1 | """Random variable generators.
|
---|
2 |
|
---|
3 | integers
|
---|
4 | --------
|
---|
5 | uniform within range
|
---|
6 |
|
---|
7 | sequences
|
---|
8 | ---------
|
---|
9 | pick random element
|
---|
10 | pick random sample
|
---|
11 | generate random permutation
|
---|
12 |
|
---|
13 | distributions on the real line:
|
---|
14 | ------------------------------
|
---|
15 | uniform
|
---|
16 | triangular
|
---|
17 | normal (Gaussian)
|
---|
18 | lognormal
|
---|
19 | negative exponential
|
---|
20 | gamma
|
---|
21 | beta
|
---|
22 | pareto
|
---|
23 | Weibull
|
---|
24 |
|
---|
25 | distributions on the circle (angles 0 to 2pi)
|
---|
26 | ---------------------------------------------
|
---|
27 | circular uniform
|
---|
28 | von Mises
|
---|
29 |
|
---|
30 | General notes on the underlying Mersenne Twister core generator:
|
---|
31 |
|
---|
32 | * The period is 2**19937-1.
|
---|
33 | * It is one of the most extensively tested generators in existence.
|
---|
34 | * Without a direct way to compute N steps forward, the semantics of
|
---|
35 | jumpahead(n) are weakened to simply jump to another distant state and rely
|
---|
36 | on the large period to avoid overlapping sequences.
|
---|
37 | * The random() method is implemented in C, executes in a single Python step,
|
---|
38 | and is, therefore, threadsafe.
|
---|
39 |
|
---|
40 | """
|
---|
41 |
|
---|
42 | from __future__ import division
|
---|
43 | from warnings import warn as _warn
|
---|
44 | from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
|
---|
45 | from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
|
---|
46 | from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
|
---|
47 | from os import urandom as _urandom
|
---|
48 | from binascii import hexlify as _hexlify
|
---|
49 | import hashlib as _hashlib
|
---|
50 |
|
---|
51 | __all__ = ["Random","seed","random","uniform","randint","choice","sample",
|
---|
52 | "randrange","shuffle","normalvariate","lognormvariate",
|
---|
53 | "expovariate","vonmisesvariate","gammavariate","triangular",
|
---|
54 | "gauss","betavariate","paretovariate","weibullvariate",
|
---|
55 | "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
|
---|
56 | "SystemRandom"]
|
---|
57 |
|
---|
58 | NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
---|
59 | TWOPI = 2.0*_pi
|
---|
60 | LOG4 = _log(4.0)
|
---|
61 | SG_MAGICCONST = 1.0 + _log(4.5)
|
---|
62 | BPF = 53 # Number of bits in a float
|
---|
63 | RECIP_BPF = 2**-BPF
|
---|
64 |
|
---|
65 |
|
---|
66 | # Translated by Guido van Rossum from C source provided by
|
---|
67 | # Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
---|
68 | # the Mersenne Twister and os.urandom() core generators.
|
---|
69 |
|
---|
70 | import _random
|
---|
71 |
|
---|
72 | class Random(_random.Random):
|
---|
73 | """Random number generator base class used by bound module functions.
|
---|
74 |
|
---|
75 | Used to instantiate instances of Random to get generators that don't
|
---|
76 | share state. Especially useful for multi-threaded programs, creating
|
---|
77 | a different instance of Random for each thread, and using the jumpahead()
|
---|
78 | method to ensure that the generated sequences seen by each thread don't
|
---|
79 | overlap.
|
---|
80 |
|
---|
81 | Class Random can also be subclassed if you want to use a different basic
|
---|
82 | generator of your own devising: in that case, override the following
|
---|
83 | methods: random(), seed(), getstate(), setstate() and jumpahead().
|
---|
84 | Optionally, implement a getrandbits() method so that randrange() can cover
|
---|
85 | arbitrarily large ranges.
|
---|
86 |
|
---|
87 | """
|
---|
88 |
|
---|
89 | VERSION = 3 # used by getstate/setstate
|
---|
90 |
|
---|
91 | def __init__(self, x=None):
|
---|
92 | """Initialize an instance.
|
---|
93 |
|
---|
94 | Optional argument x controls seeding, as for Random.seed().
|
---|
95 | """
|
---|
96 |
|
---|
97 | self.seed(x)
|
---|
98 | self.gauss_next = None
|
---|
99 |
|
---|
100 | def seed(self, a=None):
|
---|
101 | """Initialize internal state from hashable object.
|
---|
102 |
|
---|
103 | None or no argument seeds from current time or from an operating
|
---|
104 | system specific randomness source if available.
|
---|
105 |
|
---|
106 | If a is not None or an int or long, hash(a) is used instead.
|
---|
107 | """
|
---|
108 |
|
---|
109 | if a is None:
|
---|
110 | try:
|
---|
111 | a = long(_hexlify(_urandom(16)), 16)
|
---|
112 | except NotImplementedError:
|
---|
113 | import time
|
---|
114 | a = long(time.time() * 256) # use fractional seconds
|
---|
115 |
|
---|
116 | super(Random, self).seed(a)
|
---|
117 | self.gauss_next = None
|
---|
118 |
|
---|
119 | def getstate(self):
|
---|
120 | """Return internal state; can be passed to setstate() later."""
|
---|
121 | return self.VERSION, super(Random, self).getstate(), self.gauss_next
|
---|
122 |
|
---|
123 | def setstate(self, state):
|
---|
124 | """Restore internal state from object returned by getstate()."""
|
---|
125 | version = state[0]
|
---|
126 | if version == 3:
|
---|
127 | version, internalstate, self.gauss_next = state
|
---|
128 | super(Random, self).setstate(internalstate)
|
---|
129 | elif version == 2:
|
---|
130 | version, internalstate, self.gauss_next = state
|
---|
131 | # In version 2, the state was saved as signed ints, which causes
|
---|
132 | # inconsistencies between 32/64-bit systems. The state is
|
---|
133 | # really unsigned 32-bit ints, so we convert negative ints from
|
---|
134 | # version 2 to positive longs for version 3.
|
---|
135 | try:
|
---|
136 | internalstate = tuple( long(x) % (2**32) for x in internalstate )
|
---|
137 | except ValueError, e:
|
---|
138 | raise TypeError, e
|
---|
139 | super(Random, self).setstate(internalstate)
|
---|
140 | else:
|
---|
141 | raise ValueError("state with version %s passed to "
|
---|
142 | "Random.setstate() of version %s" %
|
---|
143 | (version, self.VERSION))
|
---|
144 |
|
---|
145 | def jumpahead(self, n):
|
---|
146 | """Change the internal state to one that is likely far away
|
---|
147 | from the current state. This method will not be in Py3.x,
|
---|
148 | so it is better to simply reseed.
|
---|
149 | """
|
---|
150 | # The super.jumpahead() method uses shuffling to change state,
|
---|
151 | # so it needs a large and "interesting" n to work with. Here,
|
---|
152 | # we use hashing to create a large n for the shuffle.
|
---|
153 | s = repr(n) + repr(self.getstate())
|
---|
154 | n = int(_hashlib.new('sha512', s).hexdigest(), 16)
|
---|
155 | super(Random, self).jumpahead(n)
|
---|
156 |
|
---|
157 | ## ---- Methods below this point do not need to be overridden when
|
---|
158 | ## ---- subclassing for the purpose of using a different core generator.
|
---|
159 |
|
---|
160 | ## -------------------- pickle support -------------------
|
---|
161 |
|
---|
162 | def __getstate__(self): # for pickle
|
---|
163 | return self.getstate()
|
---|
164 |
|
---|
165 | def __setstate__(self, state): # for pickle
|
---|
166 | self.setstate(state)
|
---|
167 |
|
---|
168 | def __reduce__(self):
|
---|
169 | return self.__class__, (), self.getstate()
|
---|
170 |
|
---|
171 | ## -------------------- integer methods -------------------
|
---|
172 |
|
---|
173 | def randrange(self, start, stop=None, step=1, _int=int, _maxwidth=1L<<BPF):
|
---|
174 | """Choose a random item from range(start, stop[, step]).
|
---|
175 |
|
---|
176 | This fixes the problem with randint() which includes the
|
---|
177 | endpoint; in Python this is usually not what you want.
|
---|
178 |
|
---|
179 | """
|
---|
180 |
|
---|
181 | # This code is a bit messy to make it fast for the
|
---|
182 | # common case while still doing adequate error checking.
|
---|
183 | istart = _int(start)
|
---|
184 | if istart != start:
|
---|
185 | raise ValueError, "non-integer arg 1 for randrange()"
|
---|
186 | if stop is None:
|
---|
187 | if istart > 0:
|
---|
188 | if istart >= _maxwidth:
|
---|
189 | return self._randbelow(istart)
|
---|
190 | return _int(self.random() * istart)
|
---|
191 | raise ValueError, "empty range for randrange()"
|
---|
192 |
|
---|
193 | # stop argument supplied.
|
---|
194 | istop = _int(stop)
|
---|
195 | if istop != stop:
|
---|
196 | raise ValueError, "non-integer stop for randrange()"
|
---|
197 | width = istop - istart
|
---|
198 | if step == 1 and width > 0:
|
---|
199 | # Note that
|
---|
200 | # int(istart + self.random()*width)
|
---|
201 | # instead would be incorrect. For example, consider istart
|
---|
202 | # = -2 and istop = 0. Then the guts would be in
|
---|
203 | # -2.0 to 0.0 exclusive on both ends (ignoring that random()
|
---|
204 | # might return 0.0), and because int() truncates toward 0, the
|
---|
205 | # final result would be -1 or 0 (instead of -2 or -1).
|
---|
206 | # istart + int(self.random()*width)
|
---|
207 | # would also be incorrect, for a subtler reason: the RHS
|
---|
208 | # can return a long, and then randrange() would also return
|
---|
209 | # a long, but we're supposed to return an int (for backward
|
---|
210 | # compatibility).
|
---|
211 |
|
---|
212 | if width >= _maxwidth:
|
---|
213 | return _int(istart + self._randbelow(width))
|
---|
214 | return _int(istart + _int(self.random()*width))
|
---|
215 | if step == 1:
|
---|
216 | raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
|
---|
217 |
|
---|
218 | # Non-unit step argument supplied.
|
---|
219 | istep = _int(step)
|
---|
220 | if istep != step:
|
---|
221 | raise ValueError, "non-integer step for randrange()"
|
---|
222 | if istep > 0:
|
---|
223 | n = (width + istep - 1) // istep
|
---|
224 | elif istep < 0:
|
---|
225 | n = (width + istep + 1) // istep
|
---|
226 | else:
|
---|
227 | raise ValueError, "zero step for randrange()"
|
---|
228 |
|
---|
229 | if n <= 0:
|
---|
230 | raise ValueError, "empty range for randrange()"
|
---|
231 |
|
---|
232 | if n >= _maxwidth:
|
---|
233 | return istart + istep*self._randbelow(n)
|
---|
234 | return istart + istep*_int(self.random() * n)
|
---|
235 |
|
---|
236 | def randint(self, a, b):
|
---|
237 | """Return random integer in range [a, b], including both end points.
|
---|
238 | """
|
---|
239 |
|
---|
240 | return self.randrange(a, b+1)
|
---|
241 |
|
---|
242 | def _randbelow(self, n, _log=_log, _int=int, _maxwidth=1L<<BPF,
|
---|
243 | _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
|
---|
244 | """Return a random int in the range [0,n)
|
---|
245 |
|
---|
246 | Handles the case where n has more bits than returned
|
---|
247 | by a single call to the underlying generator.
|
---|
248 | """
|
---|
249 |
|
---|
250 | try:
|
---|
251 | getrandbits = self.getrandbits
|
---|
252 | except AttributeError:
|
---|
253 | pass
|
---|
254 | else:
|
---|
255 | # Only call self.getrandbits if the original random() builtin method
|
---|
256 | # has not been overridden or if a new getrandbits() was supplied.
|
---|
257 | # This assures that the two methods correspond.
|
---|
258 | if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
|
---|
259 | k = _int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
|
---|
260 | r = getrandbits(k)
|
---|
261 | while r >= n:
|
---|
262 | r = getrandbits(k)
|
---|
263 | return r
|
---|
264 | if n >= _maxwidth:
|
---|
265 | _warn("Underlying random() generator does not supply \n"
|
---|
266 | "enough bits to choose from a population range this large")
|
---|
267 | return _int(self.random() * n)
|
---|
268 |
|
---|
269 | ## -------------------- sequence methods -------------------
|
---|
270 |
|
---|
271 | def choice(self, seq):
|
---|
272 | """Choose a random element from a non-empty sequence."""
|
---|
273 | return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
|
---|
274 |
|
---|
275 | def shuffle(self, x, random=None):
|
---|
276 | """x, random=random.random -> shuffle list x in place; return None.
|
---|
277 |
|
---|
278 | Optional arg random is a 0-argument function returning a random
|
---|
279 | float in [0.0, 1.0); by default, the standard random.random.
|
---|
280 |
|
---|
281 | """
|
---|
282 |
|
---|
283 | if random is None:
|
---|
284 | random = self.random
|
---|
285 | _int = int
|
---|
286 | for i in reversed(xrange(1, len(x))):
|
---|
287 | # pick an element in x[:i+1] with which to exchange x[i]
|
---|
288 | j = _int(random() * (i+1))
|
---|
289 | x[i], x[j] = x[j], x[i]
|
---|
290 |
|
---|
291 | def sample(self, population, k):
|
---|
292 | """Chooses k unique random elements from a population sequence.
|
---|
293 |
|
---|
294 | Returns a new list containing elements from the population while
|
---|
295 | leaving the original population unchanged. The resulting list is
|
---|
296 | in selection order so that all sub-slices will also be valid random
|
---|
297 | samples. This allows raffle winners (the sample) to be partitioned
|
---|
298 | into grand prize and second place winners (the subslices).
|
---|
299 |
|
---|
300 | Members of the population need not be hashable or unique. If the
|
---|
301 | population contains repeats, then each occurrence is a possible
|
---|
302 | selection in the sample.
|
---|
303 |
|
---|
304 | To choose a sample in a range of integers, use xrange as an argument.
|
---|
305 | This is especially fast and space efficient for sampling from a
|
---|
306 | large population: sample(xrange(10000000), 60)
|
---|
307 | """
|
---|
308 |
|
---|
309 | # Sampling without replacement entails tracking either potential
|
---|
310 | # selections (the pool) in a list or previous selections in a set.
|
---|
311 |
|
---|
312 | # When the number of selections is small compared to the
|
---|
313 | # population, then tracking selections is efficient, requiring
|
---|
314 | # only a small set and an occasional reselection. For
|
---|
315 | # a larger number of selections, the pool tracking method is
|
---|
316 | # preferred since the list takes less space than the
|
---|
317 | # set and it doesn't suffer from frequent reselections.
|
---|
318 |
|
---|
319 | n = len(population)
|
---|
320 | if not 0 <= k <= n:
|
---|
321 | raise ValueError("sample larger than population")
|
---|
322 | random = self.random
|
---|
323 | _int = int
|
---|
324 | result = [None] * k
|
---|
325 | setsize = 21 # size of a small set minus size of an empty list
|
---|
326 | if k > 5:
|
---|
327 | setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
|
---|
328 | if n <= setsize or hasattr(population, "keys"):
|
---|
329 | # An n-length list is smaller than a k-length set, or this is a
|
---|
330 | # mapping type so the other algorithm wouldn't work.
|
---|
331 | pool = list(population)
|
---|
332 | for i in xrange(k): # invariant: non-selected at [0,n-i)
|
---|
333 | j = _int(random() * (n-i))
|
---|
334 | result[i] = pool[j]
|
---|
335 | pool[j] = pool[n-i-1] # move non-selected item into vacancy
|
---|
336 | else:
|
---|
337 | try:
|
---|
338 | selected = set()
|
---|
339 | selected_add = selected.add
|
---|
340 | for i in xrange(k):
|
---|
341 | j = _int(random() * n)
|
---|
342 | while j in selected:
|
---|
343 | j = _int(random() * n)
|
---|
344 | selected_add(j)
|
---|
345 | result[i] = population[j]
|
---|
346 | except (TypeError, KeyError): # handle (at least) sets
|
---|
347 | if isinstance(population, list):
|
---|
348 | raise
|
---|
349 | return self.sample(tuple(population), k)
|
---|
350 | return result
|
---|
351 |
|
---|
352 | ## -------------------- real-valued distributions -------------------
|
---|
353 |
|
---|
354 | ## -------------------- uniform distribution -------------------
|
---|
355 |
|
---|
356 | def uniform(self, a, b):
|
---|
357 | "Get a random number in the range [a, b) or [a, b] depending on rounding."
|
---|
358 | return a + (b-a) * self.random()
|
---|
359 |
|
---|
360 | ## -------------------- triangular --------------------
|
---|
361 |
|
---|
362 | def triangular(self, low=0.0, high=1.0, mode=None):
|
---|
363 | """Triangular distribution.
|
---|
364 |
|
---|
365 | Continuous distribution bounded by given lower and upper limits,
|
---|
366 | and having a given mode value in-between.
|
---|
367 |
|
---|
368 | http://en.wikipedia.org/wiki/Triangular_distribution
|
---|
369 |
|
---|
370 | """
|
---|
371 | u = self.random()
|
---|
372 | c = 0.5 if mode is None else (mode - low) / (high - low)
|
---|
373 | if u > c:
|
---|
374 | u = 1.0 - u
|
---|
375 | c = 1.0 - c
|
---|
376 | low, high = high, low
|
---|
377 | return low + (high - low) * (u * c) ** 0.5
|
---|
378 |
|
---|
379 | ## -------------------- normal distribution --------------------
|
---|
380 |
|
---|
381 | def normalvariate(self, mu, sigma):
|
---|
382 | """Normal distribution.
|
---|
383 |
|
---|
384 | mu is the mean, and sigma is the standard deviation.
|
---|
385 |
|
---|
386 | """
|
---|
387 | # mu = mean, sigma = standard deviation
|
---|
388 |
|
---|
389 | # Uses Kinderman and Monahan method. Reference: Kinderman,
|
---|
390 | # A.J. and Monahan, J.F., "Computer generation of random
|
---|
391 | # variables using the ratio of uniform deviates", ACM Trans
|
---|
392 | # Math Software, 3, (1977), pp257-260.
|
---|
393 |
|
---|
394 | random = self.random
|
---|
395 | while 1:
|
---|
396 | u1 = random()
|
---|
397 | u2 = 1.0 - random()
|
---|
398 | z = NV_MAGICCONST*(u1-0.5)/u2
|
---|
399 | zz = z*z/4.0
|
---|
400 | if zz <= -_log(u2):
|
---|
401 | break
|
---|
402 | return mu + z*sigma
|
---|
403 |
|
---|
404 | ## -------------------- lognormal distribution --------------------
|
---|
405 |
|
---|
406 | def lognormvariate(self, mu, sigma):
|
---|
407 | """Log normal distribution.
|
---|
408 |
|
---|
409 | If you take the natural logarithm of this distribution, you'll get a
|
---|
410 | normal distribution with mean mu and standard deviation sigma.
|
---|
411 | mu can have any value, and sigma must be greater than zero.
|
---|
412 |
|
---|
413 | """
|
---|
414 | return _exp(self.normalvariate(mu, sigma))
|
---|
415 |
|
---|
416 | ## -------------------- exponential distribution --------------------
|
---|
417 |
|
---|
418 | def expovariate(self, lambd):
|
---|
419 | """Exponential distribution.
|
---|
420 |
|
---|
421 | lambd is 1.0 divided by the desired mean. It should be
|
---|
422 | nonzero. (The parameter would be called "lambda", but that is
|
---|
423 | a reserved word in Python.) Returned values range from 0 to
|
---|
424 | positive infinity if lambd is positive, and from negative
|
---|
425 | infinity to 0 if lambd is negative.
|
---|
426 |
|
---|
427 | """
|
---|
428 | # lambd: rate lambd = 1/mean
|
---|
429 | # ('lambda' is a Python reserved word)
|
---|
430 |
|
---|
431 | # we use 1-random() instead of random() to preclude the
|
---|
432 | # possibility of taking the log of zero.
|
---|
433 | return -_log(1.0 - self.random())/lambd
|
---|
434 |
|
---|
435 | ## -------------------- von Mises distribution --------------------
|
---|
436 |
|
---|
437 | def vonmisesvariate(self, mu, kappa):
|
---|
438 | """Circular data distribution.
|
---|
439 |
|
---|
440 | mu is the mean angle, expressed in radians between 0 and 2*pi, and
|
---|
441 | kappa is the concentration parameter, which must be greater than or
|
---|
442 | equal to zero. If kappa is equal to zero, this distribution reduces
|
---|
443 | to a uniform random angle over the range 0 to 2*pi.
|
---|
444 |
|
---|
445 | """
|
---|
446 | # mu: mean angle (in radians between 0 and 2*pi)
|
---|
447 | # kappa: concentration parameter kappa (>= 0)
|
---|
448 | # if kappa = 0 generate uniform random angle
|
---|
449 |
|
---|
450 | # Based upon an algorithm published in: Fisher, N.I.,
|
---|
451 | # "Statistical Analysis of Circular Data", Cambridge
|
---|
452 | # University Press, 1993.
|
---|
453 |
|
---|
454 | # Thanks to Magnus Kessler for a correction to the
|
---|
455 | # implementation of step 4.
|
---|
456 |
|
---|
457 | random = self.random
|
---|
458 | if kappa <= 1e-6:
|
---|
459 | return TWOPI * random()
|
---|
460 |
|
---|
461 | s = 0.5 / kappa
|
---|
462 | r = s + _sqrt(1.0 + s * s)
|
---|
463 |
|
---|
464 | while 1:
|
---|
465 | u1 = random()
|
---|
466 | z = _cos(_pi * u1)
|
---|
467 |
|
---|
468 | d = z / (r + z)
|
---|
469 | u2 = random()
|
---|
470 | if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
|
---|
471 | break
|
---|
472 |
|
---|
473 | q = 1.0 / r
|
---|
474 | f = (q + z) / (1.0 + q * z)
|
---|
475 | u3 = random()
|
---|
476 | if u3 > 0.5:
|
---|
477 | theta = (mu + _acos(f)) % TWOPI
|
---|
478 | else:
|
---|
479 | theta = (mu - _acos(f)) % TWOPI
|
---|
480 |
|
---|
481 | return theta
|
---|
482 |
|
---|
483 | ## -------------------- gamma distribution --------------------
|
---|
484 |
|
---|
485 | def gammavariate(self, alpha, beta):
|
---|
486 | """Gamma distribution. Not the gamma function!
|
---|
487 |
|
---|
488 | Conditions on the parameters are alpha > 0 and beta > 0.
|
---|
489 |
|
---|
490 | The probability distribution function is:
|
---|
491 |
|
---|
492 | x ** (alpha - 1) * math.exp(-x / beta)
|
---|
493 | pdf(x) = --------------------------------------
|
---|
494 | math.gamma(alpha) * beta ** alpha
|
---|
495 |
|
---|
496 | """
|
---|
497 |
|
---|
498 | # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
|
---|
499 |
|
---|
500 | # Warning: a few older sources define the gamma distribution in terms
|
---|
501 | # of alpha > -1.0
|
---|
502 | if alpha <= 0.0 or beta <= 0.0:
|
---|
503 | raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
|
---|
504 |
|
---|
505 | random = self.random
|
---|
506 | if alpha > 1.0:
|
---|
507 |
|
---|
508 | # Uses R.C.H. Cheng, "The generation of Gamma
|
---|
509 | # variables with non-integral shape parameters",
|
---|
510 | # Applied Statistics, (1977), 26, No. 1, p71-74
|
---|
511 |
|
---|
512 | ainv = _sqrt(2.0 * alpha - 1.0)
|
---|
513 | bbb = alpha - LOG4
|
---|
514 | ccc = alpha + ainv
|
---|
515 |
|
---|
516 | while 1:
|
---|
517 | u1 = random()
|
---|
518 | if not 1e-7 < u1 < .9999999:
|
---|
519 | continue
|
---|
520 | u2 = 1.0 - random()
|
---|
521 | v = _log(u1/(1.0-u1))/ainv
|
---|
522 | x = alpha*_exp(v)
|
---|
523 | z = u1*u1*u2
|
---|
524 | r = bbb+ccc*v-x
|
---|
525 | if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
|
---|
526 | return x * beta
|
---|
527 |
|
---|
528 | elif alpha == 1.0:
|
---|
529 | # expovariate(1)
|
---|
530 | u = random()
|
---|
531 | while u <= 1e-7:
|
---|
532 | u = random()
|
---|
533 | return -_log(u) * beta
|
---|
534 |
|
---|
535 | else: # alpha is between 0 and 1 (exclusive)
|
---|
536 |
|
---|
537 | # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
---|
538 |
|
---|
539 | while 1:
|
---|
540 | u = random()
|
---|
541 | b = (_e + alpha)/_e
|
---|
542 | p = b*u
|
---|
543 | if p <= 1.0:
|
---|
544 | x = p ** (1.0/alpha)
|
---|
545 | else:
|
---|
546 | x = -_log((b-p)/alpha)
|
---|
547 | u1 = random()
|
---|
548 | if p > 1.0:
|
---|
549 | if u1 <= x ** (alpha - 1.0):
|
---|
550 | break
|
---|
551 | elif u1 <= _exp(-x):
|
---|
552 | break
|
---|
553 | return x * beta
|
---|
554 |
|
---|
555 | ## -------------------- Gauss (faster alternative) --------------------
|
---|
556 |
|
---|
557 | def gauss(self, mu, sigma):
|
---|
558 | """Gaussian distribution.
|
---|
559 |
|
---|
560 | mu is the mean, and sigma is the standard deviation. This is
|
---|
561 | slightly faster than the normalvariate() function.
|
---|
562 |
|
---|
563 | Not thread-safe without a lock around calls.
|
---|
564 |
|
---|
565 | """
|
---|
566 |
|
---|
567 | # When x and y are two variables from [0, 1), uniformly
|
---|
568 | # distributed, then
|
---|
569 | #
|
---|
570 | # cos(2*pi*x)*sqrt(-2*log(1-y))
|
---|
571 | # sin(2*pi*x)*sqrt(-2*log(1-y))
|
---|
572 | #
|
---|
573 | # are two *independent* variables with normal distribution
|
---|
574 | # (mu = 0, sigma = 1).
|
---|
575 | # (Lambert Meertens)
|
---|
576 | # (corrected version; bug discovered by Mike Miller, fixed by LM)
|
---|
577 |
|
---|
578 | # Multithreading note: When two threads call this function
|
---|
579 | # simultaneously, it is possible that they will receive the
|
---|
580 | # same return value. The window is very small though. To
|
---|
581 | # avoid this, you have to use a lock around all calls. (I
|
---|
582 | # didn't want to slow this down in the serial case by using a
|
---|
583 | # lock here.)
|
---|
584 |
|
---|
585 | random = self.random
|
---|
586 | z = self.gauss_next
|
---|
587 | self.gauss_next = None
|
---|
588 | if z is None:
|
---|
589 | x2pi = random() * TWOPI
|
---|
590 | g2rad = _sqrt(-2.0 * _log(1.0 - random()))
|
---|
591 | z = _cos(x2pi) * g2rad
|
---|
592 | self.gauss_next = _sin(x2pi) * g2rad
|
---|
593 |
|
---|
594 | return mu + z*sigma
|
---|
595 |
|
---|
596 | ## -------------------- beta --------------------
|
---|
597 | ## See
|
---|
598 | ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
|
---|
599 | ## for Ivan Frohne's insightful analysis of why the original implementation:
|
---|
600 | ##
|
---|
601 | ## def betavariate(self, alpha, beta):
|
---|
602 | ## # Discrete Event Simulation in C, pp 87-88.
|
---|
603 | ##
|
---|
604 | ## y = self.expovariate(alpha)
|
---|
605 | ## z = self.expovariate(1.0/beta)
|
---|
606 | ## return z/(y+z)
|
---|
607 | ##
|
---|
608 | ## was dead wrong, and how it probably got that way.
|
---|
609 |
|
---|
610 | def betavariate(self, alpha, beta):
|
---|
611 | """Beta distribution.
|
---|
612 |
|
---|
613 | Conditions on the parameters are alpha > 0 and beta > 0.
|
---|
614 | Returned values range between 0 and 1.
|
---|
615 |
|
---|
616 | """
|
---|
617 |
|
---|
618 | # This version due to Janne Sinkkonen, and matches all the std
|
---|
619 | # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
|
---|
620 | y = self.gammavariate(alpha, 1.)
|
---|
621 | if y == 0:
|
---|
622 | return 0.0
|
---|
623 | else:
|
---|
624 | return y / (y + self.gammavariate(beta, 1.))
|
---|
625 |
|
---|
626 | ## -------------------- Pareto --------------------
|
---|
627 |
|
---|
628 | def paretovariate(self, alpha):
|
---|
629 | """Pareto distribution. alpha is the shape parameter."""
|
---|
630 | # Jain, pg. 495
|
---|
631 |
|
---|
632 | u = 1.0 - self.random()
|
---|
633 | return 1.0 / pow(u, 1.0/alpha)
|
---|
634 |
|
---|
635 | ## -------------------- Weibull --------------------
|
---|
636 |
|
---|
637 | def weibullvariate(self, alpha, beta):
|
---|
638 | """Weibull distribution.
|
---|
639 |
|
---|
640 | alpha is the scale parameter and beta is the shape parameter.
|
---|
641 |
|
---|
642 | """
|
---|
643 | # Jain, pg. 499; bug fix courtesy Bill Arms
|
---|
644 |
|
---|
645 | u = 1.0 - self.random()
|
---|
646 | return alpha * pow(-_log(u), 1.0/beta)
|
---|
647 |
|
---|
648 | ## -------------------- Wichmann-Hill -------------------
|
---|
649 |
|
---|
650 | class WichmannHill(Random):
|
---|
651 |
|
---|
652 | VERSION = 1 # used by getstate/setstate
|
---|
653 |
|
---|
654 | def seed(self, a=None):
|
---|
655 | """Initialize internal state from hashable object.
|
---|
656 |
|
---|
657 | None or no argument seeds from current time or from an operating
|
---|
658 | system specific randomness source if available.
|
---|
659 |
|
---|
660 | If a is not None or an int or long, hash(a) is used instead.
|
---|
661 |
|
---|
662 | If a is an int or long, a is used directly. Distinct values between
|
---|
663 | 0 and 27814431486575L inclusive are guaranteed to yield distinct
|
---|
664 | internal states (this guarantee is specific to the default
|
---|
665 | Wichmann-Hill generator).
|
---|
666 | """
|
---|
667 |
|
---|
668 | if a is None:
|
---|
669 | try:
|
---|
670 | a = long(_hexlify(_urandom(16)), 16)
|
---|
671 | except NotImplementedError:
|
---|
672 | import time
|
---|
673 | a = long(time.time() * 256) # use fractional seconds
|
---|
674 |
|
---|
675 | if not isinstance(a, (int, long)):
|
---|
676 | a = hash(a)
|
---|
677 |
|
---|
678 | a, x = divmod(a, 30268)
|
---|
679 | a, y = divmod(a, 30306)
|
---|
680 | a, z = divmod(a, 30322)
|
---|
681 | self._seed = int(x)+1, int(y)+1, int(z)+1
|
---|
682 |
|
---|
683 | self.gauss_next = None
|
---|
684 |
|
---|
685 | def random(self):
|
---|
686 | """Get the next random number in the range [0.0, 1.0)."""
|
---|
687 |
|
---|
688 | # Wichman-Hill random number generator.
|
---|
689 | #
|
---|
690 | # Wichmann, B. A. & Hill, I. D. (1982)
|
---|
691 | # Algorithm AS 183:
|
---|
692 | # An efficient and portable pseudo-random number generator
|
---|
693 | # Applied Statistics 31 (1982) 188-190
|
---|
694 | #
|
---|
695 | # see also:
|
---|
696 | # Correction to Algorithm AS 183
|
---|
697 | # Applied Statistics 33 (1984) 123
|
---|
698 | #
|
---|
699 | # McLeod, A. I. (1985)
|
---|
700 | # A remark on Algorithm AS 183
|
---|
701 | # Applied Statistics 34 (1985),198-200
|
---|
702 |
|
---|
703 | # This part is thread-unsafe:
|
---|
704 | # BEGIN CRITICAL SECTION
|
---|
705 | x, y, z = self._seed
|
---|
706 | x = (171 * x) % 30269
|
---|
707 | y = (172 * y) % 30307
|
---|
708 | z = (170 * z) % 30323
|
---|
709 | self._seed = x, y, z
|
---|
710 | # END CRITICAL SECTION
|
---|
711 |
|
---|
712 | # Note: on a platform using IEEE-754 double arithmetic, this can
|
---|
713 | # never return 0.0 (asserted by Tim; proof too long for a comment).
|
---|
714 | return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
---|
715 |
|
---|
716 | def getstate(self):
|
---|
717 | """Return internal state; can be passed to setstate() later."""
|
---|
718 | return self.VERSION, self._seed, self.gauss_next
|
---|
719 |
|
---|
720 | def setstate(self, state):
|
---|
721 | """Restore internal state from object returned by getstate()."""
|
---|
722 | version = state[0]
|
---|
723 | if version == 1:
|
---|
724 | version, self._seed, self.gauss_next = state
|
---|
725 | else:
|
---|
726 | raise ValueError("state with version %s passed to "
|
---|
727 | "Random.setstate() of version %s" %
|
---|
728 | (version, self.VERSION))
|
---|
729 |
|
---|
730 | def jumpahead(self, n):
|
---|
731 | """Act as if n calls to random() were made, but quickly.
|
---|
732 |
|
---|
733 | n is an int, greater than or equal to 0.
|
---|
734 |
|
---|
735 | Example use: If you have 2 threads and know that each will
|
---|
736 | consume no more than a million random numbers, create two Random
|
---|
737 | objects r1 and r2, then do
|
---|
738 | r2.setstate(r1.getstate())
|
---|
739 | r2.jumpahead(1000000)
|
---|
740 | Then r1 and r2 will use guaranteed-disjoint segments of the full
|
---|
741 | period.
|
---|
742 | """
|
---|
743 |
|
---|
744 | if not n >= 0:
|
---|
745 | raise ValueError("n must be >= 0")
|
---|
746 | x, y, z = self._seed
|
---|
747 | x = int(x * pow(171, n, 30269)) % 30269
|
---|
748 | y = int(y * pow(172, n, 30307)) % 30307
|
---|
749 | z = int(z * pow(170, n, 30323)) % 30323
|
---|
750 | self._seed = x, y, z
|
---|
751 |
|
---|
752 | def __whseed(self, x=0, y=0, z=0):
|
---|
753 | """Set the Wichmann-Hill seed from (x, y, z).
|
---|
754 |
|
---|
755 | These must be integers in the range [0, 256).
|
---|
756 | """
|
---|
757 |
|
---|
758 | if not type(x) == type(y) == type(z) == int:
|
---|
759 | raise TypeError('seeds must be integers')
|
---|
760 | if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
---|
761 | raise ValueError('seeds must be in range(0, 256)')
|
---|
762 | if 0 == x == y == z:
|
---|
763 | # Initialize from current time
|
---|
764 | import time
|
---|
765 | t = long(time.time() * 256)
|
---|
766 | t = int((t&0xffffff) ^ (t>>24))
|
---|
767 | t, x = divmod(t, 256)
|
---|
768 | t, y = divmod(t, 256)
|
---|
769 | t, z = divmod(t, 256)
|
---|
770 | # Zero is a poor seed, so substitute 1
|
---|
771 | self._seed = (x or 1, y or 1, z or 1)
|
---|
772 |
|
---|
773 | self.gauss_next = None
|
---|
774 |
|
---|
775 | def whseed(self, a=None):
|
---|
776 | """Seed from hashable object's hash code.
|
---|
777 |
|
---|
778 | None or no argument seeds from current time. It is not guaranteed
|
---|
779 | that objects with distinct hash codes lead to distinct internal
|
---|
780 | states.
|
---|
781 |
|
---|
782 | This is obsolete, provided for compatibility with the seed routine
|
---|
783 | used prior to Python 2.1. Use the .seed() method instead.
|
---|
784 | """
|
---|
785 |
|
---|
786 | if a is None:
|
---|
787 | self.__whseed()
|
---|
788 | return
|
---|
789 | a = hash(a)
|
---|
790 | a, x = divmod(a, 256)
|
---|
791 | a, y = divmod(a, 256)
|
---|
792 | a, z = divmod(a, 256)
|
---|
793 | x = (x + a) % 256 or 1
|
---|
794 | y = (y + a) % 256 or 1
|
---|
795 | z = (z + a) % 256 or 1
|
---|
796 | self.__whseed(x, y, z)
|
---|
797 |
|
---|
798 | ## --------------- Operating System Random Source ------------------
|
---|
799 |
|
---|
800 | class SystemRandom(Random):
|
---|
801 | """Alternate random number generator using sources provided
|
---|
802 | by the operating system (such as /dev/urandom on Unix or
|
---|
803 | CryptGenRandom on Windows).
|
---|
804 |
|
---|
805 | Not available on all systems (see os.urandom() for details).
|
---|
806 | """
|
---|
807 |
|
---|
808 | def random(self):
|
---|
809 | """Get the next random number in the range [0.0, 1.0)."""
|
---|
810 | return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
|
---|
811 |
|
---|
812 | def getrandbits(self, k):
|
---|
813 | """getrandbits(k) -> x. Generates a long int with k random bits."""
|
---|
814 | if k <= 0:
|
---|
815 | raise ValueError('number of bits must be greater than zero')
|
---|
816 | if k != int(k):
|
---|
817 | raise TypeError('number of bits should be an integer')
|
---|
818 | bytes = (k + 7) // 8 # bits / 8 and rounded up
|
---|
819 | x = long(_hexlify(_urandom(bytes)), 16)
|
---|
820 | return x >> (bytes * 8 - k) # trim excess bits
|
---|
821 |
|
---|
822 | def _stub(self, *args, **kwds):
|
---|
823 | "Stub method. Not used for a system random number generator."
|
---|
824 | return None
|
---|
825 | seed = jumpahead = _stub
|
---|
826 |
|
---|
827 | def _notimplemented(self, *args, **kwds):
|
---|
828 | "Method should not be called for a system random number generator."
|
---|
829 | raise NotImplementedError('System entropy source does not have state.')
|
---|
830 | getstate = setstate = _notimplemented
|
---|
831 |
|
---|
832 | ## -------------------- test program --------------------
|
---|
833 |
|
---|
834 | def _test_generator(n, func, args):
|
---|
835 | import time
|
---|
836 | print n, 'times', func.__name__
|
---|
837 | total = 0.0
|
---|
838 | sqsum = 0.0
|
---|
839 | smallest = 1e10
|
---|
840 | largest = -1e10
|
---|
841 | t0 = time.time()
|
---|
842 | for i in range(n):
|
---|
843 | x = func(*args)
|
---|
844 | total += x
|
---|
845 | sqsum = sqsum + x*x
|
---|
846 | smallest = min(x, smallest)
|
---|
847 | largest = max(x, largest)
|
---|
848 | t1 = time.time()
|
---|
849 | print round(t1-t0, 3), 'sec,',
|
---|
850 | avg = total/n
|
---|
851 | stddev = _sqrt(sqsum/n - avg*avg)
|
---|
852 | print 'avg %g, stddev %g, min %g, max %g' % \
|
---|
853 | (avg, stddev, smallest, largest)
|
---|
854 |
|
---|
855 |
|
---|
856 | def _test(N=2000):
|
---|
857 | _test_generator(N, random, ())
|
---|
858 | _test_generator(N, normalvariate, (0.0, 1.0))
|
---|
859 | _test_generator(N, lognormvariate, (0.0, 1.0))
|
---|
860 | _test_generator(N, vonmisesvariate, (0.0, 1.0))
|
---|
861 | _test_generator(N, gammavariate, (0.01, 1.0))
|
---|
862 | _test_generator(N, gammavariate, (0.1, 1.0))
|
---|
863 | _test_generator(N, gammavariate, (0.1, 2.0))
|
---|
864 | _test_generator(N, gammavariate, (0.5, 1.0))
|
---|
865 | _test_generator(N, gammavariate, (0.9, 1.0))
|
---|
866 | _test_generator(N, gammavariate, (1.0, 1.0))
|
---|
867 | _test_generator(N, gammavariate, (2.0, 1.0))
|
---|
868 | _test_generator(N, gammavariate, (20.0, 1.0))
|
---|
869 | _test_generator(N, gammavariate, (200.0, 1.0))
|
---|
870 | _test_generator(N, gauss, (0.0, 1.0))
|
---|
871 | _test_generator(N, betavariate, (3.0, 3.0))
|
---|
872 | _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
|
---|
873 |
|
---|
874 | # Create one instance, seeded from current time, and export its methods
|
---|
875 | # as module-level functions. The functions share state across all uses
|
---|
876 | #(both in the user's code and in the Python libraries), but that's fine
|
---|
877 | # for most programs and is easier for the casual user than making them
|
---|
878 | # instantiate their own Random() instance.
|
---|
879 |
|
---|
880 | _inst = Random()
|
---|
881 | seed = _inst.seed
|
---|
882 | random = _inst.random
|
---|
883 | uniform = _inst.uniform
|
---|
884 | triangular = _inst.triangular
|
---|
885 | randint = _inst.randint
|
---|
886 | choice = _inst.choice
|
---|
887 | randrange = _inst.randrange
|
---|
888 | sample = _inst.sample
|
---|
889 | shuffle = _inst.shuffle
|
---|
890 | normalvariate = _inst.normalvariate
|
---|
891 | lognormvariate = _inst.lognormvariate
|
---|
892 | expovariate = _inst.expovariate
|
---|
893 | vonmisesvariate = _inst.vonmisesvariate
|
---|
894 | gammavariate = _inst.gammavariate
|
---|
895 | gauss = _inst.gauss
|
---|
896 | betavariate = _inst.betavariate
|
---|
897 | paretovariate = _inst.paretovariate
|
---|
898 | weibullvariate = _inst.weibullvariate
|
---|
899 | getstate = _inst.getstate
|
---|
900 | setstate = _inst.setstate
|
---|
901 | jumpahead = _inst.jumpahead
|
---|
902 | getrandbits = _inst.getrandbits
|
---|
903 |
|
---|
904 | if __name__ == '__main__':
|
---|
905 | _test()
|
---|