
|
---|
1069 | if (!PyLong_Check(vv)) {
|
---|
1070 | PyNumberMethods *nb;
|
---|
1071 | nb = vv->ob_type->tp_as_number;
|
---|
1072 | if (nb == NULL || nb->nb_int == NULL) {
|
---|
1073 | PyErr_SetString(PyExc_TypeError,
|
---|
1074 | "an integer is required");
|
---|
1075 | return -1;
|
---|
1076 | }
|
---|
1077 | vv = (*nb->nb_int) (vv);
|
---|
1078 | if (vv == NULL)
|
---|
1079 | return -1;
|
---|
1080 | do_decref = 1;
|
---|
1081 | if(PyInt_Check(vv)) {
|
---|
1082 | res = PyInt_AsLong(vv);
|
---|
1083 | goto exit;
|
---|
1084 | }
|
---|
1085 | if (!PyLong_Check(vv)) {
|
---|
1086 | Py_DECREF(vv);
|
---|
1087 | PyErr_SetString(PyExc_TypeError,
|
---|
1088 | "nb_int should return int object");
|
---|
1089 | return -1;
|
---|
1090 | }
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | res = -1;
|
---|
1094 | v = (PyLongObject *)vv;
|
---|
1095 | i = Py_SIZE(v);
|
---|
1096 |
|
---|
1097 | switch (i) {
|
---|
1098 | case -1:
|
---|
1099 | res = -(sdigit)v->ob_digit[0];
|
---|
1100 | break;
|
---|
1101 | case 0:
|
---|
1102 | res = 0;
|
---|
1103 | break;
|
---|
1104 | case 1:
|
---|
1105 | res = v->ob_digit[0];
|
---|
1106 | break;
|
---|
1107 | default:
|
---|
1108 | sign = 1;
|
---|
1109 | x = 0;
|
---|
1110 | if (i < 0) {
|
---|
1111 | sign = -1;
|
---|
1112 | i = -(i);
|
---|
1113 | }
|
---|
1114 | while (--i >= 0) {
|
---|
1115 | prev = x;
|
---|
1116 | x = (x << PyLong_SHIFT) + v->ob_digit[i];
|
---|
1117 | if ((x >> PyLong_SHIFT) != prev) {
|
---|
1118 | *overflow = sign;
|
---|
1119 | goto exit;
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 | /* Haven't lost any bits, but casting to long requires extra
|
---|
1123 | * care (see comment above).
|
---|
1124 | */
|
---|
1125 | if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
|
---|
1126 | res = (PY_LONG_LONG)x * sign;
|
---|
1127 | }
|
---|
1128 | else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
|
---|
1129 | res = PY_LLONG_MIN;
|
---|
1130 | }
|
---|
1131 | else {
|
---|
1132 | *overflow = sign;
|
---|
1133 | /* res is already set to -1 */
|
---|
1134 | }
|
---|
1135 | }
|
---|
1136 | exit:
|
---|
1137 | if (do_decref) {
|
---|
1138 | Py_DECREF(vv);
|
---|
1139 | }
|
---|
1140 | return res;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | #undef IS_LITTLE_ENDIAN
|
---|
1144 |
|
---|
1145 | #endif /* HAVE_LONG_LONG */
|
---|
1146 |
|
---|
1147 |
|
---|
1148 | static int
|
---|
1149 | convert_binop(PyObject *v, PyObject *w, PyLongObject **a, PyLongObject **b) {
|
---|
1150 | if (PyLong_Check(v)) {
|
---|
1151 | *a = (PyLongObject *) v;
|
---|
1152 | Py_INCREF(v);
|
---|
1153 | }
|
---|
1154 | else if (PyInt_Check(v)) {
|
---|
1155 | *a = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(v));
|
---|
1156 | }
|
---|
1157 | else {
|
---|
1158 | return 0;
|
---|
1159 | }
|
---|
1160 | if (PyLong_Check(w)) {
|
---|
1161 | *b = (PyLongObject *) w;
|
---|
1162 | Py_INCREF(w);
|
---|
1163 | }
|
---|
1164 | else if (PyInt_Check(w)) {
|
---|
1165 | *b = (PyLongObject *) PyLong_FromLong(PyInt_AS_LONG(w));
|
---|
1166 | }
|
---|
1167 | else {
|
---|
1168 | Py_DECREF(*a);
|
---|
1169 | return 0;
|
---|
1170 | }
|
---|
1171 | return 1;
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | #define CONVERT_BINOP(v, w, a, b) \
|
---|
1175 | do { \
|
---|
1176 | if (!convert_binop(v, w, a, b)) { \
|
---|
1177 | Py_INCREF(Py_NotImplemented); \
|
---|
1178 | return Py_NotImplemented; \
|
---|
1179 | } \
|
---|
1180 | } while(0) \
|
---|
1181 |
|
---|
1182 | /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
|
---|
1183 | 2**k if d is nonzero, else 0. */
|
---|
1184 |
|
---|
1185 | static const unsigned char BitLengthTable[32] = {
|
---|
1186 | 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
---|
1187 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
|
---|
1188 | };
|
---|
1189 |
|
---|
1190 | static int
|
---|
1191 | bits_in_digit(digit d)
|
---|
1192 | {
|
---|
1193 | int d_bits = 0;
|
---|
1194 | while (d >= 32) {
|
---|
1195 | d_bits += 6;
|
---|
1196 | d >>= 6;
|
---|
1197 | }
|
---|
1198 | d_bits += (int)BitLengthTable[d];
|
---|
1199 | return d_bits;
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
|
---|
1203 | * is modified in place, by adding y to it. Carries are propagated as far as
|
---|
1204 | * x[m-1], and the remaining carry (0 or 1) is returned.
|
---|
1205 | */
|
---|
1206 | static digit
|
---|
1207 | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
|
---|
1208 | {
|
---|
1209 | Py_ssize_t i;
|
---|
1210 | digit carry = 0;
|
---|
1211 |
|
---|
1212 | assert(m >= n);
|
---|
1213 | for (i = 0; i < n; ++i) {
|
---|
1214 | carry += x[i] + y[i];
|
---|
1215 | x[i] = carry & PyLong_MASK;
|
---|
1216 | carry >>= PyLong_SHIFT;
|
---|
1217 | assert((carry & 1) == carry);
|
---|
1218 | }
|
---|
1219 | for (; carry && i < m; ++i) {
|
---|
1220 | carry += x[i];
|
---|
1221 | x[i] = carry & PyLong_MASK;
|
---|
1222 | carry >>= PyLong_SHIFT;
|
---|
1223 | assert((carry & 1) == carry);
|
---|
1224 | }
|
---|
1225 | return carry;
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
|
---|
1229 | * is modified in place, by subtracting y from it. Borrows are propagated as
|
---|
1230 | * far as x[m-1], and the remaining borrow (0 or 1) is returned.
|
---|
1231 | */
|
---|
1232 | static digit
|
---|
1233 | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
|
---|
1234 | {
|
---|
1235 | Py_ssize_t i;
|
---|
1236 | digit borrow = 0;
|
---|
1237 |
|
---|
1238 | assert(m >= n);
|
---|
1239 | for (i = 0; i < n; ++i) {
|
---|
1240 | borrow = x[i] - y[i] - borrow;
|
---|
1241 | x[i] = borrow & PyLong_MASK;
|
---|
1242 | borrow >>= PyLong_SHIFT;
|
---|
1243 | borrow &= 1; /* keep only 1 sign bit */
|
---|
1244 | }
|
---|
1245 | for (; borrow && i < m; ++i) {
|
---|
1246 | borrow = x[i] - borrow;
|
---|
1247 | x[i] = borrow & PyLong_MASK;
|
---|
1248 | borrow >>= PyLong_SHIFT;
|
---|
1249 | borrow &= 1;
|
---|
1250 | }
|
---|
1251 | return borrow;
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 | /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
|
---|
1255 | * result in z[0:m], and return the d bits shifted out of the top.
|
---|
1256 | */
|
---|
1257 | static digit
|
---|
1258 | v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
|
---|
1259 | {
|
---|
1260 | Py_ssize_t i;
|
---|
1261 | digit carry = 0;
|
---|
1262 |
|
---|
1263 | assert(0 <= d && d < PyLong_SHIFT);
|
---|
1264 | for (i=0; i < m; i++) {
|
---|
1265 | twodigits acc = (twodigits)a[i] << d | carry;
|
---|
1266 | z[i] = (digit)acc & PyLong_MASK;
|
---|
1267 | carry = (digit)(acc >> PyLong_SHIFT);
|
---|
1268 | }
|
---|
1269 | return carry;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
|
---|
1273 | * result in z[0:m], and return the d bits shifted out of the bottom.
|
---|
1274 | */
|
---|
1275 | static digit
|
---|
1276 | v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
|
---|
1277 | {
|
---|
1278 | Py_ssize_t i;
|
---|
1279 | digit carry = 0;
|
---|
1280 | digit mask = ((digit)1 << d) - 1U;
|
---|
1281 |
|
---|
1282 | assert(0 <= d && d < PyLong_SHIFT);
|
---|
1283 | for (i=m; i-- > 0;) {
|
---|
1284 | twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
|
---|
1285 | carry = (digit)acc & mask;
|
---|
1286 | z[i] = (digit)(acc >> d);
|
---|
1287 | }
|
---|
1288 | return carry;
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
|
---|
1292 | in pout, and returning the remainder. pin and pout point at the LSD.
|
---|
1293 | It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
|
---|
1294 | _PyLong_Format, but that should be done with great care since longs are
|
---|
1295 | immutable. */
|
---|
1296 |
|
---|
1297 | static digit
|
---|
1298 | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
|
---|
1299 | {
|
---|
1300 | twodigits rem = 0;
|
---|
1301 |
|
---|
1302 | assert(n > 0 && n <= PyLong_MASK);
|
---|
1303 | pin += size;
|
---|
1304 | pout += size;
|
---|
1305 | while (--size >= 0) {
|
---|
1306 | digit hi;
|
---|
1307 | rem = (rem << PyLong_SHIFT) | *--pin;
|
---|
1308 | *--pout = hi = (digit)(rem / n);
|
---|
1309 | rem -= (twodigits)hi * n;
|
---|
1310 | }
|
---|
1311 | return (digit)rem;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /* Divide a long integer by a digit, returning both the quotient
|
---|
1315 | (as function result) and the remainder (through *prem).
|
---|
1316 | The sign of a is ignored; n should not be zero. */
|
---|
1317 |
|
---|
1318 | static PyLongObject *
|
---|
1319 | divrem1(PyLongObject *a, digit n, digit *prem)
|
---|
1320 | {
|
---|
1321 | const Py_ssize_t size = ABS(Py_SIZE(a));
|
---|
1322 | PyLongObject *z;
|
---|
1323 |
|
---|
1324 | assert(n > 0 && n <= PyLong_MASK);
|
---|
1325 | z = _PyLong_New(size);
|
---|
1326 | if (z == NULL)
|
---|
1327 | return NULL;
|
---|
1328 | *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
|
---|
1329 | return long_normalize(z);
|
---|
1330 | }
|
---|
1331 |
|
---|
1332 | /* Convert a long integer to a base 10 string. Returns a new non-shared
|
---|
1333 | string. (Return value is non-shared so that callers can modify the
|
---|
1334 | returned value if necessary.) */
|
---|
1335 |
|
---|
1336 | static PyObject *
|
---|
1337 | long_to_decimal_string(PyObject *aa, int addL)
|
---|
1338 | {
|
---|
1339 | PyLongObject *scratch, *a;
|
---|
1340 | PyObject *str;
|
---|
1341 | Py_ssize_t size, strlen, size_a, i, j;
|
---|
1342 | digit *pout, *pin, rem, tenpow;
|
---|
1343 | char *p;
|
---|
1344 | int negative;
|
---|
1345 |
|
---|
1346 | a = (PyLongObject *)aa;
|
---|
1347 | if (a == NULL || !PyLong_Check(a)) {
|
---|
1348 | PyErr_BadInternalCall();
|
---|
1349 | return NULL;
|
---|
1350 | }
|
---|
1351 | size_a = ABS(Py_SIZE(a));
|
---|
1352 | negative = Py_SIZE(a) < 0;
|
---|
1353 |
|
---|
1354 | /* quick and dirty upper bound for the number of digits
|
---|
1355 | required to express a in base _PyLong_DECIMAL_BASE:
|
---|
1356 |
|
---|
1357 | #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
|
---|
1358 |
|
---|
1359 | But log2(a) < size_a * PyLong_SHIFT, and
|
---|
1360 | log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
|
---|
1361 | > 3 * _PyLong_DECIMAL_SHIFT
|
---|
1362 | */
|
---|
1363 | if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
|
---|
1364 | PyErr_SetString(PyExc_OverflowError,
|
---|
1365 | "long is too large to format");
|
---|
1366 | return NULL;
|
---|
1367 | }
|
---|
1368 | /* the expression size_a * PyLong_SHIFT is now safe from overflow */
|
---|
1369 | size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
|
---|
1370 | scratch = _PyLong_New(size);
|
---|
1371 | if (scratch == NULL)
|
---|
1372 | return NULL;
|
---|
1373 |
|
---|
1374 | /* convert array of base _PyLong_BASE digits in pin to an array of
|
---|
1375 | base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
|
---|
1376 | Volume 2 (3rd edn), section 4.4, Method 1b). */
|
---|
1377 | pin = a->ob_digit;
|
---|
1378 | pout = scratch->ob_digit;
|
---|
1379 | size = 0;
|
---|
1380 | for (i = size_a; --i >= 0; ) {
|
---|
1381 | digit hi = pin[i];
|
---|
1382 | for (j = 0; j < size; j++) {
|
---|
1383 | twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
|
---|
1384 | hi = (digit)(z / _PyLong_DECIMAL_BASE);
|
---|
1385 | pout[j] = (digit)(z - (twodigits)hi *
|
---|
1386 | _PyLong_DECIMAL_BASE);
|
---|
1387 | }
|
---|
1388 | while (hi) {
|
---|
1389 | pout[size++] = hi % _PyLong_DECIMAL_BASE;
|
---|
1390 | hi /= _PyLong_DECIMAL_BASE;
|
---|
1391 | }
|
---|
1392 | /* check for keyboard interrupt */
|
---|
1393 | SIGCHECK({
|
---|
1394 | Py_DECREF(scratch);
|
---|
1395 | return NULL;
|
---|
1396 | });
|
---|
1397 | }
|
---|
1398 | /* pout should have at least one digit, so that the case when a = 0
|
---|
1399 | works correctly */
|
---|
1400 | if (size == 0)
|
---|
1401 | pout[size++] = 0;
|
---|
1402 |
|
---|
1403 | /* calculate exact length of output string, and allocate */
|
---|
1404 | strlen = (addL != 0) + negative +
|
---|
1405 | 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
|
---|
1406 | tenpow = 10;
|
---|
1407 | rem = pout[size-1];
|
---|
1408 | while (rem >= tenpow) {
|
---|
1409 | tenpow *= 10;
|
---|
1410 | strlen++;
|
---|
1411 | }
|
---|
1412 | str = PyString_FromStringAndSize(NULL, strlen);
|
---|
1413 | if (str == NULL) {
|
---|
1414 | Py_DECREF(scratch);
|
---|
1415 | return NULL;
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | /* fill the string right-to-left */
|
---|
1419 | p = PyString_AS_STRING(str) + strlen;
|
---|
1420 | *p = '\0';
|
---|
1421 | if (addL)
|
---|
1422 | *--p = 'L';
|
---|
1423 | /* pout[0] through pout[size-2] contribute exactly
|
---|
1424 | _PyLong_DECIMAL_SHIFT digits each */
|
---|
1425 | for (i=0; i < size - 1; i++) {
|
---|
1426 | rem = pout[i];
|
---|
1427 | for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
|
---|
1428 | *--p = '0' + rem % 10;
|
---|
1429 | rem /= 10;
|
---|
1430 | }
|
---|
1431 | }
|
---|
1432 | /* pout[size-1]: always produce at least one decimal digit */
|
---|
1433 | rem = pout[i];
|
---|
1434 | do {
|
---|
1435 | *--p = '0' + rem % 10;
|
---|
1436 | rem /= 10;
|
---|
1437 | } while (rem != 0);
|
---|
1438 |
|
---|
1439 | /* and sign */
|
---|
1440 | if (negative)
|
---|
1441 | *--p = '-';
|
---|
1442 |
|
---|
1443 | /* check we've counted correctly */
|
---|
1444 | assert(p == PyString_AS_STRING(str));
|
---|
1445 | Py_DECREF(scratch);
|
---|
1446 | return (PyObject *)str;
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | /* Convert the long to a string object with given base,
|
---|
1450 | appending a base prefix of 0[box] if base is 2, 8 or 16.
|
---|
1451 | Add a trailing "L" if addL is non-zero.
|
---|
1452 | If newstyle is zero, then use the pre-2.6 behavior of octal having
|
---|
1453 | a leading "0", instead of the prefix "0o" */
|
---|
1454 | PyAPI_FUNC(PyObject *)
|
---|
1455 | _PyLong_Format(PyObject *aa, int base, int addL, int newstyle)
|
---|
1456 | {
|
---|
1457 | register PyLongObject *a = (PyLongObject *)aa;
|
---|
1458 | PyStringObject *str;
|
---|
1459 | Py_ssize_t i, sz;
|
---|
1460 | Py_ssize_t size_a;
|
---|
1461 | char *p;
|
---|
1462 | int bits;
|
---|
1463 | char sign = '\0';
|
---|
1464 |
|
---|
1465 | if (base == 10)
|
---|
1466 | return long_to_decimal_string((PyObject *)a, addL);
|
---|
1467 |
|
---|
1468 | if (a == NULL || !PyLong_Check(a)) {
|
---|
1469 | PyErr_BadInternalCall();
|
---|
1470 | return NULL;
|
---|
1471 | }
|
---|
1472 | assert(base >= 2 && base <= 36);
|
---|
1473 | size_a = ABS(Py_SIZE(a));
|
---|
1474 |
|
---|
1475 | /* Compute a rough upper bound for the length of the string */
|
---|
1476 | i = base;
|
---|
1477 | bits = 0;
|
---|
1478 | while (i > 1) {
|
---|
1479 | ++bits;
|
---|
1480 | i >>= 1;
|
---|
1481 | }
|
---|
1482 | i = 5 + (addL ? 1 : 0);
|
---|
1483 | /* ensure we don't get signed overflow in sz calculation */
|
---|
1484 | if (size_a > (PY_SSIZE_T_MAX - i) / PyLong_SHIFT) {
|
---|
1485 | PyErr_SetString(PyExc_OverflowError,
|
---|
1486 | "long is too large to format");
|
---|
1487 | return NULL;
|
---|
1488 | }
|
---|
1489 | sz = i + 1 + (size_a * PyLong_SHIFT - 1) / bits;
|
---|
1490 | assert(sz >= 0);
|
---|
1491 | str = (PyStringObject *) PyString_FromStringAndSize((char *)0, sz);
|
---|
1492 | if (str == NULL)
|
---|
1493 | return NULL;
|
---|
1494 | p = PyString_AS_STRING(str) + sz;
|
---|
1495 | *p = '\0';
|
---|
1496 | if (addL)
|
---|
1497 | *--p = 'L';
|
---|
1498 | if (a->ob_size < 0)
|
---|
1499 | sign = '-';
|
---|
1500 |
|
---|
1501 | if (a->ob_size == 0) {
|
---|
1502 | *--p = '0';
|
---|
1503 | }
|
---|
1504 | else if ((base & (base - 1)) == 0) {
|
---|
1505 | /* JRH: special case for power-of-2 bases */
|
---|
1506 | twodigits accum = 0;
|
---|
1507 | int accumbits = 0; /* # of bits in accum */
|
---|
1508 | int basebits = 1; /* # of bits in base-1 */
|
---|
1509 | i = base;
|
---|
1510 | while ((i >>= 1) > 1)
|
---|
1511 | ++basebits;
|
---|
1512 |
|
---|
1513 | for (i = 0; i < size_a; ++i) {
|
---|
1514 | accum |= (twodigits)a->ob_digit[i] << accumbits;
|
---|
1515 | accumbits += PyLong_SHIFT;
|
---|
1516 | assert(accumbits >= basebits);
|
---|
1517 | do {
|
---|
1518 | char cdigit = (char)(accum & (base - 1));
|
---|
1519 | cdigit += (cdigit < 10) ? '0' : 'a'-10;
|
---|
1520 | assert(p > PyString_AS_STRING(str));
|
---|
1521 | *--p = cdigit;
|
---|
1522 | accumbits -= basebits;
|
---|
1523 | accum >>= basebits;
|
---|
1524 | } while (i < size_a-1 ? accumbits >= basebits : accum > 0);
|
---|
1525 | }
|
---|
1526 | }
|
---|
1527 | else {
|
---|
1528 | /* Not 0, and base not a power of 2. Divide repeatedly by
|
---|
1529 | base, but for speed use the highest power of base that
|
---|
1530 | fits in a digit. */
|
---|
1531 | Py_ssize_t size = size_a;
|
---|
1532 | digit *pin = a->ob_digit;
|
---|
1533 | PyLongObject *scratch;
|
---|
1534 | /* powbasw <- largest power of base that fits in a digit. */
|
---|
1535 | digit powbase = base; /* powbase == base ** power */
|
---|
1536 | int power = 1;
|
---|
1537 | for (;;) {
|
---|
1538 | twodigits newpow = powbase * (twodigits)base;
|
---|
1539 | if (newpow >> PyLong_SHIFT)
|
---|
1540 | /* doesn't fit in a digit */
|
---|
1541 | break;
|
---|
1542 | powbase = (digit)newpow;
|
---|
1543 | ++power;
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | /* Get a scratch area for repeated division. */
|
---|
1547 | scratch = _PyLong_New(size);
|
---|
1548 | if (scratch == NULL) {
|
---|
1549 | Py_DECREF(str);
|
---|
1550 | return NULL;
|
---|
1551 | }
|
---|
1552 |
|
---|
1553 | /* Repeatedly divide by powbase. */
|
---|
1554 | do {
|
---|
1555 | int ntostore = power;
|
---|
1556 | digit rem = inplace_divrem1(scratch->ob_digit,
|
---|
1557 | pin, size, powbase);
|
---|
1558 | pin = scratch->ob_digit; /* no need to use a again */
|
---|
1559 | if (pin[size - 1] == 0)
|
---|
1560 | --size;
|
---|
1561 | SIGCHECK({
|
---|
1562 | Py_DECREF(scratch);
|
---|
1563 | Py_DECREF(str);
|
---|
1564 | return NULL;
|
---|
1565 | });
|
---|
1566 |
|
---|
1567 | /* Break rem into digits. */
|
---|
1568 | assert(ntostore > 0);
|
---|
1569 | do {
|
---|
1570 | digit nextrem = (digit)(rem / base);
|
---|
1571 | char c = (char)(rem - nextrem * base);
|
---|
1572 | assert(p > PyString_AS_STRING(str));
|
---|
1573 | c += (c < 10) ? '0' : 'a'-10;
|
---|
1574 | *--p = c;
|
---|
1575 | rem = nextrem;
|
---|
1576 | --ntostore;
|
---|
1577 | /* Termination is a bit delicate: must not
|
---|
1578 | store leading zeroes, so must get out if
|
---|
1579 | remaining quotient and rem are both 0. */
|
---|
1580 | } while (ntostore && (size || rem));
|
---|
1581 | } while (size != 0);
|
---|
1582 | Py_DECREF(scratch);
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 | if (base == 2) {
|
---|
1586 | *--p = 'b';
|
---|
1587 | *--p = '0';
|
---|
1588 | }
|
---|
1589 | else if (base == 8) {
|
---|
1590 | if (newstyle) {
|
---|
1591 | *--p = 'o';
|
---|
1592 | *--p = '0';
|
---|
1593 | }
|
---|
1594 | else
|
---|
1595 | if (size_a != 0)
|
---|
1596 | *--p = '0';
|
---|
1597 | }
|
---|
1598 | else if (base == 16) {
|
---|
1599 | *--p = 'x';
|
---|
1600 | *--p = '0';
|
---|
1601 | }
|
---|
1602 | else if (base != 10) {
|
---|
1603 | *--p = '#';
|
---|
1604 | *--p = '0' + base%10;
|
---|
1605 | if (base > 10)
|
---|
1606 | *--p = '0' + base/10;
|
---|
1607 | }
|
---|
1608 | if (sign)
|
---|
1609 | *--p = sign;
|
---|
1610 | if (p != PyString_AS_STRING(str)) {
|
---|
1611 | char *q = PyString_AS_STRING(str);
|
---|
1612 | assert(p > q);
|
---|
1613 | do {
|
---|
1614 | } while ((*q++ = *p++) != '\0');
|
---|
1615 | q--;
|
---|
1616 | _PyString_Resize((PyObject **)&str,
|
---|
1617 | (Py_ssize_t) (q - PyString_AS_STRING(str)));
|
---|
1618 | }
|
---|
1619 | return (PyObject *)str;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | /* Table of digit values for 8-bit string -> integer conversion.
|
---|
1623 | * '0' maps to 0, ..., '9' maps to 9.
|
---|
1624 | * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
|
---|
1625 | * All other indices map to 37.
|
---|
1626 | * Note that when converting a base B string, a char c is a legitimate
|
---|
1627 | * base B digit iff _PyLong_DigitValue[Py_CHARMASK(c)] < B.
|
---|
1628 | */
|
---|
1629 | int _PyLong_DigitValue[256] = {
|
---|
1630 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1631 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1632 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1633 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
|
---|
1634 | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
---|
1635 | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
|
---|
1636 | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
---|
1637 | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
|
---|
1638 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1639 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1640 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1641 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1642 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1643 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1644 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1645 | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
|
---|
1646 | };
|
---|
1647 |
|
---|
1648 | /* *str points to the first digit in a string of base `base` digits. base
|
---|
1649 | * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
|
---|
1650 | * non-digit (which may be *str!). A normalized long is returned.
|
---|
1651 | * The point to this routine is that it takes time linear in the number of
|
---|
1652 | * string characters.
|
---|
1653 | */
|
---|
1654 | static PyLongObject *
|
---|
1655 | long_from_binary_base(char **str, int base)
|
---|
1656 | {
|
---|
1657 | char *p = *str;
|
---|
1658 | char *start = p;
|
---|
1659 | int bits_per_char;
|
---|
1660 | Py_ssize_t n;
|
---|
1661 | PyLongObject *z;
|
---|
1662 | twodigits accum;
|
---|
1663 | int bits_in_accum;
|
---|
1664 | digit *pdigit;
|
---|
1665 |
|
---|
1666 | assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
|
---|
1667 | n = base;
|
---|
1668 | for (bits_per_char = -1; n; ++bits_per_char)
|
---|
1669 | n >>= 1;
|
---|
1670 | /* n <- total # of bits needed, while setting p to end-of-string */
|
---|
1671 | while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
|
---|
1672 | ++p;
|
---|
1673 | *str = p;
|
---|
1674 | /* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
|
---|
1675 | n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
|
---|
1676 | if (n / bits_per_char < p - start) {
|
---|
1677 | PyErr_SetString(PyExc_ValueError,
|
---|
1678 | "long string too large to convert");
|
---|
1679 | return NULL;
|
---|
1680 | }
|
---|
1681 | n = n / PyLong_SHIFT;
|
---|
1682 | z = _PyLong_New(n);
|
---|
1683 | if (z == NULL)
|
---|
1684 | return NULL;
|
---|
1685 | /* Read string from right, and fill in long from left; i.e.,
|
---|
1686 | * from least to most significant in both.
|
---|
1687 | */
|
---|
1688 | accum = 0;
|
---|
1689 | bits_in_accum = 0;
|
---|
1690 | pdigit = z->ob_digit;
|
---|
1691 | while (--p >= start) {
|
---|
1692 | int k = _PyLong_DigitValue[Py_CHARMASK(*p)];
|
---|
1693 | assert(k >= 0 && k < base);
|
---|
1694 | accum |= (twodigits)k << bits_in_accum;
|
---|
1695 | bits_in_accum += bits_per_char;
|
---|
1696 | if (bits_in_accum >= PyLong_SHIFT) {
|
---|
1697 | *pdigit++ = (digit)(accum & PyLong_MASK);
|
---|
1698 | assert(pdigit - z->ob_digit <= n);
|
---|
1699 | accum >>= PyLong_SHIFT;
|
---|
1700 | bits_in_accum -= PyLong_SHIFT;
|
---|
1701 | assert(bits_in_accum < PyLong_SHIFT);
|
---|
1702 | }
|
---|
1703 | }
|
---|
1704 | if (bits_in_accum) {
|
---|
1705 | assert(bits_in_accum <= PyLong_SHIFT);
|
---|
1706 | *pdigit++ = (digit)accum;
|
---|
1707 | assert(pdigit - z->ob_digit <= n);
|
---|
1708 | }
|
---|
1709 | while (pdigit - z->ob_digit < n)
|
---|
1710 | *pdigit++ = 0;
|
---|
1711 | return long_normalize(z);
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | PyObject *
|
---|
1715 | PyLong_FromString(char *str, char **pend, int base)
|
---|
1716 | {
|
---|
1717 | int sign = 1;
|
---|
1718 | char *start, *orig_str = str;
|
---|
1719 | PyLongObject *z;
|
---|
1720 | PyObject *strobj, *strrepr;
|
---|
1721 | Py_ssize_t slen;
|
---|
1722 |
|
---|
1723 | if ((base != 0 && base < 2) || base > 36) {
|
---|
1724 | PyErr_SetString(PyExc_ValueError,
|
---|
1725 | "long() arg 2 must be >= 2 and <= 36");
|
---|
1726 | return NULL;
|
---|
1727 | }
|
---|
1728 | while (*str != '\0' && isspace(Py_CHARMASK(*str)))
|
---|
1729 | str++;
|
---|
1730 | if (*str == '+')
|
---|
1731 | ++str;
|
---|
1732 | else if (*str == '-') {
|
---|
1733 | ++str;
|
---|
1734 | sign = -1;
|
---|
1735 | }
|
---|
1736 | while (*str != '\0' && isspace(Py_CHARMASK(*str)))
|
---|
1737 | str++;
|
---|
1738 | if (base == 0) {
|
---|
1739 | /* No base given. Deduce the base from the contents
|
---|
1740 | of the string */
|
---|
1741 | if (str[0] != '0')
|
---|
1742 | base = 10;
|
---|
1743 | else if (str[1] == 'x' || str[1] == 'X')
|
---|
1744 | base = 16;
|
---|
1745 | else if (str[1] == 'o' || str[1] == 'O')
|
---|
1746 | base = 8;
|
---|
1747 | else if (str[1] == 'b' || str[1] == 'B')
|
---|
1748 | base = 2;
|
---|
1749 | else
|
---|
1750 | /* "old" (C-style) octal literal, still valid in
|
---|
1751 | 2.x, although illegal in 3.x */
|
---|
1752 | base = 8;
|
---|
1753 | }
|
---|
1754 | /* Whether or not we were deducing the base, skip leading chars
|
---|
1755 | as needed */
|
---|
1756 | if (str[0] == '0' &&
|
---|
1757 | ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
|
---|
1758 | (base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
|
---|
1759 | (base == 2 && (str[1] == 'b' || str[1] == 'B'))))
|
---|
1760 | str += 2;
|
---|
1761 |
|
---|
1762 | start = str;
|
---|
1763 | if ((base & (base - 1)) == 0)
|
---|
1764 | z = long_from_binary_base(&str, base);
|
---|
1765 | else {
|
---|
1766 | /***
|
---|
1767 | Binary bases can be converted in time linear in the number of digits, because
|
---|
1768 | Python's representation base is binary. Other bases (including decimal!) use
|
---|
1769 | the simple quadratic-time algorithm below, complicated by some speed tricks.
|
---|
1770 |
|
---|
1771 | First some math: the largest integer that can be expressed in N base-B digits
|
---|
1772 | is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
|
---|
1773 | case number of Python digits needed to hold it is the smallest integer n s.t.
|
---|
1774 |
|
---|
1775 | PyLong_BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
|
---|
1776 | PyLong_BASE**n >= B**N [taking logs to base PyLong_BASE]
|
---|
1777 | n >= log(B**N)/log(PyLong_BASE) = N * log(B)/log(PyLong_BASE)
|
---|
1778 |
|
---|
1779 | The static array log_base_PyLong_BASE[base] == log(base)/log(PyLong_BASE) so
|
---|
1780 | we can compute this quickly. A Python long with that much space is reserved
|
---|
1781 | near the start, and the result is computed into it.
|
---|
1782 |
|
---|
1783 | The input string is actually treated as being in base base**i (i.e., i digits
|
---|
1784 | are processed at a time), where two more static arrays hold:
|
---|
1785 |
|
---|
1786 | convwidth_base[base] = the largest integer i such that
|
---|
1787 | base**i <= PyLong_BASE
|
---|
1788 | convmultmax_base[base] = base ** convwidth_base[base]
|
---|
1789 |
|
---|
1790 | The first of these is the largest i such that i consecutive input digits
|
---|
1791 | must fit in a single Python digit. The second is effectively the input
|
---|
1792 | base we're really using.
|
---|
1793 |
|
---|
1794 | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
|
---|
1795 | convmultmax_base[base], the result is "simply"
|
---|
1796 |
|
---|
1797 | (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
|
---|
1798 |
|
---|
1799 | where B = convmultmax_base[base].
|
---|
1800 |
|
---|
1801 | Error analysis: as above, the number of Python digits `n` needed is worst-
|
---|
1802 | case
|
---|
1803 |
|
---|
1804 | n >= N * log(B)/log(PyLong_BASE)
|
---|
1805 |
|
---|
1806 | where `N` is the number of input digits in base `B`. This is computed via
|
---|
1807 |
|
---|
1808 | size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
|
---|
1809 |
|
---|
1810 | below. Two numeric concerns are how much space this can waste, and whether
|
---|
1811 | the computed result can be too small. To be concrete, assume PyLong_BASE =
|
---|
1812 | 2**15, which is the default (and it's unlikely anyone changes that).
|
---|
1813 |
|
---|
1814 | Waste isn't a problem: provided the first input digit isn't 0, the difference
|
---|
1815 | between the worst-case input with N digits and the smallest input with N
|
---|
1816 | digits is about a factor of B, but B is small compared to PyLong_BASE so at
|
---|
1817 | most one allocated Python digit can remain unused on that count. If
|
---|
1818 | N*log(B)/log(PyLong_BASE) is mathematically an exact integer, then truncating
|
---|
1819 | that and adding 1 returns a result 1 larger than necessary. However, that
|
---|
1820 | can't happen: whenever B is a power of 2, long_from_binary_base() is called
|
---|
1821 | instead, and it's impossible for B**i to be an integer power of 2**15 when B
|
---|
1822 | is not a power of 2 (i.e., it's impossible for N*log(B)/log(PyLong_BASE) to be
|
---|
1823 | an exact integer when B is not a power of 2, since B**i has a prime factor
|
---|
1824 | other than 2 in that case, but (2**15)**j's only prime factor is 2).
|
---|
1825 |
|
---|
1826 | The computed result can be too small if the true value of
|
---|
1827 | N*log(B)/log(PyLong_BASE) is a little bit larger than an exact integer, but
|
---|
1828 | due to roundoff errors (in computing log(B), log(PyLong_BASE), their quotient,
|
---|
1829 | and/or multiplying that by N) yields a numeric result a little less than that
|
---|
1830 | integer. Unfortunately, "how close can a transcendental function get to an
|
---|
1831 | integer over some range?" questions are generally theoretically intractable.
|
---|
1832 | Computer analysis via continued fractions is practical: expand
|
---|
1833 | log(B)/log(PyLong_BASE) via continued fractions, giving a sequence i/j of "the
|
---|
1834 | best" rational approximations. Then j*log(B)/log(PyLong_BASE) is
|
---|
1835 | approximately equal to (the integer) i. This shows that we can get very close
|
---|
1836 | to being in trouble, but very rarely. For example, 76573 is a denominator in
|
---|
1837 | one of the continued-fraction approximations to log(10)/log(2**15), and
|
---|
1838 | indeed:
|
---|
1839 |
|
---|
1840 | >>> log(10)/log(2**15)*76573
|
---|
1841 | 16958.000000654003
|
---|
1842 |
|
---|
1843 | is very close to an integer. If we were working with IEEE single-precision,
|
---|
1844 | rounding errors could kill us. Finding worst cases in IEEE double-precision
|
---|
1845 | requires better-than-double-precision log() functions, and Tim didn't bother.
|
---|
1846 | Instead the code checks to see whether the allocated space is enough as each
|
---|
1847 | new Python digit is added, and copies the whole thing to a larger long if not.
|
---|
1848 | This should happen extremely rarely, and in fact I don't have a test case
|
---|
1849 | that triggers it(!). Instead the code was tested by artificially allocating
|
---|
1850 | just 1 digit at the start, so that the copying code was exercised for every
|
---|
1851 | digit beyond the first.
|
---|
1852 | ***/
|
---|
1853 | register twodigits c; /* current input character */
|
---|
1854 | Py_ssize_t size_z;
|
---|
1855 | int i;
|
---|
1856 | int convwidth;
|
---|
1857 | twodigits convmultmax, convmult;
|
---|
1858 | digit *pz, *pzstop;
|
---|
1859 | char* scan;
|
---|
1860 |
|
---|
1861 | static double log_base_PyLong_BASE[37] = {0.0e0,};
|
---|
1862 | static int convwidth_base[37] = {0,};
|
---|
1863 | static twodigits convmultmax_base[37] = {0,};
|
---|
1864 |
|
---|
1865 | if (log_base_PyLong_BASE[base] == 0.0) {
|
---|
1866 | twodigits convmax = base;
|
---|
1867 | int i = 1;
|
---|
1868 |
|
---|
1869 | log_base_PyLong_BASE[base] = (log((double)base) /
|
---|
1870 | log((double)PyLong_BASE));
|
---|
1871 | for (;;) {
|
---|
1872 | twodigits next = convmax * base;
|
---|
1873 | if (next > PyLong_BASE)
|
---|
1874 | break;
|
---|
1875 | convmax = next;
|
---|
1876 | ++i;
|
---|
1877 | }
|
---|
1878 | convmultmax_base[base] = convmax;
|
---|
1879 | assert(i > 0);
|
---|
1880 | convwidth_base[base] = i;
|
---|
1881 | }
|
---|
1882 |
|
---|
1883 | /* Find length of the string of numeric characters. */
|
---|
1884 | scan = str;
|
---|
1885 | while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
|
---|
1886 | ++scan;
|
---|
1887 |
|
---|
1888 | /* Create a long object that can contain the largest possible
|
---|
1889 | * integer with this base and length. Note that there's no
|
---|
1890 | * need to initialize z->ob_digit -- no slot is read up before
|
---|
1891 | * being stored into.
|
---|
1892 | */
|
---|
1893 | size_z = (Py_ssize_t)((scan - str) * log_base_PyLong_BASE[base]) + 1;
|
---|
1894 | /* Uncomment next line to test exceedingly rare copy code */
|
---|
1895 | /* size_z = 1; */
|
---|
1896 | assert(size_z > 0);
|
---|
1897 | z = _PyLong_New(size_z);
|
---|
1898 | if (z == NULL)
|
---|
1899 | return NULL;
|
---|
1900 | Py_SIZE(z) = 0;
|
---|
1901 |
|
---|
1902 | /* `convwidth` consecutive input digits are treated as a single
|
---|
1903 | * digit in base `convmultmax`.
|
---|
1904 | */
|
---|
1905 | convwidth = convwidth_base[base];
|
---|
1906 | convmultmax = convmultmax_base[base];
|
---|
1907 |
|
---|
1908 | /* Work ;-) */
|
---|
1909 | while (str < scan) {
|
---|
1910 | /* grab up to convwidth digits from the input string */
|
---|
1911 | c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
|
---|
1912 | for (i = 1; i < convwidth && str != scan; ++i, ++str) {
|
---|
1913 | c = (twodigits)(c * base +
|
---|
1914 | _PyLong_DigitValue[Py_CHARMASK(*str)]);
|
---|
1915 | assert(c < PyLong_BASE);
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | convmult = convmultmax;
|
---|
1919 | /* Calculate the shift only if we couldn't get
|
---|
1920 | * convwidth digits.
|
---|
1921 | */
|
---|
1922 | if (i != convwidth) {
|
---|
1923 | convmult = base;
|
---|
1924 | for ( ; i > 1; --i)
|
---|
1925 | convmult *= base;
|
---|
1926 | }
|
---|
1927 |
|
---|
1928 | /* Multiply z by convmult, and add c. */
|
---|
1929 | pz = z->ob_digit;
|
---|
1930 | pzstop = pz + Py_SIZE(z);
|
---|
1931 | for (; pz < pzstop; ++pz) {
|
---|
1932 | c += (twodigits)*pz * convmult;
|
---|
1933 | *pz = (digit)(c & PyLong_MASK);
|
---|
1934 | c >>= PyLong_SHIFT;
|
---|
1935 | }
|
---|
1936 | /* carry off the current end? */
|
---|
1937 | if (c) {
|
---|
1938 | assert(c < PyLong_BASE);
|
---|
1939 | if (Py_SIZE(z) < size_z) {
|
---|
1940 | *pz = (digit)c;
|
---|
1941 | ++Py_SIZE(z);
|
---|
1942 | }
|
---|
1943 | else {
|
---|
1944 | PyLongObject *tmp;
|
---|
1945 | /* Extremely rare. Get more space. */
|
---|
1946 | assert(Py_SIZE(z) == size_z);
|
---|
1947 | tmp = _PyLong_New(size_z + 1);
|
---|
1948 | if (tmp == NULL) {
|
---|
1949 | Py_DECREF(z);
|
---|
1950 | return NULL;
|
---|
1951 | }
|
---|
1952 | memcpy(tmp->ob_digit,
|
---|
1953 | z->ob_digit,
|
---|
1954 | sizeof(digit) * size_z);
|
---|
1955 | Py_DECREF(z);
|
---|
1956 | z = tmp;
|
---|
1957 | z->ob_digit[size_z] = (digit)c;
|
---|
1958 | ++size_z;
|
---|
1959 | }
|
---|
1960 | }
|
---|
1961 | }
|
---|
1962 | }
|
---|
1963 | if (z == NULL)
|
---|
1964 | return NULL;
|
---|
1965 | if (str == start)
|
---|
1966 | goto onError;
|
---|
1967 | if (sign < 0)
|
---|
1968 | Py_SIZE(z) = -(Py_SIZE(z));
|
---|
1969 | if (*str == 'L' || *str == 'l')
|
---|
1970 | str++;
|
---|
1971 | while (*str && isspace(Py_CHARMASK(*str)))
|
---|
1972 | str++;
|
---|
1973 | if (*str != '\0')
|
---|
1974 | goto onError;
|
---|
1975 | if (pend)
|
---|
1976 | *pend = str;
|
---|
1977 | return (PyObject *) z;
|
---|
1978 |
|
---|
1979 | onError:
|
---|
1980 | Py_XDECREF(z);
|
---|
1981 | slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
|
---|
1982 | strobj = PyString_FromStringAndSize(orig_str, slen);
|
---|
1983 | if (strobj == NULL)
|
---|
1984 | return NULL;
|
---|
1985 | strrepr = PyObject_Repr(strobj);
|
---|
1986 | Py_DECREF(strobj);
|
---|
1987 | if (strrepr == NULL)
|
---|
1988 | return NULL;
|
---|
1989 | PyErr_Format(PyExc_ValueError,
|
---|
1990 | "invalid literal for long() with base %d: %s",
|
---|
1991 | base, PyString_AS_STRING(strrepr));
|
---|
1992 | Py_DECREF(strrepr);
|
---|
1993 | return NULL;
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 | #ifdef Py_USING_UNICODE
|
---|
1997 | PyObject *
|
---|
1998 | PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
|
---|
1999 | {
|
---|
2000 | PyObject *result;
|
---|
2001 | char *buffer = (char *)PyMem_MALLOC(length+1);
|
---|
2002 |
|
---|
2003 | if (buffer == NULL)
|
---|
2004 | return NULL;
|
---|
2005 |
|
---|
2006 | if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
|
---|
2007 | PyMem_FREE(buffer);
|
---|
2008 | return NULL;
|
---|
2009 | }
|
---|
2010 | result = PyLong_FromString(buffer, NULL, base);
|
---|
2011 | PyMem_FREE(buffer);
|
---|
2012 | return result;
|
---|
2013 | }
|
---|
2014 | #endif
|
---|
2015 |
|
---|
2016 | /* forward */
|
---|
2017 | static PyLongObject *x_divrem
|
---|
2018 | (PyLongObject *, PyLongObject *, PyLongObject **);
|
---|
2019 | static PyObject *long_long(PyObject *v);
|
---|
2020 |
|
---|
2021 | /* Long division with remainder, top-level routine */
|
---|
2022 |
|
---|
2023 | static int
|
---|
2024 | long_divrem(PyLongObject *a, PyLongObject *b,
|
---|
2025 | PyLongObject **pdiv, PyLongObject **prem)
|
---|
2026 | {
|
---|
2027 | Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
|
---|
2028 | PyLongObject *z;
|
---|
2029 |
|
---|
2030 | if (size_b == 0) {
|
---|
2031 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
2032 | "long division or modulo by zero");
|
---|
2033 | return -1;
|
---|
2034 | }
|
---|
2035 | if (size_a < size_b ||
|
---|
2036 | (size_a == size_b &&
|
---|
2037 | a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
|
---|
2038 | /* |a| < |b|. */
|
---|
2039 | *pdiv = _PyLong_New(0);
|
---|
2040 | if (*pdiv == NULL)
|
---|
2041 | return -1;
|
---|
2042 | Py_INCREF(a);
|
---|
2043 | *prem = (PyLongObject *) a;
|
---|
2044 | return 0;
|
---|
2045 | }
|
---|
2046 | if (size_b == 1) {
|
---|
2047 | digit rem = 0;
|
---|
2048 | z = divrem1(a, b->ob_digit[0], &rem);
|
---|
2049 | if (z == NULL)
|
---|
2050 | return -1;
|
---|
2051 | *prem = (PyLongObject *) PyLong_FromLong((long)rem);
|
---|
2052 | if (*prem == NULL) {
|
---|
2053 | Py_DECREF(z);
|
---|
2054 | return -1;
|
---|
2055 | }
|
---|
2056 | }
|
---|
2057 | else {
|
---|
2058 | z = x_divrem(a, b, prem);
|
---|
2059 | if (z == NULL)
|
---|
2060 | return -1;
|
---|
2061 | }
|
---|
2062 | /* Set the signs.
|
---|
2063 | The quotient z has the sign of a*b;
|
---|
2064 | the remainder r has the sign of a,
|
---|
2065 | so a = b*z + r. */
|
---|
2066 | if ((a->ob_size < 0) != (b->ob_size < 0))
|
---|
2067 | z->ob_size = -(z->ob_size);
|
---|
2068 | if (a->ob_size < 0 && (*prem)->ob_size != 0)
|
---|
2069 | (*prem)->ob_size = -((*prem)->ob_size);
|
---|
2070 | *pdiv = z;
|
---|
2071 | return 0;
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 | /* Unsigned long division with remainder -- the algorithm. The arguments v1
|
---|
2075 | and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
|
---|
2076 |
|
---|
2077 | static PyLongObject *
|
---|
2078 | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
|
---|
2079 | {
|
---|
2080 | PyLongObject *v, *w, *a;
|
---|
2081 | Py_ssize_t i, k, size_v, size_w;
|
---|
2082 | int d;
|
---|
2083 | digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
|
---|
2084 | twodigits vv;
|
---|
2085 | sdigit zhi;
|
---|
2086 | stwodigits z;
|
---|
2087 |
|
---|
2088 | /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
|
---|
2089 | edn.), section 4.3.1, Algorithm D], except that we don't explicitly
|
---|
2090 | handle the special case when the initial estimate q for a quotient
|
---|
2091 | digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
|
---|
2092 | that won't overflow a digit. */
|
---|
2093 |
|
---|
2094 | /* allocate space; w will also be used to hold the final remainder */
|
---|
2095 | size_v = ABS(Py_SIZE(v1));
|
---|
2096 | size_w = ABS(Py_SIZE(w1));
|
---|
2097 | assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
|
---|
2098 | v = _PyLong_New(size_v+1);
|
---|
2099 | if (v == NULL) {
|
---|
2100 | *prem = NULL;
|
---|
2101 | return NULL;
|
---|
2102 | }
|
---|
2103 | w = _PyLong_New(size_w);
|
---|
2104 | if (w == NULL) {
|
---|
2105 | Py_DECREF(v);
|
---|
2106 | *prem = NULL;
|
---|
2107 | return NULL;
|
---|
2108 | }
|
---|
2109 |
|
---|
2110 | /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
|
---|
2111 | shift v1 left by the same amount. Results go into w and v. */
|
---|
2112 | d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
|
---|
2113 | carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
|
---|
2114 | assert(carry == 0);
|
---|
2115 | carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
|
---|
2116 | if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
|
---|
2117 | v->ob_digit[size_v] = carry;
|
---|
2118 | size_v++;
|
---|
2119 | }
|
---|
2120 |
|
---|
2121 | /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
|
---|
2122 | at most (and usually exactly) k = size_v - size_w digits. */
|
---|
2123 | k = size_v - size_w;
|
---|
2124 | assert(k >= 0);
|
---|
2125 | a = _PyLong_New(k);
|
---|
2126 | if (a == NULL) {
|
---|
2127 | Py_DECREF(w);
|
---|
2128 | Py_DECREF(v);
|
---|
2129 | *prem = NULL;
|
---|
2130 | return NULL;
|
---|
2131 | }
|
---|
2132 | v0 = v->ob_digit;
|
---|
2133 | w0 = w->ob_digit;
|
---|
2134 | wm1 = w0[size_w-1];
|
---|
2135 | wm2 = w0[size_w-2];
|
---|
2136 | for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
|
---|
2137 | /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
|
---|
2138 | single-digit quotient q, remainder in vk[0:size_w]. */
|
---|
2139 |
|
---|
2140 | SIGCHECK({
|
---|
2141 | Py_DECREF(a);
|
---|
2142 | Py_DECREF(w);
|
---|
2143 | Py_DECREF(v);
|
---|
2144 | *prem = NULL;
|
---|
2145 | return NULL;
|
---|
2146 | });
|
---|
2147 |
|
---|
2148 | /* estimate quotient digit q; may overestimate by 1 (rare) */
|
---|
2149 | vtop = vk[size_w];
|
---|
2150 | assert(vtop <= wm1);
|
---|
2151 | vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
|
---|
2152 | q = (digit)(vv / wm1);
|
---|
2153 | r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
|
---|
2154 | while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
|
---|
2155 | | vk[size_w-2])) {
|
---|
2156 | --q;
|
---|
2157 | r += wm1;
|
---|
2158 | if (r >= PyLong_BASE)
|
---|
2159 | break;
|
---|
2160 | }
|
---|
2161 | assert(q <= PyLong_BASE);
|
---|
2162 |
|
---|
2163 | /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
|
---|
2164 | zhi = 0;
|
---|
2165 | for (i = 0; i < size_w; ++i) {
|
---|
2166 | /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
|
---|
2167 | -PyLong_BASE * q <= z < PyLong_BASE */
|
---|
2168 | z = (sdigit)vk[i] + zhi -
|
---|
2169 | (stwodigits)q * (stwodigits)w0[i];
|
---|
2170 | vk[i] = (digit)z & PyLong_MASK;
|
---|
2171 | zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
|
---|
2172 | z, PyLong_SHIFT);
|
---|
2173 | }
|
---|
2174 |
|
---|
2175 | /* add w back if q was too large (this branch taken rarely) */
|
---|
2176 | assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
|
---|
2177 | if ((sdigit)vtop + zhi < 0) {
|
---|
2178 | carry = 0;
|
---|
2179 | for (i = 0; i < size_w; ++i) {
|
---|
2180 | carry += vk[i] + w0[i];
|
---|
2181 | vk[i] = carry & PyLong_MASK;
|
---|
2182 | carry >>= PyLong_SHIFT;
|
---|
2183 | }
|
---|
2184 | --q;
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | /* store quotient digit */
|
---|
2188 | assert(q < PyLong_BASE);
|
---|
2189 | *--ak = q;
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 | /* unshift remainder; we reuse w to store the result */
|
---|
2193 | carry = v_rshift(w0, v0, size_w, d);
|
---|
2194 | assert(carry==0);
|
---|
2195 | Py_DECREF(v);
|
---|
2196 |
|
---|
2197 | *prem = long_normalize(w);
|
---|
2198 | return long_normalize(a);
|
---|
2199 | }
|
---|
2200 |
|
---|
2201 | /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
|
---|
2202 | abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
|
---|
2203 | rounded to DBL_MANT_DIG significant bits using round-half-to-even.
|
---|
2204 | If a == 0, return 0.0 and set *e = 0. If the resulting exponent
|
---|
2205 | e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
|
---|
2206 | -1.0. */
|
---|
2207 |
|
---|
2208 | /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
|
---|
2209 | #if DBL_MANT_DIG == 53
|
---|
2210 | #define EXP2_DBL_MANT_DIG 9007199254740992.0
|
---|
2211 | #else
|
---|
2212 | #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
|
---|
2213 | #endif
|
---|
2214 |
|
---|
2215 | double
|
---|
2216 | _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
|
---|
2217 | {
|
---|
2218 | Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
|
---|
2219 | /* See below for why x_digits is always large enough. */
|
---|
2220 | digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
|
---|
2221 | double dx;
|
---|
2222 | /* Correction term for round-half-to-even rounding. For a digit x,
|
---|
2223 | "x + half_even_correction[x & 7]" gives x rounded to the nearest
|
---|
2224 | multiple of 4, rounding ties to a multiple of 8. */
|
---|
2225 | static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
|
---|
2226 |
|
---|
2227 | a_size = ABS(Py_SIZE(a));
|
---|
2228 | if (a_size == 0) {
|
---|
2229 | /* Special case for 0: significand 0.0, exponent 0. */
|
---|
2230 | *e = 0;
|
---|
2231 | return 0.0;
|
---|
2232 | }
|
---|
2233 | a_bits = bits_in_digit(a->ob_digit[a_size-1]);
|
---|
2234 | /* The following is an overflow-free version of the check
|
---|
2235 | "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
|
---|
2236 | if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
|
---|
2237 | (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
|
---|
2238 | a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
|
---|
2239 | goto overflow;
|
---|
2240 | a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
|
---|
2241 |
|
---|
2242 | /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
|
---|
2243 | (shifting left if a_bits <= DBL_MANT_DIG + 2).
|
---|
2244 |
|
---|
2245 | Number of digits needed for result: write // for floor division.
|
---|
2246 | Then if shifting left, we end up using
|
---|
2247 |
|
---|
2248 | 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
|
---|
2249 |
|
---|
2250 | digits. If shifting right, we use
|
---|
2251 |
|
---|
2252 | a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
|
---|
2253 |
|
---|
2254 | digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
|
---|
2255 | the inequalities
|
---|
2256 |
|
---|
2257 | m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
|
---|
2258 | m // PyLong_SHIFT - n // PyLong_SHIFT <=
|
---|
2259 | 1 + (m - n - 1) // PyLong_SHIFT,
|
---|
2260 |
|
---|
2261 | valid for any integers m and n, we find that x_size satisfies
|
---|
2262 |
|
---|
2263 | x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
|
---|
2264 |
|
---|
2265 | in both cases.
|
---|
2266 | */
|
---|
2267 | if (a_bits <= DBL_MANT_DIG + 2) {
|
---|
2268 | shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
|
---|
2269 | shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
|
---|
2270 | x_size = 0;
|
---|
2271 | while (x_size < shift_digits)
|
---|
2272 | x_digits[x_size++] = 0;
|
---|
2273 | rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
|
---|
2274 | (int)shift_bits);
|
---|
2275 | x_size += a_size;
|
---|
2276 | x_digits[x_size++] = rem;
|
---|
2277 | }
|
---|
2278 | else {
|
---|
2279 | shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
|
---|
2280 | shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
|
---|
2281 | rem = v_rshift(x_digits, a->ob_digit + shift_digits,
|
---|
2282 | a_size - shift_digits, (int)shift_bits);
|
---|
2283 | x_size = a_size - shift_digits;
|
---|
2284 | /* For correct rounding below, we need the least significant
|
---|
2285 | bit of x to be 'sticky' for this shift: if any of the bits
|
---|
2286 | shifted out was nonzero, we set the least significant bit
|
---|
2287 | of x. */
|
---|
2288 | if (rem)
|
---|
2289 | x_digits[0] |= 1;
|
---|
2290 | else
|
---|
2291 | while (shift_digits > 0)
|
---|
2292 | if (a->ob_digit[--shift_digits]) {
|
---|
2293 | x_digits[0] |= 1;
|
---|
2294 | break;
|
---|
2295 | }
|
---|
2296 | }
|
---|
2297 | assert(1 <= x_size &&
|
---|
2298 | x_size <= (Py_ssize_t)(sizeof(x_digits)/sizeof(digit)));
|
---|
2299 |
|
---|
2300 | /* Round, and convert to double. */
|
---|
2301 | x_digits[0] += half_even_correction[x_digits[0] & 7];
|
---|
2302 | dx = x_digits[--x_size];
|
---|
2303 | while (x_size > 0)
|
---|
2304 | dx = dx * PyLong_BASE + x_digits[--x_size];
|
---|
2305 |
|
---|
2306 | /* Rescale; make correction if result is 1.0. */
|
---|
2307 | dx /= 4.0 * EXP2_DBL_MANT_DIG;
|
---|
2308 | if (dx == 1.0) {
|
---|
2309 | if (a_bits == PY_SSIZE_T_MAX)
|
---|
2310 | goto overflow;
|
---|
2311 | dx = 0.5;
|
---|
2312 | a_bits += 1;
|
---|
2313 | }
|
---|
2314 |
|
---|
2315 | *e = a_bits;
|
---|
2316 | return Py_SIZE(a) < 0 ? -dx : dx;
|
---|
2317 |
|
---|
2318 | overflow:
|
---|
2319 | /* exponent > PY_SSIZE_T_MAX */
|
---|
2320 | PyErr_SetString(PyExc_OverflowError,
|
---|
2321 | "huge integer: number of bits overflows a Py_ssize_t");
|
---|
2322 | *e = 0;
|
---|
2323 | return -1.0;
|
---|
2324 | }
|
---|
2325 |
|
---|
2326 | /* Get a C double from a long int object. Rounds to the nearest double,
|
---|
2327 | using the round-half-to-even rule in the case of a tie. */
|
---|
2328 |
|
---|
2329 | double
|
---|
2330 | PyLong_AsDouble(PyObject *v)
|
---|
2331 | {
|
---|
2332 | Py_ssize_t exponent;
|
---|
2333 | double x;
|
---|
2334 |
|
---|
2335 | if (v == NULL || !PyLong_Check(v)) {
|
---|
2336 | PyErr_BadInternalCall();
|
---|
2337 | return -1.0;
|
---|
2338 | }
|
---|
2339 | x = _PyLong_Frexp((PyLongObject *)v, &exponent);
|
---|
2340 | if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
|
---|
2341 | PyErr_SetString(PyExc_OverflowError,
|
---|
2342 | "long int too large to convert to float");
|
---|
2343 | return -1.0;
|
---|
2344 | }
|
---|
2345 | return ldexp(x, (int)exponent);
|
---|
2346 | }
|
---|
2347 |
|
---|
2348 | /* Methods */
|
---|
2349 |
|
---|
2350 | static void
|
---|
2351 | long_dealloc(PyObject *v)
|
---|
2352 | {
|
---|
2353 | Py_TYPE(v)->tp_free(v);
|
---|
2354 | }
|
---|
2355 |
|
---|
2356 | static PyObject *
|
---|
2357 | long_repr(PyObject *v)
|
---|
2358 | {
|
---|
2359 | return _PyLong_Format(v, 10, 1, 0);
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | static PyObject *
|
---|
2363 | long_str(PyObject *v)
|
---|
2364 | {
|
---|
2365 | return _PyLong_Format(v, 10, 0, 0);
|
---|
2366 | }
|
---|
2367 |
|
---|
2368 | static int
|
---|
2369 | long_compare(PyLongObject *a, PyLongObject *b)
|
---|
2370 | {
|
---|
2371 | Py_ssize_t sign;
|
---|
2372 |
|
---|
2373 | if (Py_SIZE(a) != Py_SIZE(b)) {
|
---|
2374 | sign = Py_SIZE(a) - Py_SIZE(b);
|
---|
2375 | }
|
---|
2376 | else {
|
---|
2377 | Py_ssize_t i = ABS(Py_SIZE(a));
|
---|
2378 | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
|
---|
2379 | ;
|
---|
2380 | if (i < 0)
|
---|
2381 | sign = 0;
|
---|
2382 | else {
|
---|
2383 | sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
|
---|
2384 | if (Py_SIZE(a) < 0)
|
---|
2385 | sign = -sign;
|
---|
2386 | }
|
---|
2387 | }
|
---|
2388 | return sign < 0 ? -1 : sign > 0 ? 1 : 0;
|
---|
2389 | }
|
---|
2390 |
|
---|
2391 | static long
|
---|
2392 | long_hash(PyLongObject *v)
|
---|
2393 | {
|
---|
2394 | unsigned long x;
|
---|
2395 | Py_ssize_t i;
|
---|
2396 | int sign;
|
---|
2397 |
|
---|
2398 | /* This is designed so that Python ints and longs with the
|
---|
2399 | same value hash to the same value, otherwise comparisons
|
---|
2400 | of mapping keys will turn out weird */
|
---|
2401 | i = v->ob_size;
|
---|
2402 | sign = 1;
|
---|
2403 | x = 0;
|
---|
2404 | if (i < 0) {
|
---|
2405 | sign = -1;
|
---|
2406 | i = -(i);
|
---|
2407 | }
|
---|
2408 | /* The following loop produces a C unsigned long x such that x is
|
---|
2409 | congruent to the absolute value of v modulo ULONG_MAX. The
|
---|
2410 | resulting x is nonzero if and only if v is. */
|
---|
2411 | while (--i >= 0) {
|
---|
2412 | /* Force a native long #-bits (32 or 64) circular shift */
|
---|
2413 | x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
|
---|
2414 | x += v->ob_digit[i];
|
---|
2415 | /* If the addition above overflowed we compensate by
|
---|
2416 | incrementing. This preserves the value modulo
|
---|
2417 | ULONG_MAX. */
|
---|
2418 | if (x < v->ob_digit[i])
|
---|
2419 | x++;
|
---|
2420 | }
|
---|
2421 | x = x * sign;
|
---|
2422 | if (x == (unsigned long)-1)
|
---|
2423 | x = (unsigned long)-2;
|
---|
2424 | return (long)x;
|
---|
2425 | }
|
---|
2426 |
|
---|
2427 |
|
---|
2428 | /* Add the absolute values of two long integers. */
|
---|
2429 |
|
---|
2430 | static PyLongObject *
|
---|
2431 | x_add(PyLongObject *a, PyLongObject *b)
|
---|
2432 | {
|
---|
2433 | Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
|
---|
2434 | PyLongObject *z;
|
---|
2435 | Py_ssize_t i;
|
---|
2436 | digit carry = 0;
|
---|
2437 |
|
---|
2438 | /* Ensure a is the larger of the two: */
|
---|
2439 | if (size_a < size_b) {
|
---|
2440 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
2441 | { Py_ssize_t size_temp = size_a;
|
---|
2442 | size_a = size_b;
|
---|
2443 | size_b = size_temp; }
|
---|
2444 | }
|
---|
2445 | z = _PyLong_New(size_a+1);
|
---|
2446 | if (z == NULL)
|
---|
2447 | return NULL;
|
---|
2448 | for (i = 0; i < size_b; ++i) {
|
---|
2449 | carry += a->ob_digit[i] + b->ob_digit[i];
|
---|
2450 | z->ob_digit[i] = carry & PyLong_MASK;
|
---|
2451 | carry >>= PyLong_SHIFT;
|
---|
2452 | }
|
---|
2453 | for (; i < size_a; ++i) {
|
---|
2454 | carry += a->ob_digit[i];
|
---|
2455 | z->ob_digit[i] = carry & PyLong_MASK;
|
---|
2456 | carry >>= PyLong_SHIFT;
|
---|
2457 | }
|
---|
2458 | z->ob_digit[i] = carry;
|
---|
2459 | return long_normalize(z);
|
---|
2460 | }
|
---|
2461 |
|
---|
2462 | /* Subtract the absolute values of two integers. */
|
---|
2463 |
|
---|
2464 | static PyLongObject *
|
---|
2465 | x_sub(PyLongObject *a, PyLongObject *b)
|
---|
2466 | {
|
---|
2467 | Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
|
---|
2468 | PyLongObject *z;
|
---|
2469 | Py_ssize_t i;
|
---|
2470 | int sign = 1;
|
---|
2471 | digit borrow = 0;
|
---|
2472 |
|
---|
2473 | /* Ensure a is the larger of the two: */
|
---|
2474 | if (size_a < size_b) {
|
---|
2475 | sign = -1;
|
---|
2476 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
2477 | { Py_ssize_t size_temp = size_a;
|
---|
2478 | size_a = size_b;
|
---|
2479 | size_b = size_temp; }
|
---|
2480 | }
|
---|
2481 | else if (size_a == size_b) {
|
---|
2482 | /* Find highest digit where a and b differ: */
|
---|
2483 | i = size_a;
|
---|
2484 | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
|
---|
2485 | ;
|
---|
2486 | if (i < 0)
|
---|
2487 | return _PyLong_New(0);
|
---|
2488 | if (a->ob_digit[i] < b->ob_digit[i]) {
|
---|
2489 | sign = -1;
|
---|
2490 | { PyLongObject *temp = a; a = b; b = temp; }
|
---|
2491 | }
|
---|
2492 | size_a = size_b = i+1;
|
---|
2493 | }
|
---|
2494 | z = _PyLong_New(size_a);
|
---|
2495 | if (z == NULL)
|
---|
2496 | return NULL;
|
---|
2497 | for (i = 0; i < size_b; ++i) {
|
---|
2498 | /* The following assumes unsigned arithmetic
|
---|
2499 | works module 2**N for some N>PyLong_SHIFT. */
|
---|
2500 | borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
|
---|
2501 | z->ob_digit[i] = borrow & PyLong_MASK;
|
---|
2502 | borrow >>= PyLong_SHIFT;
|
---|
2503 | borrow &= 1; /* Keep only one sign bit */
|
---|
2504 | }
|
---|
2505 | for (; i < size_a; ++i) {
|
---|
2506 | borrow = a->ob_digit[i] - borrow;
|
---|
2507 | z->ob_digit[i] = borrow & PyLong_MASK;
|
---|
2508 | borrow >>= PyLong_SHIFT;
|
---|
2509 | borrow &= 1; /* Keep only one sign bit */
|
---|
2510 | }
|
---|
2511 | assert(borrow == 0);
|
---|
2512 | if (sign < 0)
|
---|
2513 | z->ob_size = -(z->ob_size);
|
---|
2514 | return long_normalize(z);
|
---|
2515 | }
|
---|
2516 |
|
---|
2517 | static PyObject *
|
---|
2518 | long_add(PyLongObject *v, PyLongObject *w)
|
---|
2519 | {
|
---|
2520 | PyLongObject *a, *b, *z;
|
---|
2521 |
|
---|
2522 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
2523 |
|
---|
2524 | if (a->ob_size < 0) {
|
---|
2525 | if (b->ob_size < 0) {
|
---|
2526 | z = x_add(a, b);
|
---|
2527 | if (z != NULL && z->ob_size != 0)
|
---|
2528 | z->ob_size = -(z->ob_size);
|
---|
2529 | }
|
---|
2530 | else
|
---|
2531 | z = x_sub(b, a);
|
---|
2532 | }
|
---|
2533 | else {
|
---|
2534 | if (b->ob_size < 0)
|
---|
2535 | z = x_sub(a, b);
|
---|
2536 | else
|
---|
2537 | z = x_add(a, b);
|
---|
2538 | }
|
---|
2539 | Py_DECREF(a);
|
---|
2540 | Py_DECREF(b);
|
---|
2541 | return (PyObject *)z;
|
---|
2542 | }
|
---|
2543 |
|
---|
2544 | static PyObject *
|
---|
2545 | long_sub(PyLongObject *v, PyLongObject *w)
|
---|
2546 | {
|
---|
2547 | PyLongObject *a, *b, *z;
|
---|
2548 |
|
---|
2549 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
2550 |
|
---|
2551 | if (a->ob_size < 0) {
|
---|
2552 | if (b->ob_size < 0)
|
---|
2553 | z = x_sub(a, b);
|
---|
2554 | else
|
---|
2555 | z = x_add(a, b);
|
---|
2556 | if (z != NULL && z->ob_size != 0)
|
---|
2557 | z->ob_size = -(z->ob_size);
|
---|
2558 | }
|
---|
2559 | else {
|
---|
2560 | if (b->ob_size < 0)
|
---|
2561 | z = x_add(a, b);
|
---|
2562 | else
|
---|
2563 | z = x_sub(a, b);
|
---|
2564 | }
|
---|
2565 | Py_DECREF(a);
|
---|
2566 | Py_DECREF(b);
|
---|
2567 | return (PyObject *)z;
|
---|
2568 | }
|
---|
2569 |
|
---|
2570 | /* Grade school multiplication, ignoring the signs.
|
---|
2571 | * Returns the absolute value of the product, or NULL if error.
|
---|
2572 | */
|
---|
2573 | static PyLongObject *
|
---|
2574 | x_mul(PyLongObject *a, PyLongObject *b)
|
---|
2575 | {
|
---|
2576 | PyLongObject *z;
|
---|
2577 | Py_ssize_t size_a = ABS(Py_SIZE(a));
|
---|
2578 | Py_ssize_t size_b = ABS(Py_SIZE(b));
|
---|
2579 | Py_ssize_t i;
|
---|
2580 |
|
---|
2581 | z = _PyLong_New(size_a + size_b);
|
---|
2582 | if (z == NULL)
|
---|
2583 | return NULL;
|
---|
2584 |
|
---|
2585 | memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
|
---|
2586 | if (a == b) {
|
---|
2587 | /* Efficient squaring per HAC, Algorithm 14.16:
|
---|
2588 | * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
|
---|
2589 | * Gives slightly less than a 2x speedup when a == b,
|
---|
2590 | * via exploiting that each entry in the multiplication
|
---|
2591 | * pyramid appears twice (except for the size_a squares).
|
---|
2592 | */
|
---|
2593 | for (i = 0; i < size_a; ++i) {
|
---|
2594 | twodigits carry;
|
---|
2595 | twodigits f = a->ob_digit[i];
|
---|
2596 | digit *pz = z->ob_digit + (i << 1);
|
---|
2597 | digit *pa = a->ob_digit + i + 1;
|
---|
2598 | digit *paend = a->ob_digit + size_a;
|
---|
2599 |
|
---|
2600 | SIGCHECK({
|
---|
2601 | Py_DECREF(z);
|
---|
2602 | return NULL;
|
---|
2603 | });
|
---|
2604 |
|
---|
2605 | carry = *pz + f * f;
|
---|
2606 | *pz++ = (digit)(carry & PyLong_MASK);
|
---|
2607 | carry >>= PyLong_SHIFT;
|
---|
2608 | assert(carry <= PyLong_MASK);
|
---|
2609 |
|
---|
2610 | /* Now f is added in twice in each column of the
|
---|
2611 | * pyramid it appears. Same as adding f<<1 once.
|
---|
2612 | */
|
---|
2613 | f <<= 1;
|
---|
2614 | while (pa < paend) {
|
---|
2615 | carry += *pz + *pa++ * f;
|
---|
2616 | *pz++ = (digit)(carry & PyLong_MASK);
|
---|
2617 | carry >>= PyLong_SHIFT;
|
---|
2618 | assert(carry <= (PyLong_MASK << 1));
|
---|
2619 | }
|
---|
2620 | if (carry) {
|
---|
2621 | carry += *pz;
|
---|
2622 | *pz++ = (digit)(carry & PyLong_MASK);
|
---|
2623 | carry >>= PyLong_SHIFT;
|
---|
2624 | }
|
---|
2625 | if (carry)
|
---|
2626 | *pz += (digit)(carry & PyLong_MASK);
|
---|
2627 | assert((carry >> PyLong_SHIFT) == 0);
|
---|
2628 | }
|
---|
2629 | }
|
---|
2630 | else { /* a is not the same as b -- gradeschool long mult */
|
---|
2631 | for (i = 0; i < size_a; ++i) {
|
---|
2632 | twodigits carry = 0;
|
---|
2633 | twodigits f = a->ob_digit[i];
|
---|
2634 | digit *pz = z->ob_digit + i;
|
---|
2635 | digit *pb = b->ob_digit;
|
---|
2636 | digit *pbend = b->ob_digit + size_b;
|
---|
2637 |
|
---|
2638 | SIGCHECK({
|
---|
2639 | Py_DECREF(z);
|
---|
2640 | return NULL;
|
---|
2641 | });
|
---|
2642 |
|
---|
2643 | while (pb < pbend) {
|
---|
2644 | carry += *pz + *pb++ * f;
|
---|
2645 | *pz++ = (digit)(carry & PyLong_MASK);
|
---|
2646 | carry >>= PyLong_SHIFT;
|
---|
2647 | assert(carry <= PyLong_MASK);
|
---|
2648 | }
|
---|
2649 | if (carry)
|
---|
2650 | *pz += (digit)(carry & PyLong_MASK);
|
---|
2651 | assert((carry >> PyLong_SHIFT) == 0);
|
---|
2652 | }
|
---|
2653 | }
|
---|
2654 | return long_normalize(z);
|
---|
2655 | }
|
---|
2656 |
|
---|
2657 | /* A helper for Karatsuba multiplication (k_mul).
|
---|
2658 | Takes a long "n" and an integer "size" representing the place to
|
---|
2659 | split, and sets low and high such that abs(n) == (high << size) + low,
|
---|
2660 | viewing the shift as being by digits. The sign bit is ignored, and
|
---|
2661 | the return values are >= 0.
|
---|
2662 | Returns 0 on success, -1 on failure.
|
---|
2663 | */
|
---|
2664 | static int
|
---|
2665 | kmul_split(PyLongObject *n,
|
---|
2666 | Py_ssize_t size,
|
---|
2667 | PyLongObject **high,
|
---|
2668 | PyLongObject **low)
|
---|
2669 | {
|
---|
2670 | PyLongObject *hi, *lo;
|
---|
2671 | Py_ssize_t size_lo, size_hi;
|
---|
2672 | const Py_ssize_t size_n = ABS(Py_SIZE(n));
|
---|
2673 |
|
---|
2674 | size_lo = MIN(size_n, size);
|
---|
2675 | size_hi = size_n - size_lo;
|
---|
2676 |
|
---|
2677 | if ((hi = _PyLong_New(size_hi)) == NULL)
|
---|
2678 | return -1;
|
---|
2679 | if ((lo = _PyLong_New(size_lo)) == NULL) {
|
---|
2680 | Py_DECREF(hi);
|
---|
2681 | return -1;
|
---|
2682 | }
|
---|
2683 |
|
---|
2684 | memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
|
---|
2685 | memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
|
---|
2686 |
|
---|
2687 | *high = long_normalize(hi);
|
---|
2688 | *low = long_normalize(lo);
|
---|
2689 | return 0;
|
---|
2690 | }
|
---|
2691 |
|
---|
2692 | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
|
---|
2693 |
|
---|
2694 | /* Karatsuba multiplication. Ignores the input signs, and returns the
|
---|
2695 | * absolute value of the product (or NULL if error).
|
---|
2696 | * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
|
---|
2697 | */
|
---|
2698 | static PyLongObject *
|
---|
2699 | k_mul(PyLongObject *a, PyLongObject *b)
|
---|
2700 | {
|
---|
2701 | Py_ssize_t asize = ABS(Py_SIZE(a));
|
---|
2702 | Py_ssize_t bsize = ABS(Py_SIZE(b));
|
---|
2703 | PyLongObject *ah = NULL;
|
---|
2704 | PyLongObject *al = NULL;
|
---|
2705 | PyLongObject *bh = NULL;
|
---|
2706 | PyLongObject *bl = NULL;
|
---|
2707 | PyLongObject *ret = NULL;
|
---|
2708 | PyLongObject *t1, *t2, *t3;
|
---|
2709 | Py_ssize_t shift; /* the number of digits we split off */
|
---|
2710 | Py_ssize_t i;
|
---|
2711 |
|
---|
2712 | /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
|
---|
2713 | * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
|
---|
2714 | * Then the original product is
|
---|
2715 | * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
|
---|
2716 | * By picking X to be a power of 2, "*X" is just shifting, and it's
|
---|
2717 | * been reduced to 3 multiplies on numbers half the size.
|
---|
2718 | */
|
---|
2719 |
|
---|
2720 | /* We want to split based on the larger number; fiddle so that b
|
---|
2721 | * is largest.
|
---|
2722 | */
|
---|
2723 | if (asize > bsize) {
|
---|
2724 | t1 = a;
|
---|
2725 | a = b;
|
---|
2726 | b = t1;
|
---|
2727 |
|
---|
2728 | i = asize;
|
---|
2729 | asize = bsize;
|
---|
2730 | bsize = i;
|
---|
2731 | }
|
---|
2732 |
|
---|
2733 | /* Use gradeschool math when either number is too small. */
|
---|
2734 | i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
|
---|
2735 | if (asize <= i) {
|
---|
2736 | if (asize == 0)
|
---|
2737 | return _PyLong_New(0);
|
---|
2738 | else
|
---|
2739 | return x_mul(a, b);
|
---|
2740 | }
|
---|
2741 |
|
---|
2742 | /* If a is small compared to b, splitting on b gives a degenerate
|
---|
2743 | * case with ah==0, and Karatsuba may be (even much) less efficient
|
---|
2744 | * than "grade school" then. However, we can still win, by viewing
|
---|
2745 | * b as a string of "big digits", each of width a->ob_size. That
|
---|
2746 | * leads to a sequence of balanced calls to k_mul.
|
---|
2747 | */
|
---|
2748 | if (2 * asize <= bsize)
|
---|
2749 | return k_lopsided_mul(a, b);
|
---|
2750 |
|
---|
2751 | /* Split a & b into hi & lo pieces. */
|
---|
2752 | shift = bsize >> 1;
|
---|
2753 | if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
|
---|
2754 | assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
|
---|
2755 |
|
---|
2756 | if (a == b) {
|
---|
2757 | bh = ah;
|
---|
2758 | bl = al;
|
---|
2759 | Py_INCREF(bh);
|
---|
2760 | Py_INCREF(bl);
|
---|
2761 | }
|
---|
2762 | else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
|
---|
2763 |
|
---|
2764 | /* The plan:
|
---|
2765 | * 1. Allocate result space (asize + bsize digits: that's always
|
---|
2766 | * enough).
|
---|
2767 | * 2. Compute ah*bh, and copy into result at 2*shift.
|
---|
2768 | * 3. Compute al*bl, and copy into result at 0. Note that this
|
---|
2769 | * can't overlap with #2.
|
---|
2770 | * 4. Subtract al*bl from the result, starting at shift. This may
|
---|
2771 | * underflow (borrow out of the high digit), but we don't care:
|
---|
2772 | * we're effectively doing unsigned arithmetic mod
|
---|
2773 | * PyLong_BASE**(sizea + sizeb), and so long as the *final* result fits,
|
---|
2774 | * borrows and carries out of the high digit can be ignored.
|
---|
2775 | * 5. Subtract ah*bh from the result, starting at shift.
|
---|
2776 | * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
|
---|
2777 | * at shift.
|
---|
2778 | */
|
---|
2779 |
|
---|
2780 | /* 1. Allocate result space. */
|
---|
2781 | ret = _PyLong_New(asize + bsize);
|
---|
2782 | if (ret == NULL) goto fail;
|
---|
2783 | #ifdef Py_DEBUG
|
---|
2784 | /* Fill with trash, to catch reference to uninitialized digits. */
|
---|
2785 | memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
|
---|
2786 | #endif
|
---|
2787 |
|
---|
2788 | /* 2. t1 <- ah*bh, and copy into high digits of result. */
|
---|
2789 | if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
|
---|
2790 | assert(Py_SIZE(t1) >= 0);
|
---|
2791 | assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
|
---|
2792 | memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
|
---|
2793 | Py_SIZE(t1) * sizeof(digit));
|
---|
2794 |
|
---|
2795 | /* Zero-out the digits higher than the ah*bh copy. */
|
---|
2796 | i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
|
---|
2797 | if (i)
|
---|
2798 | memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
|
---|
2799 | i * sizeof(digit));
|
---|
2800 |
|
---|
2801 | /* 3. t2 <- al*bl, and copy into the low digits. */
|
---|
2802 | if ((t2 = k_mul(al, bl)) == NULL) {
|
---|
2803 | Py_DECREF(t1);
|
---|
2804 | goto fail;
|
---|
2805 | }
|
---|
2806 | assert(Py_SIZE(t2) >= 0);
|
---|
2807 | assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
|
---|
2808 | memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
|
---|
2809 |
|
---|
2810 | /* Zero out remaining digits. */
|
---|
2811 | i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
|
---|
2812 | if (i)
|
---|
2813 | memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
|
---|
2814 |
|
---|
2815 | /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
|
---|
2816 | * because it's fresher in cache.
|
---|
2817 | */
|
---|
2818 | i = Py_SIZE(ret) - shift; /* # digits after shift */
|
---|
2819 | (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
|
---|
2820 | Py_DECREF(t2);
|
---|
2821 |
|
---|
2822 | (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
|
---|
2823 | Py_DECREF(t1);
|
---|
2824 |
|
---|
2825 | /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
|
---|
2826 | if ((t1 = x_add(ah, al)) == NULL) goto fail;
|
---|
2827 | Py_DECREF(ah);
|
---|
2828 | Py_DECREF(al);
|
---|
2829 | ah = al = NULL;
|
---|
2830 |
|
---|
2831 | if (a == b) {
|
---|
2832 | t2 = t1;
|
---|
2833 | Py_INCREF(t2);
|
---|
2834 | }
|
---|
2835 | else if ((t2 = x_add(bh, bl)) == NULL) {
|
---|
2836 | Py_DECREF(t1);
|
---|
2837 | goto fail;
|
---|
2838 | }
|
---|
2839 | Py_DECREF(bh);
|
---|
2840 | Py_DECREF(bl);
|
---|
2841 | bh = bl = NULL;
|
---|
2842 |
|
---|
2843 | t3 = k_mul(t1, t2);
|
---|
2844 | Py_DECREF(t1);
|
---|
2845 | Py_DECREF(t2);
|
---|
2846 | if (t3 == NULL) goto fail;
|
---|
2847 | assert(Py_SIZE(t3) >= 0);
|
---|
2848 |
|
---|
2849 | /* Add t3. It's not obvious why we can't run out of room here.
|
---|
2850 | * See the (*) comment after this function.
|
---|
2851 | */
|
---|
2852 | (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
|
---|
2853 | Py_DECREF(t3);
|
---|
2854 |
|
---|
2855 | return long_normalize(ret);
|
---|
2856 |
|
---|
2857 | fail:
|
---|
2858 | Py_XDECREF(ret);
|
---|
2859 | Py_XDECREF(ah);
|
---|
2860 | Py_XDECREF(al);
|
---|
2861 | Py_XDECREF(bh);
|
---|
2862 | Py_XDECREF(bl);
|
---|
2863 | return NULL;
|
---|
2864 | }
|
---|
2865 |
|
---|
2866 | /* (*) Why adding t3 can't "run out of room" above.
|
---|
2867 |
|
---|
2868 | Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
|
---|
2869 | to start with:
|
---|
2870 |
|
---|
2871 | 1. For any integer i, i = c(i/2) + f(i/2). In particular,
|
---|
2872 | bsize = c(bsize/2) + f(bsize/2).
|
---|
2873 | 2. shift = f(bsize/2)
|
---|
2874 | 3. asize <= bsize
|
---|
2875 | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
|
---|
2876 | routine, so asize > bsize/2 >= f(bsize/2) in this routine.
|
---|
2877 |
|
---|
2878 | We allocated asize + bsize result digits, and add t3 into them at an offset
|
---|
2879 | of shift. This leaves asize+bsize-shift allocated digit positions for t3
|
---|
2880 | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
|
---|
2881 | asize + c(bsize/2) available digit positions.
|
---|
2882 |
|
---|
2883 | bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
|
---|
2884 | at most c(bsize/2) digits + 1 bit.
|
---|
2885 |
|
---|
2886 | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
|
---|
2887 | digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
|
---|
2888 | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
|
---|
2889 |
|
---|
2890 | The product (ah+al)*(bh+bl) therefore has at most
|
---|
2891 |
|
---|
2892 | c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
|
---|
2893 |
|
---|
2894 | and we have asize + c(bsize/2) available digit positions. We need to show
|
---|
2895 | this is always enough. An instance of c(bsize/2) cancels out in both, so
|
---|
2896 | the question reduces to whether asize digits is enough to hold
|
---|
2897 | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
|
---|
2898 | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
|
---|
2899 | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
|
---|
2900 | digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
|
---|
2901 | asize == bsize, then we're asking whether bsize digits is enough to hold
|
---|
2902 | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
|
---|
2903 | is enough to hold 2 bits. This is so if bsize >= 2, which holds because
|
---|
2904 | bsize >= KARATSUBA_CUTOFF >= 2.
|
---|
2905 |
|
---|
2906 | Note that since there's always enough room for (ah+al)*(bh+bl), and that's
|
---|
2907 | clearly >= each of ah*bh and al*bl, there's always enough room to subtract
|
---|
2908 | ah*bh and al*bl too.
|
---|
2909 | */
|
---|
2910 |
|
---|
2911 | /* b has at least twice the digits of a, and a is big enough that Karatsuba
|
---|
2912 | * would pay off *if* the inputs had balanced sizes. View b as a sequence
|
---|
2913 | * of slices, each with a->ob_size digits, and multiply the slices by a,
|
---|
2914 | * one at a time. This gives k_mul balanced inputs to work with, and is
|
---|
2915 | * also cache-friendly (we compute one double-width slice of the result
|
---|
2916 | * at a time, then move on, never backtracking except for the helpful
|
---|
2917 | * single-width slice overlap between successive partial sums).
|
---|
2918 | */
|
---|
2919 | static PyLongObject *
|
---|
2920 | k_lopsided_mul(PyLongObject *a, PyLongObject *b)
|
---|
2921 | {
|
---|
2922 | const Py_ssize_t asize = ABS(Py_SIZE(a));
|
---|
2923 | Py_ssize_t bsize = ABS(Py_SIZE(b));
|
---|
2924 | Py_ssize_t nbdone; /* # of b digits already multiplied */
|
---|
2925 | PyLongObject *ret;
|
---|
2926 | PyLongObject *bslice = NULL;
|
---|
2927 |
|
---|
2928 | assert(asize > KARATSUBA_CUTOFF);
|
---|
2929 | assert(2 * asize <= bsize);
|
---|
2930 |
|
---|
2931 | /* Allocate result space, and zero it out. */
|
---|
2932 | ret = _PyLong_New(asize + bsize);
|
---|
2933 | if (ret == NULL)
|
---|
2934 | return NULL;
|
---|
2935 | memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
|
---|
2936 |
|
---|
2937 | /* Successive slices of b are copied into bslice. */
|
---|
2938 | bslice = _PyLong_New(asize);
|
---|
2939 | if (bslice == NULL)
|
---|
2940 | goto fail;
|
---|
2941 |
|
---|
2942 | nbdone = 0;
|
---|
2943 | while (bsize > 0) {
|
---|
2944 | PyLongObject *product;
|
---|
2945 | const Py_ssize_t nbtouse = MIN(bsize, asize);
|
---|
2946 |
|
---|
2947 | /* Multiply the next slice of b by a. */
|
---|
2948 | memcpy(bslice->ob_digit, b->ob_digit + nbdone,
|
---|
2949 | nbtouse * sizeof(digit));
|
---|
2950 | Py_SIZE(bslice) = nbtouse;
|
---|
2951 | product = k_mul(a, bslice);
|
---|
2952 | if (product == NULL)
|
---|
2953 | goto fail;
|
---|
2954 |
|
---|
2955 | /* Add into result. */
|
---|
2956 | (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
|
---|
2957 | product->ob_digit, Py_SIZE(product));
|
---|
2958 | Py_DECREF(product);
|
---|
2959 |
|
---|
2960 | bsize -= nbtouse;
|
---|
2961 | nbdone += nbtouse;
|
---|
2962 | }
|
---|
2963 |
|
---|
2964 | Py_DECREF(bslice);
|
---|
2965 | return long_normalize(ret);
|
---|
2966 |
|
---|
2967 | fail:
|
---|
2968 | Py_DECREF(ret);
|
---|
2969 | Py_XDECREF(bslice);
|
---|
2970 | return NULL;
|
---|
2971 | }
|
---|
2972 |
|
---|
2973 | static PyObject *
|
---|
2974 | long_mul(PyLongObject *v, PyLongObject *w)
|
---|
2975 | {
|
---|
2976 | PyLongObject *a, *b, *z;
|
---|
2977 |
|
---|
2978 | if (!convert_binop((PyObject *)v, (PyObject *)w, &a, &b)) {
|
---|
2979 | Py_INCREF(Py_NotImplemented);
|
---|
2980 | return Py_NotImplemented;
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 | z = k_mul(a, b);
|
---|
2984 | /* Negate if exactly one of the inputs is negative. */
|
---|
2985 | if (((a->ob_size ^ b->ob_size) < 0) && z)
|
---|
2986 | z->ob_size = -(z->ob_size);
|
---|
2987 | Py_DECREF(a);
|
---|
2988 | Py_DECREF(b);
|
---|
2989 | return (PyObject *)z;
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 | /* The / and % operators are now defined in terms of divmod().
|
---|
2993 | The expression a mod b has the value a - b*floor(a/b).
|
---|
2994 | The long_divrem function gives the remainder after division of
|
---|
2995 | |a| by |b|, with the sign of a. This is also expressed
|
---|
2996 | as a - b*trunc(a/b), if trunc truncates towards zero.
|
---|
2997 | Some examples:
|
---|
2998 | a b a rem b a mod b
|
---|
2999 | 13 10 3 3
|
---|
3000 | -13 10 -3 7
|
---|
3001 | 13 -10 3 -7
|
---|
3002 | -13 -10 -3 -3
|
---|
3003 | So, to get from rem to mod, we have to add b if a and b
|
---|
3004 | have different signs. We then subtract one from the 'div'
|
---|
3005 | part of the outcome to keep the invariant intact. */
|
---|
3006 |
|
---|
3007 | /* Compute
|
---|
3008 | * *pdiv, *pmod = divmod(v, w)
|
---|
3009 | * NULL can be passed for pdiv or pmod, in which case that part of
|
---|
3010 | * the result is simply thrown away. The caller owns a reference to
|
---|
3011 | * each of these it requests (does not pass NULL for).
|
---|
3012 | */
|
---|
3013 | static int
|
---|
3014 | l_divmod(PyLongObject *v, PyLongObject *w,
|
---|
3015 | PyLongObject **pdiv, PyLongObject **pmod)
|
---|
3016 | {
|
---|
3017 | PyLongObject *div, *mod;
|
---|
3018 |
|
---|
3019 | if (long_divrem(v, w, &div, &mod) < 0)
|
---|
3020 | return -1;
|
---|
3021 | if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
|
---|
3022 | (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
|
---|
3023 | PyLongObject *temp;
|
---|
3024 | PyLongObject *one;
|
---|
3025 | temp = (PyLongObject *) long_add(mod, w);
|
---|
3026 | Py_DECREF(mod);
|
---|
3027 | mod = temp;
|
---|
3028 | if (mod == NULL) {
|
---|
3029 | Py_DECREF(div);
|
---|
3030 | return -1;
|
---|
3031 | }
|
---|
3032 | one = (PyLongObject *) PyLong_FromLong(1L);
|
---|
3033 | if (one == NULL ||
|
---|
3034 | (temp = (PyLongObject *) long_sub(div, one)) == NULL) {
|
---|
3035 | Py_DECREF(mod);
|
---|
3036 | Py_DECREF(div);
|
---|
3037 | Py_XDECREF(one);
|
---|
3038 | return -1;
|
---|
3039 | }
|
---|
3040 | Py_DECREF(one);
|
---|
3041 | Py_DECREF(div);
|
---|
3042 | div = temp;
|
---|
3043 | }
|
---|
3044 | if (pdiv != NULL)
|
---|
3045 | *pdiv = div;
|
---|
3046 | else
|
---|
3047 | Py_DECREF(div);
|
---|
3048 |
|
---|
3049 | if (pmod != NULL)
|
---|
3050 | *pmod = mod;
|
---|
3051 | else
|
---|
3052 | Py_DECREF(mod);
|
---|
3053 |
|
---|
3054 | return 0;
|
---|
3055 | }
|
---|
3056 |
|
---|
3057 | static PyObject *
|
---|
3058 | long_div(PyObject *v, PyObject *w)
|
---|
3059 | {
|
---|
3060 | PyLongObject *a, *b, *div;
|
---|
3061 |
|
---|
3062 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3063 | if (l_divmod(a, b, &div, NULL) < 0)
|
---|
3064 | div = NULL;
|
---|
3065 | Py_DECREF(a);
|
---|
3066 | Py_DECREF(b);
|
---|
3067 | return (PyObject *)div;
|
---|
3068 | }
|
---|
3069 |
|
---|
3070 | static PyObject *
|
---|
3071 | long_classic_div(PyObject *v, PyObject *w)
|
---|
3072 | {
|
---|
3073 | PyLongObject *a, *b, *div;
|
---|
3074 |
|
---|
3075 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3076 | if (Py_DivisionWarningFlag &&
|
---|
3077 | PyErr_Warn(PyExc_DeprecationWarning, "classic long division") < 0)
|
---|
3078 | div = NULL;
|
---|
3079 | else if (l_divmod(a, b, &div, NULL) < 0)
|
---|
3080 | div = NULL;
|
---|
3081 | Py_DECREF(a);
|
---|
3082 | Py_DECREF(b);
|
---|
3083 | return (PyObject *)div;
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 | /* PyLong/PyLong -> float, with correctly rounded result. */
|
---|
3087 |
|
---|
3088 | #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
|
---|
3089 | #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
|
---|
3090 |
|
---|
3091 | static PyObject *
|
---|
3092 | long_true_divide(PyObject *v, PyObject *w)
|
---|
3093 | {
|
---|
3094 | PyLongObject *a, *b, *x;
|
---|
3095 | Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
|
---|
3096 | digit mask, low;
|
---|
3097 | int inexact, negate, a_is_small, b_is_small;
|
---|
3098 | double dx, result;
|
---|
3099 |
|
---|
3100 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3101 |
|
---|
3102 | /*
|
---|
3103 | Method in a nutshell:
|
---|
3104 |
|
---|
3105 | 0. reduce to case a, b > 0; filter out obvious underflow/overflow
|
---|
3106 | 1. choose a suitable integer 'shift'
|
---|
3107 | 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
|
---|
3108 | 3. adjust x for correct rounding
|
---|
3109 | 4. convert x to a double dx with the same value
|
---|
3110 | 5. return ldexp(dx, shift).
|
---|
3111 |
|
---|
3112 | In more detail:
|
---|
3113 |
|
---|
3114 | 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
|
---|
3115 | returns either 0.0 or -0.0, depending on the sign of b. For a and
|
---|
3116 | b both nonzero, ignore signs of a and b, and add the sign back in
|
---|
3117 | at the end. Now write a_bits and b_bits for the bit lengths of a
|
---|
3118 | and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
|
---|
3119 | for b). Then
|
---|
3120 |
|
---|
3121 | 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
|
---|
3122 |
|
---|
3123 | So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
|
---|
3124 | so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
|
---|
3125 | DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
|
---|
3126 | the way, we can assume that
|
---|
3127 |
|
---|
3128 | DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
|
---|
3129 |
|
---|
3130 | 1. The integer 'shift' is chosen so that x has the right number of
|
---|
3131 | bits for a double, plus two or three extra bits that will be used
|
---|
3132 | in the rounding decisions. Writing a_bits and b_bits for the
|
---|
3133 | number of significant bits in a and b respectively, a
|
---|
3134 | straightforward formula for shift is:
|
---|
3135 |
|
---|
3136 | shift = a_bits - b_bits - DBL_MANT_DIG - 2
|
---|
3137 |
|
---|
3138 | This is fine in the usual case, but if a/b is smaller than the
|
---|
3139 | smallest normal float then it can lead to double rounding on an
|
---|
3140 | IEEE 754 platform, giving incorrectly rounded results. So we
|
---|
3141 | adjust the formula slightly. The actual formula used is:
|
---|
3142 |
|
---|
3143 | shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
|
---|
3144 |
|
---|
3145 | 2. The quantity x is computed by first shifting a (left -shift bits
|
---|
3146 | if shift <= 0, right shift bits if shift > 0) and then dividing by
|
---|
3147 | b. For both the shift and the division, we keep track of whether
|
---|
3148 | the result is inexact, in a flag 'inexact'; this information is
|
---|
3149 | needed at the rounding stage.
|
---|
3150 |
|
---|
3151 | With the choice of shift above, together with our assumption that
|
---|
3152 | a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
|
---|
3153 | that x >= 1.
|
---|
3154 |
|
---|
3155 | 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
|
---|
3156 | this with an exactly representable float of the form
|
---|
3157 |
|
---|
3158 | round(x/2**extra_bits) * 2**(extra_bits+shift).
|
---|
3159 |
|
---|
3160 | For float representability, we need x/2**extra_bits <
|
---|
3161 | 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
|
---|
3162 | DBL_MANT_DIG. This translates to the condition:
|
---|
3163 |
|
---|
3164 | extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
|
---|
3165 |
|
---|
3166 | To round, we just modify the bottom digit of x in-place; this can
|
---|
3167 | end up giving a digit with value > PyLONG_MASK, but that's not a
|
---|
3168 | problem since digits can hold values up to 2*PyLONG_MASK+1.
|
---|
3169 |
|
---|
3170 | With the original choices for shift above, extra_bits will always
|
---|
3171 | be 2 or 3. Then rounding under the round-half-to-even rule, we
|
---|
3172 | round up iff the most significant of the extra bits is 1, and
|
---|
3173 | either: (a) the computation of x in step 2 had an inexact result,
|
---|
3174 | or (b) at least one other of the extra bits is 1, or (c) the least
|
---|
3175 | significant bit of x (above those to be rounded) is 1.
|
---|
3176 |
|
---|
3177 | 4. Conversion to a double is straightforward; all floating-point
|
---|
3178 | operations involved in the conversion are exact, so there's no
|
---|
3179 | danger of rounding errors.
|
---|
3180 |
|
---|
3181 | 5. Use ldexp(x, shift) to compute x*2**shift, the final result.
|
---|
3182 | The result will always be exactly representable as a double, except
|
---|
3183 | in the case that it overflows. To avoid dependence on the exact
|
---|
3184 | behaviour of ldexp on overflow, we check for overflow before
|
---|
3185 | applying ldexp. The result of ldexp is adjusted for sign before
|
---|
3186 | returning.
|
---|
3187 | */
|
---|
3188 |
|
---|
3189 | /* Reduce to case where a and b are both positive. */
|
---|
3190 | a_size = ABS(Py_SIZE(a));
|
---|
3191 | b_size = ABS(Py_SIZE(b));
|
---|
3192 | negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
|
---|
3193 | if (b_size == 0) {
|
---|
3194 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
3195 | "division by zero");
|
---|
3196 | goto error;
|
---|
3197 | }
|
---|
3198 | if (a_size == 0)
|
---|
3199 | goto underflow_or_zero;
|
---|
3200 |
|
---|
3201 | /* Fast path for a and b small (exactly representable in a double).
|
---|
3202 | Relies on floating-point division being correctly rounded; results
|
---|
3203 | may be subject to double rounding on x86 machines that operate with
|
---|
3204 | the x87 FPU set to 64-bit precision. */
|
---|
3205 | a_is_small = a_size <= MANT_DIG_DIGITS ||
|
---|
3206 | (a_size == MANT_DIG_DIGITS+1 &&
|
---|
3207 | a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
|
---|
3208 | b_is_small = b_size <= MANT_DIG_DIGITS ||
|
---|
3209 | (b_size == MANT_DIG_DIGITS+1 &&
|
---|
3210 | b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
|
---|
3211 | if (a_is_small && b_is_small) {
|
---|
3212 | double da, db;
|
---|
3213 | da = a->ob_digit[--a_size];
|
---|
3214 | while (a_size > 0)
|
---|
3215 | da = da * PyLong_BASE + a->ob_digit[--a_size];
|
---|
3216 | db = b->ob_digit[--b_size];
|
---|
3217 | while (b_size > 0)
|
---|
3218 | db = db * PyLong_BASE + b->ob_digit[--b_size];
|
---|
3219 | result = da / db;
|
---|
3220 | goto success;
|
---|
3221 | }
|
---|
3222 |
|
---|
3223 | /* Catch obvious cases of underflow and overflow */
|
---|
3224 | diff = a_size - b_size;
|
---|
3225 | if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
|
---|
3226 | /* Extreme overflow */
|
---|
3227 | goto overflow;
|
---|
3228 | else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
|
---|
3229 | /* Extreme underflow */
|
---|
3230 | goto underflow_or_zero;
|
---|
3231 | /* Next line is now safe from overflowing a Py_ssize_t */
|
---|
3232 | diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
|
---|
3233 | bits_in_digit(b->ob_digit[b_size - 1]);
|
---|
3234 | /* Now diff = a_bits - b_bits. */
|
---|
3235 | if (diff > DBL_MAX_EXP)
|
---|
3236 | goto overflow;
|
---|
3237 | else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
|
---|
3238 | goto underflow_or_zero;
|
---|
3239 |
|
---|
3240 | /* Choose value for shift; see comments for step 1 above. */
|
---|
3241 | shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
|
---|
3242 |
|
---|
3243 | inexact = 0;
|
---|
3244 |
|
---|
3245 | /* x = abs(a * 2**-shift) */
|
---|
3246 | if (shift <= 0) {
|
---|
3247 | Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
|
---|
3248 | digit rem;
|
---|
3249 | /* x = a << -shift */
|
---|
3250 | if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
|
---|
3251 | /* In practice, it's probably impossible to end up
|
---|
3252 | here. Both a and b would have to be enormous,
|
---|
3253 | using close to SIZE_T_MAX bytes of memory each. */
|
---|
3254 | PyErr_SetString(PyExc_OverflowError,
|
---|
3255 | "intermediate overflow during division");
|
---|
3256 | goto error;
|
---|
3257 | }
|
---|
3258 | x = _PyLong_New(a_size + shift_digits + 1);
|
---|
3259 | if (x == NULL)
|
---|
3260 | goto error;
|
---|
3261 | for (i = 0; i < shift_digits; i++)
|
---|
3262 | x->ob_digit[i] = 0;
|
---|
3263 | rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
|
---|
3264 | a_size, -shift % PyLong_SHIFT);
|
---|
3265 | x->ob_digit[a_size + shift_digits] = rem;
|
---|
3266 | }
|
---|
3267 | else {
|
---|
3268 | Py_ssize_t shift_digits = shift / PyLong_SHIFT;
|
---|
3269 | digit rem;
|
---|
3270 | /* x = a >> shift */
|
---|
3271 | assert(a_size >= shift_digits);
|
---|
3272 | x = _PyLong_New(a_size - shift_digits);
|
---|
3273 | if (x == NULL)
|
---|
3274 | goto error;
|
---|
3275 | rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
|
---|
3276 | a_size - shift_digits, shift % PyLong_SHIFT);
|
---|
3277 | /* set inexact if any of the bits shifted out is nonzero */
|
---|
3278 | if (rem)
|
---|
3279 | inexact = 1;
|
---|
3280 | while (!inexact && shift_digits > 0)
|
---|
3281 | if (a->ob_digit[--shift_digits])
|
---|
3282 | inexact = 1;
|
---|
3283 | }
|
---|
3284 | long_normalize(x);
|
---|
3285 | x_size = Py_SIZE(x);
|
---|
3286 |
|
---|
3287 | /* x //= b. If the remainder is nonzero, set inexact. We own the only
|
---|
3288 | reference to x, so it's safe to modify it in-place. */
|
---|
3289 | if (b_size == 1) {
|
---|
3290 | digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
|
---|
3291 | b->ob_digit[0]);
|
---|
3292 | long_normalize(x);
|
---|
3293 | if (rem)
|
---|
3294 | inexact = 1;
|
---|
3295 | }
|
---|
3296 | else {
|
---|
3297 | PyLongObject *div, *rem;
|
---|
3298 | div = x_divrem(x, b, &rem);
|
---|
3299 | Py_DECREF(x);
|
---|
3300 | x = div;
|
---|
3301 | if (x == NULL)
|
---|
3302 | goto error;
|
---|
3303 | if (Py_SIZE(rem))
|
---|
3304 | inexact = 1;
|
---|
3305 | Py_DECREF(rem);
|
---|
3306 | }
|
---|
3307 | x_size = ABS(Py_SIZE(x));
|
---|
3308 | assert(x_size > 0); /* result of division is never zero */
|
---|
3309 | x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
|
---|
3310 |
|
---|
3311 | /* The number of extra bits that have to be rounded away. */
|
---|
3312 | extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
|
---|
3313 | assert(extra_bits == 2 || extra_bits == 3);
|
---|
3314 |
|
---|
3315 | /* Round by directly modifying the low digit of x. */
|
---|
3316 | mask = (digit)1 << (extra_bits - 1);
|
---|
3317 | low = x->ob_digit[0] | inexact;
|
---|
3318 | if (low & mask && low & (3*mask-1))
|
---|
3319 | low += mask;
|
---|
3320 | x->ob_digit[0] = low & ~(mask-1U);
|
---|
3321 |
|
---|
3322 | /* Convert x to a double dx; the conversion is exact. */
|
---|
3323 | dx = x->ob_digit[--x_size];
|
---|
3324 | while (x_size > 0)
|
---|
3325 | dx = dx * PyLong_BASE + x->ob_digit[--x_size];
|
---|
3326 | Py_DECREF(x);
|
---|
3327 |
|
---|
3328 | /* Check whether ldexp result will overflow a double. */
|
---|
3329 | if (shift + x_bits >= DBL_MAX_EXP &&
|
---|
3330 | (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
|
---|
3331 | goto overflow;
|
---|
3332 | result = ldexp(dx, (int)shift);
|
---|
3333 |
|
---|
3334 | success:
|
---|
3335 | Py_DECREF(a);
|
---|
3336 | Py_DECREF(b);
|
---|
3337 | return PyFloat_FromDouble(negate ? -result : result);
|
---|
3338 |
|
---|
3339 | underflow_or_zero:
|
---|
3340 | Py_DECREF(a);
|
---|
3341 | Py_DECREF(b);
|
---|
3342 | return PyFloat_FromDouble(negate ? -0.0 : 0.0);
|
---|
3343 |
|
---|
3344 | overflow:
|
---|
3345 | PyErr_SetString(PyExc_OverflowError,
|
---|
3346 | "integer division result too large for a float");
|
---|
3347 | error:
|
---|
3348 | Py_DECREF(a);
|
---|
3349 | Py_DECREF(b);
|
---|
3350 | return NULL;
|
---|
3351 | }
|
---|
3352 |
|
---|
3353 | static PyObject *
|
---|
3354 | long_mod(PyObject *v, PyObject *w)
|
---|
3355 | {
|
---|
3356 | PyLongObject *a, *b, *mod;
|
---|
3357 |
|
---|
3358 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3359 |
|
---|
3360 | if (l_divmod(a, b, NULL, &mod) < 0)
|
---|
3361 | mod = NULL;
|
---|
3362 | Py_DECREF(a);
|
---|
3363 | Py_DECREF(b);
|
---|
3364 | return (PyObject *)mod;
|
---|
3365 | }
|
---|
3366 |
|
---|
3367 | static PyObject *
|
---|
3368 | long_divmod(PyObject *v, PyObject *w)
|
---|
3369 | {
|
---|
3370 | PyLongObject *a, *b, *div, *mod;
|
---|
3371 | PyObject *z;
|
---|
3372 |
|
---|
3373 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3374 |
|
---|
3375 | if (l_divmod(a, b, &div, &mod) < 0) {
|
---|
3376 | Py_DECREF(a);
|
---|
3377 | Py_DECREF(b);
|
---|
3378 | return NULL;
|
---|
3379 | }
|
---|
3380 | z = PyTuple_New(2);
|
---|
3381 | if (z != NULL) {
|
---|
3382 | PyTuple_SetItem(z, 0, (PyObject *) div);
|
---|
3383 | PyTuple_SetItem(z, 1, (PyObject *) mod);
|
---|
3384 | }
|
---|
3385 | else {
|
---|
3386 | Py_DECREF(div);
|
---|
3387 | Py_DECREF(mod);
|
---|
3388 | }
|
---|
3389 | Py_DECREF(a);
|
---|
3390 | Py_DECREF(b);
|
---|
3391 | return z;
|
---|
3392 | }
|
---|
3393 |
|
---|
3394 | /* pow(v, w, x) */
|
---|
3395 | static PyObject *
|
---|
3396 | long_pow(PyObject *v, PyObject *w, PyObject *x)
|
---|
3397 | {
|
---|
3398 | PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
|
---|
3399 | int negativeOutput = 0; /* if x<0 return negative output */
|
---|
3400 |
|
---|
3401 | PyLongObject *z = NULL; /* accumulated result */
|
---|
3402 | Py_ssize_t i, j, k; /* counters */
|
---|
3403 | PyLongObject *temp = NULL;
|
---|
3404 |
|
---|
3405 | /* 5-ary values. If the exponent is large enough, table is
|
---|
3406 | * precomputed so that table[i] == a**i % c for i in range(32).
|
---|
3407 | */
|
---|
3408 | PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
---|
3409 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
---|
3410 |
|
---|
3411 | /* a, b, c = v, w, x */
|
---|
3412 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3413 | if (PyLong_Check(x)) {
|
---|
3414 | c = (PyLongObject *)x;
|
---|
3415 | Py_INCREF(x);
|
---|
3416 | }
|
---|
3417 | else if (PyInt_Check(x)) {
|
---|
3418 | c = (PyLongObject *)PyLong_FromLong(PyInt_AS_LONG(x));
|
---|
3419 | if (c == NULL)
|
---|
3420 | goto Error;
|
---|
3421 | }
|
---|
3422 | else if (x == Py_None)
|
---|
3423 | c = NULL;
|
---|
3424 | else {
|
---|
3425 | Py_DECREF(a);
|
---|
3426 | Py_DECREF(b);
|
---|
3427 | Py_INCREF(Py_NotImplemented);
|
---|
3428 | return Py_NotImplemented;
|
---|
3429 | }
|
---|
3430 |
|
---|
3431 | if (Py_SIZE(b) < 0) { /* if exponent is negative */
|
---|
3432 | if (c) {
|
---|
3433 | PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
|
---|
3434 | "cannot be negative when 3rd argument specified");
|
---|
3435 | goto Error;
|
---|
3436 | }
|
---|
3437 | else {
|
---|
3438 | /* else return a float. This works because we know
|
---|
3439 | that this calls float_pow() which converts its
|
---|
3440 | arguments to double. */
|
---|
3441 | Py_DECREF(a);
|
---|
3442 | Py_DECREF(b);
|
---|
3443 | return PyFloat_Type.tp_as_number->nb_power(v, w, x);
|
---|
3444 | }
|
---|
3445 | }
|
---|
3446 |
|
---|
3447 | if (c) {
|
---|
3448 | /* if modulus == 0:
|
---|
3449 | raise ValueError() */
|
---|
3450 | if (Py_SIZE(c) == 0) {
|
---|
3451 | PyErr_SetString(PyExc_ValueError,
|
---|
3452 | "pow() 3rd argument cannot be 0");
|
---|
3453 | goto Error;
|
---|
3454 | }
|
---|
3455 |
|
---|
3456 | /* if modulus < 0:
|
---|
3457 | negativeOutput = True
|
---|
3458 | modulus = -modulus */
|
---|
3459 | if (Py_SIZE(c) < 0) {
|
---|
3460 | negativeOutput = 1;
|
---|
3461 | temp = (PyLongObject *)_PyLong_Copy(c);
|
---|
3462 | if (temp == NULL)
|
---|
3463 | goto Error;
|
---|
3464 | Py_DECREF(c);
|
---|
3465 | c = temp;
|
---|
3466 | temp = NULL;
|
---|
3467 | c->ob_size = - c->ob_size;
|
---|
3468 | }
|
---|
3469 |
|
---|
3470 | /* if modulus == 1:
|
---|
3471 | return 0 */
|
---|
3472 | if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
|
---|
3473 | z = (PyLongObject *)PyLong_FromLong(0L);
|
---|
3474 | goto Done;
|
---|
3475 | }
|
---|
3476 |
|
---|
3477 | /* Reduce base by modulus in some cases:
|
---|
3478 | 1. If base < 0. Forcing the base non-negative makes things easier.
|
---|
3479 | 2. If base is obviously larger than the modulus. The "small
|
---|
3480 | exponent" case later can multiply directly by base repeatedly,
|
---|
3481 | while the "large exponent" case multiplies directly by base 31
|
---|
3482 | times. It can be unboundedly faster to multiply by
|
---|
3483 | base % modulus instead.
|
---|
3484 | We could _always_ do this reduction, but l_divmod() isn't cheap,
|
---|
3485 | so we only do it when it buys something. */
|
---|
3486 | if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
|
---|
3487 | if (l_divmod(a, c, NULL, &temp) < 0)
|
---|
3488 | goto Error;
|
---|
3489 | Py_DECREF(a);
|
---|
3490 | a = temp;
|
---|
3491 | temp = NULL;
|
---|
3492 | }
|
---|
3493 | }
|
---|
3494 |
|
---|
3495 | /* At this point a, b, and c are guaranteed non-negative UNLESS
|
---|
3496 | c is NULL, in which case a may be negative. */
|
---|
3497 |
|
---|
3498 | z = (PyLongObject *)PyLong_FromLong(1L);
|
---|
3499 | if (z == NULL)
|
---|
3500 | goto Error;
|
---|
3501 |
|
---|
3502 | /* Perform a modular reduction, X = X % c, but leave X alone if c
|
---|
3503 | * is NULL.
|
---|
3504 | */
|
---|
3505 | #define REDUCE(X) \
|
---|
3506 | do { \
|
---|
3507 | if (c != NULL) { \
|
---|
3508 | if (l_divmod(X, c, NULL, &temp) < 0) \
|
---|
3509 | goto Error; \
|
---|
3510 | Py_XDECREF(X); \
|
---|
3511 | X = temp; \
|
---|
3512 | temp = NULL; \
|
---|
3513 | } \
|
---|
3514 | } while(0)
|
---|
3515 |
|
---|
3516 | /* Multiply two values, then reduce the result:
|
---|
3517 | result = X*Y % c. If c is NULL, skip the mod. */
|
---|
3518 | #define MULT(X, Y, result) \
|
---|
3519 | do { \
|
---|
3520 | temp = (PyLongObject *)long_mul(X, Y); \
|
---|
3521 | if (temp == NULL) \
|
---|
3522 | goto Error; \
|
---|
3523 | Py_XDECREF(result); \
|
---|
3524 | result = temp; \
|
---|
3525 | temp = NULL; \
|
---|
3526 | REDUCE(result); \
|
---|
3527 | } while(0)
|
---|
3528 |
|
---|
3529 | if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
|
---|
3530 | /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
|
---|
3531 | /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
|
---|
3532 | for (i = Py_SIZE(b) - 1; i >= 0; --i) {
|
---|
3533 | digit bi = b->ob_digit[i];
|
---|
3534 |
|
---|
3535 | for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
|
---|
3536 | MULT(z, z, z);
|
---|
3537 | if (bi & j)
|
---|
3538 | MULT(z, a, z);
|
---|
3539 | }
|
---|
3540 | }
|
---|
3541 | }
|
---|
3542 | else {
|
---|
3543 | /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
|
---|
3544 | Py_INCREF(z); /* still holds 1L */
|
---|
3545 | table[0] = z;
|
---|
3546 | for (i = 1; i < 32; ++i)
|
---|
3547 | MULT(table[i-1], a, table[i]);
|
---|
3548 |
|
---|
3549 | for (i = Py_SIZE(b) - 1; i >= 0; --i) {
|
---|
3550 | const digit bi = b->ob_digit[i];
|
---|
3551 |
|
---|
3552 | for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
|
---|
3553 | const int index = (bi >> j) & 0x1f;
|
---|
3554 | for (k = 0; k < 5; ++k)
|
---|
3555 | MULT(z, z, z);
|
---|
3556 | if (index)
|
---|
3557 | MULT(z, table[index], z);
|
---|
3558 | }
|
---|
3559 | }
|
---|
3560 | }
|
---|
3561 |
|
---|
3562 | if (negativeOutput && (Py_SIZE(z) != 0)) {
|
---|
3563 | temp = (PyLongObject *)long_sub(z, c);
|
---|
3564 | if (temp == NULL)
|
---|
3565 | goto Error;
|
---|
3566 | Py_DECREF(z);
|
---|
3567 | z = temp;
|
---|
3568 | temp = NULL;
|
---|
3569 | }
|
---|
3570 | goto Done;
|
---|
3571 |
|
---|
3572 | Error:
|
---|
3573 | if (z != NULL) {
|
---|
3574 | Py_DECREF(z);
|
---|
3575 | z = NULL;
|
---|
3576 | }
|
---|
3577 | /* fall through */
|
---|
3578 | Done:
|
---|
3579 | if (Py_SIZE(b) > FIVEARY_CUTOFF) {
|
---|
3580 | for (i = 0; i < 32; ++i)
|
---|
3581 | Py_XDECREF(table[i]);
|
---|
3582 | }
|
---|
3583 | Py_DECREF(a);
|
---|
3584 | Py_DECREF(b);
|
---|
3585 | Py_XDECREF(c);
|
---|
3586 | Py_XDECREF(temp);
|
---|
3587 | return (PyObject *)z;
|
---|
3588 | }
|
---|
3589 |
|
---|
3590 | static PyObject *
|
---|
3591 | long_invert(PyLongObject *v)
|
---|
3592 | {
|
---|
3593 | /* Implement ~x as -(x+1) */
|
---|
3594 | PyLongObject *x;
|
---|
3595 | PyLongObject *w;
|
---|
3596 | w = (PyLongObject *)PyLong_FromLong(1L);
|
---|
3597 | if (w == NULL)
|
---|
3598 | return NULL;
|
---|
3599 | x = (PyLongObject *) long_add(v, w);
|
---|
3600 | Py_DECREF(w);
|
---|
3601 | if (x == NULL)
|
---|
3602 | return NULL;
|
---|
3603 | Py_SIZE(x) = -(Py_SIZE(x));
|
---|
3604 | return (PyObject *)x;
|
---|
3605 | }
|
---|
3606 |
|
---|
3607 | static PyObject *
|
---|
3608 | long_neg(PyLongObject *v)
|
---|
3609 | {
|
---|
3610 | PyLongObject *z;
|
---|
3611 | if (v->ob_size == 0 && PyLong_CheckExact(v)) {
|
---|
3612 | /* -0 == 0 */
|
---|
3613 | Py_INCREF(v);
|
---|
3614 | return (PyObject *) v;
|
---|
3615 | }
|
---|
3616 | z = (PyLongObject *)_PyLong_Copy(v);
|
---|
3617 | if (z != NULL)
|
---|
3618 | z->ob_size = -(v->ob_size);
|
---|
3619 | return (PyObject *)z;
|
---|
3620 | }
|
---|
3621 |
|
---|
3622 | static PyObject *
|
---|
3623 | long_abs(PyLongObject *v)
|
---|
3624 | {
|
---|
3625 | if (v->ob_size < 0)
|
---|
3626 | return long_neg(v);
|
---|
3627 | else
|
---|
3628 | return long_long((PyObject *)v);
|
---|
3629 | }
|
---|
3630 |
|
---|
3631 | static int
|
---|
3632 | long_nonzero(PyLongObject *v)
|
---|
3633 | {
|
---|
3634 | return Py_SIZE(v) != 0;
|
---|
3635 | }
|
---|
3636 |
|
---|
3637 | static PyObject *
|
---|
3638 | long_rshift(PyLongObject *v, PyLongObject *w)
|
---|
3639 | {
|
---|
3640 | PyLongObject *a, *b;
|
---|
3641 | PyLongObject *z = NULL;
|
---|
3642 | Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j;
|
---|
3643 | digit lomask, himask;
|
---|
3644 |
|
---|
3645 | CONVERT_BINOP((PyObject *)v, (PyObject *)w, &a, &b);
|
---|
3646 |
|
---|
3647 | if (Py_SIZE(a) < 0) {
|
---|
3648 | /* Right shifting negative numbers is harder */
|
---|
3649 | PyLongObject *a1, *a2;
|
---|
3650 | a1 = (PyLongObject *) long_invert(a);
|
---|
3651 | if (a1 == NULL)
|
---|
3652 | goto rshift_error;
|
---|
3653 | a2 = (PyLongObject *) long_rshift(a1, b);
|
---|
3654 | Py_DECREF(a1);
|
---|
3655 | if (a2 == NULL)
|
---|
3656 | goto rshift_error;
|
---|
3657 | z = (PyLongObject *) long_invert(a2);
|
---|
3658 | Py_DECREF(a2);
|
---|
3659 | }
|
---|
3660 | else {
|
---|
3661 | shiftby = PyLong_AsSsize_t((PyObject *)b);
|
---|
3662 | if (shiftby == -1L && PyErr_Occurred())
|
---|
3663 | goto rshift_error;
|
---|
3664 | if (shiftby < 0) {
|
---|
3665 | PyErr_SetString(PyExc_ValueError,
|
---|
3666 | "negative shift count");
|
---|
3667 | goto rshift_error;
|
---|
3668 | }
|
---|
3669 | wordshift = shiftby / PyLong_SHIFT;
|
---|
3670 | newsize = ABS(Py_SIZE(a)) - wordshift;
|
---|
3671 | if (newsize <= 0) {
|
---|
3672 | z = _PyLong_New(0);
|
---|
3673 | Py_DECREF(a);
|
---|
3674 | Py_DECREF(b);
|
---|
3675 | return (PyObject *)z;
|
---|
3676 | }
|
---|
3677 | loshift = shiftby % PyLong_SHIFT;
|
---|
3678 | hishift = PyLong_SHIFT - loshift;
|
---|
3679 | lomask = ((digit)1 << hishift) - 1;
|
---|
3680 | himask = PyLong_MASK ^ lomask;
|
---|
3681 | z = _PyLong_New(newsize);
|
---|
3682 | if (z == NULL)
|
---|
3683 | goto rshift_error;
|
---|
3684 | if (Py_SIZE(a) < 0)
|
---|
3685 | Py_SIZE(z) = -(Py_SIZE(z));
|
---|
3686 | for (i = 0, j = wordshift; i < newsize; i++, j++) {
|
---|
3687 | z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
|
---|
3688 | if (i+1 < newsize)
|
---|
3689 | z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
|
---|
3690 | }
|
---|
3691 | z = long_normalize(z);
|
---|
3692 | }
|
---|
3693 | rshift_error:
|
---|
3694 | Py_DECREF(a);
|
---|
3695 | Py_DECREF(b);
|
---|
3696 | return (PyObject *) z;
|
---|
3697 |
|
---|
3698 | }
|
---|
3699 |
|
---|
3700 | static PyObject *
|
---|
3701 | long_lshift(PyObject *v, PyObject *w)
|
---|
3702 | {
|
---|
3703 | /* This version due to Tim Peters */
|
---|
3704 | PyLongObject *a, *b;
|
---|
3705 | PyLongObject *z = NULL;
|
---|
3706 | Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j;
|
---|
3707 | twodigits accum;
|
---|
3708 |
|
---|
3709 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3710 |
|
---|
3711 | shiftby = PyLong_AsSsize_t((PyObject *)b);
|
---|
3712 | if (shiftby == -1L && PyErr_Occurred())
|
---|
3713 | goto lshift_error;
|
---|
3714 | if (shiftby < 0) {
|
---|
3715 | PyErr_SetString(PyExc_ValueError, "negative shift count");
|
---|
3716 | goto lshift_error;
|
---|
3717 | }
|
---|
3718 | /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
|
---|
3719 | wordshift = shiftby / PyLong_SHIFT;
|
---|
3720 | remshift = shiftby - wordshift * PyLong_SHIFT;
|
---|
3721 |
|
---|
3722 | oldsize = ABS(a->ob_size);
|
---|
3723 | newsize = oldsize + wordshift;
|
---|
3724 | if (remshift)
|
---|
3725 | ++newsize;
|
---|
3726 | z = _PyLong_New(newsize);
|
---|
3727 | if (z == NULL)
|
---|
3728 | goto lshift_error;
|
---|
3729 | if (a->ob_size < 0)
|
---|
3730 | z->ob_size = -(z->ob_size);
|
---|
3731 | for (i = 0; i < wordshift; i++)
|
---|
3732 | z->ob_digit[i] = 0;
|
---|
3733 | accum = 0;
|
---|
3734 | for (i = wordshift, j = 0; j < oldsize; i++, j++) {
|
---|
3735 | accum |= (twodigits)a->ob_digit[j] << remshift;
|
---|
3736 | z->ob_digit[i] = (digit)(accum & PyLong_MASK);
|
---|
3737 | accum >>= PyLong_SHIFT;
|
---|
3738 | }
|
---|
3739 | if (remshift)
|
---|
3740 | z->ob_digit[newsize-1] = (digit)accum;
|
---|
3741 | else
|
---|
3742 | assert(!accum);
|
---|
3743 | z = long_normalize(z);
|
---|
3744 | lshift_error:
|
---|
3745 | Py_DECREF(a);
|
---|
3746 | Py_DECREF(b);
|
---|
3747 | return (PyObject *) z;
|
---|
3748 | }
|
---|
3749 |
|
---|
3750 | /* Compute two's complement of digit vector a[0:m], writing result to
|
---|
3751 | z[0:m]. The digit vector a need not be normalized, but should not
|
---|
3752 | be entirely zero. a and z may point to the same digit vector. */
|
---|
3753 |
|
---|
3754 | static void
|
---|
3755 | v_complement(digit *z, digit *a, Py_ssize_t m)
|
---|
3756 | {
|
---|
3757 | Py_ssize_t i;
|
---|
3758 | digit carry = 1;
|
---|
3759 | for (i = 0; i < m; ++i) {
|
---|
3760 | carry += a[i] ^ PyLong_MASK;
|
---|
3761 | z[i] = carry & PyLong_MASK;
|
---|
3762 | carry >>= PyLong_SHIFT;
|
---|
3763 | }
|
---|
3764 | assert(carry == 0);
|
---|
3765 | }
|
---|
3766 |
|
---|
3767 | /* Bitwise and/xor/or operations */
|
---|
3768 |
|
---|
3769 | static PyObject *
|
---|
3770 | long_bitwise(PyLongObject *a,
|
---|
3771 | int op, /* '&', '|', '^' */
|
---|
3772 | PyLongObject *b)
|
---|
3773 | {
|
---|
3774 | int nega, negb, negz;
|
---|
3775 | Py_ssize_t size_a, size_b, size_z, i;
|
---|
3776 | PyLongObject *z;
|
---|
3777 |
|
---|
3778 | /* Bitwise operations for negative numbers operate as though
|
---|
3779 | on a two's complement representation. So convert arguments
|
---|
3780 | from sign-magnitude to two's complement, and convert the
|
---|
3781 | result back to sign-magnitude at the end. */
|
---|
3782 |
|
---|
3783 | /* If a is negative, replace it by its two's complement. */
|
---|
3784 | size_a = ABS(Py_SIZE(a));
|
---|
3785 | nega = Py_SIZE(a) < 0;
|
---|
3786 | if (nega) {
|
---|
3787 | z = _PyLong_New(size_a);
|
---|
3788 | if (z == NULL)
|
---|
3789 | return NULL;
|
---|
3790 | v_complement(z->ob_digit, a->ob_digit, size_a);
|
---|
3791 | a = z;
|
---|
3792 | }
|
---|
3793 | else
|
---|
3794 | /* Keep reference count consistent. */
|
---|
3795 | Py_INCREF(a);
|
---|
3796 |
|
---|
3797 | /* Same for b. */
|
---|
3798 | size_b = ABS(Py_SIZE(b));
|
---|
3799 | negb = Py_SIZE(b) < 0;
|
---|
3800 | if (negb) {
|
---|
3801 | z = _PyLong_New(size_b);
|
---|
3802 | if (z == NULL) {
|
---|
3803 | Py_DECREF(a);
|
---|
3804 | return NULL;
|
---|
3805 | }
|
---|
3806 | v_complement(z->ob_digit, b->ob_digit, size_b);
|
---|
3807 | b = z;
|
---|
3808 | }
|
---|
3809 | else
|
---|
3810 | Py_INCREF(b);
|
---|
3811 |
|
---|
3812 | /* Swap a and b if necessary to ensure size_a >= size_b. */
|
---|
3813 | if (size_a < size_b) {
|
---|
3814 | z = a; a = b; b = z;
|
---|
3815 | size_z = size_a; size_a = size_b; size_b = size_z;
|
---|
3816 | negz = nega; nega = negb; negb = negz;
|
---|
3817 | }
|
---|
3818 |
|
---|
3819 | /* JRH: The original logic here was to allocate the result value (z)
|
---|
3820 | as the longer of the two operands. However, there are some cases
|
---|
3821 | where the result is guaranteed to be shorter than that: AND of two
|
---|
3822 | positives, OR of two negatives: use the shorter number. AND with
|
---|
3823 | mixed signs: use the positive number. OR with mixed signs: use the
|
---|
3824 | negative number.
|
---|
3825 | */
|
---|
3826 | switch (op) {
|
---|
3827 | case '^':
|
---|
3828 | negz = nega ^ negb;
|
---|
3829 | size_z = size_a;
|
---|
3830 | break;
|
---|
3831 | case '&':
|
---|
3832 | negz = nega & negb;
|
---|
3833 | size_z = negb ? size_a : size_b;
|
---|
3834 | break;
|
---|
3835 | case '|':
|
---|
3836 | negz = nega | negb;
|
---|
3837 | size_z = negb ? size_b : size_a;
|
---|
3838 | break;
|
---|
3839 | default:
|
---|
3840 | PyErr_BadArgument();
|
---|
3841 | return NULL;
|
---|
3842 | }
|
---|
3843 |
|
---|
3844 | /* We allow an extra digit if z is negative, to make sure that
|
---|
3845 | the final two's complement of z doesn't overflow. */
|
---|
3846 | z = _PyLong_New(size_z + negz);
|
---|
3847 | if (z == NULL) {
|
---|
3848 | Py_DECREF(a);
|
---|
3849 | Py_DECREF(b);
|
---|
3850 | return NULL;
|
---|
3851 | }
|
---|
3852 |
|
---|
3853 | /* Compute digits for overlap of a and b. */
|
---|
3854 | switch(op) {
|
---|
3855 | case '&':
|
---|
3856 | for (i = 0; i < size_b; ++i)
|
---|
3857 | z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
|
---|
3858 | break;
|
---|
3859 | case '|':
|
---|
3860 | for (i = 0; i < size_b; ++i)
|
---|
3861 | z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
|
---|
3862 | break;
|
---|
3863 | case '^':
|
---|
3864 | for (i = 0; i < size_b; ++i)
|
---|
3865 | z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
|
---|
3866 | break;
|
---|
3867 | default:
|
---|
3868 | PyErr_BadArgument();
|
---|
3869 | return NULL;
|
---|
3870 | }
|
---|
3871 |
|
---|
3872 | /* Copy any remaining digits of a, inverting if necessary. */
|
---|
3873 | if (op == '^' && negb)
|
---|
3874 | for (; i < size_z; ++i)
|
---|
3875 | z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
|
---|
3876 | else if (i < size_z)
|
---|
3877 | memcpy(&z->ob_digit[i], &a->ob_digit[i],
|
---|
3878 | (size_z-i)*sizeof(digit));
|
---|
3879 |
|
---|
3880 | /* Complement result if negative. */
|
---|
3881 | if (negz) {
|
---|
3882 | Py_SIZE(z) = -(Py_SIZE(z));
|
---|
3883 | z->ob_digit[size_z] = PyLong_MASK;
|
---|
3884 | v_complement(z->ob_digit, z->ob_digit, size_z+1);
|
---|
3885 | }
|
---|
3886 |
|
---|
3887 | Py_DECREF(a);
|
---|
3888 | Py_DECREF(b);
|
---|
3889 | return (PyObject *)long_normalize(z);
|
---|
3890 | }
|
---|
3891 |
|
---|
3892 | static PyObject *
|
---|
3893 | long_and(PyObject *v, PyObject *w)
|
---|
3894 | {
|
---|
3895 | PyLongObject *a, *b;
|
---|
3896 | PyObject *c;
|
---|
3897 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3898 | c = long_bitwise(a, '&', b);
|
---|
3899 | Py_DECREF(a);
|
---|
3900 | Py_DECREF(b);
|
---|
3901 | return c;
|
---|
3902 | }
|
---|
3903 |
|
---|
3904 | static PyObject *
|
---|
3905 | long_xor(PyObject *v, PyObject *w)
|
---|
3906 | {
|
---|
3907 | PyLongObject *a, *b;
|
---|
3908 | PyObject *c;
|
---|
3909 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3910 | c = long_bitwise(a, '^', b);
|
---|
3911 | Py_DECREF(a);
|
---|
3912 | Py_DECREF(b);
|
---|
3913 | return c;
|
---|
3914 | }
|
---|
3915 |
|
---|
3916 | static PyObject *
|
---|
3917 | long_or(PyObject *v, PyObject *w)
|
---|
3918 | {
|
---|
3919 | PyLongObject *a, *b;
|
---|
3920 | PyObject *c;
|
---|
3921 | CONVERT_BINOP(v, w, &a, &b);
|
---|
3922 | c = long_bitwise(a, '|', b);
|
---|
3923 | Py_DECREF(a);
|
---|
3924 | Py_DECREF(b);
|
---|
3925 | return c;
|
---|
3926 | }
|
---|
3927 |
|
---|
3928 | static int
|
---|
3929 | long_coerce(PyObject **pv, PyObject **pw)
|
---|
3930 | {
|
---|
3931 | if (PyInt_Check(*pw)) {
|
---|
3932 | *pw = PyLong_FromLong(PyInt_AS_LONG(*pw));
|
---|
3933 | if (*pw == NULL)
|
---|
3934 | return -1;
|
---|
3935 | Py_INCREF(*pv);
|
---|
3936 | return 0;
|
---|
3937 | }
|
---|
3938 | else if (PyLong_Check(*pw)) {
|
---|
3939 | Py_INCREF(*pv);
|
---|
3940 | Py_INCREF(*pw);
|
---|
3941 | return 0;
|
---|
3942 | }
|
---|
3943 | return 1; /* Can't do it */
|
---|
3944 | }
|
---|
3945 |
|
---|
3946 | static PyObject *
|
---|
3947 | long_long(PyObject *v)
|
---|
3948 | {
|
---|
3949 | if (PyLong_CheckExact(v))
|
---|
3950 | Py_INCREF(v);
|
---|
3951 | else
|
---|
3952 | v = _PyLong_Copy((PyLongObject *)v);
|
---|
3953 | return v;
|
---|
3954 | }
|
---|
3955 |
|
---|
3956 | static PyObject *
|
---|
3957 | long_int(PyObject *v)
|
---|
3958 | {
|
---|
3959 | long x;
|
---|
3960 | x = PyLong_AsLong(v);
|
---|
3961 | if (PyErr_Occurred()) {
|
---|
3962 | if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
---|
3963 | PyErr_Clear();
|
---|
3964 | if (PyLong_CheckExact(v)) {
|
---|
3965 | Py_INCREF(v);
|
---|
3966 | return v;
|
---|
3967 | }
|
---|
3968 | else
|
---|
3969 | return _PyLong_Copy((PyLongObject *)v);
|
---|
3970 | }
|
---|
3971 | else
|
---|
3972 | return NULL;
|
---|
3973 | }
|
---|
3974 | return PyInt_FromLong(x);
|
---|
3975 | }
|
---|
3976 |
|
---|
3977 | static PyObject *
|
---|
3978 | long_float(PyObject *v)
|
---|
3979 | {
|
---|
3980 | double result;
|
---|
3981 | result = PyLong_AsDouble(v);
|
---|
3982 | if (result == -1.0 && PyErr_Occurred())
|
---|
3983 | return NULL;
|
---|
3984 | return PyFloat_FromDouble(result);
|
---|
3985 | }
|
---|
3986 |
|
---|
3987 | static PyObject *
|
---|
3988 | long_oct(PyObject *v)
|
---|
3989 | {
|
---|
3990 | return _PyLong_Format(v, 8, 1, 0);
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 | static PyObject *
|
---|
3994 | long_hex(PyObject *v)
|
---|
3995 | {
|
---|
3996 | return _PyLong_Format(v, 16, 1, 0);
|
---|
3997 | }
|
---|
3998 |
|
---|
3999 | static PyObject *
|
---|
4000 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
|
---|
4001 |
|
---|
4002 | static PyObject *
|
---|
4003 | long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
4004 | {
|
---|
4005 | PyObject *x = NULL;
|
---|
4006 | int base = -909; /* unlikely! */
|
---|
4007 | static char *kwlist[] = {"x", "base", 0};
|
---|
4008 |
|
---|
4009 | if (type != &PyLong_Type)
|
---|
4010 | return long_subtype_new(type, args, kwds); /* Wimp out */
|
---|
4011 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:long", kwlist,
|
---|
4012 | &x, &base))
|
---|
4013 | return NULL;
|
---|
4014 | if (x == NULL) {
|
---|
4015 | if (base != -909) {
|
---|
4016 | PyErr_SetString(PyExc_TypeError,
|
---|
4017 | "long() missing string argument");
|
---|
4018 | return NULL;
|
---|
4019 | }
|
---|
4020 | return PyLong_FromLong(0L);
|
---|
4021 | }
|
---|
4022 | if (base == -909)
|
---|
4023 | return PyNumber_Long(x);
|
---|
4024 | else if (PyString_Check(x)) {
|
---|
4025 | /* Since PyLong_FromString doesn't have a length parameter,
|
---|
4026 | * check here for possible NULs in the string. */
|
---|
4027 | char *string = PyString_AS_STRING(x);
|
---|
4028 | if (strlen(string) != (size_t)PyString_Size(x)) {
|
---|
4029 | /* create a repr() of the input string,
|
---|
4030 | * just like PyLong_FromString does. */
|
---|
4031 | PyObject *srepr;
|
---|
4032 | srepr = PyObject_Repr(x);
|
---|
4033 | if (srepr == NULL)
|
---|
4034 | return NULL;
|
---|
4035 | PyErr_Format(PyExc_ValueError,
|
---|
4036 | "invalid literal for long() with base %d: %s",
|
---|
4037 | base, PyString_AS_STRING(srepr));
|
---|
4038 | Py_DECREF(srepr);
|
---|
4039 | return NULL;
|
---|
4040 | }
|
---|
4041 | return PyLong_FromString(PyString_AS_STRING(x), NULL, base);
|
---|
4042 | }
|
---|
4043 | #ifdef Py_USING_UNICODE
|
---|
4044 | else if (PyUnicode_Check(x))
|
---|
4045 | return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
|
---|
4046 | PyUnicode_GET_SIZE(x),
|
---|
4047 | base);
|
---|
4048 | #endif
|
---|
4049 | else {
|
---|
4050 | PyErr_SetString(PyExc_TypeError,
|
---|
4051 | "long() can't convert non-string with explicit base");
|
---|
4052 | return NULL;
|
---|
4053 | }
|
---|
4054 | }
|
---|
4055 |
|
---|
4056 | /* Wimpy, slow approach to tp_new calls for subtypes of long:
|
---|
4057 | first create a regular long from whatever arguments we got,
|
---|
4058 | then allocate a subtype instance and initialize it from
|
---|
4059 | the regular long. The regular long is then thrown away.
|
---|
4060 | */
|
---|
4061 | static PyObject *
|
---|
4062 | long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
4063 | {
|
---|
4064 | PyLongObject *tmp, *newobj;
|
---|
4065 | Py_ssize_t i, n;
|
---|
4066 |
|
---|
4067 | assert(PyType_IsSubtype(type, &PyLong_Type));
|
---|
4068 | tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
|
---|
4069 | if (tmp == NULL)
|
---|
4070 | return NULL;
|
---|
4071 | assert(PyLong_CheckExact(tmp));
|
---|
4072 | n = Py_SIZE(tmp);
|
---|
4073 | if (n < 0)
|
---|
4074 | n = -n;
|
---|
4075 | newobj = (PyLongObject *)type->tp_alloc(type, n);
|
---|
4076 | if (newobj == NULL) {
|
---|
4077 | Py_DECREF(tmp);
|
---|
4078 | return NULL;
|
---|
4079 | }
|
---|
4080 | assert(PyLong_Check(newobj));
|
---|
4081 | Py_SIZE(newobj) = Py_SIZE(tmp);
|
---|
4082 | for (i = 0; i < n; i++)
|
---|
4083 | newobj->ob_digit[i] = tmp->ob_digit[i];
|
---|
4084 | Py_DECREF(tmp);
|
---|
4085 | return (PyObject *)newobj;
|
---|
4086 | }
|
---|
4087 |
|
---|
4088 | static PyObject *
|
---|
4089 | long_getnewargs(PyLongObject *v)
|
---|
4090 | {
|
---|
4091 | return Py_BuildValue("(N)", _PyLong_Copy(v));
|
---|
4092 | }
|
---|
4093 |
|
---|
4094 | static PyObject *
|
---|
4095 | long_get0(PyLongObject *v, void *context) {
|
---|
4096 | return PyLong_FromLong(0L);
|
---|
4097 | }
|
---|
4098 |
|
---|
4099 | static PyObject *
|
---|
4100 | long_get1(PyLongObject *v, void *context) {
|
---|
4101 | return PyLong_FromLong(1L);
|
---|
4102 | }
|
---|
4103 |
|
---|
4104 | static PyObject *
|
---|
4105 | long__format__(PyObject *self, PyObject *args)
|
---|
4106 | {
|
---|
4107 | PyObject *format_spec;
|
---|
4108 |
|
---|
4109 | if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
|
---|
4110 | return NULL;
|
---|
4111 | if (PyBytes_Check(format_spec))
|
---|
4112 | return _PyLong_FormatAdvanced(self,
|
---|
4113 | PyBytes_AS_STRING(format_spec),
|
---|
4114 | PyBytes_GET_SIZE(format_spec));
|
---|
4115 | if (PyUnicode_Check(format_spec)) {
|
---|
4116 | /* Convert format_spec to a str */
|
---|
4117 | PyObject *result;
|
---|
4118 | PyObject *str_spec = PyObject_Str(format_spec);
|
---|
4119 |
|
---|
4120 | if (str_spec == NULL)
|
---|
4121 | return NULL;
|
---|
4122 |
|
---|
4123 | result = _PyLong_FormatAdvanced(self,
|
---|
4124 | PyBytes_AS_STRING(str_spec),
|
---|
4125 | PyBytes_GET_SIZE(str_spec));
|
---|
4126 |
|
---|
4127 | Py_DECREF(str_spec);
|
---|
4128 | return result;
|
---|
4129 | }
|
---|
4130 | PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
|
---|
4131 | return NULL;
|
---|
4132 | }
|
---|
4133 |
|
---|
4134 | static PyObject *
|
---|
4135 | long_sizeof(PyLongObject *v)
|
---|
4136 | {
|
---|
4137 | Py_ssize_t res;
|
---|
4138 |
|
---|
4139 | res = v->ob_type->tp_basicsize + ABS(Py_SIZE(v))*sizeof(digit);
|
---|
4140 | return PyInt_FromSsize_t(res);
|
---|
4141 | }
|
---|
4142 |
|
---|
4143 | static PyObject *
|
---|
4144 | long_bit_length(PyLongObject *v)
|
---|
4145 | {
|
---|
4146 | PyLongObject *result, *x, *y;
|
---|
4147 | Py_ssize_t ndigits, msd_bits = 0;
|
---|
4148 | digit msd;
|
---|
4149 |
|
---|
4150 | assert(v != NULL);
|
---|
4151 | assert(PyLong_Check(v));
|
---|
4152 |
|
---|
4153 | ndigits = ABS(Py_SIZE(v));
|
---|
4154 | if (ndigits == 0)
|
---|
4155 | return PyInt_FromLong(0);
|
---|
4156 |
|
---|
4157 | msd = v->ob_digit[ndigits-1];
|
---|
4158 | while (msd >= 32) {
|
---|
4159 | msd_bits += 6;
|
---|
4160 | msd >>= 6;
|
---|
4161 | }
|
---|
4162 | msd_bits += (long)(BitLengthTable[msd]);
|
---|
4163 |
|
---|
4164 | if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
|
---|
4165 | return PyInt_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
|
---|
4166 |
|
---|
4167 | /* expression above may overflow; use Python integers instead */
|
---|
4168 | result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
|
---|
4169 | if (result == NULL)
|
---|
4170 | return NULL;
|
---|
4171 | x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
|
---|
4172 | if (x == NULL)
|
---|
4173 | goto error;
|
---|
4174 | y = (PyLongObject *)long_mul(result, x);
|
---|
4175 | Py_DECREF(x);
|
---|
4176 | if (y == NULL)
|
---|
4177 | goto error;
|
---|
4178 | Py_DECREF(result);
|
---|
4179 | result = y;
|
---|
4180 |
|
---|
4181 | x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
|
---|
4182 | if (x == NULL)
|
---|
4183 | goto error;
|
---|
4184 | y = (PyLongObject *)long_add(result, x);
|
---|
4185 | Py_DECREF(x);
|
---|
4186 | if (y == NULL)
|
---|
4187 | goto error;
|
---|
4188 | Py_DECREF(result);
|
---|
4189 | result = y;
|
---|
4190 |
|
---|
4191 | return (PyObject *)result;
|
---|
4192 |
|
---|
4193 | error:
|
---|
4194 | Py_DECREF(result);
|
---|
4195 | return NULL;
|
---|
4196 | }
|
---|
4197 |
|
---|
4198 | PyDoc_STRVAR(long_bit_length_doc,
|
---|
4199 | "long.bit_length() -> int or long\n\
|
---|
4200 | \n\
|
---|
4201 | Number of bits necessary to represent self in binary.\n\
|
---|
4202 | >>> bin(37L)\n\
|
---|
4203 | '0b100101'\n\
|
---|
4204 | >>> (37L).bit_length()\n\
|
---|
4205 | 6");
|
---|
4206 |
|
---|
4207 | #if 0
|
---|
4208 | static PyObject *
|
---|
4209 | long_is_finite(PyObject *v)
|
---|
4210 | {
|
---|
4211 | Py_RETURN_TRUE;
|
---|
4212 | }
|
---|
4213 | #endif
|
---|
4214 |
|
---|
4215 | static PyMethodDef long_methods[] = {
|
---|
4216 | {"conjugate", (PyCFunction)long_long, METH_NOARGS,
|
---|
4217 | "Returns self, the complex conjugate of any long."},
|
---|
4218 | {"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
|
---|
4219 | long_bit_length_doc},
|
---|
4220 | #if 0
|
---|
4221 | {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
|
---|
4222 | "Returns always True."},
|
---|
4223 | #endif
|
---|
4224 | {"__trunc__", (PyCFunction)long_long, METH_NOARGS,
|
---|
4225 | "Truncating an Integral returns itself."},
|
---|
4226 | {"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
|
---|
4227 | {"__format__", (PyCFunction)long__format__, METH_VARARGS},
|
---|
4228 | {"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS,
|
---|
4229 | "Returns size in memory, in bytes"},
|
---|
4230 | {NULL, NULL} /* sentinel */
|
---|
4231 | };
|
---|
4232 |
|
---|
4233 | static PyGetSetDef long_getset[] = {
|
---|
4234 | {"real",
|
---|
4235 | (getter)long_long, (setter)NULL,
|
---|
4236 | "the real part of a complex number",
|
---|
4237 | NULL},
|
---|
4238 | {"imag",
|
---|
4239 | (getter)long_get0, (setter)NULL,
|
---|
4240 | "the imaginary part of a complex number",
|
---|
4241 | NULL},
|
---|
4242 | {"numerator",
|
---|
4243 | (getter)long_long, (setter)NULL,
|
---|
4244 | "the numerator of a rational number in lowest terms",
|
---|
4245 | NULL},
|
---|
4246 | {"denominator",
|
---|
4247 | (getter)long_get1, (setter)NULL,
|
---|
4248 | "the denominator of a rational number in lowest terms",
|
---|
4249 | NULL},
|
---|
4250 | {NULL} /* Sentinel */
|
---|
4251 | };
|
---|
4252 |
|
---|
4253 | PyDoc_STRVAR(long_doc,
|
---|
4254 | "long(x=0) -> long\n\
|
---|
4255 | long(x, base=10) -> long\n\
|
---|
4256 | \n\
|
---|
4257 | Convert a number or string to a long integer, or return 0L if no arguments\n\
|
---|
4258 | are given. If x is floating point, the conversion truncates towards zero.\n\
|
---|
4259 | \n\
|
---|
4260 | If x is not a number or if base is given, then x must be a string or\n\
|
---|
4261 | Unicode object representing an integer literal in the given base. The\n\
|
---|
4262 | literal can be preceded by '+' or '-' and be surrounded by whitespace.\n\
|
---|
4263 | The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to\n\
|
---|
4264 | interpret the base from the string as an integer literal.\n\
|
---|
4265 | >>> int('0b100', base=0)\n\
|
---|
4266 | 4L");
|
---|
4267 |
|
---|
4268 | static PyNumberMethods long_as_number = {
|
---|
4269 | (binaryfunc)long_add, /*nb_add*/
|
---|
4270 | (binaryfunc)long_sub, /*nb_subtract*/
|
---|
4271 | (binaryfunc)long_mul, /*nb_multiply*/
|
---|
4272 | long_classic_div, /*nb_divide*/
|
---|
4273 | long_mod, /*nb_remainder*/
|
---|
4274 | long_divmod, /*nb_divmod*/
|
---|
4275 | long_pow, /*nb_power*/
|
---|
4276 | (unaryfunc)long_neg, /*nb_negative*/
|
---|
4277 | (unaryfunc)long_long, /*tp_positive*/
|
---|
4278 | (unaryfunc)long_abs, /*tp_absolute*/
|
---|
4279 | (inquiry)long_nonzero, /*tp_nonzero*/
|
---|
4280 | (unaryfunc)long_invert, /*nb_invert*/
|
---|
4281 | long_lshift, /*nb_lshift*/
|
---|
4282 | (binaryfunc)long_rshift, /*nb_rshift*/
|
---|
4283 | long_and, /*nb_and*/
|
---|
4284 | long_xor, /*nb_xor*/
|
---|
4285 | long_or, /*nb_or*/
|
---|
4286 | long_coerce, /*nb_coerce*/
|
---|
4287 | long_int, /*nb_int*/
|
---|
4288 | long_long, /*nb_long*/
|
---|
4289 | long_float, /*nb_float*/
|
---|
4290 | long_oct, /*nb_oct*/
|
---|
4291 | long_hex, /*nb_hex*/
|
---|
4292 | 0, /* nb_inplace_add */
|
---|
4293 | 0, /* nb_inplace_subtract */
|
---|
4294 | 0, /* nb_inplace_multiply */
|
---|
4295 | 0, /* nb_inplace_divide */
|
---|
4296 | 0, /* nb_inplace_remainder */
|
---|
4297 | 0, /* nb_inplace_power */
|
---|
4298 | 0, /* nb_inplace_lshift */
|
---|
4299 | 0, /* nb_inplace_rshift */
|
---|
4300 | 0, /* nb_inplace_and */
|
---|
4301 | 0, /* nb_inplace_xor */
|
---|
4302 | 0, /* nb_inplace_or */
|
---|
4303 | long_div, /* nb_floor_divide */
|
---|
4304 | long_true_divide, /* nb_true_divide */
|
---|
4305 | 0, /* nb_inplace_floor_divide */
|
---|
4306 | 0, /* nb_inplace_true_divide */
|
---|
4307 | long_long, /* nb_index */
|
---|
4308 | };
|
---|
4309 |
|
---|
4310 | PyTypeObject PyLong_Type = {
|
---|
4311 | PyObject_HEAD_INIT(&PyType_Type)
|
---|
4312 | 0, /* ob_size */
|
---|
4313 | "long", /* tp_name */
|
---|
4314 | offsetof(PyLongObject, ob_digit), /* tp_basicsize */
|
---|
4315 | sizeof(digit), /* tp_itemsize */
|
---|
4316 | long_dealloc, /* tp_dealloc */
|
---|
4317 | 0, /* tp_print */
|
---|
4318 | 0, /* tp_getattr */
|
---|
4319 | 0, /* tp_setattr */
|
---|
4320 | (cmpfunc)long_compare, /* tp_compare */
|
---|
4321 | long_repr, /* tp_repr */
|
---|
4322 | &long_as_number, /* tp_as_number */
|
---|
4323 | 0, /* tp_as_sequence */
|
---|
4324 | 0, /* tp_as_mapping */
|
---|
4325 | (hashfunc)long_hash, /* tp_hash */
|
---|
4326 | 0, /* tp_call */
|
---|
4327 | long_str, /* tp_str */
|
---|
4328 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
4329 | 0, /* tp_setattro */
|
---|
4330 | 0, /* tp_as_buffer */
|
---|
4331 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
---|
4332 | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
|
---|
4333 | long_doc, /* tp_doc */
|
---|
4334 | 0, /* tp_traverse */
|
---|
4335 | 0, /* tp_clear */
|
---|
4336 | 0, /* tp_richcompare */
|
---|
4337 | 0, /* tp_weaklistoffset */
|
---|
4338 | 0, /* tp_iter */
|
---|
4339 | 0, /* tp_iternext */
|
---|
4340 | long_methods, /* tp_methods */
|
---|
4341 | 0, /* tp_members */
|
---|
4342 | long_getset, /* tp_getset */
|
---|
4343 | 0, /* tp_base */
|
---|
4344 | 0, /* tp_dict */
|
---|
4345 | 0, /* tp_descr_get */
|
---|
4346 | 0, /* tp_descr_set */
|
---|
4347 | 0, /* tp_dictoffset */
|
---|
4348 | 0, /* tp_init */
|
---|
4349 | 0, /* tp_alloc */
|
---|
4350 | long_new, /* tp_new */
|
---|
4351 | PyObject_Del, /* tp_free */
|
---|
4352 | };
|
---|
4353 |
|
---|
4354 | static PyTypeObject Long_InfoType;
|
---|
4355 |
|
---|
4356 | PyDoc_STRVAR(long_info__doc__,
|
---|
4357 | "sys.long_info\n\
|
---|
4358 | \n\
|
---|
4359 | A struct sequence that holds information about Python's\n\
|
---|
4360 | internal representation of integers. The attributes are read only.");
|
---|
4361 |
|
---|
4362 | static PyStructSequence_Field long_info_fields[] = {
|
---|
4363 | {"bits_per_digit", "size of a digit in bits"},
|
---|
4364 | {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
|
---|
4365 | {NULL, NULL}
|
---|
4366 | };
|
---|
4367 |
|
---|
4368 | static PyStructSequence_Desc long_info_desc = {
|
---|
4369 | "sys.long_info", /* name */
|
---|
4370 | long_info__doc__, /* doc */
|
---|
4371 | long_info_fields, /* fields */
|
---|
4372 | 2 /* number of fields */
|
---|
4373 | };
|
---|
4374 |
|
---|
4375 | PyObject *
|
---|
4376 | PyLong_GetInfo(void)
|
---|
4377 | {
|
---|
4378 | PyObject* long_info;
|
---|
4379 | int field = 0;
|
---|
4380 | long_info = PyStructSequence_New(&Long_InfoType);
|
---|
4381 | if (long_info == NULL)
|
---|
4382 | return NULL;
|
---|
4383 | PyStructSequence_SET_ITEM(long_info, field++,
|
---|
4384 | PyInt_FromLong(PyLong_SHIFT));
|
---|
4385 | PyStructSequence_SET_ITEM(long_info, field++,
|
---|
4386 | PyInt_FromLong(sizeof(digit)));
|
---|
4387 | if (PyErr_Occurred()) {
|
---|
4388 | Py_CLEAR(long_info);
|
---|
4389 | return NULL;
|
---|
4390 | }
|
---|
4391 | return long_info;
|
---|
4392 | }
|
---|
4393 |
|
---|
4394 | int
|
---|
4395 | _PyLong_Init(void)
|
---|
4396 | {
|
---|
4397 | /* initialize long_info */
|
---|
4398 | if (Long_InfoType.tp_name == 0)
|
---|
4399 | PyStructSequence_InitType(&Long_InfoType, &long_info_desc);
|
---|
4400 | return 1;
|
---|
4401 | }
|
---|