1 | /*
|
---|
2 |
|
---|
3 | Reference Cycle Garbage Collection
|
---|
4 | ==================================
|
---|
5 |
|
---|
6 | Neil Schemenauer <nas@arctrix.com>
|
---|
7 |
|
---|
8 | Based on a post on the python-dev list. Ideas from Guido van Rossum,
|
---|
9 | Eric Tiedemann, and various others.
|
---|
10 |
|
---|
11 | http://www.arctrix.com/nas/python/gc/
|
---|
12 | http://www.python.org/pipermail/python-dev/2000-March/003869.html
|
---|
13 | http://www.python.org/pipermail/python-dev/2000-March/004010.html
|
---|
14 | http://www.python.org/pipermail/python-dev/2000-March/004022.html
|
---|
15 |
|
---|
16 | For a highlevel view of the collection process, read the collect
|
---|
17 | function.
|
---|
18 |
|
---|
19 | */
|
---|
20 |
|
---|
21 | #include "Python.h"
|
---|
22 | #include "frameobject.h" /* for PyFrame_ClearFreeList */
|
---|
23 |
|
---|
24 | /* Get an object's GC head */
|
---|
25 | #define AS_GC(o) ((PyGC_Head *)(o)-1)
|
---|
26 |
|
---|
27 | /* Get the object given the GC head */
|
---|
28 | #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
|
---|
29 |
|
---|
30 | /*** Global GC state ***/
|
---|
31 |
|
---|
32 | struct gc_generation {
|
---|
33 | PyGC_Head head;
|
---|
34 | int threshold; /* collection threshold */
|
---|
35 | int count; /* count of allocations or collections of younger
|
---|
36 | generations */
|
---|
37 | };
|
---|
38 |
|
---|
39 | #define NUM_GENERATIONS 3
|
---|
40 | #define GEN_HEAD(n) (&generations[n].head)
|
---|
41 |
|
---|
42 | /* linked lists of container objects */
|
---|
43 | static struct gc_generation generations[NUM_GENERATIONS] = {
|
---|
44 | /* PyGC_Head, threshold, count */
|
---|
45 | {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0},
|
---|
46 | {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0},
|
---|
47 | {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0},
|
---|
48 | };
|
---|
49 |
|
---|
50 | PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
|
---|
51 |
|
---|
52 | static int enabled = 1; /* automatic collection enabled? */
|
---|
53 |
|
---|
54 | /* true if we are currently running the collector */
|
---|
55 | static int collecting = 0;
|
---|
56 |
|
---|
57 | /* list of uncollectable objects */
|
---|
58 | static PyObject *garbage = NULL;
|
---|
59 |
|
---|
60 | /* Python string to use if unhandled exception occurs */
|
---|
61 | static PyObject *gc_str = NULL;
|
---|
62 |
|
---|
63 | /* Python string used to look for __del__ attribute. */
|
---|
64 | static PyObject *delstr = NULL;
|
---|
65 |
|
---|
66 | /* This is the number of objects who survived the last full collection. It
|
---|
67 | approximates the number of long lived objects tracked by the GC.
|
---|
68 |
|
---|
69 | (by "full collection", we mean a collection of the oldest generation).
|
---|
70 | */
|
---|
71 | static Py_ssize_t long_lived_total = 0;
|
---|
72 |
|
---|
73 | /* This is the number of objects who survived all "non-full" collections,
|
---|
74 | and are awaiting to undergo a full collection for the first time.
|
---|
75 |
|
---|
76 | */
|
---|
77 | static Py_ssize_t long_lived_pending = 0;
|
---|
78 |
|
---|
79 | /*
|
---|
80 | NOTE: about the counting of long-lived objects.
|
---|
81 |
|
---|
82 | To limit the cost of garbage collection, there are two strategies;
|
---|
83 | - make each collection faster, e.g. by scanning fewer objects
|
---|
84 | - do less collections
|
---|
85 | This heuristic is about the latter strategy.
|
---|
86 |
|
---|
87 | In addition to the various configurable thresholds, we only trigger a
|
---|
88 | full collection if the ratio
|
---|
89 | long_lived_pending / long_lived_total
|
---|
90 | is above a given value (hardwired to 25%).
|
---|
91 |
|
---|
92 | The reason is that, while "non-full" collections (i.e., collections of
|
---|
93 | the young and middle generations) will always examine roughly the same
|
---|
94 | number of objects -- determined by the aforementioned thresholds --,
|
---|
95 | the cost of a full collection is proportional to the total number of
|
---|
96 | long-lived objects, which is virtually unbounded.
|
---|
97 |
|
---|
98 | Indeed, it has been remarked that doing a full collection every
|
---|
99 | <constant number> of object creations entails a dramatic performance
|
---|
100 | degradation in workloads which consist in creating and storing lots of
|
---|
101 | long-lived objects (e.g. building a large list of GC-tracked objects would
|
---|
102 | show quadratic performance, instead of linear as expected: see issue #4074).
|
---|
103 |
|
---|
104 | Using the above ratio, instead, yields amortized linear performance in
|
---|
105 | the total number of objects (the effect of which can be summarized
|
---|
106 | thusly: "each full garbage collection is more and more costly as the
|
---|
107 | number of objects grows, but we do fewer and fewer of them").
|
---|
108 |
|
---|
109 | This heuristic was suggested by Martin von Löwis on python-dev in
|
---|
110 | June 2008. His original analysis and proposal can be found at:
|
---|
111 | http://mail.python.org/pipermail/python-dev/2008-June/080579.html
|
---|
112 | */
|
---|
113 |
|
---|
114 | /*
|
---|
115 | NOTE: about untracking of mutable objects.
|
---|
116 |
|
---|
117 | Certain types of container cannot participate in a reference cycle, and
|
---|
118 | so do not need to be tracked by the garbage collector. Untracking these
|
---|
119 | objects reduces the cost of garbage collections. However, determining
|
---|
120 | which objects may be untracked is not free, and the costs must be
|
---|
121 | weighed against the benefits for garbage collection.
|
---|
122 |
|
---|
123 | There are two possible strategies for when to untrack a container:
|
---|
124 |
|
---|
125 | i) When the container is created.
|
---|
126 | ii) When the container is examined by the garbage collector.
|
---|
127 |
|
---|
128 | Tuples containing only immutable objects (integers, strings etc, and
|
---|
129 | recursively, tuples of immutable objects) do not need to be tracked.
|
---|
130 | The interpreter creates a large number of tuples, many of which will
|
---|
131 | not survive until garbage collection. It is therefore not worthwhile
|
---|
132 | to untrack eligible tuples at creation time.
|
---|
133 |
|
---|
134 | Instead, all tuples except the empty tuple are tracked when created.
|
---|
135 | During garbage collection it is determined whether any surviving tuples
|
---|
136 | can be untracked. A tuple can be untracked if all of its contents are
|
---|
137 | already not tracked. Tuples are examined for untracking in all garbage
|
---|
138 | collection cycles. It may take more than one cycle to untrack a tuple.
|
---|
139 |
|
---|
140 | Dictionaries containing only immutable objects also do not need to be
|
---|
141 | tracked. Dictionaries are untracked when created. If a tracked item is
|
---|
142 | inserted into a dictionary (either as a key or value), the dictionary
|
---|
143 | becomes tracked. During a full garbage collection (all generations),
|
---|
144 | the collector will untrack any dictionaries whose contents are not
|
---|
145 | tracked.
|
---|
146 |
|
---|
147 | The module provides the python function is_tracked(obj), which returns
|
---|
148 | the CURRENT tracking status of the object. Subsequent garbage
|
---|
149 | collections may change the tracking status of the object.
|
---|
150 |
|
---|
151 | Untracking of certain containers was introduced in issue #4688, and
|
---|
152 | the algorithm was refined in response to issue #14775.
|
---|
153 | */
|
---|
154 |
|
---|
155 | /* set for debugging information */
|
---|
156 | #define DEBUG_STATS (1<<0) /* print collection statistics */
|
---|
157 | #define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
|
---|
158 | #define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
|
---|
159 | #define DEBUG_INSTANCES (1<<3) /* print instances */
|
---|
160 | #define DEBUG_OBJECTS (1<<4) /* print other objects */
|
---|
161 | #define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
|
---|
162 | #define DEBUG_LEAK DEBUG_COLLECTABLE | \
|
---|
163 | DEBUG_UNCOLLECTABLE | \
|
---|
164 | DEBUG_INSTANCES | \
|
---|
165 | DEBUG_OBJECTS | \
|
---|
166 | DEBUG_SAVEALL
|
---|
167 | static int debug;
|
---|
168 | static PyObject *tmod = NULL;
|
---|
169 |
|
---|
170 | /*--------------------------------------------------------------------------
|
---|
171 | gc_refs values.
|
---|
172 |
|
---|
173 | Between collections, every gc'ed object has one of two gc_refs values:
|
---|
174 |
|
---|
175 | GC_UNTRACKED
|
---|
176 | The initial state; objects returned by PyObject_GC_Malloc are in this
|
---|
177 | state. The object doesn't live in any generation list, and its
|
---|
178 | tp_traverse slot must not be called.
|
---|
179 |
|
---|
180 | GC_REACHABLE
|
---|
181 | The object lives in some generation list, and its tp_traverse is safe to
|
---|
182 | call. An object transitions to GC_REACHABLE when PyObject_GC_Track
|
---|
183 | is called.
|
---|
184 |
|
---|
185 | During a collection, gc_refs can temporarily take on other states:
|
---|
186 |
|
---|
187 | >= 0
|
---|
188 | At the start of a collection, update_refs() copies the true refcount
|
---|
189 | to gc_refs, for each object in the generation being collected.
|
---|
190 | subtract_refs() then adjusts gc_refs so that it equals the number of
|
---|
191 | times an object is referenced directly from outside the generation
|
---|
192 | being collected.
|
---|
193 | gc_refs remains >= 0 throughout these steps.
|
---|
194 |
|
---|
195 | GC_TENTATIVELY_UNREACHABLE
|
---|
196 | move_unreachable() then moves objects not reachable (whether directly or
|
---|
197 | indirectly) from outside the generation into an "unreachable" set.
|
---|
198 | Objects that are found to be reachable have gc_refs set to GC_REACHABLE
|
---|
199 | again. Objects that are found to be unreachable have gc_refs set to
|
---|
200 | GC_TENTATIVELY_UNREACHABLE. It's "tentatively" because the pass doing
|
---|
201 | this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
|
---|
202 | transition back to GC_REACHABLE.
|
---|
203 |
|
---|
204 | Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
|
---|
205 | for collection. If it's decided not to collect such an object (e.g.,
|
---|
206 | it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
|
---|
207 | ----------------------------------------------------------------------------
|
---|
208 | */
|
---|
209 | #define GC_UNTRACKED _PyGC_REFS_UNTRACKED
|
---|
210 | #define GC_REACHABLE _PyGC_REFS_REACHABLE
|
---|
211 | #define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE
|
---|
212 |
|
---|
213 | #define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
|
---|
214 | #define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
|
---|
215 | #define IS_TENTATIVELY_UNREACHABLE(o) ( \
|
---|
216 | (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
|
---|
217 |
|
---|
218 | /*** list functions ***/
|
---|
219 |
|
---|
220 | static void
|
---|
221 | gc_list_init(PyGC_Head *list)
|
---|
222 | {
|
---|
223 | list->gc.gc_prev = list;
|
---|
224 | list->gc.gc_next = list;
|
---|
225 | }
|
---|
226 |
|
---|
227 | static int
|
---|
228 | gc_list_is_empty(PyGC_Head *list)
|
---|
229 | {
|
---|
230 | return (list->gc.gc_next == list);
|
---|
231 | }
|
---|
232 |
|
---|
233 | #if 0
|
---|
234 | /* This became unused after gc_list_move() was introduced. */
|
---|
235 | /* Append `node` to `list`. */
|
---|
236 | static void
|
---|
237 | gc_list_append(PyGC_Head *node, PyGC_Head *list)
|
---|
238 | {
|
---|
239 | node->gc.gc_next = list;
|
---|
240 | node->gc.gc_prev = list->gc.gc_prev;
|
---|
241 | node->gc.gc_prev->gc.gc_next = node;
|
---|
242 | list->gc.gc_prev = node;
|
---|
243 | }
|
---|
244 | #endif
|
---|
245 |
|
---|
246 | /* Remove `node` from the gc list it's currently in. */
|
---|
247 | static void
|
---|
248 | gc_list_remove(PyGC_Head *node)
|
---|
249 | {
|
---|
250 | node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
|
---|
251 | node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
|
---|
252 | node->gc.gc_next = NULL; /* object is not currently tracked */
|
---|
253 | }
|
---|
254 |
|
---|
255 | /* Move `node` from the gc list it's currently in (which is not explicitly
|
---|
256 | * named here) to the end of `list`. This is semantically the same as
|
---|
257 | * gc_list_remove(node) followed by gc_list_append(node, list).
|
---|
258 | */
|
---|
259 | static void
|
---|
260 | gc_list_move(PyGC_Head *node, PyGC_Head *list)
|
---|
261 | {
|
---|
262 | PyGC_Head *new_prev;
|
---|
263 | PyGC_Head *current_prev = node->gc.gc_prev;
|
---|
264 | PyGC_Head *current_next = node->gc.gc_next;
|
---|
265 | /* Unlink from current list. */
|
---|
266 | current_prev->gc.gc_next = current_next;
|
---|
267 | current_next->gc.gc_prev = current_prev;
|
---|
268 | /* Relink at end of new list. */
|
---|
269 | new_prev = node->gc.gc_prev = list->gc.gc_prev;
|
---|
270 | new_prev->gc.gc_next = list->gc.gc_prev = node;
|
---|
271 | node->gc.gc_next = list;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /* append list `from` onto list `to`; `from` becomes an empty list */
|
---|
275 | static void
|
---|
276 | gc_list_merge(PyGC_Head *from, PyGC_Head *to)
|
---|
277 | {
|
---|
278 | PyGC_Head *tail;
|
---|
279 | assert(from != to);
|
---|
280 | if (!gc_list_is_empty(from)) {
|
---|
281 | tail = to->gc.gc_prev;
|
---|
282 | tail->gc.gc_next = from->gc.gc_next;
|
---|
283 | tail->gc.gc_next->gc.gc_prev = tail;
|
---|
284 | to->gc.gc_prev = from->gc.gc_prev;
|
---|
285 | to->gc.gc_prev->gc.gc_next = to;
|
---|
286 | }
|
---|
287 | gc_list_init(from);
|
---|
288 | }
|
---|
289 |
|
---|
290 | static Py_ssize_t
|
---|
291 | gc_list_size(PyGC_Head *list)
|
---|
292 | {
|
---|
293 | PyGC_Head *gc;
|
---|
294 | Py_ssize_t n = 0;
|
---|
295 | for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
|
---|
296 | n++;
|
---|
297 | }
|
---|
298 | return n;
|
---|
299 | }
|
---|
300 |
|
---|
301 | /* Append objects in a GC list to a Python list.
|
---|
302 | * Return 0 if all OK, < 0 if error (out of memory for list).
|
---|
303 | */
|
---|
304 | static int
|
---|
305 | append_objects(PyObject *py_list, PyGC_Head *gc_list)
|
---|
306 | {
|
---|
307 | PyGC_Head *gc;
|
---|
308 | for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
|
---|
309 | PyObject *op = FROM_GC(gc);
|
---|
310 | if (op != py_list) {
|
---|
311 | if (PyList_Append(py_list, op)) {
|
---|
312 | return -1; /* exception */
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 | return 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /*** end of list stuff ***/
|
---|
320 |
|
---|
321 |
|
---|
322 | /* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects
|
---|
323 | * in containers, and is GC_REACHABLE for all tracked gc objects not in
|
---|
324 | * containers.
|
---|
325 | */
|
---|
326 | static void
|
---|
327 | update_refs(PyGC_Head *containers)
|
---|
328 | {
|
---|
329 | PyGC_Head *gc = containers->gc.gc_next;
|
---|
330 | for (; gc != containers; gc = gc->gc.gc_next) {
|
---|
331 | assert(gc->gc.gc_refs == GC_REACHABLE);
|
---|
332 | gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
|
---|
333 | /* Python's cyclic gc should never see an incoming refcount
|
---|
334 | * of 0: if something decref'ed to 0, it should have been
|
---|
335 | * deallocated immediately at that time.
|
---|
336 | * Possible cause (if the assert triggers): a tp_dealloc
|
---|
337 | * routine left a gc-aware object tracked during its teardown
|
---|
338 | * phase, and did something-- or allowed something to happen --
|
---|
339 | * that called back into Python. gc can trigger then, and may
|
---|
340 | * see the still-tracked dying object. Before this assert
|
---|
341 | * was added, such mistakes went on to allow gc to try to
|
---|
342 | * delete the object again. In a debug build, that caused
|
---|
343 | * a mysterious segfault, when _Py_ForgetReference tried
|
---|
344 | * to remove the object from the doubly-linked list of all
|
---|
345 | * objects a second time. In a release build, an actual
|
---|
346 | * double deallocation occurred, which leads to corruption
|
---|
347 | * of the allocator's internal bookkeeping pointers. That's
|
---|
348 | * so serious that maybe this should be a release-build
|
---|
349 | * check instead of an assert?
|
---|
350 | */
|
---|
351 | assert(gc->gc.gc_refs != 0);
|
---|
352 | }
|
---|
353 | }
|
---|
354 |
|
---|
355 | /* A traversal callback for subtract_refs. */
|
---|
356 | static int
|
---|
357 | visit_decref(PyObject *op, void *data)
|
---|
358 | {
|
---|
359 | assert(op != NULL);
|
---|
360 | if (PyObject_IS_GC(op)) {
|
---|
361 | PyGC_Head *gc = AS_GC(op);
|
---|
362 | /* We're only interested in gc_refs for objects in the
|
---|
363 | * generation being collected, which can be recognized
|
---|
364 | * because only they have positive gc_refs.
|
---|
365 | */
|
---|
366 | assert(gc->gc.gc_refs != 0); /* else refcount was too small */
|
---|
367 | if (gc->gc.gc_refs > 0)
|
---|
368 | gc->gc.gc_refs--;
|
---|
369 | }
|
---|
370 | return 0;
|
---|
371 | }
|
---|
372 |
|
---|
373 | /* Subtract internal references from gc_refs. After this, gc_refs is >= 0
|
---|
374 | * for all objects in containers, and is GC_REACHABLE for all tracked gc
|
---|
375 | * objects not in containers. The ones with gc_refs > 0 are directly
|
---|
376 | * reachable from outside containers, and so can't be collected.
|
---|
377 | */
|
---|
378 | static void
|
---|
379 | subtract_refs(PyGC_Head *containers)
|
---|
380 | {
|
---|
381 | traverseproc traverse;
|
---|
382 | PyGC_Head *gc = containers->gc.gc_next;
|
---|
383 | for (; gc != containers; gc=gc->gc.gc_next) {
|
---|
384 | traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
|
---|
385 | (void) traverse(FROM_GC(gc),
|
---|
386 | (visitproc)visit_decref,
|
---|
387 | NULL);
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 | /* A traversal callback for move_unreachable. */
|
---|
392 | static int
|
---|
393 | visit_reachable(PyObject *op, PyGC_Head *reachable)
|
---|
394 | {
|
---|
395 | if (PyObject_IS_GC(op)) {
|
---|
396 | PyGC_Head *gc = AS_GC(op);
|
---|
397 | const Py_ssize_t gc_refs = gc->gc.gc_refs;
|
---|
398 |
|
---|
399 | if (gc_refs == 0) {
|
---|
400 | /* This is in move_unreachable's 'young' list, but
|
---|
401 | * the traversal hasn't yet gotten to it. All
|
---|
402 | * we need to do is tell move_unreachable that it's
|
---|
403 | * reachable.
|
---|
404 | */
|
---|
405 | gc->gc.gc_refs = 1;
|
---|
406 | }
|
---|
407 | else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
|
---|
408 | /* This had gc_refs = 0 when move_unreachable got
|
---|
409 | * to it, but turns out it's reachable after all.
|
---|
410 | * Move it back to move_unreachable's 'young' list,
|
---|
411 | * and move_unreachable will eventually get to it
|
---|
412 | * again.
|
---|
413 | */
|
---|
414 | gc_list_move(gc, reachable);
|
---|
415 | gc->gc.gc_refs = 1;
|
---|
416 | }
|
---|
417 | /* Else there's nothing to do.
|
---|
418 | * If gc_refs > 0, it must be in move_unreachable's 'young'
|
---|
419 | * list, and move_unreachable will eventually get to it.
|
---|
420 | * If gc_refs == GC_REACHABLE, it's either in some other
|
---|
421 | * generation so we don't care about it, or move_unreachable
|
---|
422 | * already dealt with it.
|
---|
423 | * If gc_refs == GC_UNTRACKED, it must be ignored.
|
---|
424 | */
|
---|
425 | else {
|
---|
426 | assert(gc_refs > 0
|
---|
427 | || gc_refs == GC_REACHABLE
|
---|
428 | || gc_refs == GC_UNTRACKED);
|
---|
429 | }
|
---|
430 | }
|
---|
431 | return 0;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /* Move the unreachable objects from young to unreachable. After this,
|
---|
435 | * all objects in young have gc_refs = GC_REACHABLE, and all objects in
|
---|
436 | * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked
|
---|
437 | * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
|
---|
438 | * All objects in young after this are directly or indirectly reachable
|
---|
439 | * from outside the original young; and all objects in unreachable are
|
---|
440 | * not.
|
---|
441 | */
|
---|
442 | static void
|
---|
443 | move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
|
---|
444 | {
|
---|
445 | PyGC_Head *gc = young->gc.gc_next;
|
---|
446 |
|
---|
447 | /* Invariants: all objects "to the left" of us in young have gc_refs
|
---|
448 | * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
|
---|
449 | * from outside the young list as it was at entry. All other objects
|
---|
450 | * from the original young "to the left" of us are in unreachable now,
|
---|
451 | * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
|
---|
452 | * left of us in 'young' now have been scanned, and no objects here
|
---|
453 | * or to the right have been scanned yet.
|
---|
454 | */
|
---|
455 |
|
---|
456 | while (gc != young) {
|
---|
457 | PyGC_Head *next;
|
---|
458 |
|
---|
459 | if (gc->gc.gc_refs) {
|
---|
460 | /* gc is definitely reachable from outside the
|
---|
461 | * original 'young'. Mark it as such, and traverse
|
---|
462 | * its pointers to find any other objects that may
|
---|
463 | * be directly reachable from it. Note that the
|
---|
464 | * call to tp_traverse may append objects to young,
|
---|
465 | * so we have to wait until it returns to determine
|
---|
466 | * the next object to visit.
|
---|
467 | */
|
---|
468 | PyObject *op = FROM_GC(gc);
|
---|
469 | traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
---|
470 | assert(gc->gc.gc_refs > 0);
|
---|
471 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
472 | (void) traverse(op,
|
---|
473 | (visitproc)visit_reachable,
|
---|
474 | (void *)young);
|
---|
475 | next = gc->gc.gc_next;
|
---|
476 | if (PyTuple_CheckExact(op)) {
|
---|
477 | _PyTuple_MaybeUntrack(op);
|
---|
478 | }
|
---|
479 | }
|
---|
480 | else {
|
---|
481 | /* This *may* be unreachable. To make progress,
|
---|
482 | * assume it is. gc isn't directly reachable from
|
---|
483 | * any object we've already traversed, but may be
|
---|
484 | * reachable from an object we haven't gotten to yet.
|
---|
485 | * visit_reachable will eventually move gc back into
|
---|
486 | * young if that's so, and we'll see it again.
|
---|
487 | */
|
---|
488 | next = gc->gc.gc_next;
|
---|
489 | gc_list_move(gc, unreachable);
|
---|
490 | gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
|
---|
491 | }
|
---|
492 | gc = next;
|
---|
493 | }
|
---|
494 | }
|
---|
495 |
|
---|
496 | /* Return true if object has a finalization method.
|
---|
497 | * CAUTION: An instance of an old-style class has to be checked for a
|
---|
498 | *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
|
---|
499 | * which in turn could call the class's __getattr__ hook (if any). That
|
---|
500 | * could invoke arbitrary Python code, mutating the object graph in arbitrary
|
---|
501 | * ways, and that was the source of some excruciatingly subtle bugs.
|
---|
502 | */
|
---|
503 | static int
|
---|
504 | has_finalizer(PyObject *op)
|
---|
505 | {
|
---|
506 | if (PyInstance_Check(op)) {
|
---|
507 | assert(delstr != NULL);
|
---|
508 | return _PyInstance_Lookup(op, delstr) != NULL;
|
---|
509 | }
|
---|
510 | else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
|
---|
511 | return op->ob_type->tp_del != NULL;
|
---|
512 | else if (PyGen_CheckExact(op))
|
---|
513 | return PyGen_NeedsFinalizing((PyGenObject *)op);
|
---|
514 | else
|
---|
515 | return 0;
|
---|
516 | }
|
---|
517 |
|
---|
518 | /* Try to untrack all currently tracked dictionaries */
|
---|
519 | static void
|
---|
520 | untrack_dicts(PyGC_Head *head)
|
---|
521 | {
|
---|
522 | PyGC_Head *next, *gc = head->gc.gc_next;
|
---|
523 | while (gc != head) {
|
---|
524 | PyObject *op = FROM_GC(gc);
|
---|
525 | next = gc->gc.gc_next;
|
---|
526 | if (PyDict_CheckExact(op))
|
---|
527 | _PyDict_MaybeUntrack(op);
|
---|
528 | gc = next;
|
---|
529 | }
|
---|
530 | }
|
---|
531 |
|
---|
532 | /* Move the objects in unreachable with __del__ methods into `finalizers`.
|
---|
533 | * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
|
---|
534 | * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
|
---|
535 | */
|
---|
536 | static void
|
---|
537 | move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
|
---|
538 | {
|
---|
539 | PyGC_Head *gc;
|
---|
540 | PyGC_Head *next;
|
---|
541 |
|
---|
542 | /* March over unreachable. Move objects with finalizers into
|
---|
543 | * `finalizers`.
|
---|
544 | */
|
---|
545 | for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
|
---|
546 | PyObject *op = FROM_GC(gc);
|
---|
547 |
|
---|
548 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
549 | next = gc->gc.gc_next;
|
---|
550 |
|
---|
551 | if (has_finalizer(op)) {
|
---|
552 | gc_list_move(gc, finalizers);
|
---|
553 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
554 | }
|
---|
555 | }
|
---|
556 | }
|
---|
557 |
|
---|
558 | /* A traversal callback for move_finalizer_reachable. */
|
---|
559 | static int
|
---|
560 | visit_move(PyObject *op, PyGC_Head *tolist)
|
---|
561 | {
|
---|
562 | if (PyObject_IS_GC(op)) {
|
---|
563 | if (IS_TENTATIVELY_UNREACHABLE(op)) {
|
---|
564 | PyGC_Head *gc = AS_GC(op);
|
---|
565 | gc_list_move(gc, tolist);
|
---|
566 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
567 | }
|
---|
568 | }
|
---|
569 | return 0;
|
---|
570 | }
|
---|
571 |
|
---|
572 | /* Move objects that are reachable from finalizers, from the unreachable set
|
---|
573 | * into finalizers set.
|
---|
574 | */
|
---|
575 | static void
|
---|
576 | move_finalizer_reachable(PyGC_Head *finalizers)
|
---|
577 | {
|
---|
578 | traverseproc traverse;
|
---|
579 | PyGC_Head *gc = finalizers->gc.gc_next;
|
---|
580 | for (; gc != finalizers; gc = gc->gc.gc_next) {
|
---|
581 | /* Note that the finalizers list may grow during this. */
|
---|
582 | traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
|
---|
583 | (void) traverse(FROM_GC(gc),
|
---|
584 | (visitproc)visit_move,
|
---|
585 | (void *)finalizers);
|
---|
586 | }
|
---|
587 | }
|
---|
588 |
|
---|
589 | /* Clear all weakrefs to unreachable objects, and if such a weakref has a
|
---|
590 | * callback, invoke it if necessary. Note that it's possible for such
|
---|
591 | * weakrefs to be outside the unreachable set -- indeed, those are precisely
|
---|
592 | * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
|
---|
593 | * overview & some details. Some weakrefs with callbacks may be reclaimed
|
---|
594 | * directly by this routine; the number reclaimed is the return value. Other
|
---|
595 | * weakrefs with callbacks may be moved into the `old` generation. Objects
|
---|
596 | * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
|
---|
597 | * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
|
---|
598 | * no object in `unreachable` is weakly referenced anymore.
|
---|
599 | */
|
---|
600 | static int
|
---|
601 | handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
|
---|
602 | {
|
---|
603 | PyGC_Head *gc;
|
---|
604 | PyObject *op; /* generally FROM_GC(gc) */
|
---|
605 | PyWeakReference *wr; /* generally a cast of op */
|
---|
606 | PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
|
---|
607 | PyGC_Head *next;
|
---|
608 | int num_freed = 0;
|
---|
609 |
|
---|
610 | gc_list_init(&wrcb_to_call);
|
---|
611 |
|
---|
612 | /* Clear all weakrefs to the objects in unreachable. If such a weakref
|
---|
613 | * also has a callback, move it into `wrcb_to_call` if the callback
|
---|
614 | * needs to be invoked. Note that we cannot invoke any callbacks until
|
---|
615 | * all weakrefs to unreachable objects are cleared, lest the callback
|
---|
616 | * resurrect an unreachable object via a still-active weakref. We
|
---|
617 | * make another pass over wrcb_to_call, invoking callbacks, after this
|
---|
618 | * pass completes.
|
---|
619 | */
|
---|
620 | for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
|
---|
621 | PyWeakReference **wrlist;
|
---|
622 |
|
---|
623 | op = FROM_GC(gc);
|
---|
624 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
625 | next = gc->gc.gc_next;
|
---|
626 |
|
---|
627 | if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
|
---|
628 | continue;
|
---|
629 |
|
---|
630 | /* It supports weakrefs. Does it have any? */
|
---|
631 | wrlist = (PyWeakReference **)
|
---|
632 | PyObject_GET_WEAKREFS_LISTPTR(op);
|
---|
633 |
|
---|
634 | /* `op` may have some weakrefs. March over the list, clear
|
---|
635 | * all the weakrefs, and move the weakrefs with callbacks
|
---|
636 | * that must be called into wrcb_to_call.
|
---|
637 | */
|
---|
638 | for (wr = *wrlist; wr != NULL; wr = *wrlist) {
|
---|
639 | PyGC_Head *wrasgc; /* AS_GC(wr) */
|
---|
640 |
|
---|
641 | /* _PyWeakref_ClearRef clears the weakref but leaves
|
---|
642 | * the callback pointer intact. Obscure: it also
|
---|
643 | * changes *wrlist.
|
---|
644 | */
|
---|
645 | assert(wr->wr_object == op);
|
---|
646 | _PyWeakref_ClearRef(wr);
|
---|
647 | assert(wr->wr_object == Py_None);
|
---|
648 | if (wr->wr_callback == NULL)
|
---|
649 | continue; /* no callback */
|
---|
650 |
|
---|
651 | /* Headache time. `op` is going away, and is weakly referenced by
|
---|
652 | * `wr`, which has a callback. Should the callback be invoked? If wr
|
---|
653 | * is also trash, no:
|
---|
654 | *
|
---|
655 | * 1. There's no need to call it. The object and the weakref are
|
---|
656 | * both going away, so it's legitimate to pretend the weakref is
|
---|
657 | * going away first. The user has to ensure a weakref outlives its
|
---|
658 | * referent if they want a guarantee that the wr callback will get
|
---|
659 | * invoked.
|
---|
660 | *
|
---|
661 | * 2. It may be catastrophic to call it. If the callback is also in
|
---|
662 | * cyclic trash (CT), then although the CT is unreachable from
|
---|
663 | * outside the current generation, CT may be reachable from the
|
---|
664 | * callback. Then the callback could resurrect insane objects.
|
---|
665 | *
|
---|
666 | * Since the callback is never needed and may be unsafe in this case,
|
---|
667 | * wr is simply left in the unreachable set. Note that because we
|
---|
668 | * already called _PyWeakref_ClearRef(wr), its callback will never
|
---|
669 | * trigger.
|
---|
670 | *
|
---|
671 | * OTOH, if wr isn't part of CT, we should invoke the callback: the
|
---|
672 | * weakref outlived the trash. Note that since wr isn't CT in this
|
---|
673 | * case, its callback can't be CT either -- wr acted as an external
|
---|
674 | * root to this generation, and therefore its callback did too. So
|
---|
675 | * nothing in CT is reachable from the callback either, so it's hard
|
---|
676 | * to imagine how calling it later could create a problem for us. wr
|
---|
677 | * is moved to wrcb_to_call in this case.
|
---|
678 | */
|
---|
679 | if (IS_TENTATIVELY_UNREACHABLE(wr))
|
---|
680 | continue;
|
---|
681 | assert(IS_REACHABLE(wr));
|
---|
682 |
|
---|
683 | /* Create a new reference so that wr can't go away
|
---|
684 | * before we can process it again.
|
---|
685 | */
|
---|
686 | Py_INCREF(wr);
|
---|
687 |
|
---|
688 | /* Move wr to wrcb_to_call, for the next pass. */
|
---|
689 | wrasgc = AS_GC(wr);
|
---|
690 | assert(wrasgc != next); /* wrasgc is reachable, but
|
---|
691 | next isn't, so they can't
|
---|
692 | be the same */
|
---|
693 | gc_list_move(wrasgc, &wrcb_to_call);
|
---|
694 | }
|
---|
695 | }
|
---|
696 |
|
---|
697 | /* Invoke the callbacks we decided to honor. It's safe to invoke them
|
---|
698 | * because they can't reference unreachable objects.
|
---|
699 | */
|
---|
700 | while (! gc_list_is_empty(&wrcb_to_call)) {
|
---|
701 | PyObject *temp;
|
---|
702 | PyObject *callback;
|
---|
703 |
|
---|
704 | gc = wrcb_to_call.gc.gc_next;
|
---|
705 | op = FROM_GC(gc);
|
---|
706 | assert(IS_REACHABLE(op));
|
---|
707 | assert(PyWeakref_Check(op));
|
---|
708 | wr = (PyWeakReference *)op;
|
---|
709 | callback = wr->wr_callback;
|
---|
710 | assert(callback != NULL);
|
---|
711 |
|
---|
712 | /* copy-paste of weakrefobject.c's handle_callback() */
|
---|
713 | temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
|
---|
714 | if (temp == NULL)
|
---|
715 | PyErr_WriteUnraisable(callback);
|
---|
716 | else
|
---|
717 | Py_DECREF(temp);
|
---|
718 |
|
---|
719 | /* Give up the reference we created in the first pass. When
|
---|
720 | * op's refcount hits 0 (which it may or may not do right now),
|
---|
721 | * op's tp_dealloc will decref op->wr_callback too. Note
|
---|
722 | * that the refcount probably will hit 0 now, and because this
|
---|
723 | * weakref was reachable to begin with, gc didn't already
|
---|
724 | * add it to its count of freed objects. Example: a reachable
|
---|
725 | * weak value dict maps some key to this reachable weakref.
|
---|
726 | * The callback removes this key->weakref mapping from the
|
---|
727 | * dict, leaving no other references to the weakref (excepting
|
---|
728 | * ours).
|
---|
729 | */
|
---|
730 | Py_DECREF(op);
|
---|
731 | if (wrcb_to_call.gc.gc_next == gc) {
|
---|
732 | /* object is still alive -- move it */
|
---|
733 | gc_list_move(gc, old);
|
---|
734 | }
|
---|
735 | else
|
---|
736 | ++num_freed;
|
---|
737 | }
|
---|
738 |
|
---|
739 | return num_freed;
|
---|
740 | }
|
---|
741 |
|
---|
742 | static void
|
---|
743 | debug_instance(char *msg, PyInstanceObject *inst)
|
---|
744 | {
|
---|
745 | char *cname;
|
---|
746 | /* simple version of instance_repr */
|
---|
747 | PyObject *classname = inst->in_class->cl_name;
|
---|
748 | if (classname != NULL && PyString_Check(classname))
|
---|
749 | cname = PyString_AsString(classname);
|
---|
750 | else
|
---|
751 | cname = "?";
|
---|
752 | PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
|
---|
753 | msg, cname, inst);
|
---|
754 | }
|
---|
755 |
|
---|
756 | static void
|
---|
757 | debug_cycle(char *msg, PyObject *op)
|
---|
758 | {
|
---|
759 | if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
|
---|
760 | debug_instance(msg, (PyInstanceObject *)op);
|
---|
761 | }
|
---|
762 | else if (debug & DEBUG_OBJECTS) {
|
---|
763 | PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
|
---|
764 | msg, Py_TYPE(op)->tp_name, op);
|
---|
765 | }
|
---|
766 | }
|
---|
767 |
|
---|
768 | /* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
|
---|
769 | * only from such cycles).
|
---|
770 | * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
|
---|
771 | * garbage list (a Python list), else only the objects in finalizers with
|
---|
772 | * __del__ methods are appended to garbage. All objects in finalizers are
|
---|
773 | * merged into the old list regardless.
|
---|
774 | * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list).
|
---|
775 | * The finalizers list is made empty on a successful return.
|
---|
776 | */
|
---|
777 | static int
|
---|
778 | handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
|
---|
779 | {
|
---|
780 | PyGC_Head *gc = finalizers->gc.gc_next;
|
---|
781 |
|
---|
782 | if (garbage == NULL) {
|
---|
783 | garbage = PyList_New(0);
|
---|
784 | if (garbage == NULL)
|
---|
785 | Py_FatalError("gc couldn't create gc.garbage list");
|
---|
786 | }
|
---|
787 | for (; gc != finalizers; gc = gc->gc.gc_next) {
|
---|
788 | PyObject *op = FROM_GC(gc);
|
---|
789 |
|
---|
790 | if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
|
---|
791 | if (PyList_Append(garbage, op) < 0)
|
---|
792 | return -1;
|
---|
793 | }
|
---|
794 | }
|
---|
795 |
|
---|
796 | gc_list_merge(finalizers, old);
|
---|
797 | return 0;
|
---|
798 | }
|
---|
799 |
|
---|
800 | /* Break reference cycles by clearing the containers involved. This is
|
---|
801 | * tricky business as the lists can be changing and we don't know which
|
---|
802 | * objects may be freed. It is possible I screwed something up here.
|
---|
803 | */
|
---|
804 | static void
|
---|
805 | delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
|
---|
806 | {
|
---|
807 | inquiry clear;
|
---|
808 |
|
---|
809 | while (!gc_list_is_empty(collectable)) {
|
---|
810 | PyGC_Head *gc = collectable->gc.gc_next;
|
---|
811 | PyObject *op = FROM_GC(gc);
|
---|
812 |
|
---|
813 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
814 | if (debug & DEBUG_SAVEALL) {
|
---|
815 | PyList_Append(garbage, op);
|
---|
816 | }
|
---|
817 | else {
|
---|
818 | if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
|
---|
819 | Py_INCREF(op);
|
---|
820 | clear(op);
|
---|
821 | Py_DECREF(op);
|
---|
822 | }
|
---|
823 | }
|
---|
824 | if (collectable->gc.gc_next == gc) {
|
---|
825 | /* object is still alive, move it, it may die later */
|
---|
826 | gc_list_move(gc, old);
|
---|
827 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
828 | }
|
---|
829 | }
|
---|
830 | }
|
---|
831 |
|
---|
832 | /* Clear all free lists
|
---|
833 | * All free lists are cleared during the collection of the highest generation.
|
---|
834 | * Allocated items in the free list may keep a pymalloc arena occupied.
|
---|
835 | * Clearing the free lists may give back memory to the OS earlier.
|
---|
836 | */
|
---|
837 | static void
|
---|
838 | clear_freelists(void)
|
---|
839 | {
|
---|
840 | (void)PyMethod_ClearFreeList();
|
---|
841 | (void)PyFrame_ClearFreeList();
|
---|
842 | (void)PyCFunction_ClearFreeList();
|
---|
843 | (void)PyTuple_ClearFreeList();
|
---|
844 | #ifdef Py_USING_UNICODE
|
---|
845 | (void)PyUnicode_ClearFreeList();
|
---|
846 | #endif
|
---|
847 | (void)PyInt_ClearFreeList();
|
---|
848 | (void)PyFloat_ClearFreeList();
|
---|
849 | }
|
---|
850 |
|
---|
851 | static double
|
---|
852 | get_time(void)
|
---|
853 | {
|
---|
854 | double result = 0;
|
---|
855 | if (tmod != NULL) {
|
---|
856 | PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
|
---|
857 | if (f == NULL) {
|
---|
858 | PyErr_Clear();
|
---|
859 | }
|
---|
860 | else {
|
---|
861 | if (PyFloat_Check(f))
|
---|
862 | result = PyFloat_AsDouble(f);
|
---|
863 | Py_DECREF(f);
|
---|
864 | }
|
---|
865 | }
|
---|
866 | return result;
|
---|
867 | }
|
---|
868 |
|
---|
869 | /* This is the main function. Read this to understand how the
|
---|
870 | * collection process works. */
|
---|
871 | static Py_ssize_t
|
---|
872 | collect(int generation)
|
---|
873 | {
|
---|
874 | int i;
|
---|
875 | Py_ssize_t m = 0; /* # objects collected */
|
---|
876 | Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
|
---|
877 | PyGC_Head *young; /* the generation we are examining */
|
---|
878 | PyGC_Head *old; /* next older generation */
|
---|
879 | PyGC_Head unreachable; /* non-problematic unreachable trash */
|
---|
880 | PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
|
---|
881 | PyGC_Head *gc;
|
---|
882 | double t1 = 0.0;
|
---|
883 |
|
---|
884 | if (delstr == NULL) {
|
---|
885 | delstr = PyString_InternFromString("__del__");
|
---|
886 | if (delstr == NULL)
|
---|
887 | Py_FatalError("gc couldn't allocate \"__del__\"");
|
---|
888 | }
|
---|
889 |
|
---|
890 | if (debug & DEBUG_STATS) {
|
---|
891 | PySys_WriteStderr("gc: collecting generation %d...\n",
|
---|
892 | generation);
|
---|
893 | PySys_WriteStderr("gc: objects in each generation:");
|
---|
894 | for (i = 0; i < NUM_GENERATIONS; i++)
|
---|
895 | PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
|
---|
896 | gc_list_size(GEN_HEAD(i)));
|
---|
897 | t1 = get_time();
|
---|
898 | PySys_WriteStderr("\n");
|
---|
899 | }
|
---|
900 |
|
---|
901 | /* update collection and allocation counters */
|
---|
902 | if (generation+1 < NUM_GENERATIONS)
|
---|
903 | generations[generation+1].count += 1;
|
---|
904 | for (i = 0; i <= generation; i++)
|
---|
905 | generations[i].count = 0;
|
---|
906 |
|
---|
907 | /* merge younger generations with one we are currently collecting */
|
---|
908 | for (i = 0; i < generation; i++) {
|
---|
909 | gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
|
---|
910 | }
|
---|
911 |
|
---|
912 | /* handy references */
|
---|
913 | young = GEN_HEAD(generation);
|
---|
914 | if (generation < NUM_GENERATIONS-1)
|
---|
915 | old = GEN_HEAD(generation+1);
|
---|
916 | else
|
---|
917 | old = young;
|
---|
918 |
|
---|
919 | /* Using ob_refcnt and gc_refs, calculate which objects in the
|
---|
920 | * container set are reachable from outside the set (i.e., have a
|
---|
921 | * refcount greater than 0 when all the references within the
|
---|
922 | * set are taken into account).
|
---|
923 | */
|
---|
924 | update_refs(young);
|
---|
925 | subtract_refs(young);
|
---|
926 |
|
---|
927 | /* Leave everything reachable from outside young in young, and move
|
---|
928 | * everything else (in young) to unreachable.
|
---|
929 | * NOTE: This used to move the reachable objects into a reachable
|
---|
930 | * set instead. But most things usually turn out to be reachable,
|
---|
931 | * so it's more efficient to move the unreachable things.
|
---|
932 | */
|
---|
933 | gc_list_init(&unreachable);
|
---|
934 | move_unreachable(young, &unreachable);
|
---|
935 |
|
---|
936 | /* Move reachable objects to next generation. */
|
---|
937 | if (young != old) {
|
---|
938 | if (generation == NUM_GENERATIONS - 2) {
|
---|
939 | long_lived_pending += gc_list_size(young);
|
---|
940 | }
|
---|
941 | gc_list_merge(young, old);
|
---|
942 | }
|
---|
943 | else {
|
---|
944 | /* We only untrack dicts in full collections, to avoid quadratic
|
---|
945 | dict build-up. See issue #14775. */
|
---|
946 | untrack_dicts(young);
|
---|
947 | long_lived_pending = 0;
|
---|
948 | long_lived_total = gc_list_size(young);
|
---|
949 | }
|
---|
950 |
|
---|
951 | /* All objects in unreachable are trash, but objects reachable from
|
---|
952 | * finalizers can't safely be deleted. Python programmers should take
|
---|
953 | * care not to create such things. For Python, finalizers means
|
---|
954 | * instance objects with __del__ methods. Weakrefs with callbacks
|
---|
955 | * can also call arbitrary Python code but they will be dealt with by
|
---|
956 | * handle_weakrefs().
|
---|
957 | */
|
---|
958 | gc_list_init(&finalizers);
|
---|
959 | move_finalizers(&unreachable, &finalizers);
|
---|
960 | /* finalizers contains the unreachable objects with a finalizer;
|
---|
961 | * unreachable objects reachable *from* those are also uncollectable,
|
---|
962 | * and we move those into the finalizers list too.
|
---|
963 | */
|
---|
964 | move_finalizer_reachable(&finalizers);
|
---|
965 |
|
---|
966 | /* Collect statistics on collectable objects found and print
|
---|
967 | * debugging information.
|
---|
968 | */
|
---|
969 | for (gc = unreachable.gc.gc_next; gc != &unreachable;
|
---|
970 | gc = gc->gc.gc_next) {
|
---|
971 | m++;
|
---|
972 | if (debug & DEBUG_COLLECTABLE) {
|
---|
973 | debug_cycle("collectable", FROM_GC(gc));
|
---|
974 | }
|
---|
975 | }
|
---|
976 |
|
---|
977 | /* Clear weakrefs and invoke callbacks as necessary. */
|
---|
978 | m += handle_weakrefs(&unreachable, old);
|
---|
979 |
|
---|
980 | /* Call tp_clear on objects in the unreachable set. This will cause
|
---|
981 | * the reference cycles to be broken. It may also cause some objects
|
---|
982 | * in finalizers to be freed.
|
---|
983 | */
|
---|
984 | delete_garbage(&unreachable, old);
|
---|
985 |
|
---|
986 | /* Collect statistics on uncollectable objects found and print
|
---|
987 | * debugging information. */
|
---|
988 | for (gc = finalizers.gc.gc_next;
|
---|
989 | gc != &finalizers;
|
---|
990 | gc = gc->gc.gc_next) {
|
---|
991 | n++;
|
---|
992 | if (debug & DEBUG_UNCOLLECTABLE)
|
---|
993 | debug_cycle("uncollectable", FROM_GC(gc));
|
---|
994 | }
|
---|
995 | if (debug & DEBUG_STATS) {
|
---|
996 | double t2 = get_time();
|
---|
997 | if (m == 0 && n == 0)
|
---|
998 | PySys_WriteStderr("gc: done");
|
---|
999 | else
|
---|
1000 | PySys_WriteStderr(
|
---|
1001 | "gc: done, "
|
---|
1002 | "%" PY_FORMAT_SIZE_T "d unreachable, "
|
---|
1003 | "%" PY_FORMAT_SIZE_T "d uncollectable",
|
---|
1004 | n+m, n);
|
---|
1005 | if (t1 && t2) {
|
---|
1006 | PySys_WriteStderr(", %.4fs elapsed", t2-t1);
|
---|
1007 | }
|
---|
1008 | PySys_WriteStderr(".\n");
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | /* Append instances in the uncollectable set to a Python
|
---|
1012 | * reachable list of garbage. The programmer has to deal with
|
---|
1013 | * this if they insist on creating this type of structure.
|
---|
1014 | */
|
---|
1015 | (void)handle_finalizers(&finalizers, old);
|
---|
1016 |
|
---|
1017 | /* Clear free list only during the collection of the highest
|
---|
1018 | * generation */
|
---|
1019 | if (generation == NUM_GENERATIONS-1) {
|
---|
1020 | clear_freelists();
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | if (PyErr_Occurred()) {
|
---|
1024 | if (gc_str == NULL)
|
---|
1025 | gc_str = PyString_FromString("garbage collection");
|
---|
1026 | PyErr_WriteUnraisable(gc_str);
|
---|
1027 | Py_FatalError("unexpected exception during garbage collection");
|
---|
1028 | }
|
---|
1029 | return n+m;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | static Py_ssize_t
|
---|
1033 | collect_generations(void)
|
---|
1034 | {
|
---|
1035 | int i;
|
---|
1036 | Py_ssize_t n = 0;
|
---|
1037 |
|
---|
1038 | /* Find the oldest generation (highest numbered) where the count
|
---|
1039 | * exceeds the threshold. Objects in the that generation and
|
---|
1040 | * generations younger than it will be collected. */
|
---|
1041 | for (i = NUM_GENERATIONS-1; i >= 0; i--) {
|
---|
1042 | if (generations[i].count > generations[i].threshold) {
|
---|
1043 | /* Avoid quadratic performance degradation in number
|
---|
1044 | of tracked objects. See comments at the beginning
|
---|
1045 | of this file, and issue #4074.
|
---|
1046 | */
|
---|
1047 | if (i == NUM_GENERATIONS - 1
|
---|
1048 | && long_lived_pending < long_lived_total / 4)
|
---|
1049 | continue;
|
---|
1050 | n = collect(i);
|
---|
1051 | break;
|
---|
1052 | }
|
---|
1053 | }
|
---|
1054 | return n;
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | PyDoc_STRVAR(gc_enable__doc__,
|
---|
1058 | "enable() -> None\n"
|
---|
1059 | "\n"
|
---|
1060 | "Enable automatic garbage collection.\n");
|
---|
1061 |
|
---|
1062 | static PyObject *
|
---|
1063 | gc_enable(PyObject *self, PyObject *noargs)
|
---|
1064 | {
|
---|
1065 | enabled = 1;
|
---|
1066 | Py_INCREF(Py_None);
|
---|
1067 | return Py_None;
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | PyDoc_STRVAR(gc_disable__doc__,
|
---|
1071 | "disable() -> None\n"
|
---|
1072 | "\n"
|
---|
1073 | "Disable automatic garbage collection.\n");
|
---|
1074 |
|
---|
1075 | static PyObject *
|
---|
1076 | gc_disable(PyObject *self, PyObject *noargs)
|
---|
1077 | {
|
---|
1078 | enabled = 0;
|
---|
1079 | Py_INCREF(Py_None);
|
---|
1080 | return Py_None;
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | PyDoc_STRVAR(gc_isenabled__doc__,
|
---|
1084 | "isenabled() -> status\n"
|
---|
1085 | "\n"
|
---|
1086 | "Returns true if automatic garbage collection is enabled.\n");
|
---|
1087 |
|
---|
1088 | static PyObject *
|
---|
1089 | gc_isenabled(PyObject *self, PyObject *noargs)
|
---|
1090 | {
|
---|
1091 | return PyBool_FromLong((long)enabled);
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 | PyDoc_STRVAR(gc_collect__doc__,
|
---|
1095 | "collect([generation]) -> n\n"
|
---|
1096 | "\n"
|
---|
1097 | "With no arguments, run a full collection. The optional argument\n"
|
---|
1098 | "may be an integer specifying which generation to collect. A ValueError\n"
|
---|
1099 | "is raised if the generation number is invalid.\n\n"
|
---|
1100 | "The number of unreachable objects is returned.\n");
|
---|
1101 |
|
---|
1102 | static PyObject *
|
---|
1103 | gc_collect(PyObject *self, PyObject *args, PyObject *kws)
|
---|
1104 | {
|
---|
1105 | static char *keywords[] = {"generation", NULL};
|
---|
1106 | int genarg = NUM_GENERATIONS - 1;
|
---|
1107 | Py_ssize_t n;
|
---|
1108 |
|
---|
1109 | if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
|
---|
1110 | return NULL;
|
---|
1111 |
|
---|
1112 | else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
|
---|
1113 | PyErr_SetString(PyExc_ValueError, "invalid generation");
|
---|
1114 | return NULL;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | if (collecting)
|
---|
1118 | n = 0; /* already collecting, don't do anything */
|
---|
1119 | else {
|
---|
1120 | collecting = 1;
|
---|
1121 | n = collect(genarg);
|
---|
1122 | collecting = 0;
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | return PyInt_FromSsize_t(n);
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | PyDoc_STRVAR(gc_set_debug__doc__,
|
---|
1129 | "set_debug(flags) -> None\n"
|
---|
1130 | "\n"
|
---|
1131 | "Set the garbage collection debugging flags. Debugging information is\n"
|
---|
1132 | "written to sys.stderr.\n"
|
---|
1133 | "\n"
|
---|
1134 | "flags is an integer and can have the following bits turned on:\n"
|
---|
1135 | "\n"
|
---|
1136 | " DEBUG_STATS - Print statistics during collection.\n"
|
---|
1137 | " DEBUG_COLLECTABLE - Print collectable objects found.\n"
|
---|
1138 | " DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
|
---|
1139 | " DEBUG_INSTANCES - Print instance objects.\n"
|
---|
1140 | " DEBUG_OBJECTS - Print objects other than instances.\n"
|
---|
1141 | " DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
|
---|
1142 | " DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");
|
---|
1143 |
|
---|
1144 | static PyObject *
|
---|
1145 | gc_set_debug(PyObject *self, PyObject *args)
|
---|
1146 | {
|
---|
1147 | if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
|
---|
1148 | return NULL;
|
---|
1149 |
|
---|
1150 | Py_INCREF(Py_None);
|
---|
1151 | return Py_None;
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | PyDoc_STRVAR(gc_get_debug__doc__,
|
---|
1155 | "get_debug() -> flags\n"
|
---|
1156 | "\n"
|
---|
1157 | "Get the garbage collection debugging flags.\n");
|
---|
1158 |
|
---|
1159 | static PyObject *
|
---|
1160 | gc_get_debug(PyObject *self, PyObject *noargs)
|
---|
1161 | {
|
---|
1162 | return Py_BuildValue("i", debug);
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | PyDoc_STRVAR(gc_set_thresh__doc__,
|
---|
1166 | "set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
|
---|
1167 | "\n"
|
---|
1168 | "Sets the collection thresholds. Setting threshold0 to zero disables\n"
|
---|
1169 | "collection.\n");
|
---|
1170 |
|
---|
1171 | static PyObject *
|
---|
1172 | gc_set_thresh(PyObject *self, PyObject *args)
|
---|
1173 | {
|
---|
1174 | int i;
|
---|
1175 | if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
|
---|
1176 | &generations[0].threshold,
|
---|
1177 | &generations[1].threshold,
|
---|
1178 | &generations[2].threshold))
|
---|
1179 | return NULL;
|
---|
1180 | for (i = 2; i < NUM_GENERATIONS; i++) {
|
---|
1181 | /* generations higher than 2 get the same threshold */
|
---|
1182 | generations[i].threshold = generations[2].threshold;
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | Py_INCREF(Py_None);
|
---|
1186 | return Py_None;
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | PyDoc_STRVAR(gc_get_thresh__doc__,
|
---|
1190 | "get_threshold() -> (threshold0, threshold1, threshold2)\n"
|
---|
1191 | "\n"
|
---|
1192 | "Return the current collection thresholds\n");
|
---|
1193 |
|
---|
1194 | static PyObject *
|
---|
1195 | gc_get_thresh(PyObject *self, PyObject *noargs)
|
---|
1196 | {
|
---|
1197 | return Py_BuildValue("(iii)",
|
---|
1198 | generations[0].threshold,
|
---|
1199 | generations[1].threshold,
|
---|
1200 | generations[2].threshold);
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | PyDoc_STRVAR(gc_get_count__doc__,
|
---|
1204 | "get_count() -> (count0, count1, count2)\n"
|
---|
1205 | "\n"
|
---|
1206 | "Return the current collection counts\n");
|
---|
1207 |
|
---|
1208 | static PyObject *
|
---|
1209 | gc_get_count(PyObject *self, PyObject *noargs)
|
---|
1210 | {
|
---|
1211 | return Py_BuildValue("(iii)",
|
---|
1212 | generations[0].count,
|
---|
1213 | generations[1].count,
|
---|
1214 | generations[2].count);
|
---|
1215 | }
|
---|
1216 |
|
---|
1217 | static int
|
---|
1218 | referrersvisit(PyObject* obj, PyObject *objs)
|
---|
1219 | {
|
---|
1220 | Py_ssize_t i;
|
---|
1221 | for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
|
---|
1222 | if (PyTuple_GET_ITEM(objs, i) == obj)
|
---|
1223 | return 1;
|
---|
1224 | return 0;
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 | static int
|
---|
1228 | gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
|
---|
1229 | {
|
---|
1230 | PyGC_Head *gc;
|
---|
1231 | PyObject *obj;
|
---|
1232 | traverseproc traverse;
|
---|
1233 | for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
|
---|
1234 | obj = FROM_GC(gc);
|
---|
1235 | traverse = Py_TYPE(obj)->tp_traverse;
|
---|
1236 | if (obj == objs || obj == resultlist)
|
---|
1237 | continue;
|
---|
1238 | if (traverse(obj, (visitproc)referrersvisit, objs)) {
|
---|
1239 | if (PyList_Append(resultlist, obj) < 0)
|
---|
1240 | return 0; /* error */
|
---|
1241 | }
|
---|
1242 | }
|
---|
1243 | return 1; /* no error */
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | PyDoc_STRVAR(gc_get_referrers__doc__,
|
---|
1247 | "get_referrers(*objs) -> list\n\
|
---|
1248 | Return the list of objects that directly refer to any of objs.");
|
---|
1249 |
|
---|
1250 | static PyObject *
|
---|
1251 | gc_get_referrers(PyObject *self, PyObject *args)
|
---|
1252 | {
|
---|
1253 | int i;
|
---|
1254 | PyObject *result = PyList_New(0);
|
---|
1255 | if (!result) return NULL;
|
---|
1256 |
|
---|
1257 | for (i = 0; i < NUM_GENERATIONS; i++) {
|
---|
1258 | if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
|
---|
1259 | Py_DECREF(result);
|
---|
1260 | return NULL;
|
---|
1261 | }
|
---|
1262 | }
|
---|
1263 | return result;
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | /* Append obj to list; return true if error (out of memory), false if OK. */
|
---|
1267 | static int
|
---|
1268 | referentsvisit(PyObject *obj, PyObject *list)
|
---|
1269 | {
|
---|
1270 | return PyList_Append(list, obj) < 0;
|
---|
1271 | }
|
---|
1272 |
|
---|
1273 | PyDoc_STRVAR(gc_get_referents__doc__,
|
---|
1274 | "get_referents(*objs) -> list\n\
|
---|
1275 | Return the list of objects that are directly referred to by objs.");
|
---|
1276 |
|
---|
1277 | static PyObject *
|
---|
1278 | gc_get_referents(PyObject *self, PyObject *args)
|
---|
1279 | {
|
---|
1280 | Py_ssize_t i;
|
---|
1281 | PyObject *result = PyList_New(0);
|
---|
1282 |
|
---|
1283 | if (result == NULL)
|
---|
1284 | return NULL;
|
---|
1285 |
|
---|
1286 | for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
|
---|
1287 | traverseproc traverse;
|
---|
1288 | PyObject *obj = PyTuple_GET_ITEM(args, i);
|
---|
1289 |
|
---|
1290 | if (! PyObject_IS_GC(obj))
|
---|
1291 | continue;
|
---|
1292 | traverse = Py_TYPE(obj)->tp_traverse;
|
---|
1293 | if (! traverse)
|
---|
1294 | continue;
|
---|
1295 | if (traverse(obj, (visitproc)referentsvisit, result)) {
|
---|
1296 | Py_DECREF(result);
|
---|
1297 | return NULL;
|
---|
1298 | }
|
---|
1299 | }
|
---|
1300 | return result;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | PyDoc_STRVAR(gc_get_objects__doc__,
|
---|
1304 | "get_objects() -> [...]\n"
|
---|
1305 | "\n"
|
---|
1306 | "Return a list of objects tracked by the collector (excluding the list\n"
|
---|
1307 | "returned).\n");
|
---|
1308 |
|
---|
1309 | static PyObject *
|
---|
1310 | gc_get_objects(PyObject *self, PyObject *noargs)
|
---|
1311 | {
|
---|
1312 | int i;
|
---|
1313 | PyObject* result;
|
---|
1314 |
|
---|
1315 | result = PyList_New(0);
|
---|
1316 | if (result == NULL)
|
---|
1317 | return NULL;
|
---|
1318 | for (i = 0; i < NUM_GENERATIONS; i++) {
|
---|
1319 | if (append_objects(result, GEN_HEAD(i))) {
|
---|
1320 | Py_DECREF(result);
|
---|
1321 | return NULL;
|
---|
1322 | }
|
---|
1323 | }
|
---|
1324 | return result;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | PyDoc_STRVAR(gc_is_tracked__doc__,
|
---|
1328 | "is_tracked(obj) -> bool\n"
|
---|
1329 | "\n"
|
---|
1330 | "Returns true if the object is tracked by the garbage collector.\n"
|
---|
1331 | "Simple atomic objects will return false.\n"
|
---|
1332 | );
|
---|
1333 |
|
---|
1334 | static PyObject *
|
---|
1335 | gc_is_tracked(PyObject *self, PyObject *obj)
|
---|
1336 | {
|
---|
1337 | PyObject *result;
|
---|
1338 |
|
---|
1339 | if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
|
---|
1340 | result = Py_True;
|
---|
1341 | else
|
---|
1342 | result = Py_False;
|
---|
1343 | Py_INCREF(result);
|
---|
1344 | return result;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | PyDoc_STRVAR(gc__doc__,
|
---|
1349 | "This module provides access to the garbage collector for reference cycles.\n"
|
---|
1350 | "\n"
|
---|
1351 | "enable() -- Enable automatic garbage collection.\n"
|
---|
1352 | "disable() -- Disable automatic garbage collection.\n"
|
---|
1353 | "isenabled() -- Returns true if automatic collection is enabled.\n"
|
---|
1354 | "collect() -- Do a full collection right now.\n"
|
---|
1355 | "get_count() -- Return the current collection counts.\n"
|
---|
1356 | "set_debug() -- Set debugging flags.\n"
|
---|
1357 | "get_debug() -- Get debugging flags.\n"
|
---|
1358 | "set_threshold() -- Set the collection thresholds.\n"
|
---|
1359 | "get_threshold() -- Return the current the collection thresholds.\n"
|
---|
1360 | "get_objects() -- Return a list of all objects tracked by the collector.\n"
|
---|
1361 | "is_tracked() -- Returns true if a given object is tracked.\n"
|
---|
1362 | "get_referrers() -- Return the list of objects that refer to an object.\n"
|
---|
1363 | "get_referents() -- Return the list of objects that an object refers to.\n");
|
---|
1364 |
|
---|
1365 | static PyMethodDef GcMethods[] = {
|
---|
1366 | {"enable", gc_enable, METH_NOARGS, gc_enable__doc__},
|
---|
1367 | {"disable", gc_disable, METH_NOARGS, gc_disable__doc__},
|
---|
1368 | {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__},
|
---|
1369 | {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__},
|
---|
1370 | {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__},
|
---|
1371 | {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__},
|
---|
1372 | {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
|
---|
1373 | {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__},
|
---|
1374 | {"collect", (PyCFunction)gc_collect,
|
---|
1375 | METH_VARARGS | METH_KEYWORDS, gc_collect__doc__},
|
---|
1376 | {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__},
|
---|
1377 | {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__},
|
---|
1378 | {"get_referrers", gc_get_referrers, METH_VARARGS,
|
---|
1379 | gc_get_referrers__doc__},
|
---|
1380 | {"get_referents", gc_get_referents, METH_VARARGS,
|
---|
1381 | gc_get_referents__doc__},
|
---|
1382 | {NULL, NULL} /* Sentinel */
|
---|
1383 | };
|
---|
1384 |
|
---|
1385 | PyMODINIT_FUNC
|
---|
1386 | initgc(void)
|
---|
1387 | {
|
---|
1388 | PyObject *m;
|
---|
1389 |
|
---|
1390 | m = Py_InitModule4("gc",
|
---|
1391 | GcMethods,
|
---|
1392 | gc__doc__,
|
---|
1393 | NULL,
|
---|
1394 | PYTHON_API_VERSION);
|
---|
1395 | if (m == NULL)
|
---|
1396 | return;
|
---|
1397 |
|
---|
1398 | if (garbage == NULL) {
|
---|
1399 | garbage = PyList_New(0);
|
---|
1400 | if (garbage == NULL)
|
---|
1401 | return;
|
---|
1402 | }
|
---|
1403 | Py_INCREF(garbage);
|
---|
1404 | if (PyModule_AddObject(m, "garbage", garbage) < 0)
|
---|
1405 | return;
|
---|
1406 |
|
---|
1407 | /* Importing can't be done in collect() because collect()
|
---|
1408 | * can be called via PyGC_Collect() in Py_Finalize().
|
---|
1409 | * This wouldn't be a problem, except that <initialized> is
|
---|
1410 | * reset to 0 before calling collect which trips up
|
---|
1411 | * the import and triggers an assertion.
|
---|
1412 | */
|
---|
1413 | if (tmod == NULL) {
|
---|
1414 | tmod = PyImport_ImportModuleNoBlock("time");
|
---|
1415 | if (tmod == NULL)
|
---|
1416 | PyErr_Clear();
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
|
---|
1420 | ADD_INT(DEBUG_STATS);
|
---|
1421 | ADD_INT(DEBUG_COLLECTABLE);
|
---|
1422 | ADD_INT(DEBUG_UNCOLLECTABLE);
|
---|
1423 | ADD_INT(DEBUG_INSTANCES);
|
---|
1424 | ADD_INT(DEBUG_OBJECTS);
|
---|
1425 | ADD_INT(DEBUG_SAVEALL);
|
---|
1426 | ADD_INT(DEBUG_LEAK);
|
---|
1427 | #undef ADD_INT
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 | /* API to invoke gc.collect() from C */
|
---|
1431 | Py_ssize_t
|
---|
1432 | PyGC_Collect(void)
|
---|
1433 | {
|
---|
1434 | Py_ssize_t n;
|
---|
1435 |
|
---|
1436 | if (collecting)
|
---|
1437 | n = 0; /* already collecting, don't do anything */
|
---|
1438 | else {
|
---|
1439 | collecting = 1;
|
---|
1440 | n = collect(NUM_GENERATIONS - 1);
|
---|
1441 | collecting = 0;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 | return n;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 | /* for debugging */
|
---|
1448 | void
|
---|
1449 | _PyGC_Dump(PyGC_Head *g)
|
---|
1450 | {
|
---|
1451 | _PyObject_Dump(FROM_GC(g));
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | /* extension modules might be compiled with GC support so these
|
---|
1455 | functions must always be available */
|
---|
1456 |
|
---|
1457 | #undef PyObject_GC_Track
|
---|
1458 | #undef PyObject_GC_UnTrack
|
---|
1459 | #undef PyObject_GC_Del
|
---|
1460 | #undef _PyObject_GC_Malloc
|
---|
1461 |
|
---|
1462 | void
|
---|
1463 | PyObject_GC_Track(void *op)
|
---|
1464 | {
|
---|
1465 | _PyObject_GC_TRACK(op);
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | /* for binary compatibility with 2.2 */
|
---|
1469 | void
|
---|
1470 | _PyObject_GC_Track(PyObject *op)
|
---|
1471 | {
|
---|
1472 | PyObject_GC_Track(op);
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 | void
|
---|
1476 | PyObject_GC_UnTrack(void *op)
|
---|
1477 | {
|
---|
1478 | /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
|
---|
1479 | * call PyObject_GC_UnTrack twice on an object.
|
---|
1480 | */
|
---|
1481 | if (IS_TRACKED(op))
|
---|
1482 | _PyObject_GC_UNTRACK(op);
|
---|
1483 | }
|
---|
1484 |
|
---|
1485 | /* for binary compatibility with 2.2 */
|
---|
1486 | void
|
---|
1487 | _PyObject_GC_UnTrack(PyObject *op)
|
---|
1488 | {
|
---|
1489 | PyObject_GC_UnTrack(op);
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | PyObject *
|
---|
1493 | _PyObject_GC_Malloc(size_t basicsize)
|
---|
1494 | {
|
---|
1495 | PyObject *op;
|
---|
1496 | PyGC_Head *g;
|
---|
1497 | if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
|
---|
1498 | return PyErr_NoMemory();
|
---|
1499 | g = (PyGC_Head *)PyObject_MALLOC(
|
---|
1500 | sizeof(PyGC_Head) + basicsize);
|
---|
1501 | if (g == NULL)
|
---|
1502 | return PyErr_NoMemory();
|
---|
1503 | g->gc.gc_refs = GC_UNTRACKED;
|
---|
1504 | generations[0].count++; /* number of allocated GC objects */
|
---|
1505 | if (generations[0].count > generations[0].threshold &&
|
---|
1506 | enabled &&
|
---|
1507 | generations[0].threshold &&
|
---|
1508 | !collecting &&
|
---|
1509 | !PyErr_Occurred()) {
|
---|
1510 | collecting = 1;
|
---|
1511 | collect_generations();
|
---|
1512 | collecting = 0;
|
---|
1513 | }
|
---|
1514 | op = FROM_GC(g);
|
---|
1515 | return op;
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | PyObject *
|
---|
1519 | _PyObject_GC_New(PyTypeObject *tp)
|
---|
1520 | {
|
---|
1521 | PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
|
---|
1522 | if (op != NULL)
|
---|
1523 | op = PyObject_INIT(op, tp);
|
---|
1524 | return op;
|
---|
1525 | }
|
---|
1526 |
|
---|
1527 | PyVarObject *
|
---|
1528 | _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
|
---|
1529 | {
|
---|
1530 | const size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
---|
1531 | PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
|
---|
1532 | if (op != NULL)
|
---|
1533 | op = PyObject_INIT_VAR(op, tp, nitems);
|
---|
1534 | return op;
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 | PyVarObject *
|
---|
1538 | _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
|
---|
1539 | {
|
---|
1540 | const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
|
---|
1541 | PyGC_Head *g = AS_GC(op);
|
---|
1542 | if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
|
---|
1543 | return (PyVarObject *)PyErr_NoMemory();
|
---|
1544 | g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
|
---|
1545 | if (g == NULL)
|
---|
1546 | return (PyVarObject *)PyErr_NoMemory();
|
---|
1547 | op = (PyVarObject *) FROM_GC(g);
|
---|
1548 | Py_SIZE(op) = nitems;
|
---|
1549 | return op;
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | void
|
---|
1553 | PyObject_GC_Del(void *op)
|
---|
1554 | {
|
---|
1555 | PyGC_Head *g = AS_GC(op);
|
---|
1556 | if (IS_TRACKED(op))
|
---|
1557 | gc_list_remove(g);
|
---|
1558 | if (generations[0].count > 0) {
|
---|
1559 | generations[0].count--;
|
---|
1560 | }
|
---|
1561 | PyObject_FREE(g);
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 | /* for binary compatibility with 2.2 */
|
---|
1565 | #undef _PyObject_GC_Del
|
---|
1566 | void
|
---|
1567 | _PyObject_GC_Del(PyObject *op)
|
---|
1568 | {
|
---|
1569 | PyObject_GC_Del(op);
|
---|
1570 | }
|
---|