1 | /* Math module -- standard C math library functions, pi and e */
|
---|
2 |
|
---|
3 | /* Here are some comments from Tim Peters, extracted from the
|
---|
4 | discussion attached to http://bugs.python.org/issue1640. They
|
---|
5 | describe the general aims of the math module with respect to
|
---|
6 | special values, IEEE-754 floating-point exceptions, and Python
|
---|
7 | exceptions.
|
---|
8 |
|
---|
9 | These are the "spirit of 754" rules:
|
---|
10 |
|
---|
11 | 1. If the mathematical result is a real number, but of magnitude too
|
---|
12 | large to approximate by a machine float, overflow is signaled and the
|
---|
13 | result is an infinity (with the appropriate sign).
|
---|
14 |
|
---|
15 | 2. If the mathematical result is a real number, but of magnitude too
|
---|
16 | small to approximate by a machine float, underflow is signaled and the
|
---|
17 | result is a zero (with the appropriate sign).
|
---|
18 |
|
---|
19 | 3. At a singularity (a value x such that the limit of f(y) as y
|
---|
20 | approaches x exists and is an infinity), "divide by zero" is signaled
|
---|
21 | and the result is an infinity (with the appropriate sign). This is
|
---|
22 | complicated a little by that the left-side and right-side limits may
|
---|
23 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
|
---|
24 | from the positive or negative directions. In that specific case, the
|
---|
25 | sign of the zero determines the result of 1/0.
|
---|
26 |
|
---|
27 | 4. At a point where a function has no defined result in the extended
|
---|
28 | reals (i.e., the reals plus an infinity or two), invalid operation is
|
---|
29 | signaled and a NaN is returned.
|
---|
30 |
|
---|
31 | And these are what Python has historically /tried/ to do (but not
|
---|
32 | always successfully, as platform libm behavior varies a lot):
|
---|
33 |
|
---|
34 | For #1, raise OverflowError.
|
---|
35 |
|
---|
36 | For #2, return a zero (with the appropriate sign if that happens by
|
---|
37 | accident ;-)).
|
---|
38 |
|
---|
39 | For #3 and #4, raise ValueError. It may have made sense to raise
|
---|
40 | Python's ZeroDivisionError in #3, but historically that's only been
|
---|
41 | raised for division by zero and mod by zero.
|
---|
42 |
|
---|
43 | */
|
---|
44 |
|
---|
45 | /*
|
---|
46 | In general, on an IEEE-754 platform the aim is to follow the C99
|
---|
47 | standard, including Annex 'F', whenever possible. Where the
|
---|
48 | standard recommends raising the 'divide-by-zero' or 'invalid'
|
---|
49 | floating-point exceptions, Python should raise a ValueError. Where
|
---|
50 | the standard recommends raising 'overflow', Python should raise an
|
---|
51 | OverflowError. In all other circumstances a value should be
|
---|
52 | returned.
|
---|
53 | */
|
---|
54 |
|
---|
55 | #include "Python.h"
|
---|
56 | #include "_math.h"
|
---|
57 |
|
---|
58 | #ifdef _OSF_SOURCE
|
---|
59 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
---|
60 | extern double copysign(double, double);
|
---|
61 | #endif
|
---|
62 |
|
---|
63 | /*
|
---|
64 | sin(pi*x), giving accurate results for all finite x (especially x
|
---|
65 | integral or close to an integer). This is here for use in the
|
---|
66 | reflection formula for the gamma function. It conforms to IEEE
|
---|
67 | 754-2008 for finite arguments, but not for infinities or nans.
|
---|
68 | */
|
---|
69 |
|
---|
70 | static const double pi = 3.141592653589793238462643383279502884197;
|
---|
71 | static const double sqrtpi = 1.772453850905516027298167483341145182798;
|
---|
72 |
|
---|
73 | static double
|
---|
74 | sinpi(double x)
|
---|
75 | {
|
---|
76 | double y, r;
|
---|
77 | int n;
|
---|
78 | /* this function should only ever be called for finite arguments */
|
---|
79 | assert(Py_IS_FINITE(x));
|
---|
80 | y = fmod(fabs(x), 2.0);
|
---|
81 | n = (int)round(2.0*y);
|
---|
82 | assert(0 <= n && n <= 4);
|
---|
83 | switch (n) {
|
---|
84 | case 0:
|
---|
85 | r = sin(pi*y);
|
---|
86 | break;
|
---|
87 | case 1:
|
---|
88 | r = cos(pi*(y-0.5));
|
---|
89 | break;
|
---|
90 | case 2:
|
---|
91 | /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
|
---|
92 | -0.0 instead of 0.0 when y == 1.0. */
|
---|
93 | r = sin(pi*(1.0-y));
|
---|
94 | break;
|
---|
95 | case 3:
|
---|
96 | r = -cos(pi*(y-1.5));
|
---|
97 | break;
|
---|
98 | case 4:
|
---|
99 | r = sin(pi*(y-2.0));
|
---|
100 | break;
|
---|
101 | default:
|
---|
102 | assert(0); /* should never get here */
|
---|
103 | r = -1.23e200; /* silence gcc warning */
|
---|
104 | }
|
---|
105 | return copysign(1.0, x)*r;
|
---|
106 | }
|
---|
107 |
|
---|
108 | /* Implementation of the real gamma function. In extensive but non-exhaustive
|
---|
109 | random tests, this function proved accurate to within <= 10 ulps across the
|
---|
110 | entire float domain. Note that accuracy may depend on the quality of the
|
---|
111 | system math functions, the pow function in particular. Special cases
|
---|
112 | follow C99 annex F. The parameters and method are tailored to platforms
|
---|
113 | whose double format is the IEEE 754 binary64 format.
|
---|
114 |
|
---|
115 | Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
|
---|
116 | and g=6.024680040776729583740234375; these parameters are amongst those
|
---|
117 | used by the Boost library. Following Boost (again), we re-express the
|
---|
118 | Lanczos sum as a rational function, and compute it that way. The
|
---|
119 | coefficients below were computed independently using MPFR, and have been
|
---|
120 | double-checked against the coefficients in the Boost source code.
|
---|
121 |
|
---|
122 | For x < 0.0 we use the reflection formula.
|
---|
123 |
|
---|
124 | There's one minor tweak that deserves explanation: Lanczos' formula for
|
---|
125 | Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
|
---|
126 | values, x+g-0.5 can be represented exactly. However, in cases where it
|
---|
127 | can't be represented exactly the small error in x+g-0.5 can be magnified
|
---|
128 | significantly by the pow and exp calls, especially for large x. A cheap
|
---|
129 | correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
|
---|
130 | involved in the computation of x+g-0.5 (that is, e = computed value of
|
---|
131 | x+g-0.5 - exact value of x+g-0.5). Here's the proof:
|
---|
132 |
|
---|
133 | Correction factor
|
---|
134 | -----------------
|
---|
135 | Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
|
---|
136 | double, and e is tiny. Then:
|
---|
137 |
|
---|
138 | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
|
---|
139 | = pow(y, x-0.5)/exp(y) * C,
|
---|
140 |
|
---|
141 | where the correction_factor C is given by
|
---|
142 |
|
---|
143 | C = pow(1-e/y, x-0.5) * exp(e)
|
---|
144 |
|
---|
145 | Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
|
---|
146 |
|
---|
147 | C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
|
---|
148 |
|
---|
149 | But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
|
---|
150 |
|
---|
151 | pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
|
---|
152 |
|
---|
153 | Note that for accuracy, when computing r*C it's better to do
|
---|
154 |
|
---|
155 | r + e*g/y*r;
|
---|
156 |
|
---|
157 | than
|
---|
158 |
|
---|
159 | r * (1 + e*g/y);
|
---|
160 |
|
---|
161 | since the addition in the latter throws away most of the bits of
|
---|
162 | information in e*g/y.
|
---|
163 | */
|
---|
164 |
|
---|
165 | #define LANCZOS_N 13
|
---|
166 | static const double lanczos_g = 6.024680040776729583740234375;
|
---|
167 | static const double lanczos_g_minus_half = 5.524680040776729583740234375;
|
---|
168 | static const double lanczos_num_coeffs[LANCZOS_N] = {
|
---|
169 | 23531376880.410759688572007674451636754734846804940,
|
---|
170 | 42919803642.649098768957899047001988850926355848959,
|
---|
171 | 35711959237.355668049440185451547166705960488635843,
|
---|
172 | 17921034426.037209699919755754458931112671403265390,
|
---|
173 | 6039542586.3520280050642916443072979210699388420708,
|
---|
174 | 1439720407.3117216736632230727949123939715485786772,
|
---|
175 | 248874557.86205415651146038641322942321632125127801,
|
---|
176 | 31426415.585400194380614231628318205362874684987640,
|
---|
177 | 2876370.6289353724412254090516208496135991145378768,
|
---|
178 | 186056.26539522349504029498971604569928220784236328,
|
---|
179 | 8071.6720023658162106380029022722506138218516325024,
|
---|
180 | 210.82427775157934587250973392071336271166969580291,
|
---|
181 | 2.5066282746310002701649081771338373386264310793408
|
---|
182 | };
|
---|
183 |
|
---|
184 | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
|
---|
185 | static const double lanczos_den_coeffs[LANCZOS_N] = {
|
---|
186 | 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
|
---|
187 | 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
|
---|
188 |
|
---|
189 | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
|
---|
190 | #define NGAMMA_INTEGRAL 23
|
---|
191 | static const double gamma_integral[NGAMMA_INTEGRAL] = {
|
---|
192 | 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
|
---|
193 | 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
|
---|
194 | 1307674368000.0, 20922789888000.0, 355687428096000.0,
|
---|
195 | 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
|
---|
196 | 51090942171709440000.0, 1124000727777607680000.0,
|
---|
197 | };
|
---|
198 |
|
---|
199 | /* Lanczos' sum L_g(x), for positive x */
|
---|
200 |
|
---|
201 | static double
|
---|
202 | lanczos_sum(double x)
|
---|
203 | {
|
---|
204 | double num = 0.0, den = 0.0;
|
---|
205 | int i;
|
---|
206 | assert(x > 0.0);
|
---|
207 | /* evaluate the rational function lanczos_sum(x). For large
|
---|
208 | x, the obvious algorithm risks overflow, so we instead
|
---|
209 | rescale the denominator and numerator of the rational
|
---|
210 | function by x**(1-LANCZOS_N) and treat this as a
|
---|
211 | rational function in 1/x. This also reduces the error for
|
---|
212 | larger x values. The choice of cutoff point (5.0 below) is
|
---|
213 | somewhat arbitrary; in tests, smaller cutoff values than
|
---|
214 | this resulted in lower accuracy. */
|
---|
215 | if (x < 5.0) {
|
---|
216 | for (i = LANCZOS_N; --i >= 0; ) {
|
---|
217 | num = num * x + lanczos_num_coeffs[i];
|
---|
218 | den = den * x + lanczos_den_coeffs[i];
|
---|
219 | }
|
---|
220 | }
|
---|
221 | else {
|
---|
222 | for (i = 0; i < LANCZOS_N; i++) {
|
---|
223 | num = num / x + lanczos_num_coeffs[i];
|
---|
224 | den = den / x + lanczos_den_coeffs[i];
|
---|
225 | }
|
---|
226 | }
|
---|
227 | return num/den;
|
---|
228 | }
|
---|
229 |
|
---|
230 | static double
|
---|
231 | m_tgamma(double x)
|
---|
232 | {
|
---|
233 | double absx, r, y, z, sqrtpow;
|
---|
234 |
|
---|
235 | /* special cases */
|
---|
236 | if (!Py_IS_FINITE(x)) {
|
---|
237 | if (Py_IS_NAN(x) || x > 0.0)
|
---|
238 | return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
|
---|
239 | else {
|
---|
240 | errno = EDOM;
|
---|
241 | return Py_NAN; /* tgamma(-inf) = nan, invalid */
|
---|
242 | }
|
---|
243 | }
|
---|
244 | if (x == 0.0) {
|
---|
245 | errno = EDOM;
|
---|
246 | return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
|
---|
247 | }
|
---|
248 |
|
---|
249 | /* integer arguments */
|
---|
250 | if (x == floor(x)) {
|
---|
251 | if (x < 0.0) {
|
---|
252 | errno = EDOM; /* tgamma(n) = nan, invalid for */
|
---|
253 | return Py_NAN; /* negative integers n */
|
---|
254 | }
|
---|
255 | if (x <= NGAMMA_INTEGRAL)
|
---|
256 | return gamma_integral[(int)x - 1];
|
---|
257 | }
|
---|
258 | absx = fabs(x);
|
---|
259 |
|
---|
260 | /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
|
---|
261 | if (absx < 1e-20) {
|
---|
262 | r = 1.0/x;
|
---|
263 | if (Py_IS_INFINITY(r))
|
---|
264 | errno = ERANGE;
|
---|
265 | return r;
|
---|
266 | }
|
---|
267 |
|
---|
268 | /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
|
---|
269 | x > 200, and underflows to +-0.0 for x < -200, not a negative
|
---|
270 | integer. */
|
---|
271 | if (absx > 200.0) {
|
---|
272 | if (x < 0.0) {
|
---|
273 | return 0.0/sinpi(x);
|
---|
274 | }
|
---|
275 | else {
|
---|
276 | errno = ERANGE;
|
---|
277 | return Py_HUGE_VAL;
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | y = absx + lanczos_g_minus_half;
|
---|
282 | /* compute error in sum */
|
---|
283 | if (absx > lanczos_g_minus_half) {
|
---|
284 | /* note: the correction can be foiled by an optimizing
|
---|
285 | compiler that (incorrectly) thinks that an expression like
|
---|
286 | a + b - a - b can be optimized to 0.0. This shouldn't
|
---|
287 | happen in a standards-conforming compiler. */
|
---|
288 | double q = y - absx;
|
---|
289 | z = q - lanczos_g_minus_half;
|
---|
290 | }
|
---|
291 | else {
|
---|
292 | double q = y - lanczos_g_minus_half;
|
---|
293 | z = q - absx;
|
---|
294 | }
|
---|
295 | z = z * lanczos_g / y;
|
---|
296 | if (x < 0.0) {
|
---|
297 | r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
|
---|
298 | r -= z * r;
|
---|
299 | if (absx < 140.0) {
|
---|
300 | r /= pow(y, absx - 0.5);
|
---|
301 | }
|
---|
302 | else {
|
---|
303 | sqrtpow = pow(y, absx / 2.0 - 0.25);
|
---|
304 | r /= sqrtpow;
|
---|
305 | r /= sqrtpow;
|
---|
306 | }
|
---|
307 | }
|
---|
308 | else {
|
---|
309 | r = lanczos_sum(absx) / exp(y);
|
---|
310 | r += z * r;
|
---|
311 | if (absx < 140.0) {
|
---|
312 | r *= pow(y, absx - 0.5);
|
---|
313 | }
|
---|
314 | else {
|
---|
315 | sqrtpow = pow(y, absx / 2.0 - 0.25);
|
---|
316 | r *= sqrtpow;
|
---|
317 | r *= sqrtpow;
|
---|
318 | }
|
---|
319 | }
|
---|
320 | if (Py_IS_INFINITY(r))
|
---|
321 | errno = ERANGE;
|
---|
322 | return r;
|
---|
323 | }
|
---|
324 |
|
---|
325 | /*
|
---|
326 | lgamma: natural log of the absolute value of the Gamma function.
|
---|
327 | For large arguments, Lanczos' formula works extremely well here.
|
---|
328 | */
|
---|
329 |
|
---|
330 | static double
|
---|
331 | m_lgamma(double x)
|
---|
332 | {
|
---|
333 | double r, absx;
|
---|
334 |
|
---|
335 | /* special cases */
|
---|
336 | if (!Py_IS_FINITE(x)) {
|
---|
337 | if (Py_IS_NAN(x))
|
---|
338 | return x; /* lgamma(nan) = nan */
|
---|
339 | else
|
---|
340 | return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
|
---|
341 | }
|
---|
342 |
|
---|
343 | /* integer arguments */
|
---|
344 | if (x == floor(x) && x <= 2.0) {
|
---|
345 | if (x <= 0.0) {
|
---|
346 | errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
|
---|
347 | return Py_HUGE_VAL; /* integers n <= 0 */
|
---|
348 | }
|
---|
349 | else {
|
---|
350 | return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 | absx = fabs(x);
|
---|
355 | /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
|
---|
356 | if (absx < 1e-20)
|
---|
357 | return -log(absx);
|
---|
358 |
|
---|
359 | /* Lanczos' formula */
|
---|
360 | if (x > 0.0) {
|
---|
361 | /* we could save a fraction of a ulp in accuracy by having a
|
---|
362 | second set of numerator coefficients for lanczos_sum that
|
---|
363 | absorbed the exp(-lanczos_g) term, and throwing out the
|
---|
364 | lanczos_g subtraction below; it's probably not worth it. */
|
---|
365 | r = log(lanczos_sum(x)) - lanczos_g +
|
---|
366 | (x-0.5)*(log(x+lanczos_g-0.5)-1);
|
---|
367 | }
|
---|
368 | else {
|
---|
369 | r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
|
---|
370 | (log(lanczos_sum(absx)) - lanczos_g +
|
---|
371 | (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
|
---|
372 | }
|
---|
373 | if (Py_IS_INFINITY(r))
|
---|
374 | errno = ERANGE;
|
---|
375 | return r;
|
---|
376 | }
|
---|
377 |
|
---|
378 | /*
|
---|
379 | Implementations of the error function erf(x) and the complementary error
|
---|
380 | function erfc(x).
|
---|
381 |
|
---|
382 | Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
|
---|
383 | Cambridge University Press), we use a series approximation for erf for
|
---|
384 | small x, and a continued fraction approximation for erfc(x) for larger x;
|
---|
385 | combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
|
---|
386 | this gives us erf(x) and erfc(x) for all x.
|
---|
387 |
|
---|
388 | The series expansion used is:
|
---|
389 |
|
---|
390 | erf(x) = x*exp(-x*x)/sqrt(pi) * [
|
---|
391 | 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
|
---|
392 |
|
---|
393 | The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
|
---|
394 | This series converges well for smallish x, but slowly for larger x.
|
---|
395 |
|
---|
396 | The continued fraction expansion used is:
|
---|
397 |
|
---|
398 | erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
|
---|
399 | 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
|
---|
400 |
|
---|
401 | after the first term, the general term has the form:
|
---|
402 |
|
---|
403 | k*(k-0.5)/(2*k+0.5 + x**2 - ...).
|
---|
404 |
|
---|
405 | This expansion converges fast for larger x, but convergence becomes
|
---|
406 | infinitely slow as x approaches 0.0. The (somewhat naive) continued
|
---|
407 | fraction evaluation algorithm used below also risks overflow for large x;
|
---|
408 | but for large x, erfc(x) == 0.0 to within machine precision. (For
|
---|
409 | example, erfc(30.0) is approximately 2.56e-393).
|
---|
410 |
|
---|
411 | Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
|
---|
412 | continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
|
---|
413 | ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
|
---|
414 | numbers of terms to use for the relevant expansions. */
|
---|
415 |
|
---|
416 | #define ERF_SERIES_CUTOFF 1.5
|
---|
417 | #define ERF_SERIES_TERMS 25
|
---|
418 | #define ERFC_CONTFRAC_CUTOFF 30.0
|
---|
419 | #define ERFC_CONTFRAC_TERMS 50
|
---|
420 |
|
---|
421 | /*
|
---|
422 | Error function, via power series.
|
---|
423 |
|
---|
424 | Given a finite float x, return an approximation to erf(x).
|
---|
425 | Converges reasonably fast for small x.
|
---|
426 | */
|
---|
427 |
|
---|
428 | static double
|
---|
429 | m_erf_series(double x)
|
---|
430 | {
|
---|
431 | double x2, acc, fk, result;
|
---|
432 | int i, saved_errno;
|
---|
433 |
|
---|
434 | x2 = x * x;
|
---|
435 | acc = 0.0;
|
---|
436 | fk = (double)ERF_SERIES_TERMS + 0.5;
|
---|
437 | for (i = 0; i < ERF_SERIES_TERMS; i++) {
|
---|
438 | acc = 2.0 + x2 * acc / fk;
|
---|
439 | fk -= 1.0;
|
---|
440 | }
|
---|
441 | /* Make sure the exp call doesn't affect errno;
|
---|
442 | see m_erfc_contfrac for more. */
|
---|
443 | saved_errno = errno;
|
---|
444 | result = acc * x * exp(-x2) / sqrtpi;
|
---|
445 | errno = saved_errno;
|
---|
446 | return result;
|
---|
447 | }
|
---|
448 |
|
---|
449 | /*
|
---|
450 | Complementary error function, via continued fraction expansion.
|
---|
451 |
|
---|
452 | Given a positive float x, return an approximation to erfc(x). Converges
|
---|
453 | reasonably fast for x large (say, x > 2.0), and should be safe from
|
---|
454 | overflow if x and nterms are not too large. On an IEEE 754 machine, with x
|
---|
455 | <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
|
---|
456 | than the smallest representable nonzero float. */
|
---|
457 |
|
---|
458 | static double
|
---|
459 | m_erfc_contfrac(double x)
|
---|
460 | {
|
---|
461 | double x2, a, da, p, p_last, q, q_last, b, result;
|
---|
462 | int i, saved_errno;
|
---|
463 |
|
---|
464 | if (x >= ERFC_CONTFRAC_CUTOFF)
|
---|
465 | return 0.0;
|
---|
466 |
|
---|
467 | x2 = x*x;
|
---|
468 | a = 0.0;
|
---|
469 | da = 0.5;
|
---|
470 | p = 1.0; p_last = 0.0;
|
---|
471 | q = da + x2; q_last = 1.0;
|
---|
472 | for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
|
---|
473 | double temp;
|
---|
474 | a += da;
|
---|
475 | da += 2.0;
|
---|
476 | b = da + x2;
|
---|
477 | temp = p; p = b*p - a*p_last; p_last = temp;
|
---|
478 | temp = q; q = b*q - a*q_last; q_last = temp;
|
---|
479 | }
|
---|
480 | /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
|
---|
481 | save the current errno value so that we can restore it later. */
|
---|
482 | saved_errno = errno;
|
---|
483 | result = p / q * x * exp(-x2) / sqrtpi;
|
---|
484 | errno = saved_errno;
|
---|
485 | return result;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /* Error function erf(x), for general x */
|
---|
489 |
|
---|
490 | static double
|
---|
491 | m_erf(double x)
|
---|
492 | {
|
---|
493 | double absx, cf;
|
---|
494 |
|
---|
495 | if (Py_IS_NAN(x))
|
---|
496 | return x;
|
---|
497 | absx = fabs(x);
|
---|
498 | if (absx < ERF_SERIES_CUTOFF)
|
---|
499 | return m_erf_series(x);
|
---|
500 | else {
|
---|
501 | cf = m_erfc_contfrac(absx);
|
---|
502 | return x > 0.0 ? 1.0 - cf : cf - 1.0;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | /* Complementary error function erfc(x), for general x. */
|
---|
507 |
|
---|
508 | static double
|
---|
509 | m_erfc(double x)
|
---|
510 | {
|
---|
511 | double absx, cf;
|
---|
512 |
|
---|
513 | if (Py_IS_NAN(x))
|
---|
514 | return x;
|
---|
515 | absx = fabs(x);
|
---|
516 | if (absx < ERF_SERIES_CUTOFF)
|
---|
517 | return 1.0 - m_erf_series(x);
|
---|
518 | else {
|
---|
519 | cf = m_erfc_contfrac(absx);
|
---|
520 | return x > 0.0 ? cf : 2.0 - cf;
|
---|
521 | }
|
---|
522 | }
|
---|
523 |
|
---|
524 | /*
|
---|
525 | wrapper for atan2 that deals directly with special cases before
|
---|
526 | delegating to the platform libm for the remaining cases. This
|
---|
527 | is necessary to get consistent behaviour across platforms.
|
---|
528 | Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
|
---|
529 | always follow C99.
|
---|
530 | */
|
---|
531 |
|
---|
532 | static double
|
---|
533 | m_atan2(double y, double x)
|
---|
534 | {
|
---|
535 | if (Py_IS_NAN(x) || Py_IS_NAN(y))
|
---|
536 | return Py_NAN;
|
---|
537 | if (Py_IS_INFINITY(y)) {
|
---|
538 | if (Py_IS_INFINITY(x)) {
|
---|
539 | if (copysign(1., x) == 1.)
|
---|
540 | /* atan2(+-inf, +inf) == +-pi/4 */
|
---|
541 | return copysign(0.25*Py_MATH_PI, y);
|
---|
542 | else
|
---|
543 | /* atan2(+-inf, -inf) == +-pi*3/4 */
|
---|
544 | return copysign(0.75*Py_MATH_PI, y);
|
---|
545 | }
|
---|
546 | /* atan2(+-inf, x) == +-pi/2 for finite x */
|
---|
547 | return copysign(0.5*Py_MATH_PI, y);
|
---|
548 | }
|
---|
549 | if (Py_IS_INFINITY(x) || y == 0.) {
|
---|
550 | if (copysign(1., x) == 1.)
|
---|
551 | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
---|
552 | return copysign(0., y);
|
---|
553 | else
|
---|
554 | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
---|
555 | return copysign(Py_MATH_PI, y);
|
---|
556 | }
|
---|
557 | return atan2(y, x);
|
---|
558 | }
|
---|
559 |
|
---|
560 | /*
|
---|
561 | Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
|
---|
562 | log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
|
---|
563 | special values directly, passing positive non-special values through to
|
---|
564 | the system log/log10.
|
---|
565 | */
|
---|
566 |
|
---|
567 | static double
|
---|
568 | m_log(double x)
|
---|
569 | {
|
---|
570 | if (Py_IS_FINITE(x)) {
|
---|
571 | if (x > 0.0)
|
---|
572 | return log(x);
|
---|
573 | errno = EDOM;
|
---|
574 | if (x == 0.0)
|
---|
575 | return -Py_HUGE_VAL; /* log(0) = -inf */
|
---|
576 | else
|
---|
577 | return Py_NAN; /* log(-ve) = nan */
|
---|
578 | }
|
---|
579 | else if (Py_IS_NAN(x))
|
---|
580 | return x; /* log(nan) = nan */
|
---|
581 | else if (x > 0.0)
|
---|
582 | return x; /* log(inf) = inf */
|
---|
583 | else {
|
---|
584 | errno = EDOM;
|
---|
585 | return Py_NAN; /* log(-inf) = nan */
|
---|
586 | }
|
---|
587 | }
|
---|
588 |
|
---|
589 | static double
|
---|
590 | m_log10(double x)
|
---|
591 | {
|
---|
592 | if (Py_IS_FINITE(x)) {
|
---|
593 | if (x > 0.0)
|
---|
594 | return log10(x);
|
---|
595 | errno = EDOM;
|
---|
596 | if (x == 0.0)
|
---|
597 | return -Py_HUGE_VAL; /* log10(0) = -inf */
|
---|
598 | else
|
---|
599 | return Py_NAN; /* log10(-ve) = nan */
|
---|
600 | }
|
---|
601 | else if (Py_IS_NAN(x))
|
---|
602 | return x; /* log10(nan) = nan */
|
---|
603 | else if (x > 0.0)
|
---|
604 | return x; /* log10(inf) = inf */
|
---|
605 | else {
|
---|
606 | errno = EDOM;
|
---|
607 | return Py_NAN; /* log10(-inf) = nan */
|
---|
608 | }
|
---|
609 | }
|
---|
610 |
|
---|
611 |
|
---|
612 | /* Call is_error when errno != 0, and where x is the result libm
|
---|
613 | * returned. is_error will usually set up an exception and return
|
---|
614 | * true (1), but may return false (0) without setting up an exception.
|
---|
615 | */
|
---|
616 | static int
|
---|
617 | is_error(double x)
|
---|
618 | {
|
---|
619 | int result = 1; /* presumption of guilt */
|
---|
620 | assert(errno); /* non-zero errno is a precondition for calling */
|
---|
621 | if (errno == EDOM)
|
---|
622 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
623 |
|
---|
624 | else if (errno == ERANGE) {
|
---|
625 | /* ANSI C generally requires libm functions to set ERANGE
|
---|
626 | * on overflow, but also generally *allows* them to set
|
---|
627 | * ERANGE on underflow too. There's no consistency about
|
---|
628 | * the latter across platforms.
|
---|
629 | * Alas, C99 never requires that errno be set.
|
---|
630 | * Here we suppress the underflow errors (libm functions
|
---|
631 | * should return a zero on underflow, and +- HUGE_VAL on
|
---|
632 | * overflow, so testing the result for zero suffices to
|
---|
633 | * distinguish the cases).
|
---|
634 | *
|
---|
635 | * On some platforms (Ubuntu/ia64) it seems that errno can be
|
---|
636 | * set to ERANGE for subnormal results that do *not* underflow
|
---|
637 | * to zero. So to be safe, we'll ignore ERANGE whenever the
|
---|
638 | * function result is less than one in absolute value.
|
---|
639 | */
|
---|
640 | if (fabs(x) < 1.0)
|
---|
641 | result = 0;
|
---|
642 | else
|
---|
643 | PyErr_SetString(PyExc_OverflowError,
|
---|
644 | "math range error");
|
---|
645 | }
|
---|
646 | else
|
---|
647 | /* Unexpected math error */
|
---|
648 | PyErr_SetFromErrno(PyExc_ValueError);
|
---|
649 | return result;
|
---|
650 | }
|
---|
651 |
|
---|
652 | /*
|
---|
653 | math_1 is used to wrap a libm function f that takes a double
|
---|
654 | arguments and returns a double.
|
---|
655 |
|
---|
656 | The error reporting follows these rules, which are designed to do
|
---|
657 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
|
---|
658 | platforms.
|
---|
659 |
|
---|
660 | - a NaN result from non-NaN inputs causes ValueError to be raised
|
---|
661 | - an infinite result from finite inputs causes OverflowError to be
|
---|
662 | raised if can_overflow is 1, or raises ValueError if can_overflow
|
---|
663 | is 0.
|
---|
664 | - if the result is finite and errno == EDOM then ValueError is
|
---|
665 | raised
|
---|
666 | - if the result is finite and nonzero and errno == ERANGE then
|
---|
667 | OverflowError is raised
|
---|
668 |
|
---|
669 | The last rule is used to catch overflow on platforms which follow
|
---|
670 | C89 but for which HUGE_VAL is not an infinity.
|
---|
671 |
|
---|
672 | For the majority of one-argument functions these rules are enough
|
---|
673 | to ensure that Python's functions behave as specified in 'Annex F'
|
---|
674 | of the C99 standard, with the 'invalid' and 'divide-by-zero'
|
---|
675 | floating-point exceptions mapping to Python's ValueError and the
|
---|
676 | 'overflow' floating-point exception mapping to OverflowError.
|
---|
677 | math_1 only works for functions that don't have singularities *and*
|
---|
678 | the possibility of overflow; fortunately, that covers everything we
|
---|
679 | care about right now.
|
---|
680 | */
|
---|
681 |
|
---|
682 | static PyObject *
|
---|
683 | math_1(PyObject *arg, double (*func) (double), int can_overflow)
|
---|
684 | {
|
---|
685 | double x, r;
|
---|
686 | x = PyFloat_AsDouble(arg);
|
---|
687 | if (x == -1.0 && PyErr_Occurred())
|
---|
688 | return NULL;
|
---|
689 | errno = 0;
|
---|
690 | PyFPE_START_PROTECT("in math_1", return 0);
|
---|
691 | r = (*func)(x);
|
---|
692 | PyFPE_END_PROTECT(r);
|
---|
693 | if (Py_IS_NAN(r)) {
|
---|
694 | if (!Py_IS_NAN(x))
|
---|
695 | errno = EDOM;
|
---|
696 | else
|
---|
697 | errno = 0;
|
---|
698 | }
|
---|
699 | else if (Py_IS_INFINITY(r)) {
|
---|
700 | if (Py_IS_FINITE(x))
|
---|
701 | errno = can_overflow ? ERANGE : EDOM;
|
---|
702 | else
|
---|
703 | errno = 0;
|
---|
704 | }
|
---|
705 | if (errno && is_error(r))
|
---|
706 | return NULL;
|
---|
707 | else
|
---|
708 | return PyFloat_FromDouble(r);
|
---|
709 | }
|
---|
710 |
|
---|
711 | /* variant of math_1, to be used when the function being wrapped is known to
|
---|
712 | set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
|
---|
713 | errno = ERANGE for overflow). */
|
---|
714 |
|
---|
715 | static PyObject *
|
---|
716 | math_1a(PyObject *arg, double (*func) (double))
|
---|
717 | {
|
---|
718 | double x, r;
|
---|
719 | x = PyFloat_AsDouble(arg);
|
---|
720 | if (x == -1.0 && PyErr_Occurred())
|
---|
721 | return NULL;
|
---|
722 | errno = 0;
|
---|
723 | PyFPE_START_PROTECT("in math_1a", return 0);
|
---|
724 | r = (*func)(x);
|
---|
725 | PyFPE_END_PROTECT(r);
|
---|
726 | if (errno && is_error(r))
|
---|
727 | return NULL;
|
---|
728 | return PyFloat_FromDouble(r);
|
---|
729 | }
|
---|
730 |
|
---|
731 | /*
|
---|
732 | math_2 is used to wrap a libm function f that takes two double
|
---|
733 | arguments and returns a double.
|
---|
734 |
|
---|
735 | The error reporting follows these rules, which are designed to do
|
---|
736 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
|
---|
737 | platforms.
|
---|
738 |
|
---|
739 | - a NaN result from non-NaN inputs causes ValueError to be raised
|
---|
740 | - an infinite result from finite inputs causes OverflowError to be
|
---|
741 | raised.
|
---|
742 | - if the result is finite and errno == EDOM then ValueError is
|
---|
743 | raised
|
---|
744 | - if the result is finite and nonzero and errno == ERANGE then
|
---|
745 | OverflowError is raised
|
---|
746 |
|
---|
747 | The last rule is used to catch overflow on platforms which follow
|
---|
748 | C89 but for which HUGE_VAL is not an infinity.
|
---|
749 |
|
---|
750 | For most two-argument functions (copysign, fmod, hypot, atan2)
|
---|
751 | these rules are enough to ensure that Python's functions behave as
|
---|
752 | specified in 'Annex F' of the C99 standard, with the 'invalid' and
|
---|
753 | 'divide-by-zero' floating-point exceptions mapping to Python's
|
---|
754 | ValueError and the 'overflow' floating-point exception mapping to
|
---|
755 | OverflowError.
|
---|
756 | */
|
---|
757 |
|
---|
758 | static PyObject *
|
---|
759 | math_2(PyObject *args, double (*func) (double, double), char *funcname)
|
---|
760 | {
|
---|
761 | PyObject *ox, *oy;
|
---|
762 | double x, y, r;
|
---|
763 | if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
|
---|
764 | return NULL;
|
---|
765 | x = PyFloat_AsDouble(ox);
|
---|
766 | y = PyFloat_AsDouble(oy);
|
---|
767 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
768 | return NULL;
|
---|
769 | errno = 0;
|
---|
770 | PyFPE_START_PROTECT("in math_2", return 0);
|
---|
771 | r = (*func)(x, y);
|
---|
772 | PyFPE_END_PROTECT(r);
|
---|
773 | if (Py_IS_NAN(r)) {
|
---|
774 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
775 | errno = EDOM;
|
---|
776 | else
|
---|
777 | errno = 0;
|
---|
778 | }
|
---|
779 | else if (Py_IS_INFINITY(r)) {
|
---|
780 | if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
|
---|
781 | errno = ERANGE;
|
---|
782 | else
|
---|
783 | errno = 0;
|
---|
784 | }
|
---|
785 | if (errno && is_error(r))
|
---|
786 | return NULL;
|
---|
787 | else
|
---|
788 | return PyFloat_FromDouble(r);
|
---|
789 | }
|
---|
790 |
|
---|
791 | #define FUNC1(funcname, func, can_overflow, docstring) \
|
---|
792 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
---|
793 | return math_1(args, func, can_overflow); \
|
---|
794 | }\
|
---|
795 | PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
---|
796 |
|
---|
797 | #define FUNC1A(funcname, func, docstring) \
|
---|
798 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
---|
799 | return math_1a(args, func); \
|
---|
800 | }\
|
---|
801 | PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
---|
802 |
|
---|
803 | #define FUNC2(funcname, func, docstring) \
|
---|
804 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
---|
805 | return math_2(args, func, #funcname); \
|
---|
806 | }\
|
---|
807 | PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
---|
808 |
|
---|
809 | FUNC1(acos, acos, 0,
|
---|
810 | "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
|
---|
811 | FUNC1(acosh, m_acosh, 0,
|
---|
812 | "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
|
---|
813 | FUNC1(asin, asin, 0,
|
---|
814 | "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
|
---|
815 | FUNC1(asinh, m_asinh, 0,
|
---|
816 | "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
|
---|
817 | FUNC1(atan, atan, 0,
|
---|
818 | "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
|
---|
819 | FUNC2(atan2, m_atan2,
|
---|
820 | "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
|
---|
821 | "Unlike atan(y/x), the signs of both x and y are considered.")
|
---|
822 | FUNC1(atanh, m_atanh, 0,
|
---|
823 | "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
|
---|
824 | FUNC1(ceil, ceil, 0,
|
---|
825 | "ceil(x)\n\nReturn the ceiling of x as a float.\n"
|
---|
826 | "This is the smallest integral value >= x.")
|
---|
827 | FUNC2(copysign, copysign,
|
---|
828 | "copysign(x, y)\n\nReturn x with the sign of y.")
|
---|
829 | FUNC1(cos, cos, 0,
|
---|
830 | "cos(x)\n\nReturn the cosine of x (measured in radians).")
|
---|
831 | FUNC1(cosh, cosh, 1,
|
---|
832 | "cosh(x)\n\nReturn the hyperbolic cosine of x.")
|
---|
833 | FUNC1A(erf, m_erf,
|
---|
834 | "erf(x)\n\nError function at x.")
|
---|
835 | FUNC1A(erfc, m_erfc,
|
---|
836 | "erfc(x)\n\nComplementary error function at x.")
|
---|
837 | FUNC1(exp, exp, 1,
|
---|
838 | "exp(x)\n\nReturn e raised to the power of x.")
|
---|
839 | FUNC1(expm1, m_expm1, 1,
|
---|
840 | "expm1(x)\n\nReturn exp(x)-1.\n"
|
---|
841 | "This function avoids the loss of precision involved in the direct "
|
---|
842 | "evaluation of exp(x)-1 for small x.")
|
---|
843 | FUNC1(fabs, fabs, 0,
|
---|
844 | "fabs(x)\n\nReturn the absolute value of the float x.")
|
---|
845 | FUNC1(floor, floor, 0,
|
---|
846 | "floor(x)\n\nReturn the floor of x as a float.\n"
|
---|
847 | "This is the largest integral value <= x.")
|
---|
848 | FUNC1A(gamma, m_tgamma,
|
---|
849 | "gamma(x)\n\nGamma function at x.")
|
---|
850 | FUNC1A(lgamma, m_lgamma,
|
---|
851 | "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
|
---|
852 | FUNC1(log1p, m_log1p, 1,
|
---|
853 | "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
|
---|
854 | "The result is computed in a way which is accurate for x near zero.")
|
---|
855 | FUNC1(sin, sin, 0,
|
---|
856 | "sin(x)\n\nReturn the sine of x (measured in radians).")
|
---|
857 | FUNC1(sinh, sinh, 1,
|
---|
858 | "sinh(x)\n\nReturn the hyperbolic sine of x.")
|
---|
859 | FUNC1(sqrt, sqrt, 0,
|
---|
860 | "sqrt(x)\n\nReturn the square root of x.")
|
---|
861 | FUNC1(tan, tan, 0,
|
---|
862 | "tan(x)\n\nReturn the tangent of x (measured in radians).")
|
---|
863 | FUNC1(tanh, tanh, 0,
|
---|
864 | "tanh(x)\n\nReturn the hyperbolic tangent of x.")
|
---|
865 |
|
---|
866 | /* Precision summation function as msum() by Raymond Hettinger in
|
---|
867 | <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
---|
868 | enhanced with the exact partials sum and roundoff from Mark
|
---|
869 | Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
---|
870 | See those links for more details, proofs and other references.
|
---|
871 |
|
---|
872 | Note 1: IEEE 754R floating point semantics are assumed,
|
---|
873 | but the current implementation does not re-establish special
|
---|
874 | value semantics across iterations (i.e. handling -Inf + Inf).
|
---|
875 |
|
---|
876 | Note 2: No provision is made for intermediate overflow handling;
|
---|
877 | therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
|
---|
878 | sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
|
---|
879 | overflow of the first partial sum.
|
---|
880 |
|
---|
881 | Note 3: The intermediate values lo, yr, and hi are declared volatile so
|
---|
882 | aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
|
---|
883 | Also, the volatile declaration forces the values to be stored in memory as
|
---|
884 | regular doubles instead of extended long precision (80-bit) values. This
|
---|
885 | prevents double rounding because any addition or subtraction of two doubles
|
---|
886 | can be resolved exactly into double-sized hi and lo values. As long as the
|
---|
887 | hi value gets forced into a double before yr and lo are computed, the extra
|
---|
888 | bits in downstream extended precision operations (x87 for example) will be
|
---|
889 | exactly zero and therefore can be losslessly stored back into a double,
|
---|
890 | thereby preventing double rounding.
|
---|
891 |
|
---|
892 | Note 4: A similar implementation is in Modules/cmathmodule.c.
|
---|
893 | Be sure to update both when making changes.
|
---|
894 |
|
---|
895 | Note 5: The signature of math.fsum() differs from __builtin__.sum()
|
---|
896 | because the start argument doesn't make sense in the context of
|
---|
897 | accurate summation. Since the partials table is collapsed before
|
---|
898 | returning a result, sum(seq2, start=sum(seq1)) may not equal the
|
---|
899 | accurate result returned by sum(itertools.chain(seq1, seq2)).
|
---|
900 | */
|
---|
901 |
|
---|
902 | #define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
---|
903 |
|
---|
904 | /* Extend the partials array p[] by doubling its size. */
|
---|
905 | static int /* non-zero on error */
|
---|
906 | _fsum_realloc(double **p_ptr, Py_ssize_t n,
|
---|
907 | double *ps, Py_ssize_t *m_ptr)
|
---|
908 | {
|
---|
909 | void *v = NULL;
|
---|
910 | Py_ssize_t m = *m_ptr;
|
---|
911 |
|
---|
912 | m += m; /* double */
|
---|
913 | if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
|
---|
914 | double *p = *p_ptr;
|
---|
915 | if (p == ps) {
|
---|
916 | v = PyMem_Malloc(sizeof(double) * m);
|
---|
917 | if (v != NULL)
|
---|
918 | memcpy(v, ps, sizeof(double) * n);
|
---|
919 | }
|
---|
920 | else
|
---|
921 | v = PyMem_Realloc(p, sizeof(double) * m);
|
---|
922 | }
|
---|
923 | if (v == NULL) { /* size overflow or no memory */
|
---|
924 | PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
|
---|
925 | return 1;
|
---|
926 | }
|
---|
927 | *p_ptr = (double*) v;
|
---|
928 | *m_ptr = m;
|
---|
929 | return 0;
|
---|
930 | }
|
---|
931 |
|
---|
932 | /* Full precision summation of a sequence of floats.
|
---|
933 |
|
---|
934 | def msum(iterable):
|
---|
935 | partials = [] # sorted, non-overlapping partial sums
|
---|
936 | for x in iterable:
|
---|
937 | i = 0
|
---|
938 | for y in partials:
|
---|
939 | if abs(x) < abs(y):
|
---|
940 | x, y = y, x
|
---|
941 | hi = x + y
|
---|
942 | lo = y - (hi - x)
|
---|
943 | if lo:
|
---|
944 | partials[i] = lo
|
---|
945 | i += 1
|
---|
946 | x = hi
|
---|
947 | partials[i:] = [x]
|
---|
948 | return sum_exact(partials)
|
---|
949 |
|
---|
950 | Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
|
---|
951 | are exactly equal to x+y. The inner loop applies hi/lo summation to each
|
---|
952 | partial so that the list of partial sums remains exact.
|
---|
953 |
|
---|
954 | Sum_exact() adds the partial sums exactly and correctly rounds the final
|
---|
955 | result (using the round-half-to-even rule). The items in partials remain
|
---|
956 | non-zero, non-special, non-overlapping and strictly increasing in
|
---|
957 | magnitude, but possibly not all having the same sign.
|
---|
958 |
|
---|
959 | Depends on IEEE 754 arithmetic guarantees and half-even rounding.
|
---|
960 | */
|
---|
961 |
|
---|
962 | static PyObject*
|
---|
963 | math_fsum(PyObject *self, PyObject *seq)
|
---|
964 | {
|
---|
965 | PyObject *item, *iter, *sum = NULL;
|
---|
966 | Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
|
---|
967 | double x, y, t, ps[NUM_PARTIALS], *p = ps;
|
---|
968 | double xsave, special_sum = 0.0, inf_sum = 0.0;
|
---|
969 | volatile double hi, yr, lo;
|
---|
970 |
|
---|
971 | iter = PyObject_GetIter(seq);
|
---|
972 | if (iter == NULL)
|
---|
973 | return NULL;
|
---|
974 |
|
---|
975 | PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
|
---|
976 |
|
---|
977 | for(;;) { /* for x in iterable */
|
---|
978 | assert(0 <= n && n <= m);
|
---|
979 | assert((m == NUM_PARTIALS && p == ps) ||
|
---|
980 | (m > NUM_PARTIALS && p != NULL));
|
---|
981 |
|
---|
982 | item = PyIter_Next(iter);
|
---|
983 | if (item == NULL) {
|
---|
984 | if (PyErr_Occurred())
|
---|
985 | goto _fsum_error;
|
---|
986 | break;
|
---|
987 | }
|
---|
988 | x = PyFloat_AsDouble(item);
|
---|
989 | Py_DECREF(item);
|
---|
990 | if (PyErr_Occurred())
|
---|
991 | goto _fsum_error;
|
---|
992 |
|
---|
993 | xsave = x;
|
---|
994 | for (i = j = 0; j < n; j++) { /* for y in partials */
|
---|
995 | y = p[j];
|
---|
996 | if (fabs(x) < fabs(y)) {
|
---|
997 | t = x; x = y; y = t;
|
---|
998 | }
|
---|
999 | hi = x + y;
|
---|
1000 | yr = hi - x;
|
---|
1001 | lo = y - yr;
|
---|
1002 | if (lo != 0.0)
|
---|
1003 | p[i++] = lo;
|
---|
1004 | x = hi;
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | n = i; /* ps[i:] = [x] */
|
---|
1008 | if (x != 0.0) {
|
---|
1009 | if (! Py_IS_FINITE(x)) {
|
---|
1010 | /* a nonfinite x could arise either as
|
---|
1011 | a result of intermediate overflow, or
|
---|
1012 | as a result of a nan or inf in the
|
---|
1013 | summands */
|
---|
1014 | if (Py_IS_FINITE(xsave)) {
|
---|
1015 | PyErr_SetString(PyExc_OverflowError,
|
---|
1016 | "intermediate overflow in fsum");
|
---|
1017 | goto _fsum_error;
|
---|
1018 | }
|
---|
1019 | if (Py_IS_INFINITY(xsave))
|
---|
1020 | inf_sum += xsave;
|
---|
1021 | special_sum += xsave;
|
---|
1022 | /* reset partials */
|
---|
1023 | n = 0;
|
---|
1024 | }
|
---|
1025 | else if (n >= m && _fsum_realloc(&p, n, ps, &m))
|
---|
1026 | goto _fsum_error;
|
---|
1027 | else
|
---|
1028 | p[n++] = x;
|
---|
1029 | }
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | if (special_sum != 0.0) {
|
---|
1033 | if (Py_IS_NAN(inf_sum))
|
---|
1034 | PyErr_SetString(PyExc_ValueError,
|
---|
1035 | "-inf + inf in fsum");
|
---|
1036 | else
|
---|
1037 | sum = PyFloat_FromDouble(special_sum);
|
---|
1038 | goto _fsum_error;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | hi = 0.0;
|
---|
1042 | if (n > 0) {
|
---|
1043 | hi = p[--n];
|
---|
1044 | /* sum_exact(ps, hi) from the top, stop when the sum becomes
|
---|
1045 | inexact. */
|
---|
1046 | while (n > 0) {
|
---|
1047 | x = hi;
|
---|
1048 | y = p[--n];
|
---|
1049 | assert(fabs(y) < fabs(x));
|
---|
1050 | hi = x + y;
|
---|
1051 | yr = hi - x;
|
---|
1052 | lo = y - yr;
|
---|
1053 | if (lo != 0.0)
|
---|
1054 | break;
|
---|
1055 | }
|
---|
1056 | /* Make half-even rounding work across multiple partials.
|
---|
1057 | Needed so that sum([1e-16, 1, 1e16]) will round-up the last
|
---|
1058 | digit to two instead of down to zero (the 1e-16 makes the 1
|
---|
1059 | slightly closer to two). With a potential 1 ULP rounding
|
---|
1060 | error fixed-up, math.fsum() can guarantee commutativity. */
|
---|
1061 | if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
---|
1062 | (lo > 0.0 && p[n-1] > 0.0))) {
|
---|
1063 | y = lo * 2.0;
|
---|
1064 | x = hi + y;
|
---|
1065 | yr = x - hi;
|
---|
1066 | if (y == yr)
|
---|
1067 | hi = x;
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 | sum = PyFloat_FromDouble(hi);
|
---|
1071 |
|
---|
1072 | _fsum_error:
|
---|
1073 | PyFPE_END_PROTECT(hi)
|
---|
1074 | Py_DECREF(iter);
|
---|
1075 | if (p != ps)
|
---|
1076 | PyMem_Free(p);
|
---|
1077 | return sum;
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | #undef NUM_PARTIALS
|
---|
1081 |
|
---|
1082 | PyDoc_STRVAR(math_fsum_doc,
|
---|
1083 | "fsum(iterable)\n\n\
|
---|
1084 | Return an accurate floating point sum of values in the iterable.\n\
|
---|
1085 | Assumes IEEE-754 floating point arithmetic.");
|
---|
1086 |
|
---|
1087 | static PyObject *
|
---|
1088 | math_factorial(PyObject *self, PyObject *arg)
|
---|
1089 | {
|
---|
1090 | long i, x;
|
---|
1091 | PyObject *result, *iobj, *newresult;
|
---|
1092 |
|
---|
1093 | if (PyFloat_Check(arg)) {
|
---|
1094 | PyObject *lx;
|
---|
1095 | double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
|
---|
1096 | if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
|
---|
1097 | PyErr_SetString(PyExc_ValueError,
|
---|
1098 | "factorial() only accepts integral values");
|
---|
1099 | return NULL;
|
---|
1100 | }
|
---|
1101 | lx = PyLong_FromDouble(dx);
|
---|
1102 | if (lx == NULL)
|
---|
1103 | return NULL;
|
---|
1104 | x = PyLong_AsLong(lx);
|
---|
1105 | Py_DECREF(lx);
|
---|
1106 | }
|
---|
1107 | else
|
---|
1108 | x = PyInt_AsLong(arg);
|
---|
1109 |
|
---|
1110 | if (x == -1 && PyErr_Occurred())
|
---|
1111 | return NULL;
|
---|
1112 | if (x < 0) {
|
---|
1113 | PyErr_SetString(PyExc_ValueError,
|
---|
1114 | "factorial() not defined for negative values");
|
---|
1115 | return NULL;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | result = (PyObject *)PyInt_FromLong(1);
|
---|
1119 | if (result == NULL)
|
---|
1120 | return NULL;
|
---|
1121 | for (i=1 ; i<=x ; i++) {
|
---|
1122 | iobj = (PyObject *)PyInt_FromLong(i);
|
---|
1123 | if (iobj == NULL)
|
---|
1124 | goto error;
|
---|
1125 | newresult = PyNumber_Multiply(result, iobj);
|
---|
1126 | Py_DECREF(iobj);
|
---|
1127 | if (newresult == NULL)
|
---|
1128 | goto error;
|
---|
1129 | Py_DECREF(result);
|
---|
1130 | result = newresult;
|
---|
1131 | }
|
---|
1132 | return result;
|
---|
1133 |
|
---|
1134 | error:
|
---|
1135 | Py_DECREF(result);
|
---|
1136 | return NULL;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | PyDoc_STRVAR(math_factorial_doc,
|
---|
1140 | "factorial(x) -> Integral\n"
|
---|
1141 | "\n"
|
---|
1142 | "Find x!. Raise a ValueError if x is negative or non-integral.");
|
---|
1143 |
|
---|
1144 | static PyObject *
|
---|
1145 | math_trunc(PyObject *self, PyObject *number)
|
---|
1146 | {
|
---|
1147 | return PyObject_CallMethod(number, "__trunc__", NULL);
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | PyDoc_STRVAR(math_trunc_doc,
|
---|
1151 | "trunc(x:Real) -> Integral\n"
|
---|
1152 | "\n"
|
---|
1153 | "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
|
---|
1154 |
|
---|
1155 | static PyObject *
|
---|
1156 | math_frexp(PyObject *self, PyObject *arg)
|
---|
1157 | {
|
---|
1158 | int i;
|
---|
1159 | double x = PyFloat_AsDouble(arg);
|
---|
1160 | if (x == -1.0 && PyErr_Occurred())
|
---|
1161 | return NULL;
|
---|
1162 | /* deal with special cases directly, to sidestep platform
|
---|
1163 | differences */
|
---|
1164 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
|
---|
1165 | i = 0;
|
---|
1166 | }
|
---|
1167 | else {
|
---|
1168 | PyFPE_START_PROTECT("in math_frexp", return 0);
|
---|
1169 | x = frexp(x, &i);
|
---|
1170 | PyFPE_END_PROTECT(x);
|
---|
1171 | }
|
---|
1172 | return Py_BuildValue("(di)", x, i);
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | PyDoc_STRVAR(math_frexp_doc,
|
---|
1176 | "frexp(x)\n"
|
---|
1177 | "\n"
|
---|
1178 | "Return the mantissa and exponent of x, as pair (m, e).\n"
|
---|
1179 | "m is a float and e is an int, such that x = m * 2.**e.\n"
|
---|
1180 | "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
|
---|
1181 |
|
---|
1182 | static PyObject *
|
---|
1183 | math_ldexp(PyObject *self, PyObject *args)
|
---|
1184 | {
|
---|
1185 | double x, r;
|
---|
1186 | PyObject *oexp;
|
---|
1187 | long exp;
|
---|
1188 | int overflow;
|
---|
1189 | if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
|
---|
1190 | return NULL;
|
---|
1191 |
|
---|
1192 | if (PyLong_Check(oexp) || PyInt_Check(oexp)) {
|
---|
1193 | /* on overflow, replace exponent with either LONG_MAX
|
---|
1194 | or LONG_MIN, depending on the sign. */
|
---|
1195 | exp = PyLong_AsLongAndOverflow(oexp, &overflow);
|
---|
1196 | if (exp == -1 && PyErr_Occurred())
|
---|
1197 | return NULL;
|
---|
1198 | if (overflow)
|
---|
1199 | exp = overflow < 0 ? LONG_MIN : LONG_MAX;
|
---|
1200 | }
|
---|
1201 | else {
|
---|
1202 | PyErr_SetString(PyExc_TypeError,
|
---|
1203 | "Expected an int or long as second argument "
|
---|
1204 | "to ldexp.");
|
---|
1205 | return NULL;
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 | if (x == 0. || !Py_IS_FINITE(x)) {
|
---|
1209 | /* NaNs, zeros and infinities are returned unchanged */
|
---|
1210 | r = x;
|
---|
1211 | errno = 0;
|
---|
1212 | } else if (exp > INT_MAX) {
|
---|
1213 | /* overflow */
|
---|
1214 | r = copysign(Py_HUGE_VAL, x);
|
---|
1215 | errno = ERANGE;
|
---|
1216 | } else if (exp < INT_MIN) {
|
---|
1217 | /* underflow to +-0 */
|
---|
1218 | r = copysign(0., x);
|
---|
1219 | errno = 0;
|
---|
1220 | } else {
|
---|
1221 | errno = 0;
|
---|
1222 | PyFPE_START_PROTECT("in math_ldexp", return 0);
|
---|
1223 | r = ldexp(x, (int)exp);
|
---|
1224 | PyFPE_END_PROTECT(r);
|
---|
1225 | if (Py_IS_INFINITY(r))
|
---|
1226 | errno = ERANGE;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | if (errno && is_error(r))
|
---|
1230 | return NULL;
|
---|
1231 | return PyFloat_FromDouble(r);
|
---|
1232 | }
|
---|
1233 |
|
---|
1234 | PyDoc_STRVAR(math_ldexp_doc,
|
---|
1235 | "ldexp(x, i)\n\n\
|
---|
1236 | Return x * (2**i).");
|
---|
1237 |
|
---|
1238 | static PyObject *
|
---|
1239 | math_modf(PyObject *self, PyObject *arg)
|
---|
1240 | {
|
---|
1241 | double y, x = PyFloat_AsDouble(arg);
|
---|
1242 | if (x == -1.0 && PyErr_Occurred())
|
---|
1243 | return NULL;
|
---|
1244 | /* some platforms don't do the right thing for NaNs and
|
---|
1245 | infinities, so we take care of special cases directly. */
|
---|
1246 | if (!Py_IS_FINITE(x)) {
|
---|
1247 | if (Py_IS_INFINITY(x))
|
---|
1248 | return Py_BuildValue("(dd)", copysign(0., x), x);
|
---|
1249 | else if (Py_IS_NAN(x))
|
---|
1250 | return Py_BuildValue("(dd)", x, x);
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | errno = 0;
|
---|
1254 | PyFPE_START_PROTECT("in math_modf", return 0);
|
---|
1255 | x = modf(x, &y);
|
---|
1256 | PyFPE_END_PROTECT(x);
|
---|
1257 | return Py_BuildValue("(dd)", x, y);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | PyDoc_STRVAR(math_modf_doc,
|
---|
1261 | "modf(x)\n"
|
---|
1262 | "\n"
|
---|
1263 | "Return the fractional and integer parts of x. Both results carry the sign\n"
|
---|
1264 | "of x and are floats.");
|
---|
1265 |
|
---|
1266 | /* A decent logarithm is easy to compute even for huge longs, but libm can't
|
---|
1267 | do that by itself -- loghelper can. func is log or log10, and name is
|
---|
1268 | "log" or "log10". Note that overflow of the result isn't possible: a long
|
---|
1269 | can contain no more than INT_MAX * SHIFT bits, so has value certainly less
|
---|
1270 | than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
|
---|
1271 | small enough to fit in an IEEE single. log and log10 are even smaller.
|
---|
1272 | However, intermediate overflow is possible for a long if the number of bits
|
---|
1273 | in that long is larger than PY_SSIZE_T_MAX. */
|
---|
1274 |
|
---|
1275 | static PyObject*
|
---|
1276 | loghelper(PyObject* arg, double (*func)(double), char *funcname)
|
---|
1277 | {
|
---|
1278 | /* If it is long, do it ourselves. */
|
---|
1279 | if (PyLong_Check(arg)) {
|
---|
1280 | double x, result;
|
---|
1281 | Py_ssize_t e;
|
---|
1282 |
|
---|
1283 | /* Negative or zero inputs give a ValueError. */
|
---|
1284 | if (Py_SIZE(arg) <= 0) {
|
---|
1285 | PyErr_SetString(PyExc_ValueError,
|
---|
1286 | "math domain error");
|
---|
1287 | return NULL;
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | x = PyLong_AsDouble(arg);
|
---|
1291 | if (x == -1.0 && PyErr_Occurred()) {
|
---|
1292 | if (!PyErr_ExceptionMatches(PyExc_OverflowError))
|
---|
1293 | return NULL;
|
---|
1294 | /* Here the conversion to double overflowed, but it's possible
|
---|
1295 | to compute the log anyway. Clear the exception and continue. */
|
---|
1296 | PyErr_Clear();
|
---|
1297 | x = _PyLong_Frexp((PyLongObject *)arg, &e);
|
---|
1298 | if (x == -1.0 && PyErr_Occurred())
|
---|
1299 | return NULL;
|
---|
1300 | /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
|
---|
1301 | result = func(x) + func(2.0) * e;
|
---|
1302 | }
|
---|
1303 | else
|
---|
1304 | /* Successfully converted x to a double. */
|
---|
1305 | result = func(x);
|
---|
1306 | return PyFloat_FromDouble(result);
|
---|
1307 | }
|
---|
1308 |
|
---|
1309 | /* Else let libm handle it by itself. */
|
---|
1310 | return math_1(arg, func, 0);
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | static PyObject *
|
---|
1314 | math_log(PyObject *self, PyObject *args)
|
---|
1315 | {
|
---|
1316 | PyObject *arg;
|
---|
1317 | PyObject *base = NULL;
|
---|
1318 | PyObject *num, *den;
|
---|
1319 | PyObject *ans;
|
---|
1320 |
|
---|
1321 | if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
|
---|
1322 | return NULL;
|
---|
1323 |
|
---|
1324 | num = loghelper(arg, m_log, "log");
|
---|
1325 | if (num == NULL || base == NULL)
|
---|
1326 | return num;
|
---|
1327 |
|
---|
1328 | den = loghelper(base, m_log, "log");
|
---|
1329 | if (den == NULL) {
|
---|
1330 | Py_DECREF(num);
|
---|
1331 | return NULL;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | ans = PyNumber_Divide(num, den);
|
---|
1335 | Py_DECREF(num);
|
---|
1336 | Py_DECREF(den);
|
---|
1337 | return ans;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | PyDoc_STRVAR(math_log_doc,
|
---|
1341 | "log(x[, base])\n\n\
|
---|
1342 | Return the logarithm of x to the given base.\n\
|
---|
1343 | If the base not specified, returns the natural logarithm (base e) of x.");
|
---|
1344 |
|
---|
1345 | static PyObject *
|
---|
1346 | math_log10(PyObject *self, PyObject *arg)
|
---|
1347 | {
|
---|
1348 | return loghelper(arg, m_log10, "log10");
|
---|
1349 | }
|
---|
1350 |
|
---|
1351 | PyDoc_STRVAR(math_log10_doc,
|
---|
1352 | "log10(x)\n\nReturn the base 10 logarithm of x.");
|
---|
1353 |
|
---|
1354 | static PyObject *
|
---|
1355 | math_fmod(PyObject *self, PyObject *args)
|
---|
1356 | {
|
---|
1357 | PyObject *ox, *oy;
|
---|
1358 | double r, x, y;
|
---|
1359 | if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
|
---|
1360 | return NULL;
|
---|
1361 | x = PyFloat_AsDouble(ox);
|
---|
1362 | y = PyFloat_AsDouble(oy);
|
---|
1363 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
1364 | return NULL;
|
---|
1365 | /* fmod(x, +/-Inf) returns x for finite x. */
|
---|
1366 | if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
|
---|
1367 | return PyFloat_FromDouble(x);
|
---|
1368 | errno = 0;
|
---|
1369 | PyFPE_START_PROTECT("in math_fmod", return 0);
|
---|
1370 | r = fmod(x, y);
|
---|
1371 | PyFPE_END_PROTECT(r);
|
---|
1372 | if (Py_IS_NAN(r)) {
|
---|
1373 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
1374 | errno = EDOM;
|
---|
1375 | else
|
---|
1376 | errno = 0;
|
---|
1377 | }
|
---|
1378 | if (errno && is_error(r))
|
---|
1379 | return NULL;
|
---|
1380 | else
|
---|
1381 | return PyFloat_FromDouble(r);
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | PyDoc_STRVAR(math_fmod_doc,
|
---|
1385 | "fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
|
---|
1386 | " x % y may differ.");
|
---|
1387 |
|
---|
1388 | static PyObject *
|
---|
1389 | math_hypot(PyObject *self, PyObject *args)
|
---|
1390 | {
|
---|
1391 | PyObject *ox, *oy;
|
---|
1392 | double r, x, y;
|
---|
1393 | if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
|
---|
1394 | return NULL;
|
---|
1395 | x = PyFloat_AsDouble(ox);
|
---|
1396 | y = PyFloat_AsDouble(oy);
|
---|
1397 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
1398 | return NULL;
|
---|
1399 | /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
|
---|
1400 | if (Py_IS_INFINITY(x))
|
---|
1401 | return PyFloat_FromDouble(fabs(x));
|
---|
1402 | if (Py_IS_INFINITY(y))
|
---|
1403 | return PyFloat_FromDouble(fabs(y));
|
---|
1404 | errno = 0;
|
---|
1405 | PyFPE_START_PROTECT("in math_hypot", return 0);
|
---|
1406 | r = hypot(x, y);
|
---|
1407 | PyFPE_END_PROTECT(r);
|
---|
1408 | if (Py_IS_NAN(r)) {
|
---|
1409 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
1410 | errno = EDOM;
|
---|
1411 | else
|
---|
1412 | errno = 0;
|
---|
1413 | }
|
---|
1414 | else if (Py_IS_INFINITY(r)) {
|
---|
1415 | if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
|
---|
1416 | errno = ERANGE;
|
---|
1417 | else
|
---|
1418 | errno = 0;
|
---|
1419 | }
|
---|
1420 | if (errno && is_error(r))
|
---|
1421 | return NULL;
|
---|
1422 | else
|
---|
1423 | return PyFloat_FromDouble(r);
|
---|
1424 | }
|
---|
1425 |
|
---|
1426 | PyDoc_STRVAR(math_hypot_doc,
|
---|
1427 | "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
|
---|
1428 |
|
---|
1429 | /* pow can't use math_2, but needs its own wrapper: the problem is
|
---|
1430 | that an infinite result can arise either as a result of overflow
|
---|
1431 | (in which case OverflowError should be raised) or as a result of
|
---|
1432 | e.g. 0.**-5. (for which ValueError needs to be raised.)
|
---|
1433 | */
|
---|
1434 |
|
---|
1435 | static PyObject *
|
---|
1436 | math_pow(PyObject *self, PyObject *args)
|
---|
1437 | {
|
---|
1438 | PyObject *ox, *oy;
|
---|
1439 | double r, x, y;
|
---|
1440 | int odd_y;
|
---|
1441 |
|
---|
1442 | if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
|
---|
1443 | return NULL;
|
---|
1444 | x = PyFloat_AsDouble(ox);
|
---|
1445 | y = PyFloat_AsDouble(oy);
|
---|
1446 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
1447 | return NULL;
|
---|
1448 |
|
---|
1449 | /* deal directly with IEEE specials, to cope with problems on various
|
---|
1450 | platforms whose semantics don't exactly match C99 */
|
---|
1451 | r = 0.; /* silence compiler warning */
|
---|
1452 | if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
|
---|
1453 | errno = 0;
|
---|
1454 | if (Py_IS_NAN(x))
|
---|
1455 | r = y == 0. ? 1. : x; /* NaN**0 = 1 */
|
---|
1456 | else if (Py_IS_NAN(y))
|
---|
1457 | r = x == 1. ? 1. : y; /* 1**NaN = 1 */
|
---|
1458 | else if (Py_IS_INFINITY(x)) {
|
---|
1459 | odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
|
---|
1460 | if (y > 0.)
|
---|
1461 | r = odd_y ? x : fabs(x);
|
---|
1462 | else if (y == 0.)
|
---|
1463 | r = 1.;
|
---|
1464 | else /* y < 0. */
|
---|
1465 | r = odd_y ? copysign(0., x) : 0.;
|
---|
1466 | }
|
---|
1467 | else if (Py_IS_INFINITY(y)) {
|
---|
1468 | if (fabs(x) == 1.0)
|
---|
1469 | r = 1.;
|
---|
1470 | else if (y > 0. && fabs(x) > 1.0)
|
---|
1471 | r = y;
|
---|
1472 | else if (y < 0. && fabs(x) < 1.0) {
|
---|
1473 | r = -y; /* result is +inf */
|
---|
1474 | if (x == 0.) /* 0**-inf: divide-by-zero */
|
---|
1475 | errno = EDOM;
|
---|
1476 | }
|
---|
1477 | else
|
---|
1478 | r = 0.;
|
---|
1479 | }
|
---|
1480 | }
|
---|
1481 | else {
|
---|
1482 | /* let libm handle finite**finite */
|
---|
1483 | errno = 0;
|
---|
1484 | PyFPE_START_PROTECT("in math_pow", return 0);
|
---|
1485 | r = pow(x, y);
|
---|
1486 | PyFPE_END_PROTECT(r);
|
---|
1487 | /* a NaN result should arise only from (-ve)**(finite
|
---|
1488 | non-integer); in this case we want to raise ValueError. */
|
---|
1489 | if (!Py_IS_FINITE(r)) {
|
---|
1490 | if (Py_IS_NAN(r)) {
|
---|
1491 | errno = EDOM;
|
---|
1492 | }
|
---|
1493 | /*
|
---|
1494 | an infinite result here arises either from:
|
---|
1495 | (A) (+/-0.)**negative (-> divide-by-zero)
|
---|
1496 | (B) overflow of x**y with x and y finite
|
---|
1497 | */
|
---|
1498 | else if (Py_IS_INFINITY(r)) {
|
---|
1499 | if (x == 0.)
|
---|
1500 | errno = EDOM;
|
---|
1501 | else
|
---|
1502 | errno = ERANGE;
|
---|
1503 | }
|
---|
1504 | }
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | if (errno && is_error(r))
|
---|
1508 | return NULL;
|
---|
1509 | else
|
---|
1510 | return PyFloat_FromDouble(r);
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 | PyDoc_STRVAR(math_pow_doc,
|
---|
1514 | "pow(x, y)\n\nReturn x**y (x to the power of y).");
|
---|
1515 |
|
---|
1516 | static const double degToRad = Py_MATH_PI / 180.0;
|
---|
1517 | static const double radToDeg = 180.0 / Py_MATH_PI;
|
---|
1518 |
|
---|
1519 | static PyObject *
|
---|
1520 | math_degrees(PyObject *self, PyObject *arg)
|
---|
1521 | {
|
---|
1522 | double x = PyFloat_AsDouble(arg);
|
---|
1523 | if (x == -1.0 && PyErr_Occurred())
|
---|
1524 | return NULL;
|
---|
1525 | return PyFloat_FromDouble(x * radToDeg);
|
---|
1526 | }
|
---|
1527 |
|
---|
1528 | PyDoc_STRVAR(math_degrees_doc,
|
---|
1529 | "degrees(x)\n\n\
|
---|
1530 | Convert angle x from radians to degrees.");
|
---|
1531 |
|
---|
1532 | static PyObject *
|
---|
1533 | math_radians(PyObject *self, PyObject *arg)
|
---|
1534 | {
|
---|
1535 | double x = PyFloat_AsDouble(arg);
|
---|
1536 | if (x == -1.0 && PyErr_Occurred())
|
---|
1537 | return NULL;
|
---|
1538 | return PyFloat_FromDouble(x * degToRad);
|
---|
1539 | }
|
---|
1540 |
|
---|
1541 | PyDoc_STRVAR(math_radians_doc,
|
---|
1542 | "radians(x)\n\n\
|
---|
1543 | Convert angle x from degrees to radians.");
|
---|
1544 |
|
---|
1545 | static PyObject *
|
---|
1546 | math_isnan(PyObject *self, PyObject *arg)
|
---|
1547 | {
|
---|
1548 | double x = PyFloat_AsDouble(arg);
|
---|
1549 | if (x == -1.0 && PyErr_Occurred())
|
---|
1550 | return NULL;
|
---|
1551 | return PyBool_FromLong((long)Py_IS_NAN(x));
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 | PyDoc_STRVAR(math_isnan_doc,
|
---|
1555 | "isnan(x) -> bool\n\n\
|
---|
1556 | Check if float x is not a number (NaN).");
|
---|
1557 |
|
---|
1558 | static PyObject *
|
---|
1559 | math_isinf(PyObject *self, PyObject *arg)
|
---|
1560 | {
|
---|
1561 | double x = PyFloat_AsDouble(arg);
|
---|
1562 | if (x == -1.0 && PyErr_Occurred())
|
---|
1563 | return NULL;
|
---|
1564 | return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
---|
1565 | }
|
---|
1566 |
|
---|
1567 | PyDoc_STRVAR(math_isinf_doc,
|
---|
1568 | "isinf(x) -> bool\n\n\
|
---|
1569 | Check if float x is infinite (positive or negative).");
|
---|
1570 |
|
---|
1571 | static PyMethodDef math_methods[] = {
|
---|
1572 | {"acos", math_acos, METH_O, math_acos_doc},
|
---|
1573 | {"acosh", math_acosh, METH_O, math_acosh_doc},
|
---|
1574 | {"asin", math_asin, METH_O, math_asin_doc},
|
---|
1575 | {"asinh", math_asinh, METH_O, math_asinh_doc},
|
---|
1576 | {"atan", math_atan, METH_O, math_atan_doc},
|
---|
1577 | {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
|
---|
1578 | {"atanh", math_atanh, METH_O, math_atanh_doc},
|
---|
1579 | {"ceil", math_ceil, METH_O, math_ceil_doc},
|
---|
1580 | {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
|
---|
1581 | {"cos", math_cos, METH_O, math_cos_doc},
|
---|
1582 | {"cosh", math_cosh, METH_O, math_cosh_doc},
|
---|
1583 | {"degrees", math_degrees, METH_O, math_degrees_doc},
|
---|
1584 | {"erf", math_erf, METH_O, math_erf_doc},
|
---|
1585 | {"erfc", math_erfc, METH_O, math_erfc_doc},
|
---|
1586 | {"exp", math_exp, METH_O, math_exp_doc},
|
---|
1587 | {"expm1", math_expm1, METH_O, math_expm1_doc},
|
---|
1588 | {"fabs", math_fabs, METH_O, math_fabs_doc},
|
---|
1589 | {"factorial", math_factorial, METH_O, math_factorial_doc},
|
---|
1590 | {"floor", math_floor, METH_O, math_floor_doc},
|
---|
1591 | {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
|
---|
1592 | {"frexp", math_frexp, METH_O, math_frexp_doc},
|
---|
1593 | {"fsum", math_fsum, METH_O, math_fsum_doc},
|
---|
1594 | {"gamma", math_gamma, METH_O, math_gamma_doc},
|
---|
1595 | {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
|
---|
1596 | {"isinf", math_isinf, METH_O, math_isinf_doc},
|
---|
1597 | {"isnan", math_isnan, METH_O, math_isnan_doc},
|
---|
1598 | {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
|
---|
1599 | {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
|
---|
1600 | {"log", math_log, METH_VARARGS, math_log_doc},
|
---|
1601 | {"log1p", math_log1p, METH_O, math_log1p_doc},
|
---|
1602 | {"log10", math_log10, METH_O, math_log10_doc},
|
---|
1603 | {"modf", math_modf, METH_O, math_modf_doc},
|
---|
1604 | {"pow", math_pow, METH_VARARGS, math_pow_doc},
|
---|
1605 | {"radians", math_radians, METH_O, math_radians_doc},
|
---|
1606 | {"sin", math_sin, METH_O, math_sin_doc},
|
---|
1607 | {"sinh", math_sinh, METH_O, math_sinh_doc},
|
---|
1608 | {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
|
---|
1609 | {"tan", math_tan, METH_O, math_tan_doc},
|
---|
1610 | {"tanh", math_tanh, METH_O, math_tanh_doc},
|
---|
1611 | {"trunc", math_trunc, METH_O, math_trunc_doc},
|
---|
1612 | {NULL, NULL} /* sentinel */
|
---|
1613 | };
|
---|
1614 |
|
---|
1615 |
|
---|
1616 | PyDoc_STRVAR(module_doc,
|
---|
1617 | "This module is always available. It provides access to the\n"
|
---|
1618 | "mathematical functions defined by the C standard.");
|
---|
1619 |
|
---|
1620 | PyMODINIT_FUNC
|
---|
1621 | initmath(void)
|
---|
1622 | {
|
---|
1623 | PyObject *m;
|
---|
1624 |
|
---|
1625 | m = Py_InitModule3("math", math_methods, module_doc);
|
---|
1626 | if (m == NULL)
|
---|
1627 | goto finally;
|
---|
1628 |
|
---|
1629 | PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
|
---|
1630 | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
|
---|
1631 |
|
---|
1632 | finally:
|
---|
1633 | return;
|
---|
1634 | }
|
---|