1 | ======================================
|
---|
2 | Python IEEE 754 floating point support
|
---|
3 | ======================================
|
---|
4 |
|
---|
5 | >>> from sys import float_info as FI
|
---|
6 | >>> from math import *
|
---|
7 | >>> PI = pi
|
---|
8 | >>> E = e
|
---|
9 |
|
---|
10 | You must never compare two floats with == because you are not going to get
|
---|
11 | what you expect. We treat two floats as equal if the difference between them
|
---|
12 | is small than epsilon.
|
---|
13 | >>> EPS = 1E-15
|
---|
14 | >>> def equal(x, y):
|
---|
15 | ... """Almost equal helper for floats"""
|
---|
16 | ... return abs(x - y) < EPS
|
---|
17 |
|
---|
18 |
|
---|
19 | NaNs and INFs
|
---|
20 | =============
|
---|
21 |
|
---|
22 | In Python 2.6 and newer NaNs (not a number) and infinity can be constructed
|
---|
23 | from the strings 'inf' and 'nan'.
|
---|
24 |
|
---|
25 | >>> INF = float('inf')
|
---|
26 | >>> NINF = float('-inf')
|
---|
27 | >>> NAN = float('nan')
|
---|
28 |
|
---|
29 | >>> INF
|
---|
30 | inf
|
---|
31 | >>> NINF
|
---|
32 | -inf
|
---|
33 | >>> NAN
|
---|
34 | nan
|
---|
35 |
|
---|
36 | The math module's ``isnan`` and ``isinf`` functions can be used to detect INF
|
---|
37 | and NAN:
|
---|
38 | >>> isinf(INF), isinf(NINF), isnan(NAN)
|
---|
39 | (True, True, True)
|
---|
40 | >>> INF == -NINF
|
---|
41 | True
|
---|
42 |
|
---|
43 | Infinity
|
---|
44 | --------
|
---|
45 |
|
---|
46 | Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN.
|
---|
47 | >>> INF * 0
|
---|
48 | nan
|
---|
49 | >>> INF - INF
|
---|
50 | nan
|
---|
51 | >>> INF / INF
|
---|
52 | nan
|
---|
53 |
|
---|
54 | However unambigous operations with inf return inf:
|
---|
55 | >>> INF * INF
|
---|
56 | inf
|
---|
57 | >>> 1.5 * INF
|
---|
58 | inf
|
---|
59 | >>> 0.5 * INF
|
---|
60 | inf
|
---|
61 | >>> INF / 1000
|
---|
62 | inf
|
---|
63 |
|
---|
64 | Not a Number
|
---|
65 | ------------
|
---|
66 |
|
---|
67 | NaNs are never equal to another number, even itself
|
---|
68 | >>> NAN == NAN
|
---|
69 | False
|
---|
70 | >>> NAN < 0
|
---|
71 | False
|
---|
72 | >>> NAN >= 0
|
---|
73 | False
|
---|
74 |
|
---|
75 | All operations involving a NaN return a NaN except for nan**0 and 1**nan.
|
---|
76 | >>> 1 + NAN
|
---|
77 | nan
|
---|
78 | >>> 1 * NAN
|
---|
79 | nan
|
---|
80 | >>> 0 * NAN
|
---|
81 | nan
|
---|
82 | >>> 1 ** NAN
|
---|
83 | 1.0
|
---|
84 | >>> NAN ** 0
|
---|
85 | 1.0
|
---|
86 | >>> 0 ** NAN
|
---|
87 | nan
|
---|
88 | >>> (1.0 + FI.epsilon) * NAN
|
---|
89 | nan
|
---|
90 |
|
---|
91 | Misc Functions
|
---|
92 | ==============
|
---|
93 |
|
---|
94 | The power of 1 raised to x is always 1.0, even for special values like 0,
|
---|
95 | infinity and NaN.
|
---|
96 |
|
---|
97 | >>> pow(1, 0)
|
---|
98 | 1.0
|
---|
99 | >>> pow(1, INF)
|
---|
100 | 1.0
|
---|
101 | >>> pow(1, -INF)
|
---|
102 | 1.0
|
---|
103 | >>> pow(1, NAN)
|
---|
104 | 1.0
|
---|
105 |
|
---|
106 | The power of 0 raised to x is defined as 0, if x is positive. Negative
|
---|
107 | values are a domain error or zero division error and NaN result in a
|
---|
108 | silent NaN.
|
---|
109 |
|
---|
110 | >>> pow(0, 0)
|
---|
111 | 1.0
|
---|
112 | >>> pow(0, INF)
|
---|
113 | 0.0
|
---|
114 | >>> pow(0, -INF)
|
---|
115 | Traceback (most recent call last):
|
---|
116 | ...
|
---|
117 | ValueError: math domain error
|
---|
118 | >>> 0 ** -1
|
---|
119 | Traceback (most recent call last):
|
---|
120 | ...
|
---|
121 | ZeroDivisionError: 0.0 cannot be raised to a negative power
|
---|
122 | >>> pow(0, NAN)
|
---|
123 | nan
|
---|
124 |
|
---|
125 |
|
---|
126 | Trigonometric Functions
|
---|
127 | =======================
|
---|
128 |
|
---|
129 | >>> sin(INF)
|
---|
130 | Traceback (most recent call last):
|
---|
131 | ...
|
---|
132 | ValueError: math domain error
|
---|
133 | >>> sin(NINF)
|
---|
134 | Traceback (most recent call last):
|
---|
135 | ...
|
---|
136 | ValueError: math domain error
|
---|
137 | >>> sin(NAN)
|
---|
138 | nan
|
---|
139 | >>> cos(INF)
|
---|
140 | Traceback (most recent call last):
|
---|
141 | ...
|
---|
142 | ValueError: math domain error
|
---|
143 | >>> cos(NINF)
|
---|
144 | Traceback (most recent call last):
|
---|
145 | ...
|
---|
146 | ValueError: math domain error
|
---|
147 | >>> cos(NAN)
|
---|
148 | nan
|
---|
149 | >>> tan(INF)
|
---|
150 | Traceback (most recent call last):
|
---|
151 | ...
|
---|
152 | ValueError: math domain error
|
---|
153 | >>> tan(NINF)
|
---|
154 | Traceback (most recent call last):
|
---|
155 | ...
|
---|
156 | ValueError: math domain error
|
---|
157 | >>> tan(NAN)
|
---|
158 | nan
|
---|
159 |
|
---|
160 | Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value
|
---|
161 | and tan(pi) is a very small value:
|
---|
162 | >>> tan(PI/2) > 1E10
|
---|
163 | True
|
---|
164 | >>> -tan(-PI/2) > 1E10
|
---|
165 | True
|
---|
166 | >>> tan(PI) < 1E-15
|
---|
167 | True
|
---|
168 |
|
---|
169 | >>> asin(NAN), acos(NAN), atan(NAN)
|
---|
170 | (nan, nan, nan)
|
---|
171 | >>> asin(INF), asin(NINF)
|
---|
172 | Traceback (most recent call last):
|
---|
173 | ...
|
---|
174 | ValueError: math domain error
|
---|
175 | >>> acos(INF), acos(NINF)
|
---|
176 | Traceback (most recent call last):
|
---|
177 | ...
|
---|
178 | ValueError: math domain error
|
---|
179 | >>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2)
|
---|
180 | (True, True)
|
---|
181 |
|
---|
182 |
|
---|
183 | Hyberbolic Functions
|
---|
184 | ====================
|
---|
185 |
|
---|