1 |
|
---|
2 | /* Float object implementation */
|
---|
3 |
|
---|
4 | /* XXX There should be overflow checks here, but it's hard to check
|
---|
5 | for any kind of float exception without losing portability. */
|
---|
6 |
|
---|
7 | #include "Python.h"
|
---|
8 | #include "structseq.h"
|
---|
9 |
|
---|
10 | #include <ctype.h>
|
---|
11 | #include <float.h>
|
---|
12 |
|
---|
13 | #undef MAX
|
---|
14 | #undef MIN
|
---|
15 | #define MAX(x, y) ((x) < (y) ? (y) : (x))
|
---|
16 | #define MIN(x, y) ((x) < (y) ? (x) : (y))
|
---|
17 |
|
---|
18 | #ifdef _OSF_SOURCE
|
---|
19 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
---|
20 | extern int finite(double);
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | /* Special free list -- see comments for same code in intobject.c. */
|
---|
24 | #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
|
---|
25 | #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
|
---|
26 | #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
|
---|
27 |
|
---|
28 | struct _floatblock {
|
---|
29 | struct _floatblock *next;
|
---|
30 | PyFloatObject objects[N_FLOATOBJECTS];
|
---|
31 | };
|
---|
32 |
|
---|
33 | typedef struct _floatblock PyFloatBlock;
|
---|
34 |
|
---|
35 | static PyFloatBlock *block_list = NULL;
|
---|
36 | static PyFloatObject *free_list = NULL;
|
---|
37 |
|
---|
38 | static PyFloatObject *
|
---|
39 | fill_free_list(void)
|
---|
40 | {
|
---|
41 | PyFloatObject *p, *q;
|
---|
42 | /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
|
---|
43 | p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
|
---|
44 | if (p == NULL)
|
---|
45 | return (PyFloatObject *) PyErr_NoMemory();
|
---|
46 | ((PyFloatBlock *)p)->next = block_list;
|
---|
47 | block_list = (PyFloatBlock *)p;
|
---|
48 | p = &((PyFloatBlock *)p)->objects[0];
|
---|
49 | q = p + N_FLOATOBJECTS;
|
---|
50 | while (--q > p)
|
---|
51 | Py_TYPE(q) = (struct _typeobject *)(q-1);
|
---|
52 | Py_TYPE(q) = NULL;
|
---|
53 | return p + N_FLOATOBJECTS - 1;
|
---|
54 | }
|
---|
55 |
|
---|
56 | double
|
---|
57 | PyFloat_GetMax(void)
|
---|
58 | {
|
---|
59 | return DBL_MAX;
|
---|
60 | }
|
---|
61 |
|
---|
62 | double
|
---|
63 | PyFloat_GetMin(void)
|
---|
64 | {
|
---|
65 | return DBL_MIN;
|
---|
66 | }
|
---|
67 |
|
---|
68 | static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0};
|
---|
69 |
|
---|
70 | PyDoc_STRVAR(floatinfo__doc__,
|
---|
71 | "sys.float_info\n\
|
---|
72 | \n\
|
---|
73 | A structseq holding information about the float type. It contains low level\n\
|
---|
74 | information about the precision and internal representation. Please study\n\
|
---|
75 | your system's :file:`float.h` for more information.");
|
---|
76 |
|
---|
77 | static PyStructSequence_Field floatinfo_fields[] = {
|
---|
78 | {"max", "DBL_MAX -- maximum representable finite float"},
|
---|
79 | {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
|
---|
80 | "is representable"},
|
---|
81 | {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
|
---|
82 | "is representable"},
|
---|
83 | {"min", "DBL_MIN -- Minimum positive normalizer float"},
|
---|
84 | {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
|
---|
85 | "is a normalized float"},
|
---|
86 | {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
|
---|
87 | "a normalized"},
|
---|
88 | {"dig", "DBL_DIG -- digits"},
|
---|
89 | {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
|
---|
90 | {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
|
---|
91 | "representable float"},
|
---|
92 | {"radix", "FLT_RADIX -- radix of exponent"},
|
---|
93 | {"rounds", "FLT_ROUNDS -- addition rounds"},
|
---|
94 | {0}
|
---|
95 | };
|
---|
96 |
|
---|
97 | static PyStructSequence_Desc floatinfo_desc = {
|
---|
98 | "sys.float_info", /* name */
|
---|
99 | floatinfo__doc__, /* doc */
|
---|
100 | floatinfo_fields, /* fields */
|
---|
101 | 11
|
---|
102 | };
|
---|
103 |
|
---|
104 | PyObject *
|
---|
105 | PyFloat_GetInfo(void)
|
---|
106 | {
|
---|
107 | PyObject* floatinfo;
|
---|
108 | int pos = 0;
|
---|
109 |
|
---|
110 | floatinfo = PyStructSequence_New(&FloatInfoType);
|
---|
111 | if (floatinfo == NULL) {
|
---|
112 | return NULL;
|
---|
113 | }
|
---|
114 |
|
---|
115 | #define SetIntFlag(flag) \
|
---|
116 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
|
---|
117 | #define SetDblFlag(flag) \
|
---|
118 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
|
---|
119 |
|
---|
120 | SetDblFlag(DBL_MAX);
|
---|
121 | SetIntFlag(DBL_MAX_EXP);
|
---|
122 | SetIntFlag(DBL_MAX_10_EXP);
|
---|
123 | SetDblFlag(DBL_MIN);
|
---|
124 | SetIntFlag(DBL_MIN_EXP);
|
---|
125 | SetIntFlag(DBL_MIN_10_EXP);
|
---|
126 | SetIntFlag(DBL_DIG);
|
---|
127 | SetIntFlag(DBL_MANT_DIG);
|
---|
128 | SetDblFlag(DBL_EPSILON);
|
---|
129 | SetIntFlag(FLT_RADIX);
|
---|
130 | SetIntFlag(FLT_ROUNDS);
|
---|
131 | #undef SetIntFlag
|
---|
132 | #undef SetDblFlag
|
---|
133 |
|
---|
134 | if (PyErr_Occurred()) {
|
---|
135 | Py_CLEAR(floatinfo);
|
---|
136 | return NULL;
|
---|
137 | }
|
---|
138 | return floatinfo;
|
---|
139 | }
|
---|
140 |
|
---|
141 | PyObject *
|
---|
142 | PyFloat_FromDouble(double fval)
|
---|
143 | {
|
---|
144 | register PyFloatObject *op;
|
---|
145 | if (free_list == NULL) {
|
---|
146 | if ((free_list = fill_free_list()) == NULL)
|
---|
147 | return NULL;
|
---|
148 | }
|
---|
149 | /* Inline PyObject_New */
|
---|
150 | op = free_list;
|
---|
151 | free_list = (PyFloatObject *)Py_TYPE(op);
|
---|
152 | PyObject_INIT(op, &PyFloat_Type);
|
---|
153 | op->ob_fval = fval;
|
---|
154 | return (PyObject *) op;
|
---|
155 | }
|
---|
156 |
|
---|
157 | /**************************************************************************
|
---|
158 | RED_FLAG 22-Sep-2000 tim
|
---|
159 | PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
|
---|
160 |
|
---|
161 | 1. If v was a regular string, *pend was set to point to its terminating
|
---|
162 | null byte. That's useless (the caller can find that without any
|
---|
163 | help from this function!).
|
---|
164 |
|
---|
165 | 2. If v was a Unicode string, or an object convertible to a character
|
---|
166 | buffer, *pend was set to point into stack trash (the auto temp
|
---|
167 | vector holding the character buffer). That was downright dangerous.
|
---|
168 |
|
---|
169 | Since we can't change the interface of a public API function, pend is
|
---|
170 | still supported but now *officially* useless: if pend is not NULL,
|
---|
171 | *pend is set to NULL.
|
---|
172 | **************************************************************************/
|
---|
173 | PyObject *
|
---|
174 | PyFloat_FromString(PyObject *v, char **pend)
|
---|
175 | {
|
---|
176 | const char *s, *last, *end;
|
---|
177 | double x;
|
---|
178 | char buffer[256]; /* for errors */
|
---|
179 | #ifdef Py_USING_UNICODE
|
---|
180 | char *s_buffer = NULL;
|
---|
181 | #endif
|
---|
182 | Py_ssize_t len;
|
---|
183 | PyObject *result = NULL;
|
---|
184 |
|
---|
185 | if (pend)
|
---|
186 | *pend = NULL;
|
---|
187 | if (PyString_Check(v)) {
|
---|
188 | s = PyString_AS_STRING(v);
|
---|
189 | len = PyString_GET_SIZE(v);
|
---|
190 | }
|
---|
191 | #ifdef Py_USING_UNICODE
|
---|
192 | else if (PyUnicode_Check(v)) {
|
---|
193 | s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
|
---|
194 | if (s_buffer == NULL)
|
---|
195 | return PyErr_NoMemory();
|
---|
196 | if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
---|
197 | PyUnicode_GET_SIZE(v),
|
---|
198 | s_buffer,
|
---|
199 | NULL))
|
---|
200 | goto error;
|
---|
201 | s = s_buffer;
|
---|
202 | len = strlen(s);
|
---|
203 | }
|
---|
204 | #endif
|
---|
205 | else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
---|
206 | PyErr_SetString(PyExc_TypeError,
|
---|
207 | "float() argument must be a string or a number");
|
---|
208 | return NULL;
|
---|
209 | }
|
---|
210 | last = s + len;
|
---|
211 |
|
---|
212 | while (Py_ISSPACE(*s))
|
---|
213 | s++;
|
---|
214 | /* We don't care about overflow or underflow. If the platform
|
---|
215 | * supports them, infinities and signed zeroes (on underflow) are
|
---|
216 | * fine. */
|
---|
217 | x = PyOS_string_to_double(s, (char **)&end, NULL);
|
---|
218 | if (x == -1.0 && PyErr_Occurred())
|
---|
219 | goto error;
|
---|
220 | while (Py_ISSPACE(*end))
|
---|
221 | end++;
|
---|
222 | if (end == last)
|
---|
223 | result = PyFloat_FromDouble(x);
|
---|
224 | else {
|
---|
225 | PyOS_snprintf(buffer, sizeof(buffer),
|
---|
226 | "invalid literal for float(): %.200s", s);
|
---|
227 | PyErr_SetString(PyExc_ValueError, buffer);
|
---|
228 | result = NULL;
|
---|
229 | }
|
---|
230 |
|
---|
231 | error:
|
---|
232 | #ifdef Py_USING_UNICODE
|
---|
233 | if (s_buffer)
|
---|
234 | PyMem_FREE(s_buffer);
|
---|
235 | #endif
|
---|
236 | return result;
|
---|
237 | }
|
---|
238 |
|
---|
239 | static void
|
---|
240 | float_dealloc(PyFloatObject *op)
|
---|
241 | {
|
---|
242 | if (PyFloat_CheckExact(op)) {
|
---|
243 | Py_TYPE(op) = (struct _typeobject *)free_list;
|
---|
244 | free_list = op;
|
---|
245 | }
|
---|
246 | else
|
---|
247 | Py_TYPE(op)->tp_free((PyObject *)op);
|
---|
248 | }
|
---|
249 |
|
---|
250 | double
|
---|
251 | PyFloat_AsDouble(PyObject *op)
|
---|
252 | {
|
---|
253 | PyNumberMethods *nb;
|
---|
254 | PyFloatObject *fo;
|
---|
255 | double val;
|
---|
256 |
|
---|
257 | if (op && PyFloat_Check(op))
|
---|
258 | return PyFloat_AS_DOUBLE((PyFloatObject*) op);
|
---|
259 |
|
---|
260 | if (op == NULL) {
|
---|
261 | PyErr_BadArgument();
|
---|
262 | return -1;
|
---|
263 | }
|
---|
264 |
|
---|
265 | if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
|
---|
266 | PyErr_SetString(PyExc_TypeError, "a float is required");
|
---|
267 | return -1;
|
---|
268 | }
|
---|
269 |
|
---|
270 | fo = (PyFloatObject*) (*nb->nb_float) (op);
|
---|
271 | if (fo == NULL)
|
---|
272 | return -1;
|
---|
273 | if (!PyFloat_Check(fo)) {
|
---|
274 | PyErr_SetString(PyExc_TypeError,
|
---|
275 | "nb_float should return float object");
|
---|
276 | return -1;
|
---|
277 | }
|
---|
278 |
|
---|
279 | val = PyFloat_AS_DOUBLE(fo);
|
---|
280 | Py_DECREF(fo);
|
---|
281 |
|
---|
282 | return val;
|
---|
283 | }
|
---|
284 |
|
---|
285 | /* Methods */
|
---|
286 |
|
---|
287 | /* Macro and helper that convert PyObject obj to a C double and store
|
---|
288 | the value in dbl; this replaces the functionality of the coercion
|
---|
289 | slot function. If conversion to double raises an exception, obj is
|
---|
290 | set to NULL, and the function invoking this macro returns NULL. If
|
---|
291 | obj is not of float, int or long type, Py_NotImplemented is incref'ed,
|
---|
292 | stored in obj, and returned from the function invoking this macro.
|
---|
293 | */
|
---|
294 | #define CONVERT_TO_DOUBLE(obj, dbl) \
|
---|
295 | if (PyFloat_Check(obj)) \
|
---|
296 | dbl = PyFloat_AS_DOUBLE(obj); \
|
---|
297 | else if (convert_to_double(&(obj), &(dbl)) < 0) \
|
---|
298 | return obj;
|
---|
299 |
|
---|
300 | static int
|
---|
301 | convert_to_double(PyObject **v, double *dbl)
|
---|
302 | {
|
---|
303 | register PyObject *obj = *v;
|
---|
304 |
|
---|
305 | if (PyInt_Check(obj)) {
|
---|
306 | *dbl = (double)PyInt_AS_LONG(obj);
|
---|
307 | }
|
---|
308 | else if (PyLong_Check(obj)) {
|
---|
309 | *dbl = PyLong_AsDouble(obj);
|
---|
310 | if (*dbl == -1.0 && PyErr_Occurred()) {
|
---|
311 | *v = NULL;
|
---|
312 | return -1;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | else {
|
---|
316 | Py_INCREF(Py_NotImplemented);
|
---|
317 | *v = Py_NotImplemented;
|
---|
318 | return -1;
|
---|
319 | }
|
---|
320 | return 0;
|
---|
321 | }
|
---|
322 |
|
---|
323 | /* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
|
---|
324 | XXX they pass a char buffer without passing a length.
|
---|
325 | */
|
---|
326 | void
|
---|
327 | PyFloat_AsString(char *buf, PyFloatObject *v)
|
---|
328 | {
|
---|
329 | char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
|
---|
330 | PyFloat_STR_PRECISION,
|
---|
331 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
332 | strcpy(buf, tmp);
|
---|
333 | PyMem_Free(tmp);
|
---|
334 | }
|
---|
335 |
|
---|
336 | void
|
---|
337 | PyFloat_AsReprString(char *buf, PyFloatObject *v)
|
---|
338 | {
|
---|
339 | char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
|
---|
340 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
341 | strcpy(buf, tmp);
|
---|
342 | PyMem_Free(tmp);
|
---|
343 | }
|
---|
344 |
|
---|
345 | /* ARGSUSED */
|
---|
346 | static int
|
---|
347 | float_print(PyFloatObject *v, FILE *fp, int flags)
|
---|
348 | {
|
---|
349 | char *buf;
|
---|
350 | if (flags & Py_PRINT_RAW)
|
---|
351 | buf = PyOS_double_to_string(v->ob_fval,
|
---|
352 | 'g', PyFloat_STR_PRECISION,
|
---|
353 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
354 | else
|
---|
355 | buf = PyOS_double_to_string(v->ob_fval,
|
---|
356 | 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
|
---|
357 | Py_BEGIN_ALLOW_THREADS
|
---|
358 | fputs(buf, fp);
|
---|
359 | Py_END_ALLOW_THREADS
|
---|
360 | PyMem_Free(buf);
|
---|
361 | return 0;
|
---|
362 | }
|
---|
363 |
|
---|
364 | static PyObject *
|
---|
365 | float_str_or_repr(PyFloatObject *v, int precision, char format_code)
|
---|
366 | {
|
---|
367 | PyObject *result;
|
---|
368 | char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
|
---|
369 | format_code, precision,
|
---|
370 | Py_DTSF_ADD_DOT_0,
|
---|
371 | NULL);
|
---|
372 | if (!buf)
|
---|
373 | return PyErr_NoMemory();
|
---|
374 | result = PyString_FromString(buf);
|
---|
375 | PyMem_Free(buf);
|
---|
376 | return result;
|
---|
377 | }
|
---|
378 |
|
---|
379 | static PyObject *
|
---|
380 | float_repr(PyFloatObject *v)
|
---|
381 | {
|
---|
382 | return float_str_or_repr(v, 0, 'r');
|
---|
383 | }
|
---|
384 |
|
---|
385 | static PyObject *
|
---|
386 | float_str(PyFloatObject *v)
|
---|
387 | {
|
---|
388 | return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
|
---|
389 | }
|
---|
390 |
|
---|
391 | /* Comparison is pretty much a nightmare. When comparing float to float,
|
---|
392 | * we do it as straightforwardly (and long-windedly) as conceivable, so
|
---|
393 | * that, e.g., Python x == y delivers the same result as the platform
|
---|
394 | * C x == y when x and/or y is a NaN.
|
---|
395 | * When mixing float with an integer type, there's no good *uniform* approach.
|
---|
396 | * Converting the double to an integer obviously doesn't work, since we
|
---|
397 | * may lose info from fractional bits. Converting the integer to a double
|
---|
398 | * also has two failure modes: (1) a long int may trigger overflow (too
|
---|
399 | * large to fit in the dynamic range of a C double); (2) even a C long may have
|
---|
400 | * more bits than fit in a C double (e.g., on a a 64-bit box long may have
|
---|
401 | * 63 bits of precision, but a C double probably has only 53), and then
|
---|
402 | * we can falsely claim equality when low-order integer bits are lost by
|
---|
403 | * coercion to double. So this part is painful too.
|
---|
404 | */
|
---|
405 |
|
---|
406 | static PyObject*
|
---|
407 | float_richcompare(PyObject *v, PyObject *w, int op)
|
---|
408 | {
|
---|
409 | double i, j;
|
---|
410 | int r = 0;
|
---|
411 |
|
---|
412 | assert(PyFloat_Check(v));
|
---|
413 | i = PyFloat_AS_DOUBLE(v);
|
---|
414 |
|
---|
415 | /* Switch on the type of w. Set i and j to doubles to be compared,
|
---|
416 | * and op to the richcomp to use.
|
---|
417 | */
|
---|
418 | if (PyFloat_Check(w))
|
---|
419 | j = PyFloat_AS_DOUBLE(w);
|
---|
420 |
|
---|
421 | else if (!Py_IS_FINITE(i)) {
|
---|
422 | if (PyInt_Check(w) || PyLong_Check(w))
|
---|
423 | /* If i is an infinity, its magnitude exceeds any
|
---|
424 | * finite integer, so it doesn't matter which int we
|
---|
425 | * compare i with. If i is a NaN, similarly.
|
---|
426 | */
|
---|
427 | j = 0.0;
|
---|
428 | else
|
---|
429 | goto Unimplemented;
|
---|
430 | }
|
---|
431 |
|
---|
432 | else if (PyInt_Check(w)) {
|
---|
433 | long jj = PyInt_AS_LONG(w);
|
---|
434 | /* In the worst realistic case I can imagine, C double is a
|
---|
435 | * Cray single with 48 bits of precision, and long has 64
|
---|
436 | * bits.
|
---|
437 | */
|
---|
438 | #if SIZEOF_LONG > 6
|
---|
439 | unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
|
---|
440 | if (abs >> 48) {
|
---|
441 | /* Needs more than 48 bits. Make it take the
|
---|
442 | * PyLong path.
|
---|
443 | */
|
---|
444 | PyObject *result;
|
---|
445 | PyObject *ww = PyLong_FromLong(jj);
|
---|
446 |
|
---|
447 | if (ww == NULL)
|
---|
448 | return NULL;
|
---|
449 | result = float_richcompare(v, ww, op);
|
---|
450 | Py_DECREF(ww);
|
---|
451 | return result;
|
---|
452 | }
|
---|
453 | #endif
|
---|
454 | j = (double)jj;
|
---|
455 | assert((long)j == jj);
|
---|
456 | }
|
---|
457 |
|
---|
458 | else if (PyLong_Check(w)) {
|
---|
459 | int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
|
---|
460 | int wsign = _PyLong_Sign(w);
|
---|
461 | size_t nbits;
|
---|
462 | int exponent;
|
---|
463 |
|
---|
464 | if (vsign != wsign) {
|
---|
465 | /* Magnitudes are irrelevant -- the signs alone
|
---|
466 | * determine the outcome.
|
---|
467 | */
|
---|
468 | i = (double)vsign;
|
---|
469 | j = (double)wsign;
|
---|
470 | goto Compare;
|
---|
471 | }
|
---|
472 | /* The signs are the same. */
|
---|
473 | /* Convert w to a double if it fits. In particular, 0 fits. */
|
---|
474 | nbits = _PyLong_NumBits(w);
|
---|
475 | if (nbits == (size_t)-1 && PyErr_Occurred()) {
|
---|
476 | /* This long is so large that size_t isn't big enough
|
---|
477 | * to hold the # of bits. Replace with little doubles
|
---|
478 | * that give the same outcome -- w is so large that
|
---|
479 | * its magnitude must exceed the magnitude of any
|
---|
480 | * finite float.
|
---|
481 | */
|
---|
482 | PyErr_Clear();
|
---|
483 | i = (double)vsign;
|
---|
484 | assert(wsign != 0);
|
---|
485 | j = wsign * 2.0;
|
---|
486 | goto Compare;
|
---|
487 | }
|
---|
488 | if (nbits <= 48) {
|
---|
489 | j = PyLong_AsDouble(w);
|
---|
490 | /* It's impossible that <= 48 bits overflowed. */
|
---|
491 | assert(j != -1.0 || ! PyErr_Occurred());
|
---|
492 | goto Compare;
|
---|
493 | }
|
---|
494 | assert(wsign != 0); /* else nbits was 0 */
|
---|
495 | assert(vsign != 0); /* if vsign were 0, then since wsign is
|
---|
496 | * not 0, we would have taken the
|
---|
497 | * vsign != wsign branch at the start */
|
---|
498 | /* We want to work with non-negative numbers. */
|
---|
499 | if (vsign < 0) {
|
---|
500 | /* "Multiply both sides" by -1; this also swaps the
|
---|
501 | * comparator.
|
---|
502 | */
|
---|
503 | i = -i;
|
---|
504 | op = _Py_SwappedOp[op];
|
---|
505 | }
|
---|
506 | assert(i > 0.0);
|
---|
507 | (void) frexp(i, &exponent);
|
---|
508 | /* exponent is the # of bits in v before the radix point;
|
---|
509 | * we know that nbits (the # of bits in w) > 48 at this point
|
---|
510 | */
|
---|
511 | if (exponent < 0 || (size_t)exponent < nbits) {
|
---|
512 | i = 1.0;
|
---|
513 | j = 2.0;
|
---|
514 | goto Compare;
|
---|
515 | }
|
---|
516 | if ((size_t)exponent > nbits) {
|
---|
517 | i = 2.0;
|
---|
518 | j = 1.0;
|
---|
519 | goto Compare;
|
---|
520 | }
|
---|
521 | /* v and w have the same number of bits before the radix
|
---|
522 | * point. Construct two longs that have the same comparison
|
---|
523 | * outcome.
|
---|
524 | */
|
---|
525 | {
|
---|
526 | double fracpart;
|
---|
527 | double intpart;
|
---|
528 | PyObject *result = NULL;
|
---|
529 | PyObject *one = NULL;
|
---|
530 | PyObject *vv = NULL;
|
---|
531 | PyObject *ww = w;
|
---|
532 |
|
---|
533 | if (wsign < 0) {
|
---|
534 | ww = PyNumber_Negative(w);
|
---|
535 | if (ww == NULL)
|
---|
536 | goto Error;
|
---|
537 | }
|
---|
538 | else
|
---|
539 | Py_INCREF(ww);
|
---|
540 |
|
---|
541 | fracpart = modf(i, &intpart);
|
---|
542 | vv = PyLong_FromDouble(intpart);
|
---|
543 | if (vv == NULL)
|
---|
544 | goto Error;
|
---|
545 |
|
---|
546 | if (fracpart != 0.0) {
|
---|
547 | /* Shift left, and or a 1 bit into vv
|
---|
548 | * to represent the lost fraction.
|
---|
549 | */
|
---|
550 | PyObject *temp;
|
---|
551 |
|
---|
552 | one = PyInt_FromLong(1);
|
---|
553 | if (one == NULL)
|
---|
554 | goto Error;
|
---|
555 |
|
---|
556 | temp = PyNumber_Lshift(ww, one);
|
---|
557 | if (temp == NULL)
|
---|
558 | goto Error;
|
---|
559 | Py_DECREF(ww);
|
---|
560 | ww = temp;
|
---|
561 |
|
---|
562 | temp = PyNumber_Lshift(vv, one);
|
---|
563 | if (temp == NULL)
|
---|
564 | goto Error;
|
---|
565 | Py_DECREF(vv);
|
---|
566 | vv = temp;
|
---|
567 |
|
---|
568 | temp = PyNumber_Or(vv, one);
|
---|
569 | if (temp == NULL)
|
---|
570 | goto Error;
|
---|
571 | Py_DECREF(vv);
|
---|
572 | vv = temp;
|
---|
573 | }
|
---|
574 |
|
---|
575 | r = PyObject_RichCompareBool(vv, ww, op);
|
---|
576 | if (r < 0)
|
---|
577 | goto Error;
|
---|
578 | result = PyBool_FromLong(r);
|
---|
579 | Error:
|
---|
580 | Py_XDECREF(vv);
|
---|
581 | Py_XDECREF(ww);
|
---|
582 | Py_XDECREF(one);
|
---|
583 | return result;
|
---|
584 | }
|
---|
585 | } /* else if (PyLong_Check(w)) */
|
---|
586 |
|
---|
587 | else /* w isn't float, int, or long */
|
---|
588 | goto Unimplemented;
|
---|
589 |
|
---|
590 | Compare:
|
---|
591 | PyFPE_START_PROTECT("richcompare", return NULL)
|
---|
592 | switch (op) {
|
---|
593 | case Py_EQ:
|
---|
594 | r = i == j;
|
---|
595 | break;
|
---|
596 | case Py_NE:
|
---|
597 | r = i != j;
|
---|
598 | break;
|
---|
599 | case Py_LE:
|
---|
600 | r = i <= j;
|
---|
601 | break;
|
---|
602 | case Py_GE:
|
---|
603 | r = i >= j;
|
---|
604 | break;
|
---|
605 | case Py_LT:
|
---|
606 | r = i < j;
|
---|
607 | break;
|
---|
608 | case Py_GT:
|
---|
609 | r = i > j;
|
---|
610 | break;
|
---|
611 | }
|
---|
612 | PyFPE_END_PROTECT(r)
|
---|
613 | return PyBool_FromLong(r);
|
---|
614 |
|
---|
615 | Unimplemented:
|
---|
616 | Py_INCREF(Py_NotImplemented);
|
---|
617 | return Py_NotImplemented;
|
---|
618 | }
|
---|
619 |
|
---|
620 | static long
|
---|
621 | float_hash(PyFloatObject *v)
|
---|
622 | {
|
---|
623 | return _Py_HashDouble(v->ob_fval);
|
---|
624 | }
|
---|
625 |
|
---|
626 | static PyObject *
|
---|
627 | float_add(PyObject *v, PyObject *w)
|
---|
628 | {
|
---|
629 | double a,b;
|
---|
630 | CONVERT_TO_DOUBLE(v, a);
|
---|
631 | CONVERT_TO_DOUBLE(w, b);
|
---|
632 | PyFPE_START_PROTECT("add", return 0)
|
---|
633 | a = a + b;
|
---|
634 | PyFPE_END_PROTECT(a)
|
---|
635 | return PyFloat_FromDouble(a);
|
---|
636 | }
|
---|
637 |
|
---|
638 | static PyObject *
|
---|
639 | float_sub(PyObject *v, PyObject *w)
|
---|
640 | {
|
---|
641 | double a,b;
|
---|
642 | CONVERT_TO_DOUBLE(v, a);
|
---|
643 | CONVERT_TO_DOUBLE(w, b);
|
---|
644 | PyFPE_START_PROTECT("subtract", return 0)
|
---|
645 | a = a - b;
|
---|
646 | PyFPE_END_PROTECT(a)
|
---|
647 | return PyFloat_FromDouble(a);
|
---|
648 | }
|
---|
649 |
|
---|
650 | static PyObject *
|
---|
651 | float_mul(PyObject *v, PyObject *w)
|
---|
652 | {
|
---|
653 | double a,b;
|
---|
654 | CONVERT_TO_DOUBLE(v, a);
|
---|
655 | CONVERT_TO_DOUBLE(w, b);
|
---|
656 | PyFPE_START_PROTECT("multiply", return 0)
|
---|
657 | a = a * b;
|
---|
658 | PyFPE_END_PROTECT(a)
|
---|
659 | return PyFloat_FromDouble(a);
|
---|
660 | }
|
---|
661 |
|
---|
662 | static PyObject *
|
---|
663 | float_div(PyObject *v, PyObject *w)
|
---|
664 | {
|
---|
665 | double a,b;
|
---|
666 | CONVERT_TO_DOUBLE(v, a);
|
---|
667 | CONVERT_TO_DOUBLE(w, b);
|
---|
668 | #ifdef Py_NAN
|
---|
669 | if (b == 0.0) {
|
---|
670 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
671 | "float division by zero");
|
---|
672 | return NULL;
|
---|
673 | }
|
---|
674 | #endif
|
---|
675 | PyFPE_START_PROTECT("divide", return 0)
|
---|
676 | a = a / b;
|
---|
677 | PyFPE_END_PROTECT(a)
|
---|
678 | return PyFloat_FromDouble(a);
|
---|
679 | }
|
---|
680 |
|
---|
681 | static PyObject *
|
---|
682 | float_classic_div(PyObject *v, PyObject *w)
|
---|
683 | {
|
---|
684 | double a,b;
|
---|
685 | CONVERT_TO_DOUBLE(v, a);
|
---|
686 | CONVERT_TO_DOUBLE(w, b);
|
---|
687 | if (Py_DivisionWarningFlag >= 2 &&
|
---|
688 | PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
|
---|
689 | return NULL;
|
---|
690 | #ifdef Py_NAN
|
---|
691 | if (b == 0.0) {
|
---|
692 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
693 | "float division by zero");
|
---|
694 | return NULL;
|
---|
695 | }
|
---|
696 | #endif
|
---|
697 | PyFPE_START_PROTECT("divide", return 0)
|
---|
698 | a = a / b;
|
---|
699 | PyFPE_END_PROTECT(a)
|
---|
700 | return PyFloat_FromDouble(a);
|
---|
701 | }
|
---|
702 |
|
---|
703 | static PyObject *
|
---|
704 | float_rem(PyObject *v, PyObject *w)
|
---|
705 | {
|
---|
706 | double vx, wx;
|
---|
707 | double mod;
|
---|
708 | CONVERT_TO_DOUBLE(v, vx);
|
---|
709 | CONVERT_TO_DOUBLE(w, wx);
|
---|
710 | #ifdef Py_NAN
|
---|
711 | if (wx == 0.0) {
|
---|
712 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
713 | "float modulo");
|
---|
714 | return NULL;
|
---|
715 | }
|
---|
716 | #endif
|
---|
717 | PyFPE_START_PROTECT("modulo", return 0)
|
---|
718 | mod = fmod(vx, wx);
|
---|
719 | if (mod) {
|
---|
720 | /* ensure the remainder has the same sign as the denominator */
|
---|
721 | if ((wx < 0) != (mod < 0)) {
|
---|
722 | mod += wx;
|
---|
723 | }
|
---|
724 | }
|
---|
725 | else {
|
---|
726 | /* the remainder is zero, and in the presence of signed zeroes
|
---|
727 | fmod returns different results across platforms; ensure
|
---|
728 | it has the same sign as the denominator; we'd like to do
|
---|
729 | "mod = wx * 0.0", but that may get optimized away */
|
---|
730 | mod *= mod; /* hide "mod = +0" from optimizer */
|
---|
731 | if (wx < 0.0)
|
---|
732 | mod = -mod;
|
---|
733 | }
|
---|
734 | PyFPE_END_PROTECT(mod)
|
---|
735 | return PyFloat_FromDouble(mod);
|
---|
736 | }
|
---|
737 |
|
---|
738 | static PyObject *
|
---|
739 | float_divmod(PyObject *v, PyObject *w)
|
---|
740 | {
|
---|
741 | double vx, wx;
|
---|
742 | double div, mod, floordiv;
|
---|
743 | CONVERT_TO_DOUBLE(v, vx);
|
---|
744 | CONVERT_TO_DOUBLE(w, wx);
|
---|
745 | if (wx == 0.0) {
|
---|
746 | PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
|
---|
747 | return NULL;
|
---|
748 | }
|
---|
749 | PyFPE_START_PROTECT("divmod", return 0)
|
---|
750 | mod = fmod(vx, wx);
|
---|
751 | /* fmod is typically exact, so vx-mod is *mathematically* an
|
---|
752 | exact multiple of wx. But this is fp arithmetic, and fp
|
---|
753 | vx - mod is an approximation; the result is that div may
|
---|
754 | not be an exact integral value after the division, although
|
---|
755 | it will always be very close to one.
|
---|
756 | */
|
---|
757 | div = (vx - mod) / wx;
|
---|
758 | if (mod) {
|
---|
759 | /* ensure the remainder has the same sign as the denominator */
|
---|
760 | if ((wx < 0) != (mod < 0)) {
|
---|
761 | mod += wx;
|
---|
762 | div -= 1.0;
|
---|
763 | }
|
---|
764 | }
|
---|
765 | else {
|
---|
766 | /* the remainder is zero, and in the presence of signed zeroes
|
---|
767 | fmod returns different results across platforms; ensure
|
---|
768 | it has the same sign as the denominator; we'd like to do
|
---|
769 | "mod = wx * 0.0", but that may get optimized away */
|
---|
770 | mod *= mod; /* hide "mod = +0" from optimizer */
|
---|
771 | if (wx < 0.0)
|
---|
772 | mod = -mod;
|
---|
773 | }
|
---|
774 | /* snap quotient to nearest integral value */
|
---|
775 | if (div) {
|
---|
776 | floordiv = floor(div);
|
---|
777 | if (div - floordiv > 0.5)
|
---|
778 | floordiv += 1.0;
|
---|
779 | }
|
---|
780 | else {
|
---|
781 | /* div is zero - get the same sign as the true quotient */
|
---|
782 | div *= div; /* hide "div = +0" from optimizers */
|
---|
783 | floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
|
---|
784 | }
|
---|
785 | PyFPE_END_PROTECT(floordiv)
|
---|
786 | return Py_BuildValue("(dd)", floordiv, mod);
|
---|
787 | }
|
---|
788 |
|
---|
789 | static PyObject *
|
---|
790 | float_floor_div(PyObject *v, PyObject *w)
|
---|
791 | {
|
---|
792 | PyObject *t, *r;
|
---|
793 |
|
---|
794 | t = float_divmod(v, w);
|
---|
795 | if (t == NULL || t == Py_NotImplemented)
|
---|
796 | return t;
|
---|
797 | assert(PyTuple_CheckExact(t));
|
---|
798 | r = PyTuple_GET_ITEM(t, 0);
|
---|
799 | Py_INCREF(r);
|
---|
800 | Py_DECREF(t);
|
---|
801 | return r;
|
---|
802 | }
|
---|
803 |
|
---|
804 | /* determine whether x is an odd integer or not; assumes that
|
---|
805 | x is not an infinity or nan. */
|
---|
806 | #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
|
---|
807 |
|
---|
808 | static PyObject *
|
---|
809 | float_pow(PyObject *v, PyObject *w, PyObject *z)
|
---|
810 | {
|
---|
811 | double iv, iw, ix;
|
---|
812 | int negate_result = 0;
|
---|
813 |
|
---|
814 | if ((PyObject *)z != Py_None) {
|
---|
815 | PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
|
---|
816 | "allowed unless all arguments are integers");
|
---|
817 | return NULL;
|
---|
818 | }
|
---|
819 |
|
---|
820 | CONVERT_TO_DOUBLE(v, iv);
|
---|
821 | CONVERT_TO_DOUBLE(w, iw);
|
---|
822 |
|
---|
823 | /* Sort out special cases here instead of relying on pow() */
|
---|
824 | if (iw == 0) { /* v**0 is 1, even 0**0 */
|
---|
825 | return PyFloat_FromDouble(1.0);
|
---|
826 | }
|
---|
827 | if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
|
---|
828 | return PyFloat_FromDouble(iv);
|
---|
829 | }
|
---|
830 | if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
|
---|
831 | return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
|
---|
832 | }
|
---|
833 | if (Py_IS_INFINITY(iw)) {
|
---|
834 | /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
|
---|
835 | * abs(v) > 1 (including case where v infinite)
|
---|
836 | *
|
---|
837 | * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
|
---|
838 | * abs(v) > 1 (including case where v infinite)
|
---|
839 | */
|
---|
840 | iv = fabs(iv);
|
---|
841 | if (iv == 1.0)
|
---|
842 | return PyFloat_FromDouble(1.0);
|
---|
843 | else if ((iw > 0.0) == (iv > 1.0))
|
---|
844 | return PyFloat_FromDouble(fabs(iw)); /* return inf */
|
---|
845 | else
|
---|
846 | return PyFloat_FromDouble(0.0);
|
---|
847 | }
|
---|
848 | if (Py_IS_INFINITY(iv)) {
|
---|
849 | /* (+-inf)**w is: inf for w positive, 0 for w negative; in
|
---|
850 | * both cases, we need to add the appropriate sign if w is
|
---|
851 | * an odd integer.
|
---|
852 | */
|
---|
853 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
854 | if (iw > 0.0)
|
---|
855 | return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
|
---|
856 | else
|
---|
857 | return PyFloat_FromDouble(iw_is_odd ?
|
---|
858 | copysign(0.0, iv) : 0.0);
|
---|
859 | }
|
---|
860 | if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
|
---|
861 | (already dealt with above), and an error
|
---|
862 | if w is negative. */
|
---|
863 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
864 | if (iw < 0.0) {
|
---|
865 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
866 | "0.0 cannot be raised to a "
|
---|
867 | "negative power");
|
---|
868 | return NULL;
|
---|
869 | }
|
---|
870 | /* use correct sign if iw is odd */
|
---|
871 | return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
|
---|
872 | }
|
---|
873 |
|
---|
874 | if (iv < 0.0) {
|
---|
875 | /* Whether this is an error is a mess, and bumps into libm
|
---|
876 | * bugs so we have to figure it out ourselves.
|
---|
877 | */
|
---|
878 | if (iw != floor(iw)) {
|
---|
879 | PyErr_SetString(PyExc_ValueError, "negative number "
|
---|
880 | "cannot be raised to a fractional power");
|
---|
881 | return NULL;
|
---|
882 | }
|
---|
883 | /* iw is an exact integer, albeit perhaps a very large
|
---|
884 | * one. Replace iv by its absolute value and remember
|
---|
885 | * to negate the pow result if iw is odd.
|
---|
886 | */
|
---|
887 | iv = -iv;
|
---|
888 | negate_result = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
889 | }
|
---|
890 |
|
---|
891 | if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
|
---|
892 | /* (-1) ** large_integer also ends up here. Here's an
|
---|
893 | * extract from the comments for the previous
|
---|
894 | * implementation explaining why this special case is
|
---|
895 | * necessary:
|
---|
896 | *
|
---|
897 | * -1 raised to an exact integer should never be exceptional.
|
---|
898 | * Alas, some libms (chiefly glibc as of early 2003) return
|
---|
899 | * NaN and set EDOM on pow(-1, large_int) if the int doesn't
|
---|
900 | * happen to be representable in a *C* integer. That's a
|
---|
901 | * bug.
|
---|
902 | */
|
---|
903 | return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
|
---|
904 | }
|
---|
905 |
|
---|
906 | /* Now iv and iw are finite, iw is nonzero, and iv is
|
---|
907 | * positive and not equal to 1.0. We finally allow
|
---|
908 | * the platform pow to step in and do the rest.
|
---|
909 | */
|
---|
910 | errno = 0;
|
---|
911 | PyFPE_START_PROTECT("pow", return NULL)
|
---|
912 | ix = pow(iv, iw);
|
---|
913 | PyFPE_END_PROTECT(ix)
|
---|
914 | Py_ADJUST_ERANGE1(ix);
|
---|
915 | if (negate_result)
|
---|
916 | ix = -ix;
|
---|
917 |
|
---|
918 | if (errno != 0) {
|
---|
919 | /* We don't expect any errno value other than ERANGE, but
|
---|
920 | * the range of libm bugs appears unbounded.
|
---|
921 | */
|
---|
922 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
|
---|
923 | PyExc_ValueError);
|
---|
924 | return NULL;
|
---|
925 | }
|
---|
926 | return PyFloat_FromDouble(ix);
|
---|
927 | }
|
---|
928 |
|
---|
929 | #undef DOUBLE_IS_ODD_INTEGER
|
---|
930 |
|
---|
931 | static PyObject *
|
---|
932 | float_neg(PyFloatObject *v)
|
---|
933 | {
|
---|
934 | return PyFloat_FromDouble(-v->ob_fval);
|
---|
935 | }
|
---|
936 |
|
---|
937 | static PyObject *
|
---|
938 | float_abs(PyFloatObject *v)
|
---|
939 | {
|
---|
940 | return PyFloat_FromDouble(fabs(v->ob_fval));
|
---|
941 | }
|
---|
942 |
|
---|
943 | static int
|
---|
944 | float_nonzero(PyFloatObject *v)
|
---|
945 | {
|
---|
946 | return v->ob_fval != 0.0;
|
---|
947 | }
|
---|
948 |
|
---|
949 | static int
|
---|
950 | float_coerce(PyObject **pv, PyObject **pw)
|
---|
951 | {
|
---|
952 | if (PyInt_Check(*pw)) {
|
---|
953 | long x = PyInt_AsLong(*pw);
|
---|
954 | *pw = PyFloat_FromDouble((double)x);
|
---|
955 | Py_INCREF(*pv);
|
---|
956 | return 0;
|
---|
957 | }
|
---|
958 | else if (PyLong_Check(*pw)) {
|
---|
959 | double x = PyLong_AsDouble(*pw);
|
---|
960 | if (x == -1.0 && PyErr_Occurred())
|
---|
961 | return -1;
|
---|
962 | *pw = PyFloat_FromDouble(x);
|
---|
963 | Py_INCREF(*pv);
|
---|
964 | return 0;
|
---|
965 | }
|
---|
966 | else if (PyFloat_Check(*pw)) {
|
---|
967 | Py_INCREF(*pv);
|
---|
968 | Py_INCREF(*pw);
|
---|
969 | return 0;
|
---|
970 | }
|
---|
971 | return 1; /* Can't do it */
|
---|
972 | }
|
---|
973 |
|
---|
974 | static PyObject *
|
---|
975 | float_is_integer(PyObject *v)
|
---|
976 | {
|
---|
977 | double x = PyFloat_AsDouble(v);
|
---|
978 | PyObject *o;
|
---|
979 |
|
---|
980 | if (x == -1.0 && PyErr_Occurred())
|
---|
981 | return NULL;
|
---|
982 | if (!Py_IS_FINITE(x))
|
---|
983 | Py_RETURN_FALSE;
|
---|
984 | errno = 0;
|
---|
985 | PyFPE_START_PROTECT("is_integer", return NULL)
|
---|
986 | o = (floor(x) == x) ? Py_True : Py_False;
|
---|
987 | PyFPE_END_PROTECT(x)
|
---|
988 | if (errno != 0) {
|
---|
989 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
|
---|
990 | PyExc_ValueError);
|
---|
991 | return NULL;
|
---|
992 | }
|
---|
993 | Py_INCREF(o);
|
---|
994 | return o;
|
---|
995 | }
|
---|
996 |
|
---|
997 | #if 0
|
---|
998 | static PyObject *
|
---|
999 | float_is_inf(PyObject *v)
|
---|
1000 | {
|
---|
1001 | double x = PyFloat_AsDouble(v);
|
---|
1002 | if (x == -1.0 && PyErr_Occurred())
|
---|
1003 | return NULL;
|
---|
1004 | return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | static PyObject *
|
---|
1008 | float_is_nan(PyObject *v)
|
---|
1009 | {
|
---|
1010 | double x = PyFloat_AsDouble(v);
|
---|
1011 | if (x == -1.0 && PyErr_Occurred())
|
---|
1012 | return NULL;
|
---|
1013 | return PyBool_FromLong((long)Py_IS_NAN(x));
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | static PyObject *
|
---|
1017 | float_is_finite(PyObject *v)
|
---|
1018 | {
|
---|
1019 | double x = PyFloat_AsDouble(v);
|
---|
1020 | if (x == -1.0 && PyErr_Occurred())
|
---|
1021 | return NULL;
|
---|
1022 | return PyBool_FromLong((long)Py_IS_FINITE(x));
|
---|
1023 | }
|
---|
1024 | #endif
|
---|
1025 |
|
---|
1026 | static PyObject *
|
---|
1027 | float_trunc(PyObject *v)
|
---|
1028 | {
|
---|
1029 | double x = PyFloat_AsDouble(v);
|
---|
1030 | double wholepart; /* integral portion of x, rounded toward 0 */
|
---|
1031 |
|
---|
1032 | (void)modf(x, &wholepart);
|
---|
1033 | /* Try to get out cheap if this fits in a Python int. The attempt
|
---|
1034 | * to cast to long must be protected, as C doesn't define what
|
---|
1035 | * happens if the double is too big to fit in a long. Some rare
|
---|
1036 | * systems raise an exception then (RISCOS was mentioned as one,
|
---|
1037 | * and someone using a non-default option on Sun also bumped into
|
---|
1038 | * that). Note that checking for <= LONG_MAX is unsafe: if a long
|
---|
1039 | * has more bits of precision than a double, casting LONG_MAX to
|
---|
1040 | * double may yield an approximation, and if that's rounded up,
|
---|
1041 | * then, e.g., wholepart=LONG_MAX+1 would yield true from the C
|
---|
1042 | * expression wholepart<=LONG_MAX, despite that wholepart is
|
---|
1043 | * actually greater than LONG_MAX. However, assuming a two's complement
|
---|
1044 | * machine with no trap representation, LONG_MIN will be a power of 2 (and
|
---|
1045 | * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
|
---|
1046 | * the comparisons with (double)LONG_MIN below should be safe.
|
---|
1047 | */
|
---|
1048 | if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) {
|
---|
1049 | const long aslong = (long)wholepart;
|
---|
1050 | return PyInt_FromLong(aslong);
|
---|
1051 | }
|
---|
1052 | return PyLong_FromDouble(wholepart);
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 | static PyObject *
|
---|
1056 | float_long(PyObject *v)
|
---|
1057 | {
|
---|
1058 | double x = PyFloat_AsDouble(v);
|
---|
1059 | return PyLong_FromDouble(x);
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | /* _Py_double_round: rounds a finite nonzero double to the closest multiple of
|
---|
1063 | 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
|
---|
1064 | ndigits <= 323). Returns a Python float, or sets a Python error and
|
---|
1065 | returns NULL on failure (OverflowError and memory errors are possible). */
|
---|
1066 |
|
---|
1067 | #ifndef PY_NO_SHORT_FLOAT_REPR
|
---|
1068 | /* version of _Py_double_round that uses the correctly-rounded string<->double
|
---|
1069 | conversions from Python/dtoa.c */
|
---|
1070 |
|
---|
1071 | /* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
|
---|
1072 | a double. Since we're using the code in Python/dtoa.c, it should be safe
|
---|
1073 | to assume that C doubles are IEEE 754 binary64 format. To be on the safe
|
---|
1074 | side, we check this. */
|
---|
1075 | #if DBL_MANT_DIG == 53
|
---|
1076 | #define FIVE_POW_LIMIT 22
|
---|
1077 | #else
|
---|
1078 | #error "C doubles do not appear to be IEEE 754 binary64 format"
|
---|
1079 | #endif
|
---|
1080 |
|
---|
1081 | PyObject *
|
---|
1082 | _Py_double_round(double x, int ndigits) {
|
---|
1083 |
|
---|
1084 | double rounded, m;
|
---|
1085 | Py_ssize_t buflen, mybuflen=100;
|
---|
1086 | char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
|
---|
1087 | int decpt, sign, val, halfway_case;
|
---|
1088 | PyObject *result = NULL;
|
---|
1089 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
1090 |
|
---|
1091 | /* Easy path for the common case ndigits == 0. */
|
---|
1092 | if (ndigits == 0) {
|
---|
1093 | rounded = round(x);
|
---|
1094 | if (fabs(rounded - x) == 0.5)
|
---|
1095 | /* halfway between two integers; use round-away-from-zero */
|
---|
1096 | rounded = x + (x > 0.0 ? 0.5 : -0.5);
|
---|
1097 | return PyFloat_FromDouble(rounded);
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | /* The basic idea is very simple: convert and round the double to a
|
---|
1101 | decimal string using _Py_dg_dtoa, then convert that decimal string
|
---|
1102 | back to a double with _Py_dg_strtod. There's one minor difficulty:
|
---|
1103 | Python 2.x expects round to do round-half-away-from-zero, while
|
---|
1104 | _Py_dg_dtoa does round-half-to-even. So we need some way to detect
|
---|
1105 | and correct the halfway cases.
|
---|
1106 |
|
---|
1107 | Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
|
---|
1108 | some odd integer k. Or in other words, a rational number x is
|
---|
1109 | exactly halfway between two multiples of 10**-ndigits if its
|
---|
1110 | 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
|
---|
1111 | -ndigits. For ndigits >= 0 the latter condition is automatically
|
---|
1112 | satisfied for a binary float x, since any such float has
|
---|
1113 | nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
|
---|
1114 | integral multiple of 5**-ndigits; we can check this using fmod.
|
---|
1115 | For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
|
---|
1116 | to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
|
---|
1117 | 23 takes at least 54 bits of precision to represent exactly.
|
---|
1118 |
|
---|
1119 | Correction: a simple strategy for dealing with halfway cases is to
|
---|
1120 | (for the halfway cases only) call _Py_dg_dtoa with an argument of
|
---|
1121 | ndigits+1 instead of ndigits (thus doing an exact conversion to
|
---|
1122 | decimal), round the resulting string manually, and then convert
|
---|
1123 | back using _Py_dg_strtod.
|
---|
1124 | */
|
---|
1125 |
|
---|
1126 | /* nans, infinities and zeros should have already been dealt
|
---|
1127 | with by the caller (in this case, builtin_round) */
|
---|
1128 | assert(Py_IS_FINITE(x) && x != 0.0);
|
---|
1129 |
|
---|
1130 | /* find 2-valuation val of x */
|
---|
1131 | m = frexp(x, &val);
|
---|
1132 | while (m != floor(m)) {
|
---|
1133 | m *= 2.0;
|
---|
1134 | val--;
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | /* determine whether this is a halfway case */
|
---|
1138 | if (val == -ndigits-1) {
|
---|
1139 | if (ndigits >= 0)
|
---|
1140 | halfway_case = 1;
|
---|
1141 | else if (ndigits >= -FIVE_POW_LIMIT) {
|
---|
1142 | double five_pow = 1.0;
|
---|
1143 | int i;
|
---|
1144 | for (i=0; i < -ndigits; i++)
|
---|
1145 | five_pow *= 5.0;
|
---|
1146 | halfway_case = fmod(x, five_pow) == 0.0;
|
---|
1147 | }
|
---|
1148 | else
|
---|
1149 | halfway_case = 0;
|
---|
1150 | }
|
---|
1151 | else
|
---|
1152 | halfway_case = 0;
|
---|
1153 |
|
---|
1154 | /* round to a decimal string; use an extra place for halfway case */
|
---|
1155 | _Py_SET_53BIT_PRECISION_START;
|
---|
1156 | buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
|
---|
1157 | _Py_SET_53BIT_PRECISION_END;
|
---|
1158 | if (buf == NULL) {
|
---|
1159 | PyErr_NoMemory();
|
---|
1160 | return NULL;
|
---|
1161 | }
|
---|
1162 | buflen = buf_end - buf;
|
---|
1163 |
|
---|
1164 | /* in halfway case, do the round-half-away-from-zero manually */
|
---|
1165 | if (halfway_case) {
|
---|
1166 | int i, carry;
|
---|
1167 | /* sanity check: _Py_dg_dtoa should not have stripped
|
---|
1168 | any zeros from the result: there should be exactly
|
---|
1169 | ndigits+1 places following the decimal point, and
|
---|
1170 | the last digit in the buffer should be a '5'.*/
|
---|
1171 | assert(buflen - decpt == ndigits+1);
|
---|
1172 | assert(buf[buflen-1] == '5');
|
---|
1173 |
|
---|
1174 | /* increment and shift right at the same time. */
|
---|
1175 | decpt += 1;
|
---|
1176 | carry = 1;
|
---|
1177 | for (i=buflen-1; i-- > 0;) {
|
---|
1178 | carry += buf[i] - '0';
|
---|
1179 | buf[i+1] = carry % 10 + '0';
|
---|
1180 | carry /= 10;
|
---|
1181 | }
|
---|
1182 | buf[0] = carry + '0';
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
|
---|
1186 | buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
|
---|
1187 | if (buflen + 8 > mybuflen) {
|
---|
1188 | mybuflen = buflen+8;
|
---|
1189 | mybuf = (char *)PyMem_Malloc(mybuflen);
|
---|
1190 | if (mybuf == NULL) {
|
---|
1191 | PyErr_NoMemory();
|
---|
1192 | goto exit;
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 | /* copy buf to mybuf, adding exponent, sign and leading 0 */
|
---|
1196 | PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
|
---|
1197 | buf, decpt - (int)buflen);
|
---|
1198 |
|
---|
1199 | /* and convert the resulting string back to a double */
|
---|
1200 | errno = 0;
|
---|
1201 | _Py_SET_53BIT_PRECISION_START;
|
---|
1202 | rounded = _Py_dg_strtod(mybuf, NULL);
|
---|
1203 | _Py_SET_53BIT_PRECISION_END;
|
---|
1204 | if (errno == ERANGE && fabs(rounded) >= 1.)
|
---|
1205 | PyErr_SetString(PyExc_OverflowError,
|
---|
1206 | "rounded value too large to represent");
|
---|
1207 | else
|
---|
1208 | result = PyFloat_FromDouble(rounded);
|
---|
1209 |
|
---|
1210 | /* done computing value; now clean up */
|
---|
1211 | if (mybuf != shortbuf)
|
---|
1212 | PyMem_Free(mybuf);
|
---|
1213 | exit:
|
---|
1214 | _Py_dg_freedtoa(buf);
|
---|
1215 | return result;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | #undef FIVE_POW_LIMIT
|
---|
1219 |
|
---|
1220 | #else /* PY_NO_SHORT_FLOAT_REPR */
|
---|
1221 |
|
---|
1222 | /* fallback version, to be used when correctly rounded binary<->decimal
|
---|
1223 | conversions aren't available */
|
---|
1224 |
|
---|
1225 | PyObject *
|
---|
1226 | _Py_double_round(double x, int ndigits) {
|
---|
1227 | double pow1, pow2, y, z;
|
---|
1228 | if (ndigits >= 0) {
|
---|
1229 | if (ndigits > 22) {
|
---|
1230 | /* pow1 and pow2 are each safe from overflow, but
|
---|
1231 | pow1*pow2 ~= pow(10.0, ndigits) might overflow */
|
---|
1232 | pow1 = pow(10.0, (double)(ndigits-22));
|
---|
1233 | pow2 = 1e22;
|
---|
1234 | }
|
---|
1235 | else {
|
---|
1236 | pow1 = pow(10.0, (double)ndigits);
|
---|
1237 | pow2 = 1.0;
|
---|
1238 | }
|
---|
1239 | y = (x*pow1)*pow2;
|
---|
1240 | /* if y overflows, then rounded value is exactly x */
|
---|
1241 | if (!Py_IS_FINITE(y))
|
---|
1242 | return PyFloat_FromDouble(x);
|
---|
1243 | }
|
---|
1244 | else {
|
---|
1245 | pow1 = pow(10.0, (double)-ndigits);
|
---|
1246 | pow2 = 1.0; /* unused; silences a gcc compiler warning */
|
---|
1247 | y = x / pow1;
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 | z = round(y);
|
---|
1251 | if (fabs(y-z) == 0.5)
|
---|
1252 | /* halfway between two integers; use round-away-from-zero */
|
---|
1253 | z = y + copysign(0.5, y);
|
---|
1254 |
|
---|
1255 | if (ndigits >= 0)
|
---|
1256 | z = (z / pow2) / pow1;
|
---|
1257 | else
|
---|
1258 | z *= pow1;
|
---|
1259 |
|
---|
1260 | /* if computation resulted in overflow, raise OverflowError */
|
---|
1261 | if (!Py_IS_FINITE(z)) {
|
---|
1262 | PyErr_SetString(PyExc_OverflowError,
|
---|
1263 | "overflow occurred during round");
|
---|
1264 | return NULL;
|
---|
1265 | }
|
---|
1266 |
|
---|
1267 | return PyFloat_FromDouble(z);
|
---|
1268 | }
|
---|
1269 |
|
---|
1270 | #endif /* PY_NO_SHORT_FLOAT_REPR */
|
---|
1271 |
|
---|
1272 | static PyObject *
|
---|
1273 | float_float(PyObject *v)
|
---|
1274 | {
|
---|
1275 | if (PyFloat_CheckExact(v))
|
---|
1276 | Py_INCREF(v);
|
---|
1277 | else
|
---|
1278 | v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
|
---|
1279 | return v;
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 | /* turn ASCII hex characters into integer values and vice versa */
|
---|
1283 |
|
---|
1284 | static char
|
---|
1285 | char_from_hex(int x)
|
---|
1286 | {
|
---|
1287 | assert(0 <= x && x < 16);
|
---|
1288 | return "0123456789abcdef"[x];
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | static int
|
---|
1292 | hex_from_char(char c) {
|
---|
1293 | int x;
|
---|
1294 | switch(c) {
|
---|
1295 | case '0':
|
---|
1296 | x = 0;
|
---|
1297 | break;
|
---|
1298 | case '1':
|
---|
1299 | x = 1;
|
---|
1300 | break;
|
---|
1301 | case '2':
|
---|
1302 | x = 2;
|
---|
1303 | break;
|
---|
1304 | case '3':
|
---|
1305 | x = 3;
|
---|
1306 | break;
|
---|
1307 | case '4':
|
---|
1308 | x = 4;
|
---|
1309 | break;
|
---|
1310 | case '5':
|
---|
1311 | x = 5;
|
---|
1312 | break;
|
---|
1313 | case '6':
|
---|
1314 | x = 6;
|
---|
1315 | break;
|
---|
1316 | case '7':
|
---|
1317 | x = 7;
|
---|
1318 | break;
|
---|
1319 | case '8':
|
---|
1320 | x = 8;
|
---|
1321 | break;
|
---|
1322 | case '9':
|
---|
1323 | x = 9;
|
---|
1324 | break;
|
---|
1325 | case 'a':
|
---|
1326 | case 'A':
|
---|
1327 | x = 10;
|
---|
1328 | break;
|
---|
1329 | case 'b':
|
---|
1330 | case 'B':
|
---|
1331 | x = 11;
|
---|
1332 | break;
|
---|
1333 | case 'c':
|
---|
1334 | case 'C':
|
---|
1335 | x = 12;
|
---|
1336 | break;
|
---|
1337 | case 'd':
|
---|
1338 | case 'D':
|
---|
1339 | x = 13;
|
---|
1340 | break;
|
---|
1341 | case 'e':
|
---|
1342 | case 'E':
|
---|
1343 | x = 14;
|
---|
1344 | break;
|
---|
1345 | case 'f':
|
---|
1346 | case 'F':
|
---|
1347 | x = 15;
|
---|
1348 | break;
|
---|
1349 | default:
|
---|
1350 | x = -1;
|
---|
1351 | break;
|
---|
1352 | }
|
---|
1353 | return x;
|
---|
1354 | }
|
---|
1355 |
|
---|
1356 | /* convert a float to a hexadecimal string */
|
---|
1357 |
|
---|
1358 | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
|
---|
1359 | of the form 4k+1. */
|
---|
1360 | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
|
---|
1361 |
|
---|
1362 | static PyObject *
|
---|
1363 | float_hex(PyObject *v)
|
---|
1364 | {
|
---|
1365 | double x, m;
|
---|
1366 | int e, shift, i, si, esign;
|
---|
1367 | /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
|
---|
1368 | trailing NUL byte. */
|
---|
1369 | char s[(TOHEX_NBITS-1)/4+3];
|
---|
1370 |
|
---|
1371 | CONVERT_TO_DOUBLE(v, x);
|
---|
1372 |
|
---|
1373 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
|
---|
1374 | return float_str((PyFloatObject *)v);
|
---|
1375 |
|
---|
1376 | if (x == 0.0) {
|
---|
1377 | if (copysign(1.0, x) == -1.0)
|
---|
1378 | return PyString_FromString("-0x0.0p+0");
|
---|
1379 | else
|
---|
1380 | return PyString_FromString("0x0.0p+0");
|
---|
1381 | }
|
---|
1382 |
|
---|
1383 | m = frexp(fabs(x), &e);
|
---|
1384 | shift = 1 - MAX(DBL_MIN_EXP - e, 0);
|
---|
1385 | m = ldexp(m, shift);
|
---|
1386 | e -= shift;
|
---|
1387 |
|
---|
1388 | si = 0;
|
---|
1389 | s[si] = char_from_hex((int)m);
|
---|
1390 | si++;
|
---|
1391 | m -= (int)m;
|
---|
1392 | s[si] = '.';
|
---|
1393 | si++;
|
---|
1394 | for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
|
---|
1395 | m *= 16.0;
|
---|
1396 | s[si] = char_from_hex((int)m);
|
---|
1397 | si++;
|
---|
1398 | m -= (int)m;
|
---|
1399 | }
|
---|
1400 | s[si] = '\0';
|
---|
1401 |
|
---|
1402 | if (e < 0) {
|
---|
1403 | esign = (int)'-';
|
---|
1404 | e = -e;
|
---|
1405 | }
|
---|
1406 | else
|
---|
1407 | esign = (int)'+';
|
---|
1408 |
|
---|
1409 | if (x < 0.0)
|
---|
1410 | return PyString_FromFormat("-0x%sp%c%d", s, esign, e);
|
---|
1411 | else
|
---|
1412 | return PyString_FromFormat("0x%sp%c%d", s, esign, e);
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 | PyDoc_STRVAR(float_hex_doc,
|
---|
1416 | "float.hex() -> string\n\
|
---|
1417 | \n\
|
---|
1418 | Return a hexadecimal representation of a floating-point number.\n\
|
---|
1419 | >>> (-0.1).hex()\n\
|
---|
1420 | '-0x1.999999999999ap-4'\n\
|
---|
1421 | >>> 3.14159.hex()\n\
|
---|
1422 | '0x1.921f9f01b866ep+1'");
|
---|
1423 |
|
---|
1424 | /* Case-insensitive locale-independent string match used for nan and inf
|
---|
1425 | detection. t should be lower-case and null-terminated. Return a nonzero
|
---|
1426 | result if the first strlen(t) characters of s match t and 0 otherwise. */
|
---|
1427 |
|
---|
1428 | static int
|
---|
1429 | case_insensitive_match(const char *s, const char *t)
|
---|
1430 | {
|
---|
1431 | while(*t && Py_TOLOWER(*s) == *t) {
|
---|
1432 | s++;
|
---|
1433 | t++;
|
---|
1434 | }
|
---|
1435 | return *t ? 0 : 1;
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | /* Convert a hexadecimal string to a float. */
|
---|
1439 |
|
---|
1440 | static PyObject *
|
---|
1441 | float_fromhex(PyObject *cls, PyObject *arg)
|
---|
1442 | {
|
---|
1443 | PyObject *result_as_float, *result;
|
---|
1444 | double x;
|
---|
1445 | long exp, top_exp, lsb, key_digit;
|
---|
1446 | char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
|
---|
1447 | int half_eps, digit, round_up, sign=1;
|
---|
1448 | Py_ssize_t length, ndigits, fdigits, i;
|
---|
1449 |
|
---|
1450 | /*
|
---|
1451 | * For the sake of simplicity and correctness, we impose an artificial
|
---|
1452 | * limit on ndigits, the total number of hex digits in the coefficient
|
---|
1453 | * The limit is chosen to ensure that, writing exp for the exponent,
|
---|
1454 | *
|
---|
1455 | * (1) if exp > LONG_MAX/2 then the value of the hex string is
|
---|
1456 | * guaranteed to overflow (provided it's nonzero)
|
---|
1457 | *
|
---|
1458 | * (2) if exp < LONG_MIN/2 then the value of the hex string is
|
---|
1459 | * guaranteed to underflow to 0.
|
---|
1460 | *
|
---|
1461 | * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
|
---|
1462 | * overflow in the calculation of exp and top_exp below.
|
---|
1463 | *
|
---|
1464 | * More specifically, ndigits is assumed to satisfy the following
|
---|
1465 | * inequalities:
|
---|
1466 | *
|
---|
1467 | * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
|
---|
1468 | * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
|
---|
1469 | *
|
---|
1470 | * If either of these inequalities is not satisfied, a ValueError is
|
---|
1471 | * raised. Otherwise, write x for the value of the hex string, and
|
---|
1472 | * assume x is nonzero. Then
|
---|
1473 | *
|
---|
1474 | * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
|
---|
1475 | *
|
---|
1476 | * Now if exp > LONG_MAX/2 then:
|
---|
1477 | *
|
---|
1478 | * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
|
---|
1479 | * = DBL_MAX_EXP
|
---|
1480 | *
|
---|
1481 | * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
|
---|
1482 | * double, so overflows. If exp < LONG_MIN/2, then
|
---|
1483 | *
|
---|
1484 | * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
|
---|
1485 | * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
|
---|
1486 | * = DBL_MIN_EXP - DBL_MANT_DIG - 1
|
---|
1487 | *
|
---|
1488 | * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
|
---|
1489 | * when converted to a C double.
|
---|
1490 | *
|
---|
1491 | * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
|
---|
1492 | * exp+4*ndigits and exp-4*ndigits are within the range of a long.
|
---|
1493 | */
|
---|
1494 |
|
---|
1495 | if (PyString_AsStringAndSize(arg, &s, &length))
|
---|
1496 | return NULL;
|
---|
1497 | s_end = s + length;
|
---|
1498 |
|
---|
1499 | /********************
|
---|
1500 | * Parse the string *
|
---|
1501 | ********************/
|
---|
1502 |
|
---|
1503 | /* leading whitespace and optional sign */
|
---|
1504 | while (Py_ISSPACE(*s))
|
---|
1505 | s++;
|
---|
1506 | if (*s == '-') {
|
---|
1507 | s++;
|
---|
1508 | sign = -1;
|
---|
1509 | }
|
---|
1510 | else if (*s == '+')
|
---|
1511 | s++;
|
---|
1512 |
|
---|
1513 | /* infinities and nans */
|
---|
1514 | if (*s == 'i' || *s == 'I') {
|
---|
1515 | if (!case_insensitive_match(s+1, "nf"))
|
---|
1516 | goto parse_error;
|
---|
1517 | s += 3;
|
---|
1518 | x = Py_HUGE_VAL;
|
---|
1519 | if (case_insensitive_match(s, "inity"))
|
---|
1520 | s += 5;
|
---|
1521 | goto finished;
|
---|
1522 | }
|
---|
1523 | if (*s == 'n' || *s == 'N') {
|
---|
1524 | if (!case_insensitive_match(s+1, "an"))
|
---|
1525 | goto parse_error;
|
---|
1526 | s += 3;
|
---|
1527 | x = Py_NAN;
|
---|
1528 | goto finished;
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 | /* [0x] */
|
---|
1532 | s_store = s;
|
---|
1533 | if (*s == '0') {
|
---|
1534 | s++;
|
---|
1535 | if (*s == 'x' || *s == 'X')
|
---|
1536 | s++;
|
---|
1537 | else
|
---|
1538 | s = s_store;
|
---|
1539 | }
|
---|
1540 |
|
---|
1541 | /* coefficient: <integer> [. <fraction>] */
|
---|
1542 | coeff_start = s;
|
---|
1543 | while (hex_from_char(*s) >= 0)
|
---|
1544 | s++;
|
---|
1545 | s_store = s;
|
---|
1546 | if (*s == '.') {
|
---|
1547 | s++;
|
---|
1548 | while (hex_from_char(*s) >= 0)
|
---|
1549 | s++;
|
---|
1550 | coeff_end = s-1;
|
---|
1551 | }
|
---|
1552 | else
|
---|
1553 | coeff_end = s;
|
---|
1554 |
|
---|
1555 | /* ndigits = total # of hex digits; fdigits = # after point */
|
---|
1556 | ndigits = coeff_end - coeff_start;
|
---|
1557 | fdigits = coeff_end - s_store;
|
---|
1558 | if (ndigits == 0)
|
---|
1559 | goto parse_error;
|
---|
1560 | if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
|
---|
1561 | LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
|
---|
1562 | goto insane_length_error;
|
---|
1563 |
|
---|
1564 | /* [p <exponent>] */
|
---|
1565 | if (*s == 'p' || *s == 'P') {
|
---|
1566 | s++;
|
---|
1567 | exp_start = s;
|
---|
1568 | if (*s == '-' || *s == '+')
|
---|
1569 | s++;
|
---|
1570 | if (!('0' <= *s && *s <= '9'))
|
---|
1571 | goto parse_error;
|
---|
1572 | s++;
|
---|
1573 | while ('0' <= *s && *s <= '9')
|
---|
1574 | s++;
|
---|
1575 | exp = strtol(exp_start, NULL, 10);
|
---|
1576 | }
|
---|
1577 | else
|
---|
1578 | exp = 0;
|
---|
1579 |
|
---|
1580 | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
|
---|
1581 | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
|
---|
1582 | coeff_end-(j) : \
|
---|
1583 | coeff_end-1-(j)))
|
---|
1584 |
|
---|
1585 | /*******************************************
|
---|
1586 | * Compute rounded value of the hex string *
|
---|
1587 | *******************************************/
|
---|
1588 |
|
---|
1589 | /* Discard leading zeros, and catch extreme overflow and underflow */
|
---|
1590 | while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
|
---|
1591 | ndigits--;
|
---|
1592 | if (ndigits == 0 || exp < LONG_MIN/2) {
|
---|
1593 | x = 0.0;
|
---|
1594 | goto finished;
|
---|
1595 | }
|
---|
1596 | if (exp > LONG_MAX/2)
|
---|
1597 | goto overflow_error;
|
---|
1598 |
|
---|
1599 | /* Adjust exponent for fractional part. */
|
---|
1600 | exp = exp - 4*((long)fdigits);
|
---|
1601 |
|
---|
1602 | /* top_exp = 1 more than exponent of most sig. bit of coefficient */
|
---|
1603 | top_exp = exp + 4*((long)ndigits - 1);
|
---|
1604 | for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
|
---|
1605 | top_exp++;
|
---|
1606 |
|
---|
1607 | /* catch almost all nonextreme cases of overflow and underflow here */
|
---|
1608 | if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
|
---|
1609 | x = 0.0;
|
---|
1610 | goto finished;
|
---|
1611 | }
|
---|
1612 | if (top_exp > DBL_MAX_EXP)
|
---|
1613 | goto overflow_error;
|
---|
1614 |
|
---|
1615 | /* lsb = exponent of least significant bit of the *rounded* value.
|
---|
1616 | This is top_exp - DBL_MANT_DIG unless result is subnormal. */
|
---|
1617 | lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
|
---|
1618 |
|
---|
1619 | x = 0.0;
|
---|
1620 | if (exp >= lsb) {
|
---|
1621 | /* no rounding required */
|
---|
1622 | for (i = ndigits-1; i >= 0; i--)
|
---|
1623 | x = 16.0*x + HEX_DIGIT(i);
|
---|
1624 | x = ldexp(x, (int)(exp));
|
---|
1625 | goto finished;
|
---|
1626 | }
|
---|
1627 | /* rounding required. key_digit is the index of the hex digit
|
---|
1628 | containing the first bit to be rounded away. */
|
---|
1629 | half_eps = 1 << (int)((lsb - exp - 1) % 4);
|
---|
1630 | key_digit = (lsb - exp - 1) / 4;
|
---|
1631 | for (i = ndigits-1; i > key_digit; i--)
|
---|
1632 | x = 16.0*x + HEX_DIGIT(i);
|
---|
1633 | digit = HEX_DIGIT(key_digit);
|
---|
1634 | x = 16.0*x + (double)(digit & (16-2*half_eps));
|
---|
1635 |
|
---|
1636 | /* round-half-even: round up if bit lsb-1 is 1 and at least one of
|
---|
1637 | bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
|
---|
1638 | if ((digit & half_eps) != 0) {
|
---|
1639 | round_up = 0;
|
---|
1640 | if ((digit & (3*half_eps-1)) != 0 ||
|
---|
1641 | (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
|
---|
1642 | round_up = 1;
|
---|
1643 | else
|
---|
1644 | for (i = key_digit-1; i >= 0; i--)
|
---|
1645 | if (HEX_DIGIT(i) != 0) {
|
---|
1646 | round_up = 1;
|
---|
1647 | break;
|
---|
1648 | }
|
---|
1649 | if (round_up == 1) {
|
---|
1650 | x += 2*half_eps;
|
---|
1651 | if (top_exp == DBL_MAX_EXP &&
|
---|
1652 | x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
|
---|
1653 | /* overflow corner case: pre-rounded value <
|
---|
1654 | 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
|
---|
1655 | goto overflow_error;
|
---|
1656 | }
|
---|
1657 | }
|
---|
1658 | x = ldexp(x, (int)(exp+4*key_digit));
|
---|
1659 |
|
---|
1660 | finished:
|
---|
1661 | /* optional trailing whitespace leading to the end of the string */
|
---|
1662 | while (Py_ISSPACE(*s))
|
---|
1663 | s++;
|
---|
1664 | if (s != s_end)
|
---|
1665 | goto parse_error;
|
---|
1666 | result_as_float = Py_BuildValue("(d)", sign * x);
|
---|
1667 | if (result_as_float == NULL)
|
---|
1668 | return NULL;
|
---|
1669 | result = PyObject_CallObject(cls, result_as_float);
|
---|
1670 | Py_DECREF(result_as_float);
|
---|
1671 | return result;
|
---|
1672 |
|
---|
1673 | overflow_error:
|
---|
1674 | PyErr_SetString(PyExc_OverflowError,
|
---|
1675 | "hexadecimal value too large to represent as a float");
|
---|
1676 | return NULL;
|
---|
1677 |
|
---|
1678 | parse_error:
|
---|
1679 | PyErr_SetString(PyExc_ValueError,
|
---|
1680 | "invalid hexadecimal floating-point string");
|
---|
1681 | return NULL;
|
---|
1682 |
|
---|
1683 | insane_length_error:
|
---|
1684 | PyErr_SetString(PyExc_ValueError,
|
---|
1685 | "hexadecimal string too long to convert");
|
---|
1686 | return NULL;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | PyDoc_STRVAR(float_fromhex_doc,
|
---|
1690 | "float.fromhex(string) -> float\n\
|
---|
1691 | \n\
|
---|
1692 | Create a floating-point number from a hexadecimal string.\n\
|
---|
1693 | >>> float.fromhex('0x1.ffffp10')\n\
|
---|
1694 | 2047.984375\n\
|
---|
1695 | >>> float.fromhex('-0x1p-1074')\n\
|
---|
1696 | -4.9406564584124654e-324");
|
---|
1697 |
|
---|
1698 |
|
---|
1699 | static PyObject *
|
---|
1700 | float_as_integer_ratio(PyObject *v, PyObject *unused)
|
---|
1701 | {
|
---|
1702 | double self;
|
---|
1703 | double float_part;
|
---|
1704 | int exponent;
|
---|
1705 | int i;
|
---|
1706 |
|
---|
1707 | PyObject *prev;
|
---|
1708 | PyObject *py_exponent = NULL;
|
---|
1709 | PyObject *numerator = NULL;
|
---|
1710 | PyObject *denominator = NULL;
|
---|
1711 | PyObject *result_pair = NULL;
|
---|
1712 | PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
|
---|
1713 |
|
---|
1714 | #define INPLACE_UPDATE(obj, call) \
|
---|
1715 | prev = obj; \
|
---|
1716 | obj = call; \
|
---|
1717 | Py_DECREF(prev); \
|
---|
1718 |
|
---|
1719 | CONVERT_TO_DOUBLE(v, self);
|
---|
1720 |
|
---|
1721 | if (Py_IS_INFINITY(self)) {
|
---|
1722 | PyErr_SetString(PyExc_OverflowError,
|
---|
1723 | "Cannot pass infinity to float.as_integer_ratio.");
|
---|
1724 | return NULL;
|
---|
1725 | }
|
---|
1726 | #ifdef Py_NAN
|
---|
1727 | if (Py_IS_NAN(self)) {
|
---|
1728 | PyErr_SetString(PyExc_ValueError,
|
---|
1729 | "Cannot pass NaN to float.as_integer_ratio.");
|
---|
1730 | return NULL;
|
---|
1731 | }
|
---|
1732 | #endif
|
---|
1733 |
|
---|
1734 | PyFPE_START_PROTECT("as_integer_ratio", goto error);
|
---|
1735 | float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
|
---|
1736 | PyFPE_END_PROTECT(float_part);
|
---|
1737 |
|
---|
1738 | for (i=0; i<300 && float_part != floor(float_part) ; i++) {
|
---|
1739 | float_part *= 2.0;
|
---|
1740 | exponent--;
|
---|
1741 | }
|
---|
1742 | /* self == float_part * 2**exponent exactly and float_part is integral.
|
---|
1743 | If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
|
---|
1744 | to be truncated by PyLong_FromDouble(). */
|
---|
1745 |
|
---|
1746 | numerator = PyLong_FromDouble(float_part);
|
---|
1747 | if (numerator == NULL) goto error;
|
---|
1748 |
|
---|
1749 | /* fold in 2**exponent */
|
---|
1750 | denominator = PyLong_FromLong(1);
|
---|
1751 | py_exponent = PyLong_FromLong(labs((long)exponent));
|
---|
1752 | if (py_exponent == NULL) goto error;
|
---|
1753 | INPLACE_UPDATE(py_exponent,
|
---|
1754 | long_methods->nb_lshift(denominator, py_exponent));
|
---|
1755 | if (py_exponent == NULL) goto error;
|
---|
1756 | if (exponent > 0) {
|
---|
1757 | INPLACE_UPDATE(numerator,
|
---|
1758 | long_methods->nb_multiply(numerator, py_exponent));
|
---|
1759 | if (numerator == NULL) goto error;
|
---|
1760 | }
|
---|
1761 | else {
|
---|
1762 | Py_DECREF(denominator);
|
---|
1763 | denominator = py_exponent;
|
---|
1764 | py_exponent = NULL;
|
---|
1765 | }
|
---|
1766 |
|
---|
1767 | /* Returns ints instead of longs where possible */
|
---|
1768 | INPLACE_UPDATE(numerator, PyNumber_Int(numerator));
|
---|
1769 | if (numerator == NULL) goto error;
|
---|
1770 | INPLACE_UPDATE(denominator, PyNumber_Int(denominator));
|
---|
1771 | if (denominator == NULL) goto error;
|
---|
1772 |
|
---|
1773 | result_pair = PyTuple_Pack(2, numerator, denominator);
|
---|
1774 |
|
---|
1775 | #undef INPLACE_UPDATE
|
---|
1776 | error:
|
---|
1777 | Py_XDECREF(py_exponent);
|
---|
1778 | Py_XDECREF(denominator);
|
---|
1779 | Py_XDECREF(numerator);
|
---|
1780 | return result_pair;
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 | PyDoc_STRVAR(float_as_integer_ratio_doc,
|
---|
1784 | "float.as_integer_ratio() -> (int, int)\n"
|
---|
1785 | "\n"
|
---|
1786 | "Return a pair of integers, whose ratio is exactly equal to the original\n"
|
---|
1787 | "float and with a positive denominator.\n"
|
---|
1788 | "Raise OverflowError on infinities and a ValueError on NaNs.\n"
|
---|
1789 | "\n"
|
---|
1790 | ">>> (10.0).as_integer_ratio()\n"
|
---|
1791 | "(10, 1)\n"
|
---|
1792 | ">>> (0.0).as_integer_ratio()\n"
|
---|
1793 | "(0, 1)\n"
|
---|
1794 | ">>> (-.25).as_integer_ratio()\n"
|
---|
1795 | "(-1, 4)");
|
---|
1796 |
|
---|
1797 |
|
---|
1798 | static PyObject *
|
---|
1799 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
|
---|
1800 |
|
---|
1801 | static PyObject *
|
---|
1802 | float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
1803 | {
|
---|
1804 | PyObject *x = Py_False; /* Integer zero */
|
---|
1805 | static char *kwlist[] = {"x", 0};
|
---|
1806 |
|
---|
1807 | if (type != &PyFloat_Type)
|
---|
1808 | return float_subtype_new(type, args, kwds); /* Wimp out */
|
---|
1809 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
|
---|
1810 | return NULL;
|
---|
1811 | /* If it's a string, but not a string subclass, use
|
---|
1812 | PyFloat_FromString. */
|
---|
1813 | if (PyString_CheckExact(x))
|
---|
1814 | return PyFloat_FromString(x, NULL);
|
---|
1815 | return PyNumber_Float(x);
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | /* Wimpy, slow approach to tp_new calls for subtypes of float:
|
---|
1819 | first create a regular float from whatever arguments we got,
|
---|
1820 | then allocate a subtype instance and initialize its ob_fval
|
---|
1821 | from the regular float. The regular float is then thrown away.
|
---|
1822 | */
|
---|
1823 | static PyObject *
|
---|
1824 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
1825 | {
|
---|
1826 | PyObject *tmp, *newobj;
|
---|
1827 |
|
---|
1828 | assert(PyType_IsSubtype(type, &PyFloat_Type));
|
---|
1829 | tmp = float_new(&PyFloat_Type, args, kwds);
|
---|
1830 | if (tmp == NULL)
|
---|
1831 | return NULL;
|
---|
1832 | assert(PyFloat_CheckExact(tmp));
|
---|
1833 | newobj = type->tp_alloc(type, 0);
|
---|
1834 | if (newobj == NULL) {
|
---|
1835 | Py_DECREF(tmp);
|
---|
1836 | return NULL;
|
---|
1837 | }
|
---|
1838 | ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
|
---|
1839 | Py_DECREF(tmp);
|
---|
1840 | return newobj;
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 | static PyObject *
|
---|
1844 | float_getnewargs(PyFloatObject *v)
|
---|
1845 | {
|
---|
1846 | return Py_BuildValue("(d)", v->ob_fval);
|
---|
1847 | }
|
---|
1848 |
|
---|
1849 | /* this is for the benefit of the pack/unpack routines below */
|
---|
1850 |
|
---|
1851 | typedef enum {
|
---|
1852 | unknown_format, ieee_big_endian_format, ieee_little_endian_format
|
---|
1853 | } float_format_type;
|
---|
1854 |
|
---|
1855 | static float_format_type double_format, float_format;
|
---|
1856 | static float_format_type detected_double_format, detected_float_format;
|
---|
1857 |
|
---|
1858 | static PyObject *
|
---|
1859 | float_getformat(PyTypeObject *v, PyObject* arg)
|
---|
1860 | {
|
---|
1861 | char* s;
|
---|
1862 | float_format_type r;
|
---|
1863 |
|
---|
1864 | if (!PyString_Check(arg)) {
|
---|
1865 | PyErr_Format(PyExc_TypeError,
|
---|
1866 | "__getformat__() argument must be string, not %.500s",
|
---|
1867 | Py_TYPE(arg)->tp_name);
|
---|
1868 | return NULL;
|
---|
1869 | }
|
---|
1870 | s = PyString_AS_STRING(arg);
|
---|
1871 | if (strcmp(s, "double") == 0) {
|
---|
1872 | r = double_format;
|
---|
1873 | }
|
---|
1874 | else if (strcmp(s, "float") == 0) {
|
---|
1875 | r = float_format;
|
---|
1876 | }
|
---|
1877 | else {
|
---|
1878 | PyErr_SetString(PyExc_ValueError,
|
---|
1879 | "__getformat__() argument 1 must be "
|
---|
1880 | "'double' or 'float'");
|
---|
1881 | return NULL;
|
---|
1882 | }
|
---|
1883 |
|
---|
1884 | switch (r) {
|
---|
1885 | case unknown_format:
|
---|
1886 | return PyString_FromString("unknown");
|
---|
1887 | case ieee_little_endian_format:
|
---|
1888 | return PyString_FromString("IEEE, little-endian");
|
---|
1889 | case ieee_big_endian_format:
|
---|
1890 | return PyString_FromString("IEEE, big-endian");
|
---|
1891 | default:
|
---|
1892 | Py_FatalError("insane float_format or double_format");
|
---|
1893 | return NULL;
|
---|
1894 | }
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 | PyDoc_STRVAR(float_getformat_doc,
|
---|
1898 | "float.__getformat__(typestr) -> string\n"
|
---|
1899 | "\n"
|
---|
1900 | "You probably don't want to use this function. It exists mainly to be\n"
|
---|
1901 | "used in Python's test suite.\n"
|
---|
1902 | "\n"
|
---|
1903 | "typestr must be 'double' or 'float'. This function returns whichever of\n"
|
---|
1904 | "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
|
---|
1905 | "format of floating point numbers used by the C type named by typestr.");
|
---|
1906 |
|
---|
1907 | static PyObject *
|
---|
1908 | float_setformat(PyTypeObject *v, PyObject* args)
|
---|
1909 | {
|
---|
1910 | char* typestr;
|
---|
1911 | char* format;
|
---|
1912 | float_format_type f;
|
---|
1913 | float_format_type detected;
|
---|
1914 | float_format_type *p;
|
---|
1915 |
|
---|
1916 | if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
|
---|
1917 | return NULL;
|
---|
1918 |
|
---|
1919 | if (strcmp(typestr, "double") == 0) {
|
---|
1920 | p = &double_format;
|
---|
1921 | detected = detected_double_format;
|
---|
1922 | }
|
---|
1923 | else if (strcmp(typestr, "float") == 0) {
|
---|
1924 | p = &float_format;
|
---|
1925 | detected = detected_float_format;
|
---|
1926 | }
|
---|
1927 | else {
|
---|
1928 | PyErr_SetString(PyExc_ValueError,
|
---|
1929 | "__setformat__() argument 1 must "
|
---|
1930 | "be 'double' or 'float'");
|
---|
1931 | return NULL;
|
---|
1932 | }
|
---|
1933 |
|
---|
1934 | if (strcmp(format, "unknown") == 0) {
|
---|
1935 | f = unknown_format;
|
---|
1936 | }
|
---|
1937 | else if (strcmp(format, "IEEE, little-endian") == 0) {
|
---|
1938 | f = ieee_little_endian_format;
|
---|
1939 | }
|
---|
1940 | else if (strcmp(format, "IEEE, big-endian") == 0) {
|
---|
1941 | f = ieee_big_endian_format;
|
---|
1942 | }
|
---|
1943 | else {
|
---|
1944 | PyErr_SetString(PyExc_ValueError,
|
---|
1945 | "__setformat__() argument 2 must be "
|
---|
1946 | "'unknown', 'IEEE, little-endian' or "
|
---|
1947 | "'IEEE, big-endian'");
|
---|
1948 | return NULL;
|
---|
1949 |
|
---|
1950 | }
|
---|
1951 |
|
---|
1952 | if (f != unknown_format && f != detected) {
|
---|
1953 | PyErr_Format(PyExc_ValueError,
|
---|
1954 | "can only set %s format to 'unknown' or the "
|
---|
1955 | "detected platform value", typestr);
|
---|
1956 | return NULL;
|
---|
1957 | }
|
---|
1958 |
|
---|
1959 | *p = f;
|
---|
1960 | Py_RETURN_NONE;
|
---|
1961 | }
|
---|
1962 |
|
---|
1963 | PyDoc_STRVAR(float_setformat_doc,
|
---|
1964 | "float.__setformat__(typestr, fmt) -> None\n"
|
---|
1965 | "\n"
|
---|
1966 | "You probably don't want to use this function. It exists mainly to be\n"
|
---|
1967 | "used in Python's test suite.\n"
|
---|
1968 | "\n"
|
---|
1969 | "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
|
---|
1970 | "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
|
---|
1971 | "one of the latter two if it appears to match the underlying C reality.\n"
|
---|
1972 | "\n"
|
---|
1973 | "Override the automatic determination of C-level floating point type.\n"
|
---|
1974 | "This affects how floats are converted to and from binary strings.");
|
---|
1975 |
|
---|
1976 | static PyObject *
|
---|
1977 | float_getzero(PyObject *v, void *closure)
|
---|
1978 | {
|
---|
1979 | return PyFloat_FromDouble(0.0);
|
---|
1980 | }
|
---|
1981 |
|
---|
1982 | static PyObject *
|
---|
1983 | float__format__(PyObject *self, PyObject *args)
|
---|
1984 | {
|
---|
1985 | PyObject *format_spec;
|
---|
1986 |
|
---|
1987 | if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
|
---|
1988 | return NULL;
|
---|
1989 | if (PyBytes_Check(format_spec))
|
---|
1990 | return _PyFloat_FormatAdvanced(self,
|
---|
1991 | PyBytes_AS_STRING(format_spec),
|
---|
1992 | PyBytes_GET_SIZE(format_spec));
|
---|
1993 | if (PyUnicode_Check(format_spec)) {
|
---|
1994 | /* Convert format_spec to a str */
|
---|
1995 | PyObject *result;
|
---|
1996 | PyObject *str_spec = PyObject_Str(format_spec);
|
---|
1997 |
|
---|
1998 | if (str_spec == NULL)
|
---|
1999 | return NULL;
|
---|
2000 |
|
---|
2001 | result = _PyFloat_FormatAdvanced(self,
|
---|
2002 | PyBytes_AS_STRING(str_spec),
|
---|
2003 | PyBytes_GET_SIZE(str_spec));
|
---|
2004 |
|
---|
2005 | Py_DECREF(str_spec);
|
---|
2006 | return result;
|
---|
2007 | }
|
---|
2008 | PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
|
---|
2009 | return NULL;
|
---|
2010 | }
|
---|
2011 |
|
---|
2012 | PyDoc_STRVAR(float__format__doc,
|
---|
2013 | "float.__format__(format_spec) -> string\n"
|
---|
2014 | "\n"
|
---|
2015 | "Formats the float according to format_spec.");
|
---|
2016 |
|
---|
2017 |
|
---|
2018 | static PyMethodDef float_methods[] = {
|
---|
2019 | {"conjugate", (PyCFunction)float_float, METH_NOARGS,
|
---|
2020 | "Return self, the complex conjugate of any float."},
|
---|
2021 | {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
|
---|
2022 | "Return the Integral closest to x between 0 and x."},
|
---|
2023 | {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
|
---|
2024 | float_as_integer_ratio_doc},
|
---|
2025 | {"fromhex", (PyCFunction)float_fromhex,
|
---|
2026 | METH_O|METH_CLASS, float_fromhex_doc},
|
---|
2027 | {"hex", (PyCFunction)float_hex,
|
---|
2028 | METH_NOARGS, float_hex_doc},
|
---|
2029 | {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
|
---|
2030 | "Return True if the float is an integer."},
|
---|
2031 | #if 0
|
---|
2032 | {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
|
---|
2033 | "Return True if the float is positive or negative infinite."},
|
---|
2034 | {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
|
---|
2035 | "Return True if the float is finite, neither infinite nor NaN."},
|
---|
2036 | {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
|
---|
2037 | "Return True if the float is not a number (NaN)."},
|
---|
2038 | #endif
|
---|
2039 | {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
|
---|
2040 | {"__getformat__", (PyCFunction)float_getformat,
|
---|
2041 | METH_O|METH_CLASS, float_getformat_doc},
|
---|
2042 | {"__setformat__", (PyCFunction)float_setformat,
|
---|
2043 | METH_VARARGS|METH_CLASS, float_setformat_doc},
|
---|
2044 | {"__format__", (PyCFunction)float__format__,
|
---|
2045 | METH_VARARGS, float__format__doc},
|
---|
2046 | {NULL, NULL} /* sentinel */
|
---|
2047 | };
|
---|
2048 |
|
---|
2049 | static PyGetSetDef float_getset[] = {
|
---|
2050 | {"real",
|
---|
2051 | (getter)float_float, (setter)NULL,
|
---|
2052 | "the real part of a complex number",
|
---|
2053 | NULL},
|
---|
2054 | {"imag",
|
---|
2055 | (getter)float_getzero, (setter)NULL,
|
---|
2056 | "the imaginary part of a complex number",
|
---|
2057 | NULL},
|
---|
2058 | {NULL} /* Sentinel */
|
---|
2059 | };
|
---|
2060 |
|
---|
2061 | PyDoc_STRVAR(float_doc,
|
---|
2062 | "float(x) -> floating point number\n\
|
---|
2063 | \n\
|
---|
2064 | Convert a string or number to a floating point number, if possible.");
|
---|
2065 |
|
---|
2066 |
|
---|
2067 | static PyNumberMethods float_as_number = {
|
---|
2068 | float_add, /*nb_add*/
|
---|
2069 | float_sub, /*nb_subtract*/
|
---|
2070 | float_mul, /*nb_multiply*/
|
---|
2071 | float_classic_div, /*nb_divide*/
|
---|
2072 | float_rem, /*nb_remainder*/
|
---|
2073 | float_divmod, /*nb_divmod*/
|
---|
2074 | float_pow, /*nb_power*/
|
---|
2075 | (unaryfunc)float_neg, /*nb_negative*/
|
---|
2076 | (unaryfunc)float_float, /*nb_positive*/
|
---|
2077 | (unaryfunc)float_abs, /*nb_absolute*/
|
---|
2078 | (inquiry)float_nonzero, /*nb_nonzero*/
|
---|
2079 | 0, /*nb_invert*/
|
---|
2080 | 0, /*nb_lshift*/
|
---|
2081 | 0, /*nb_rshift*/
|
---|
2082 | 0, /*nb_and*/
|
---|
2083 | 0, /*nb_xor*/
|
---|
2084 | 0, /*nb_or*/
|
---|
2085 | float_coerce, /*nb_coerce*/
|
---|
2086 | float_trunc, /*nb_int*/
|
---|
2087 | float_long, /*nb_long*/
|
---|
2088 | float_float, /*nb_float*/
|
---|
2089 | 0, /* nb_oct */
|
---|
2090 | 0, /* nb_hex */
|
---|
2091 | 0, /* nb_inplace_add */
|
---|
2092 | 0, /* nb_inplace_subtract */
|
---|
2093 | 0, /* nb_inplace_multiply */
|
---|
2094 | 0, /* nb_inplace_divide */
|
---|
2095 | 0, /* nb_inplace_remainder */
|
---|
2096 | 0, /* nb_inplace_power */
|
---|
2097 | 0, /* nb_inplace_lshift */
|
---|
2098 | 0, /* nb_inplace_rshift */
|
---|
2099 | 0, /* nb_inplace_and */
|
---|
2100 | 0, /* nb_inplace_xor */
|
---|
2101 | 0, /* nb_inplace_or */
|
---|
2102 | float_floor_div, /* nb_floor_divide */
|
---|
2103 | float_div, /* nb_true_divide */
|
---|
2104 | 0, /* nb_inplace_floor_divide */
|
---|
2105 | 0, /* nb_inplace_true_divide */
|
---|
2106 | };
|
---|
2107 |
|
---|
2108 | PyTypeObject PyFloat_Type = {
|
---|
2109 | PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
---|
2110 | "float",
|
---|
2111 | sizeof(PyFloatObject),
|
---|
2112 | 0,
|
---|
2113 | (destructor)float_dealloc, /* tp_dealloc */
|
---|
2114 | (printfunc)float_print, /* tp_print */
|
---|
2115 | 0, /* tp_getattr */
|
---|
2116 | 0, /* tp_setattr */
|
---|
2117 | 0, /* tp_compare */
|
---|
2118 | (reprfunc)float_repr, /* tp_repr */
|
---|
2119 | &float_as_number, /* tp_as_number */
|
---|
2120 | 0, /* tp_as_sequence */
|
---|
2121 | 0, /* tp_as_mapping */
|
---|
2122 | (hashfunc)float_hash, /* tp_hash */
|
---|
2123 | 0, /* tp_call */
|
---|
2124 | (reprfunc)float_str, /* tp_str */
|
---|
2125 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
2126 | 0, /* tp_setattro */
|
---|
2127 | 0, /* tp_as_buffer */
|
---|
2128 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
---|
2129 | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
---|
2130 | float_doc, /* tp_doc */
|
---|
2131 | 0, /* tp_traverse */
|
---|
2132 | 0, /* tp_clear */
|
---|
2133 | float_richcompare, /* tp_richcompare */
|
---|
2134 | 0, /* tp_weaklistoffset */
|
---|
2135 | 0, /* tp_iter */
|
---|
2136 | 0, /* tp_iternext */
|
---|
2137 | float_methods, /* tp_methods */
|
---|
2138 | 0, /* tp_members */
|
---|
2139 | float_getset, /* tp_getset */
|
---|
2140 | 0, /* tp_base */
|
---|
2141 | 0, /* tp_dict */
|
---|
2142 | 0, /* tp_descr_get */
|
---|
2143 | 0, /* tp_descr_set */
|
---|
2144 | 0, /* tp_dictoffset */
|
---|
2145 | 0, /* tp_init */
|
---|
2146 | 0, /* tp_alloc */
|
---|
2147 | float_new, /* tp_new */
|
---|
2148 | };
|
---|
2149 |
|
---|
2150 | void
|
---|
2151 | _PyFloat_Init(void)
|
---|
2152 | {
|
---|
2153 | /* We attempt to determine if this machine is using IEEE
|
---|
2154 | floating point formats by peering at the bits of some
|
---|
2155 | carefully chosen values. If it looks like we are on an
|
---|
2156 | IEEE platform, the float packing/unpacking routines can
|
---|
2157 | just copy bits, if not they resort to arithmetic & shifts
|
---|
2158 | and masks. The shifts & masks approach works on all finite
|
---|
2159 | values, but what happens to infinities, NaNs and signed
|
---|
2160 | zeroes on packing is an accident, and attempting to unpack
|
---|
2161 | a NaN or an infinity will raise an exception.
|
---|
2162 |
|
---|
2163 | Note that if we're on some whacked-out platform which uses
|
---|
2164 | IEEE formats but isn't strictly little-endian or big-
|
---|
2165 | endian, we will fall back to the portable shifts & masks
|
---|
2166 | method. */
|
---|
2167 |
|
---|
2168 | #if SIZEOF_DOUBLE == 8
|
---|
2169 | {
|
---|
2170 | double x = 9006104071832581.0;
|
---|
2171 | if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
|
---|
2172 | detected_double_format = ieee_big_endian_format;
|
---|
2173 | else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
|
---|
2174 | detected_double_format = ieee_little_endian_format;
|
---|
2175 | else
|
---|
2176 | detected_double_format = unknown_format;
|
---|
2177 | }
|
---|
2178 | #else
|
---|
2179 | detected_double_format = unknown_format;
|
---|
2180 | #endif
|
---|
2181 |
|
---|
2182 | #if SIZEOF_FLOAT == 4
|
---|
2183 | {
|
---|
2184 | float y = 16711938.0;
|
---|
2185 | if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
|
---|
2186 | detected_float_format = ieee_big_endian_format;
|
---|
2187 | else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
|
---|
2188 | detected_float_format = ieee_little_endian_format;
|
---|
2189 | else
|
---|
2190 | detected_float_format = unknown_format;
|
---|
2191 | }
|
---|
2192 | #else
|
---|
2193 | detected_float_format = unknown_format;
|
---|
2194 | #endif
|
---|
2195 |
|
---|
2196 | double_format = detected_double_format;
|
---|
2197 | float_format = detected_float_format;
|
---|
2198 |
|
---|
2199 | /* Init float info */
|
---|
2200 | if (FloatInfoType.tp_name == 0)
|
---|
2201 | PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
|
---|
2202 | }
|
---|
2203 |
|
---|
2204 | int
|
---|
2205 | PyFloat_ClearFreeList(void)
|
---|
2206 | {
|
---|
2207 | PyFloatObject *p;
|
---|
2208 | PyFloatBlock *list, *next;
|
---|
2209 | int i;
|
---|
2210 | int u; /* remaining unfreed ints per block */
|
---|
2211 | int freelist_size = 0;
|
---|
2212 |
|
---|
2213 | list = block_list;
|
---|
2214 | block_list = NULL;
|
---|
2215 | free_list = NULL;
|
---|
2216 | while (list != NULL) {
|
---|
2217 | u = 0;
|
---|
2218 | for (i = 0, p = &list->objects[0];
|
---|
2219 | i < N_FLOATOBJECTS;
|
---|
2220 | i++, p++) {
|
---|
2221 | if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
|
---|
2222 | u++;
|
---|
2223 | }
|
---|
2224 | next = list->next;
|
---|
2225 | if (u) {
|
---|
2226 | list->next = block_list;
|
---|
2227 | block_list = list;
|
---|
2228 | for (i = 0, p = &list->objects[0];
|
---|
2229 | i < N_FLOATOBJECTS;
|
---|
2230 | i++, p++) {
|
---|
2231 | if (!PyFloat_CheckExact(p) ||
|
---|
2232 | Py_REFCNT(p) == 0) {
|
---|
2233 | Py_TYPE(p) = (struct _typeobject *)
|
---|
2234 | free_list;
|
---|
2235 | free_list = p;
|
---|
2236 | }
|
---|
2237 | }
|
---|
2238 | }
|
---|
2239 | else {
|
---|
2240 | PyMem_FREE(list);
|
---|
2241 | }
|
---|
2242 | freelist_size += u;
|
---|
2243 | list = next;
|
---|
2244 | }
|
---|
2245 | return freelist_size;
|
---|
2246 | }
|
---|
2247 |
|
---|
2248 | void
|
---|
2249 | PyFloat_Fini(void)
|
---|
2250 | {
|
---|
2251 | PyFloatObject *p;
|
---|
2252 | PyFloatBlock *list;
|
---|
2253 | int i;
|
---|
2254 | int u; /* total unfreed floats per block */
|
---|
2255 |
|
---|
2256 | u = PyFloat_ClearFreeList();
|
---|
2257 |
|
---|
2258 | if (!Py_VerboseFlag)
|
---|
2259 | return;
|
---|
2260 | fprintf(stderr, "# cleanup floats");
|
---|
2261 | if (!u) {
|
---|
2262 | fprintf(stderr, "\n");
|
---|
2263 | }
|
---|
2264 | else {
|
---|
2265 | fprintf(stderr,
|
---|
2266 | ": %d unfreed float%s\n",
|
---|
2267 | u, u == 1 ? "" : "s");
|
---|
2268 | }
|
---|
2269 | if (Py_VerboseFlag > 1) {
|
---|
2270 | list = block_list;
|
---|
2271 | while (list != NULL) {
|
---|
2272 | for (i = 0, p = &list->objects[0];
|
---|
2273 | i < N_FLOATOBJECTS;
|
---|
2274 | i++, p++) {
|
---|
2275 | if (PyFloat_CheckExact(p) &&
|
---|
2276 | Py_REFCNT(p) != 0) {
|
---|
2277 | char *buf = PyOS_double_to_string(
|
---|
2278 | PyFloat_AS_DOUBLE(p), 'r',
|
---|
2279 | 0, 0, NULL);
|
---|
2280 | if (buf) {
|
---|
2281 | /* XXX(twouters) cast
|
---|
2282 | refcount to long
|
---|
2283 | until %zd is
|
---|
2284 | universally
|
---|
2285 | available
|
---|
2286 | */
|
---|
2287 | fprintf(stderr,
|
---|
2288 | "# <float at %p, refcnt=%ld, val=%s>\n",
|
---|
2289 | p, (long)Py_REFCNT(p), buf);
|
---|
2290 | PyMem_Free(buf);
|
---|
2291 | }
|
---|
2292 | }
|
---|
2293 | }
|
---|
2294 | list = list->next;
|
---|
2295 | }
|
---|
2296 | }
|
---|
2297 | }
|
---|
2298 |
|
---|
2299 | /*----------------------------------------------------------------------------
|
---|
2300 | * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
|
---|
2301 | */
|
---|
2302 | int
|
---|
2303 | _PyFloat_Pack4(double x, unsigned char *p, int le)
|
---|
2304 | {
|
---|
2305 | if (float_format == unknown_format) {
|
---|
2306 | unsigned char sign;
|
---|
2307 | int e;
|
---|
2308 | double f;
|
---|
2309 | unsigned int fbits;
|
---|
2310 | int incr = 1;
|
---|
2311 |
|
---|
2312 | if (le) {
|
---|
2313 | p += 3;
|
---|
2314 | incr = -1;
|
---|
2315 | }
|
---|
2316 |
|
---|
2317 | if (x < 0) {
|
---|
2318 | sign = 1;
|
---|
2319 | x = -x;
|
---|
2320 | }
|
---|
2321 | else
|
---|
2322 | sign = 0;
|
---|
2323 |
|
---|
2324 | f = frexp(x, &e);
|
---|
2325 |
|
---|
2326 | /* Normalize f to be in the range [1.0, 2.0) */
|
---|
2327 | if (0.5 <= f && f < 1.0) {
|
---|
2328 | f *= 2.0;
|
---|
2329 | e--;
|
---|
2330 | }
|
---|
2331 | else if (f == 0.0)
|
---|
2332 | e = 0;
|
---|
2333 | else {
|
---|
2334 | PyErr_SetString(PyExc_SystemError,
|
---|
2335 | "frexp() result out of range");
|
---|
2336 | return -1;
|
---|
2337 | }
|
---|
2338 |
|
---|
2339 | if (e >= 128)
|
---|
2340 | goto Overflow;
|
---|
2341 | else if (e < -126) {
|
---|
2342 | /* Gradual underflow */
|
---|
2343 | f = ldexp(f, 126 + e);
|
---|
2344 | e = 0;
|
---|
2345 | }
|
---|
2346 | else if (!(e == 0 && f == 0.0)) {
|
---|
2347 | e += 127;
|
---|
2348 | f -= 1.0; /* Get rid of leading 1 */
|
---|
2349 | }
|
---|
2350 |
|
---|
2351 | f *= 8388608.0; /* 2**23 */
|
---|
2352 | fbits = (unsigned int)(f + 0.5); /* Round */
|
---|
2353 | assert(fbits <= 8388608);
|
---|
2354 | if (fbits >> 23) {
|
---|
2355 | /* The carry propagated out of a string of 23 1 bits. */
|
---|
2356 | fbits = 0;
|
---|
2357 | ++e;
|
---|
2358 | if (e >= 255)
|
---|
2359 | goto Overflow;
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | /* First byte */
|
---|
2363 | *p = (sign << 7) | (e >> 1);
|
---|
2364 | p += incr;
|
---|
2365 |
|
---|
2366 | /* Second byte */
|
---|
2367 | *p = (char) (((e & 1) << 7) | (fbits >> 16));
|
---|
2368 | p += incr;
|
---|
2369 |
|
---|
2370 | /* Third byte */
|
---|
2371 | *p = (fbits >> 8) & 0xFF;
|
---|
2372 | p += incr;
|
---|
2373 |
|
---|
2374 | /* Fourth byte */
|
---|
2375 | *p = fbits & 0xFF;
|
---|
2376 |
|
---|
2377 | /* Done */
|
---|
2378 | return 0;
|
---|
2379 |
|
---|
2380 | }
|
---|
2381 | else {
|
---|
2382 | float y = (float)x;
|
---|
2383 | const char *s = (char*)&y;
|
---|
2384 | int i, incr = 1;
|
---|
2385 |
|
---|
2386 | if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
|
---|
2387 | goto Overflow;
|
---|
2388 |
|
---|
2389 | if ((float_format == ieee_little_endian_format && !le)
|
---|
2390 | || (float_format == ieee_big_endian_format && le)) {
|
---|
2391 | p += 3;
|
---|
2392 | incr = -1;
|
---|
2393 | }
|
---|
2394 |
|
---|
2395 | for (i = 0; i < 4; i++) {
|
---|
2396 | *p = *s++;
|
---|
2397 | p += incr;
|
---|
2398 | }
|
---|
2399 | return 0;
|
---|
2400 | }
|
---|
2401 | Overflow:
|
---|
2402 | PyErr_SetString(PyExc_OverflowError,
|
---|
2403 | "float too large to pack with f format");
|
---|
2404 | return -1;
|
---|
2405 | }
|
---|
2406 |
|
---|
2407 | int
|
---|
2408 | _PyFloat_Pack8(double x, unsigned char *p, int le)
|
---|
2409 | {
|
---|
2410 | if (double_format == unknown_format) {
|
---|
2411 | unsigned char sign;
|
---|
2412 | int e;
|
---|
2413 | double f;
|
---|
2414 | unsigned int fhi, flo;
|
---|
2415 | int incr = 1;
|
---|
2416 |
|
---|
2417 | if (le) {
|
---|
2418 | p += 7;
|
---|
2419 | incr = -1;
|
---|
2420 | }
|
---|
2421 |
|
---|
2422 | if (x < 0) {
|
---|
2423 | sign = 1;
|
---|
2424 | x = -x;
|
---|
2425 | }
|
---|
2426 | else
|
---|
2427 | sign = 0;
|
---|
2428 |
|
---|
2429 | f = frexp(x, &e);
|
---|
2430 |
|
---|
2431 | /* Normalize f to be in the range [1.0, 2.0) */
|
---|
2432 | if (0.5 <= f && f < 1.0) {
|
---|
2433 | f *= 2.0;
|
---|
2434 | e--;
|
---|
2435 | }
|
---|
2436 | else if (f == 0.0)
|
---|
2437 | e = 0;
|
---|
2438 | else {
|
---|
2439 | PyErr_SetString(PyExc_SystemError,
|
---|
2440 | "frexp() result out of range");
|
---|
2441 | return -1;
|
---|
2442 | }
|
---|
2443 |
|
---|
2444 | if (e >= 1024)
|
---|
2445 | goto Overflow;
|
---|
2446 | else if (e < -1022) {
|
---|
2447 | /* Gradual underflow */
|
---|
2448 | f = ldexp(f, 1022 + e);
|
---|
2449 | e = 0;
|
---|
2450 | }
|
---|
2451 | else if (!(e == 0 && f == 0.0)) {
|
---|
2452 | e += 1023;
|
---|
2453 | f -= 1.0; /* Get rid of leading 1 */
|
---|
2454 | }
|
---|
2455 |
|
---|
2456 | /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
|
---|
2457 | f *= 268435456.0; /* 2**28 */
|
---|
2458 | fhi = (unsigned int)f; /* Truncate */
|
---|
2459 | assert(fhi < 268435456);
|
---|
2460 |
|
---|
2461 | f -= (double)fhi;
|
---|
2462 | f *= 16777216.0; /* 2**24 */
|
---|
2463 | flo = (unsigned int)(f + 0.5); /* Round */
|
---|
2464 | assert(flo <= 16777216);
|
---|
2465 | if (flo >> 24) {
|
---|
2466 | /* The carry propagated out of a string of 24 1 bits. */
|
---|
2467 | flo = 0;
|
---|
2468 | ++fhi;
|
---|
2469 | if (fhi >> 28) {
|
---|
2470 | /* And it also progagated out of the next 28 bits. */
|
---|
2471 | fhi = 0;
|
---|
2472 | ++e;
|
---|
2473 | if (e >= 2047)
|
---|
2474 | goto Overflow;
|
---|
2475 | }
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 | /* First byte */
|
---|
2479 | *p = (sign << 7) | (e >> 4);
|
---|
2480 | p += incr;
|
---|
2481 |
|
---|
2482 | /* Second byte */
|
---|
2483 | *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
|
---|
2484 | p += incr;
|
---|
2485 |
|
---|
2486 | /* Third byte */
|
---|
2487 | *p = (fhi >> 16) & 0xFF;
|
---|
2488 | p += incr;
|
---|
2489 |
|
---|
2490 | /* Fourth byte */
|
---|
2491 | *p = (fhi >> 8) & 0xFF;
|
---|
2492 | p += incr;
|
---|
2493 |
|
---|
2494 | /* Fifth byte */
|
---|
2495 | *p = fhi & 0xFF;
|
---|
2496 | p += incr;
|
---|
2497 |
|
---|
2498 | /* Sixth byte */
|
---|
2499 | *p = (flo >> 16) & 0xFF;
|
---|
2500 | p += incr;
|
---|
2501 |
|
---|
2502 | /* Seventh byte */
|
---|
2503 | *p = (flo >> 8) & 0xFF;
|
---|
2504 | p += incr;
|
---|
2505 |
|
---|
2506 | /* Eighth byte */
|
---|
2507 | *p = flo & 0xFF;
|
---|
2508 | /* p += incr; Unneeded (for now) */
|
---|
2509 |
|
---|
2510 | /* Done */
|
---|
2511 | return 0;
|
---|
2512 |
|
---|
2513 | Overflow:
|
---|
2514 | PyErr_SetString(PyExc_OverflowError,
|
---|
2515 | "float too large to pack with d format");
|
---|
2516 | return -1;
|
---|
2517 | }
|
---|
2518 | else {
|
---|
2519 | const char *s = (char*)&x;
|
---|
2520 | int i, incr = 1;
|
---|
2521 |
|
---|
2522 | if ((double_format == ieee_little_endian_format && !le)
|
---|
2523 | || (double_format == ieee_big_endian_format && le)) {
|
---|
2524 | p += 7;
|
---|
2525 | incr = -1;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 | for (i = 0; i < 8; i++) {
|
---|
2529 | *p = *s++;
|
---|
2530 | p += incr;
|
---|
2531 | }
|
---|
2532 | return 0;
|
---|
2533 | }
|
---|
2534 | }
|
---|
2535 |
|
---|
2536 | double
|
---|
2537 | _PyFloat_Unpack4(const unsigned char *p, int le)
|
---|
2538 | {
|
---|
2539 | if (float_format == unknown_format) {
|
---|
2540 | unsigned char sign;
|
---|
2541 | int e;
|
---|
2542 | unsigned int f;
|
---|
2543 | double x;
|
---|
2544 | int incr = 1;
|
---|
2545 |
|
---|
2546 | if (le) {
|
---|
2547 | p += 3;
|
---|
2548 | incr = -1;
|
---|
2549 | }
|
---|
2550 |
|
---|
2551 | /* First byte */
|
---|
2552 | sign = (*p >> 7) & 1;
|
---|
2553 | e = (*p & 0x7F) << 1;
|
---|
2554 | p += incr;
|
---|
2555 |
|
---|
2556 | /* Second byte */
|
---|
2557 | e |= (*p >> 7) & 1;
|
---|
2558 | f = (*p & 0x7F) << 16;
|
---|
2559 | p += incr;
|
---|
2560 |
|
---|
2561 | if (e == 255) {
|
---|
2562 | PyErr_SetString(
|
---|
2563 | PyExc_ValueError,
|
---|
2564 | "can't unpack IEEE 754 special value "
|
---|
2565 | "on non-IEEE platform");
|
---|
2566 | return -1;
|
---|
2567 | }
|
---|
2568 |
|
---|
2569 | /* Third byte */
|
---|
2570 | f |= *p << 8;
|
---|
2571 | p += incr;
|
---|
2572 |
|
---|
2573 | /* Fourth byte */
|
---|
2574 | f |= *p;
|
---|
2575 |
|
---|
2576 | x = (double)f / 8388608.0;
|
---|
2577 |
|
---|
2578 | /* XXX This sadly ignores Inf/NaN issues */
|
---|
2579 | if (e == 0)
|
---|
2580 | e = -126;
|
---|
2581 | else {
|
---|
2582 | x += 1.0;
|
---|
2583 | e -= 127;
|
---|
2584 | }
|
---|
2585 | x = ldexp(x, e);
|
---|
2586 |
|
---|
2587 | if (sign)
|
---|
2588 | x = -x;
|
---|
2589 |
|
---|
2590 | return x;
|
---|
2591 | }
|
---|
2592 | else {
|
---|
2593 | float x;
|
---|
2594 |
|
---|
2595 | if ((float_format == ieee_little_endian_format && !le)
|
---|
2596 | || (float_format == ieee_big_endian_format && le)) {
|
---|
2597 | char buf[4];
|
---|
2598 | char *d = &buf[3];
|
---|
2599 | int i;
|
---|
2600 |
|
---|
2601 | for (i = 0; i < 4; i++) {
|
---|
2602 | *d-- = *p++;
|
---|
2603 | }
|
---|
2604 | memcpy(&x, buf, 4);
|
---|
2605 | }
|
---|
2606 | else {
|
---|
2607 | memcpy(&x, p, 4);
|
---|
2608 | }
|
---|
2609 |
|
---|
2610 | return x;
|
---|
2611 | }
|
---|
2612 | }
|
---|
2613 |
|
---|
2614 | double
|
---|
2615 | _PyFloat_Unpack8(const unsigned char *p, int le)
|
---|
2616 | {
|
---|
2617 | if (double_format == unknown_format) {
|
---|
2618 | unsigned char sign;
|
---|
2619 | int e;
|
---|
2620 | unsigned int fhi, flo;
|
---|
2621 | double x;
|
---|
2622 | int incr = 1;
|
---|
2623 |
|
---|
2624 | if (le) {
|
---|
2625 | p += 7;
|
---|
2626 | incr = -1;
|
---|
2627 | }
|
---|
2628 |
|
---|
2629 | /* First byte */
|
---|
2630 | sign = (*p >> 7) & 1;
|
---|
2631 | e = (*p & 0x7F) << 4;
|
---|
2632 |
|
---|
2633 | p += incr;
|
---|
2634 |
|
---|
2635 | /* Second byte */
|
---|
2636 | e |= (*p >> 4) & 0xF;
|
---|
2637 | fhi = (*p & 0xF) << 24;
|
---|
2638 | p += incr;
|
---|
2639 |
|
---|
2640 | if (e == 2047) {
|
---|
2641 | PyErr_SetString(
|
---|
2642 | PyExc_ValueError,
|
---|
2643 | "can't unpack IEEE 754 special value "
|
---|
2644 | "on non-IEEE platform");
|
---|
2645 | return -1.0;
|
---|
2646 | }
|
---|
2647 |
|
---|
2648 | /* Third byte */
|
---|
2649 | fhi |= *p << 16;
|
---|
2650 | p += incr;
|
---|
2651 |
|
---|
2652 | /* Fourth byte */
|
---|
2653 | fhi |= *p << 8;
|
---|
2654 | p += incr;
|
---|
2655 |
|
---|
2656 | /* Fifth byte */
|
---|
2657 | fhi |= *p;
|
---|
2658 | p += incr;
|
---|
2659 |
|
---|
2660 | /* Sixth byte */
|
---|
2661 | flo = *p << 16;
|
---|
2662 | p += incr;
|
---|
2663 |
|
---|
2664 | /* Seventh byte */
|
---|
2665 | flo |= *p << 8;
|
---|
2666 | p += incr;
|
---|
2667 |
|
---|
2668 | /* Eighth byte */
|
---|
2669 | flo |= *p;
|
---|
2670 |
|
---|
2671 | x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
|
---|
2672 | x /= 268435456.0; /* 2**28 */
|
---|
2673 |
|
---|
2674 | if (e == 0)
|
---|
2675 | e = -1022;
|
---|
2676 | else {
|
---|
2677 | x += 1.0;
|
---|
2678 | e -= 1023;
|
---|
2679 | }
|
---|
2680 | x = ldexp(x, e);
|
---|
2681 |
|
---|
2682 | if (sign)
|
---|
2683 | x = -x;
|
---|
2684 |
|
---|
2685 | return x;
|
---|
2686 | }
|
---|
2687 | else {
|
---|
2688 | double x;
|
---|
2689 |
|
---|
2690 | if ((double_format == ieee_little_endian_format && !le)
|
---|
2691 | || (double_format == ieee_big_endian_format && le)) {
|
---|
2692 | char buf[8];
|
---|
2693 | char *d = &buf[7];
|
---|
2694 | int i;
|
---|
2695 |
|
---|
2696 | for (i = 0; i < 8; i++) {
|
---|
2697 | *d-- = *p++;
|
---|
2698 | }
|
---|
2699 | memcpy(&x, buf, 8);
|
---|
2700 | }
|
---|
2701 | else {
|
---|
2702 | memcpy(&x, p, 8);
|
---|
2703 | }
|
---|
2704 |
|
---|
2705 | return x;
|
---|
2706 | }
|
---|
2707 | }
|
---|