1 | # Copyright (c) 2004 Python Software Foundation.
|
---|
2 | # All rights reserved.
|
---|
3 |
|
---|
4 | # Written by Eric Price <eprice at tjhsst.edu>
|
---|
5 | # and Facundo Batista <facundo at taniquetil.com.ar>
|
---|
6 | # and Raymond Hettinger <python at rcn.com>
|
---|
7 | # and Aahz <aahz at pobox.com>
|
---|
8 | # and Tim Peters
|
---|
9 |
|
---|
10 | # This module is currently Py2.3 compatible and should be kept that way
|
---|
11 | # unless a major compelling advantage arises. IOW, 2.3 compatibility is
|
---|
12 | # strongly preferred, but not guaranteed.
|
---|
13 |
|
---|
14 | # Also, this module should be kept in sync with the latest updates of
|
---|
15 | # the IBM specification as it evolves. Those updates will be treated
|
---|
16 | # as bug fixes (deviation from the spec is a compatibility, usability
|
---|
17 | # bug) and will be backported. At this point the spec is stabilizing
|
---|
18 | # and the updates are becoming fewer, smaller, and less significant.
|
---|
19 |
|
---|
20 | """
|
---|
21 | This is a Py2.3 implementation of decimal floating point arithmetic based on
|
---|
22 | the General Decimal Arithmetic Specification:
|
---|
23 |
|
---|
24 | http://speleotrove.com/decimal/decarith.html
|
---|
25 |
|
---|
26 | and IEEE standard 854-1987:
|
---|
27 |
|
---|
28 | http://en.wikipedia.org/wiki/IEEE_854-1987
|
---|
29 |
|
---|
30 | Decimal floating point has finite precision with arbitrarily large bounds.
|
---|
31 |
|
---|
32 | The purpose of this module is to support arithmetic using familiar
|
---|
33 | "schoolhouse" rules and to avoid some of the tricky representation
|
---|
34 | issues associated with binary floating point. The package is especially
|
---|
35 | useful for financial applications or for contexts where users have
|
---|
36 | expectations that are at odds with binary floating point (for instance,
|
---|
37 | in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
|
---|
38 | of the expected Decimal('0.00') returned by decimal floating point).
|
---|
39 |
|
---|
40 | Here are some examples of using the decimal module:
|
---|
41 |
|
---|
42 | >>> from decimal import *
|
---|
43 | >>> setcontext(ExtendedContext)
|
---|
44 | >>> Decimal(0)
|
---|
45 | Decimal('0')
|
---|
46 | >>> Decimal('1')
|
---|
47 | Decimal('1')
|
---|
48 | >>> Decimal('-.0123')
|
---|
49 | Decimal('-0.0123')
|
---|
50 | >>> Decimal(123456)
|
---|
51 | Decimal('123456')
|
---|
52 | >>> Decimal('123.45e12345678901234567890')
|
---|
53 | Decimal('1.2345E+12345678901234567892')
|
---|
54 | >>> Decimal('1.33') + Decimal('1.27')
|
---|
55 | Decimal('2.60')
|
---|
56 | >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
|
---|
57 | Decimal('-2.20')
|
---|
58 | >>> dig = Decimal(1)
|
---|
59 | >>> print dig / Decimal(3)
|
---|
60 | 0.333333333
|
---|
61 | >>> getcontext().prec = 18
|
---|
62 | >>> print dig / Decimal(3)
|
---|
63 | 0.333333333333333333
|
---|
64 | >>> print dig.sqrt()
|
---|
65 | 1
|
---|
66 | >>> print Decimal(3).sqrt()
|
---|
67 | 1.73205080756887729
|
---|
68 | >>> print Decimal(3) ** 123
|
---|
69 | 4.85192780976896427E+58
|
---|
70 | >>> inf = Decimal(1) / Decimal(0)
|
---|
71 | >>> print inf
|
---|
72 | Infinity
|
---|
73 | >>> neginf = Decimal(-1) / Decimal(0)
|
---|
74 | >>> print neginf
|
---|
75 | -Infinity
|
---|
76 | >>> print neginf + inf
|
---|
77 | NaN
|
---|
78 | >>> print neginf * inf
|
---|
79 | -Infinity
|
---|
80 | >>> print dig / 0
|
---|
81 | Infinity
|
---|
82 | >>> getcontext().traps[DivisionByZero] = 1
|
---|
83 | >>> print dig / 0
|
---|
84 | Traceback (most recent call last):
|
---|
85 | ...
|
---|
86 | ...
|
---|
87 | ...
|
---|
88 | DivisionByZero: x / 0
|
---|
89 | >>> c = Context()
|
---|
90 | >>> c.traps[InvalidOperation] = 0
|
---|
91 | >>> print c.flags[InvalidOperation]
|
---|
92 | 0
|
---|
93 | >>> c.divide(Decimal(0), Decimal(0))
|
---|
94 | Decimal('NaN')
|
---|
95 | >>> c.traps[InvalidOperation] = 1
|
---|
96 | >>> print c.flags[InvalidOperation]
|
---|
97 | 1
|
---|
98 | >>> c.flags[InvalidOperation] = 0
|
---|
99 | >>> print c.flags[InvalidOperation]
|
---|
100 | 0
|
---|
101 | >>> print c.divide(Decimal(0), Decimal(0))
|
---|
102 | Traceback (most recent call last):
|
---|
103 | ...
|
---|
104 | ...
|
---|
105 | ...
|
---|
106 | InvalidOperation: 0 / 0
|
---|
107 | >>> print c.flags[InvalidOperation]
|
---|
108 | 1
|
---|
109 | >>> c.flags[InvalidOperation] = 0
|
---|
110 | >>> c.traps[InvalidOperation] = 0
|
---|
111 | >>> print c.divide(Decimal(0), Decimal(0))
|
---|
112 | NaN
|
---|
113 | >>> print c.flags[InvalidOperation]
|
---|
114 | 1
|
---|
115 | >>>
|
---|
116 | """
|
---|
117 |
|
---|
118 | __all__ = [
|
---|
119 | # Two major classes
|
---|
120 | 'Decimal', 'Context',
|
---|
121 |
|
---|
122 | # Contexts
|
---|
123 | 'DefaultContext', 'BasicContext', 'ExtendedContext',
|
---|
124 |
|
---|
125 | # Exceptions
|
---|
126 | 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
|
---|
127 | 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
|
---|
128 |
|
---|
129 | # Constants for use in setting up contexts
|
---|
130 | 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
|
---|
131 | 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
|
---|
132 |
|
---|
133 | # Functions for manipulating contexts
|
---|
134 | 'setcontext', 'getcontext', 'localcontext'
|
---|
135 | ]
|
---|
136 |
|
---|
137 | __version__ = '1.70' # Highest version of the spec this complies with
|
---|
138 |
|
---|
139 | import copy as _copy
|
---|
140 | import math as _math
|
---|
141 | import numbers as _numbers
|
---|
142 |
|
---|
143 | try:
|
---|
144 | from collections import namedtuple as _namedtuple
|
---|
145 | DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
|
---|
146 | except ImportError:
|
---|
147 | DecimalTuple = lambda *args: args
|
---|
148 |
|
---|
149 | # Rounding
|
---|
150 | ROUND_DOWN = 'ROUND_DOWN'
|
---|
151 | ROUND_HALF_UP = 'ROUND_HALF_UP'
|
---|
152 | ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
|
---|
153 | ROUND_CEILING = 'ROUND_CEILING'
|
---|
154 | ROUND_FLOOR = 'ROUND_FLOOR'
|
---|
155 | ROUND_UP = 'ROUND_UP'
|
---|
156 | ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
|
---|
157 | ROUND_05UP = 'ROUND_05UP'
|
---|
158 |
|
---|
159 | # Errors
|
---|
160 |
|
---|
161 | class DecimalException(ArithmeticError):
|
---|
162 | """Base exception class.
|
---|
163 |
|
---|
164 | Used exceptions derive from this.
|
---|
165 | If an exception derives from another exception besides this (such as
|
---|
166 | Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
|
---|
167 | called if the others are present. This isn't actually used for
|
---|
168 | anything, though.
|
---|
169 |
|
---|
170 | handle -- Called when context._raise_error is called and the
|
---|
171 | trap_enabler is not set. First argument is self, second is the
|
---|
172 | context. More arguments can be given, those being after
|
---|
173 | the explanation in _raise_error (For example,
|
---|
174 | context._raise_error(NewError, '(-x)!', self._sign) would
|
---|
175 | call NewError().handle(context, self._sign).)
|
---|
176 |
|
---|
177 | To define a new exception, it should be sufficient to have it derive
|
---|
178 | from DecimalException.
|
---|
179 | """
|
---|
180 | def handle(self, context, *args):
|
---|
181 | pass
|
---|
182 |
|
---|
183 |
|
---|
184 | class Clamped(DecimalException):
|
---|
185 | """Exponent of a 0 changed to fit bounds.
|
---|
186 |
|
---|
187 | This occurs and signals clamped if the exponent of a result has been
|
---|
188 | altered in order to fit the constraints of a specific concrete
|
---|
189 | representation. This may occur when the exponent of a zero result would
|
---|
190 | be outside the bounds of a representation, or when a large normal
|
---|
191 | number would have an encoded exponent that cannot be represented. In
|
---|
192 | this latter case, the exponent is reduced to fit and the corresponding
|
---|
193 | number of zero digits are appended to the coefficient ("fold-down").
|
---|
194 | """
|
---|
195 |
|
---|
196 | class InvalidOperation(DecimalException):
|
---|
197 | """An invalid operation was performed.
|
---|
198 |
|
---|
199 | Various bad things cause this:
|
---|
200 |
|
---|
201 | Something creates a signaling NaN
|
---|
202 | -INF + INF
|
---|
203 | 0 * (+-)INF
|
---|
204 | (+-)INF / (+-)INF
|
---|
205 | x % 0
|
---|
206 | (+-)INF % x
|
---|
207 | x._rescale( non-integer )
|
---|
208 | sqrt(-x) , x > 0
|
---|
209 | 0 ** 0
|
---|
210 | x ** (non-integer)
|
---|
211 | x ** (+-)INF
|
---|
212 | An operand is invalid
|
---|
213 |
|
---|
214 | The result of the operation after these is a quiet positive NaN,
|
---|
215 | except when the cause is a signaling NaN, in which case the result is
|
---|
216 | also a quiet NaN, but with the original sign, and an optional
|
---|
217 | diagnostic information.
|
---|
218 | """
|
---|
219 | def handle(self, context, *args):
|
---|
220 | if args:
|
---|
221 | ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
|
---|
222 | return ans._fix_nan(context)
|
---|
223 | return _NaN
|
---|
224 |
|
---|
225 | class ConversionSyntax(InvalidOperation):
|
---|
226 | """Trying to convert badly formed string.
|
---|
227 |
|
---|
228 | This occurs and signals invalid-operation if an string is being
|
---|
229 | converted to a number and it does not conform to the numeric string
|
---|
230 | syntax. The result is [0,qNaN].
|
---|
231 | """
|
---|
232 | def handle(self, context, *args):
|
---|
233 | return _NaN
|
---|
234 |
|
---|
235 | class DivisionByZero(DecimalException, ZeroDivisionError):
|
---|
236 | """Division by 0.
|
---|
237 |
|
---|
238 | This occurs and signals division-by-zero if division of a finite number
|
---|
239 | by zero was attempted (during a divide-integer or divide operation, or a
|
---|
240 | power operation with negative right-hand operand), and the dividend was
|
---|
241 | not zero.
|
---|
242 |
|
---|
243 | The result of the operation is [sign,inf], where sign is the exclusive
|
---|
244 | or of the signs of the operands for divide, or is 1 for an odd power of
|
---|
245 | -0, for power.
|
---|
246 | """
|
---|
247 |
|
---|
248 | def handle(self, context, sign, *args):
|
---|
249 | return _SignedInfinity[sign]
|
---|
250 |
|
---|
251 | class DivisionImpossible(InvalidOperation):
|
---|
252 | """Cannot perform the division adequately.
|
---|
253 |
|
---|
254 | This occurs and signals invalid-operation if the integer result of a
|
---|
255 | divide-integer or remainder operation had too many digits (would be
|
---|
256 | longer than precision). The result is [0,qNaN].
|
---|
257 | """
|
---|
258 |
|
---|
259 | def handle(self, context, *args):
|
---|
260 | return _NaN
|
---|
261 |
|
---|
262 | class DivisionUndefined(InvalidOperation, ZeroDivisionError):
|
---|
263 | """Undefined result of division.
|
---|
264 |
|
---|
265 | This occurs and signals invalid-operation if division by zero was
|
---|
266 | attempted (during a divide-integer, divide, or remainder operation), and
|
---|
267 | the dividend is also zero. The result is [0,qNaN].
|
---|
268 | """
|
---|
269 |
|
---|
270 | def handle(self, context, *args):
|
---|
271 | return _NaN
|
---|
272 |
|
---|
273 | class Inexact(DecimalException):
|
---|
274 | """Had to round, losing information.
|
---|
275 |
|
---|
276 | This occurs and signals inexact whenever the result of an operation is
|
---|
277 | not exact (that is, it needed to be rounded and any discarded digits
|
---|
278 | were non-zero), or if an overflow or underflow condition occurs. The
|
---|
279 | result in all cases is unchanged.
|
---|
280 |
|
---|
281 | The inexact signal may be tested (or trapped) to determine if a given
|
---|
282 | operation (or sequence of operations) was inexact.
|
---|
283 | """
|
---|
284 |
|
---|
285 | class InvalidContext(InvalidOperation):
|
---|
286 | """Invalid context. Unknown rounding, for example.
|
---|
287 |
|
---|
288 | This occurs and signals invalid-operation if an invalid context was
|
---|
289 | detected during an operation. This can occur if contexts are not checked
|
---|
290 | on creation and either the precision exceeds the capability of the
|
---|
291 | underlying concrete representation or an unknown or unsupported rounding
|
---|
292 | was specified. These aspects of the context need only be checked when
|
---|
293 | the values are required to be used. The result is [0,qNaN].
|
---|
294 | """
|
---|
295 |
|
---|
296 | def handle(self, context, *args):
|
---|
297 | return _NaN
|
---|
298 |
|
---|
299 | class Rounded(DecimalException):
|
---|
300 | """Number got rounded (not necessarily changed during rounding).
|
---|
301 |
|
---|
302 | This occurs and signals rounded whenever the result of an operation is
|
---|
303 | rounded (that is, some zero or non-zero digits were discarded from the
|
---|
304 | coefficient), or if an overflow or underflow condition occurs. The
|
---|
305 | result in all cases is unchanged.
|
---|
306 |
|
---|
307 | The rounded signal may be tested (or trapped) to determine if a given
|
---|
308 | operation (or sequence of operations) caused a loss of precision.
|
---|
309 | """
|
---|
310 |
|
---|
311 | class Subnormal(DecimalException):
|
---|
312 | """Exponent < Emin before rounding.
|
---|
313 |
|
---|
314 | This occurs and signals subnormal whenever the result of a conversion or
|
---|
315 | operation is subnormal (that is, its adjusted exponent is less than
|
---|
316 | Emin, before any rounding). The result in all cases is unchanged.
|
---|
317 |
|
---|
318 | The subnormal signal may be tested (or trapped) to determine if a given
|
---|
319 | or operation (or sequence of operations) yielded a subnormal result.
|
---|
320 | """
|
---|
321 |
|
---|
322 | class Overflow(Inexact, Rounded):
|
---|
323 | """Numerical overflow.
|
---|
324 |
|
---|
325 | This occurs and signals overflow if the adjusted exponent of a result
|
---|
326 | (from a conversion or from an operation that is not an attempt to divide
|
---|
327 | by zero), after rounding, would be greater than the largest value that
|
---|
328 | can be handled by the implementation (the value Emax).
|
---|
329 |
|
---|
330 | The result depends on the rounding mode:
|
---|
331 |
|
---|
332 | For round-half-up and round-half-even (and for round-half-down and
|
---|
333 | round-up, if implemented), the result of the operation is [sign,inf],
|
---|
334 | where sign is the sign of the intermediate result. For round-down, the
|
---|
335 | result is the largest finite number that can be represented in the
|
---|
336 | current precision, with the sign of the intermediate result. For
|
---|
337 | round-ceiling, the result is the same as for round-down if the sign of
|
---|
338 | the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
|
---|
339 | the result is the same as for round-down if the sign of the intermediate
|
---|
340 | result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
|
---|
341 | will also be raised.
|
---|
342 | """
|
---|
343 |
|
---|
344 | def handle(self, context, sign, *args):
|
---|
345 | if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
|
---|
346 | ROUND_HALF_DOWN, ROUND_UP):
|
---|
347 | return _SignedInfinity[sign]
|
---|
348 | if sign == 0:
|
---|
349 | if context.rounding == ROUND_CEILING:
|
---|
350 | return _SignedInfinity[sign]
|
---|
351 | return _dec_from_triple(sign, '9'*context.prec,
|
---|
352 | context.Emax-context.prec+1)
|
---|
353 | if sign == 1:
|
---|
354 | if context.rounding == ROUND_FLOOR:
|
---|
355 | return _SignedInfinity[sign]
|
---|
356 | return _dec_from_triple(sign, '9'*context.prec,
|
---|
357 | context.Emax-context.prec+1)
|
---|
358 |
|
---|
359 |
|
---|
360 | class Underflow(Inexact, Rounded, Subnormal):
|
---|
361 | """Numerical underflow with result rounded to 0.
|
---|
362 |
|
---|
363 | This occurs and signals underflow if a result is inexact and the
|
---|
364 | adjusted exponent of the result would be smaller (more negative) than
|
---|
365 | the smallest value that can be handled by the implementation (the value
|
---|
366 | Emin). That is, the result is both inexact and subnormal.
|
---|
367 |
|
---|
368 | The result after an underflow will be a subnormal number rounded, if
|
---|
369 | necessary, so that its exponent is not less than Etiny. This may result
|
---|
370 | in 0 with the sign of the intermediate result and an exponent of Etiny.
|
---|
371 |
|
---|
372 | In all cases, Inexact, Rounded, and Subnormal will also be raised.
|
---|
373 | """
|
---|
374 |
|
---|
375 | # List of public traps and flags
|
---|
376 | _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
|
---|
377 | Underflow, InvalidOperation, Subnormal]
|
---|
378 |
|
---|
379 | # Map conditions (per the spec) to signals
|
---|
380 | _condition_map = {ConversionSyntax:InvalidOperation,
|
---|
381 | DivisionImpossible:InvalidOperation,
|
---|
382 | DivisionUndefined:InvalidOperation,
|
---|
383 | InvalidContext:InvalidOperation}
|
---|
384 |
|
---|
385 | ##### Context Functions ##################################################
|
---|
386 |
|
---|
387 | # The getcontext() and setcontext() function manage access to a thread-local
|
---|
388 | # current context. Py2.4 offers direct support for thread locals. If that
|
---|
389 | # is not available, use threading.currentThread() which is slower but will
|
---|
390 | # work for older Pythons. If threads are not part of the build, create a
|
---|
391 | # mock threading object with threading.local() returning the module namespace.
|
---|
392 |
|
---|
393 | try:
|
---|
394 | import threading
|
---|
395 | except ImportError:
|
---|
396 | # Python was compiled without threads; create a mock object instead
|
---|
397 | import sys
|
---|
398 | class MockThreading(object):
|
---|
399 | def local(self, sys=sys):
|
---|
400 | return sys.modules[__name__]
|
---|
401 | threading = MockThreading()
|
---|
402 | del sys, MockThreading
|
---|
403 |
|
---|
404 | try:
|
---|
405 | threading.local
|
---|
406 |
|
---|
407 | except AttributeError:
|
---|
408 |
|
---|
409 | # To fix reloading, force it to create a new context
|
---|
410 | # Old contexts have different exceptions in their dicts, making problems.
|
---|
411 | if hasattr(threading.currentThread(), '__decimal_context__'):
|
---|
412 | del threading.currentThread().__decimal_context__
|
---|
413 |
|
---|
414 | def setcontext(context):
|
---|
415 | """Set this thread's context to context."""
|
---|
416 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
---|
417 | context = context.copy()
|
---|
418 | context.clear_flags()
|
---|
419 | threading.currentThread().__decimal_context__ = context
|
---|
420 |
|
---|
421 | def getcontext():
|
---|
422 | """Returns this thread's context.
|
---|
423 |
|
---|
424 | If this thread does not yet have a context, returns
|
---|
425 | a new context and sets this thread's context.
|
---|
426 | New contexts are copies of DefaultContext.
|
---|
427 | """
|
---|
428 | try:
|
---|
429 | return threading.currentThread().__decimal_context__
|
---|
430 | except AttributeError:
|
---|
431 | context = Context()
|
---|
432 | threading.currentThread().__decimal_context__ = context
|
---|
433 | return context
|
---|
434 |
|
---|
435 | else:
|
---|
436 |
|
---|
437 | local = threading.local()
|
---|
438 | if hasattr(local, '__decimal_context__'):
|
---|
439 | del local.__decimal_context__
|
---|
440 |
|
---|
441 | def getcontext(_local=local):
|
---|
442 | """Returns this thread's context.
|
---|
443 |
|
---|
444 | If this thread does not yet have a context, returns
|
---|
445 | a new context and sets this thread's context.
|
---|
446 | New contexts are copies of DefaultContext.
|
---|
447 | """
|
---|
448 | try:
|
---|
449 | return _local.__decimal_context__
|
---|
450 | except AttributeError:
|
---|
451 | context = Context()
|
---|
452 | _local.__decimal_context__ = context
|
---|
453 | return context
|
---|
454 |
|
---|
455 | def setcontext(context, _local=local):
|
---|
456 | """Set this thread's context to context."""
|
---|
457 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
---|
458 | context = context.copy()
|
---|
459 | context.clear_flags()
|
---|
460 | _local.__decimal_context__ = context
|
---|
461 |
|
---|
462 | del threading, local # Don't contaminate the namespace
|
---|
463 |
|
---|
464 | def localcontext(ctx=None):
|
---|
465 | """Return a context manager for a copy of the supplied context
|
---|
466 |
|
---|
467 | Uses a copy of the current context if no context is specified
|
---|
468 | The returned context manager creates a local decimal context
|
---|
469 | in a with statement:
|
---|
470 | def sin(x):
|
---|
471 | with localcontext() as ctx:
|
---|
472 | ctx.prec += 2
|
---|
473 | # Rest of sin calculation algorithm
|
---|
474 | # uses a precision 2 greater than normal
|
---|
475 | return +s # Convert result to normal precision
|
---|
476 |
|
---|
477 | def sin(x):
|
---|
478 | with localcontext(ExtendedContext):
|
---|
479 | # Rest of sin calculation algorithm
|
---|
480 | # uses the Extended Context from the
|
---|
481 | # General Decimal Arithmetic Specification
|
---|
482 | return +s # Convert result to normal context
|
---|
483 |
|
---|
484 | >>> setcontext(DefaultContext)
|
---|
485 | >>> print getcontext().prec
|
---|
486 | 28
|
---|
487 | >>> with localcontext():
|
---|
488 | ... ctx = getcontext()
|
---|
489 | ... ctx.prec += 2
|
---|
490 | ... print ctx.prec
|
---|
491 | ...
|
---|
492 | 30
|
---|
493 | >>> with localcontext(ExtendedContext):
|
---|
494 | ... print getcontext().prec
|
---|
495 | ...
|
---|
496 | 9
|
---|
497 | >>> print getcontext().prec
|
---|
498 | 28
|
---|
499 | """
|
---|
500 | if ctx is None: ctx = getcontext()
|
---|
501 | return _ContextManager(ctx)
|
---|
502 |
|
---|
503 |
|
---|
504 | ##### Decimal class #######################################################
|
---|
505 |
|
---|
506 | class Decimal(object):
|
---|
507 | """Floating point class for decimal arithmetic."""
|
---|
508 |
|
---|
509 | __slots__ = ('_exp','_int','_sign', '_is_special')
|
---|
510 | # Generally, the value of the Decimal instance is given by
|
---|
511 | # (-1)**_sign * _int * 10**_exp
|
---|
512 | # Special values are signified by _is_special == True
|
---|
513 |
|
---|
514 | # We're immutable, so use __new__ not __init__
|
---|
515 | def __new__(cls, value="0", context=None):
|
---|
516 | """Create a decimal point instance.
|
---|
517 |
|
---|
518 | >>> Decimal('3.14') # string input
|
---|
519 | Decimal('3.14')
|
---|
520 | >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
|
---|
521 | Decimal('3.14')
|
---|
522 | >>> Decimal(314) # int or long
|
---|
523 | Decimal('314')
|
---|
524 | >>> Decimal(Decimal(314)) # another decimal instance
|
---|
525 | Decimal('314')
|
---|
526 | >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
|
---|
527 | Decimal('3.14')
|
---|
528 | """
|
---|
529 |
|
---|
530 | # Note that the coefficient, self._int, is actually stored as
|
---|
531 | # a string rather than as a tuple of digits. This speeds up
|
---|
532 | # the "digits to integer" and "integer to digits" conversions
|
---|
533 | # that are used in almost every arithmetic operation on
|
---|
534 | # Decimals. This is an internal detail: the as_tuple function
|
---|
535 | # and the Decimal constructor still deal with tuples of
|
---|
536 | # digits.
|
---|
537 |
|
---|
538 | self = object.__new__(cls)
|
---|
539 |
|
---|
540 | # From a string
|
---|
541 | # REs insist on real strings, so we can too.
|
---|
542 | if isinstance(value, basestring):
|
---|
543 | m = _parser(value.strip())
|
---|
544 | if m is None:
|
---|
545 | if context is None:
|
---|
546 | context = getcontext()
|
---|
547 | return context._raise_error(ConversionSyntax,
|
---|
548 | "Invalid literal for Decimal: %r" % value)
|
---|
549 |
|
---|
550 | if m.group('sign') == "-":
|
---|
551 | self._sign = 1
|
---|
552 | else:
|
---|
553 | self._sign = 0
|
---|
554 | intpart = m.group('int')
|
---|
555 | if intpart is not None:
|
---|
556 | # finite number
|
---|
557 | fracpart = m.group('frac') or ''
|
---|
558 | exp = int(m.group('exp') or '0')
|
---|
559 | self._int = str(int(intpart+fracpart))
|
---|
560 | self._exp = exp - len(fracpart)
|
---|
561 | self._is_special = False
|
---|
562 | else:
|
---|
563 | diag = m.group('diag')
|
---|
564 | if diag is not None:
|
---|
565 | # NaN
|
---|
566 | self._int = str(int(diag or '0')).lstrip('0')
|
---|
567 | if m.group('signal'):
|
---|
568 | self._exp = 'N'
|
---|
569 | else:
|
---|
570 | self._exp = 'n'
|
---|
571 | else:
|
---|
572 | # infinity
|
---|
573 | self._int = '0'
|
---|
574 | self._exp = 'F'
|
---|
575 | self._is_special = True
|
---|
576 | return self
|
---|
577 |
|
---|
578 | # From an integer
|
---|
579 | if isinstance(value, (int,long)):
|
---|
580 | if value >= 0:
|
---|
581 | self._sign = 0
|
---|
582 | else:
|
---|
583 | self._sign = 1
|
---|
584 | self._exp = 0
|
---|
585 | self._int = str(abs(value))
|
---|
586 | self._is_special = False
|
---|
587 | return self
|
---|
588 |
|
---|
589 | # From another decimal
|
---|
590 | if isinstance(value, Decimal):
|
---|
591 | self._exp = value._exp
|
---|
592 | self._sign = value._sign
|
---|
593 | self._int = value._int
|
---|
594 | self._is_special = value._is_special
|
---|
595 | return self
|
---|
596 |
|
---|
597 | # From an internal working value
|
---|
598 | if isinstance(value, _WorkRep):
|
---|
599 | self._sign = value.sign
|
---|
600 | self._int = str(value.int)
|
---|
601 | self._exp = int(value.exp)
|
---|
602 | self._is_special = False
|
---|
603 | return self
|
---|
604 |
|
---|
605 | # tuple/list conversion (possibly from as_tuple())
|
---|
606 | if isinstance(value, (list,tuple)):
|
---|
607 | if len(value) != 3:
|
---|
608 | raise ValueError('Invalid tuple size in creation of Decimal '
|
---|
609 | 'from list or tuple. The list or tuple '
|
---|
610 | 'should have exactly three elements.')
|
---|
611 | # process sign. The isinstance test rejects floats
|
---|
612 | if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
|
---|
613 | raise ValueError("Invalid sign. The first value in the tuple "
|
---|
614 | "should be an integer; either 0 for a "
|
---|
615 | "positive number or 1 for a negative number.")
|
---|
616 | self._sign = value[0]
|
---|
617 | if value[2] == 'F':
|
---|
618 | # infinity: value[1] is ignored
|
---|
619 | self._int = '0'
|
---|
620 | self._exp = value[2]
|
---|
621 | self._is_special = True
|
---|
622 | else:
|
---|
623 | # process and validate the digits in value[1]
|
---|
624 | digits = []
|
---|
625 | for digit in value[1]:
|
---|
626 | if isinstance(digit, (int, long)) and 0 <= digit <= 9:
|
---|
627 | # skip leading zeros
|
---|
628 | if digits or digit != 0:
|
---|
629 | digits.append(digit)
|
---|
630 | else:
|
---|
631 | raise ValueError("The second value in the tuple must "
|
---|
632 | "be composed of integers in the range "
|
---|
633 | "0 through 9.")
|
---|
634 | if value[2] in ('n', 'N'):
|
---|
635 | # NaN: digits form the diagnostic
|
---|
636 | self._int = ''.join(map(str, digits))
|
---|
637 | self._exp = value[2]
|
---|
638 | self._is_special = True
|
---|
639 | elif isinstance(value[2], (int, long)):
|
---|
640 | # finite number: digits give the coefficient
|
---|
641 | self._int = ''.join(map(str, digits or [0]))
|
---|
642 | self._exp = value[2]
|
---|
643 | self._is_special = False
|
---|
644 | else:
|
---|
645 | raise ValueError("The third value in the tuple must "
|
---|
646 | "be an integer, or one of the "
|
---|
647 | "strings 'F', 'n', 'N'.")
|
---|
648 | return self
|
---|
649 |
|
---|
650 | if isinstance(value, float):
|
---|
651 | value = Decimal.from_float(value)
|
---|
652 | self._exp = value._exp
|
---|
653 | self._sign = value._sign
|
---|
654 | self._int = value._int
|
---|
655 | self._is_special = value._is_special
|
---|
656 | return self
|
---|
657 |
|
---|
658 | raise TypeError("Cannot convert %r to Decimal" % value)
|
---|
659 |
|
---|
660 | # @classmethod, but @decorator is not valid Python 2.3 syntax, so
|
---|
661 | # don't use it (see notes on Py2.3 compatibility at top of file)
|
---|
662 | def from_float(cls, f):
|
---|
663 | """Converts a float to a decimal number, exactly.
|
---|
664 |
|
---|
665 | Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
|
---|
666 | Since 0.1 is not exactly representable in binary floating point, the
|
---|
667 | value is stored as the nearest representable value which is
|
---|
668 | 0x1.999999999999ap-4. The exact equivalent of the value in decimal
|
---|
669 | is 0.1000000000000000055511151231257827021181583404541015625.
|
---|
670 |
|
---|
671 | >>> Decimal.from_float(0.1)
|
---|
672 | Decimal('0.1000000000000000055511151231257827021181583404541015625')
|
---|
673 | >>> Decimal.from_float(float('nan'))
|
---|
674 | Decimal('NaN')
|
---|
675 | >>> Decimal.from_float(float('inf'))
|
---|
676 | Decimal('Infinity')
|
---|
677 | >>> Decimal.from_float(-float('inf'))
|
---|
678 | Decimal('-Infinity')
|
---|
679 | >>> Decimal.from_float(-0.0)
|
---|
680 | Decimal('-0')
|
---|
681 |
|
---|
682 | """
|
---|
683 | if isinstance(f, (int, long)): # handle integer inputs
|
---|
684 | return cls(f)
|
---|
685 | if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float
|
---|
686 | return cls(repr(f))
|
---|
687 | if _math.copysign(1.0, f) == 1.0:
|
---|
688 | sign = 0
|
---|
689 | else:
|
---|
690 | sign = 1
|
---|
691 | n, d = abs(f).as_integer_ratio()
|
---|
692 | k = d.bit_length() - 1
|
---|
693 | result = _dec_from_triple(sign, str(n*5**k), -k)
|
---|
694 | if cls is Decimal:
|
---|
695 | return result
|
---|
696 | else:
|
---|
697 | return cls(result)
|
---|
698 | from_float = classmethod(from_float)
|
---|
699 |
|
---|
700 | def _isnan(self):
|
---|
701 | """Returns whether the number is not actually one.
|
---|
702 |
|
---|
703 | 0 if a number
|
---|
704 | 1 if NaN
|
---|
705 | 2 if sNaN
|
---|
706 | """
|
---|
707 | if self._is_special:
|
---|
708 | exp = self._exp
|
---|
709 | if exp == 'n':
|
---|
710 | return 1
|
---|
711 | elif exp == 'N':
|
---|
712 | return 2
|
---|
713 | return 0
|
---|
714 |
|
---|
715 | def _isinfinity(self):
|
---|
716 | """Returns whether the number is infinite
|
---|
717 |
|
---|
718 | 0 if finite or not a number
|
---|
719 | 1 if +INF
|
---|
720 | -1 if -INF
|
---|
721 | """
|
---|
722 | if self._exp == 'F':
|
---|
723 | if self._sign:
|
---|
724 | return -1
|
---|
725 | return 1
|
---|
726 | return 0
|
---|
727 |
|
---|
728 | def _check_nans(self, other=None, context=None):
|
---|
729 | """Returns whether the number is not actually one.
|
---|
730 |
|
---|
731 | if self, other are sNaN, signal
|
---|
732 | if self, other are NaN return nan
|
---|
733 | return 0
|
---|
734 |
|
---|
735 | Done before operations.
|
---|
736 | """
|
---|
737 |
|
---|
738 | self_is_nan = self._isnan()
|
---|
739 | if other is None:
|
---|
740 | other_is_nan = False
|
---|
741 | else:
|
---|
742 | other_is_nan = other._isnan()
|
---|
743 |
|
---|
744 | if self_is_nan or other_is_nan:
|
---|
745 | if context is None:
|
---|
746 | context = getcontext()
|
---|
747 |
|
---|
748 | if self_is_nan == 2:
|
---|
749 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
750 | self)
|
---|
751 | if other_is_nan == 2:
|
---|
752 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
753 | other)
|
---|
754 | if self_is_nan:
|
---|
755 | return self._fix_nan(context)
|
---|
756 |
|
---|
757 | return other._fix_nan(context)
|
---|
758 | return 0
|
---|
759 |
|
---|
760 | def _compare_check_nans(self, other, context):
|
---|
761 | """Version of _check_nans used for the signaling comparisons
|
---|
762 | compare_signal, __le__, __lt__, __ge__, __gt__.
|
---|
763 |
|
---|
764 | Signal InvalidOperation if either self or other is a (quiet
|
---|
765 | or signaling) NaN. Signaling NaNs take precedence over quiet
|
---|
766 | NaNs.
|
---|
767 |
|
---|
768 | Return 0 if neither operand is a NaN.
|
---|
769 |
|
---|
770 | """
|
---|
771 | if context is None:
|
---|
772 | context = getcontext()
|
---|
773 |
|
---|
774 | if self._is_special or other._is_special:
|
---|
775 | if self.is_snan():
|
---|
776 | return context._raise_error(InvalidOperation,
|
---|
777 | 'comparison involving sNaN',
|
---|
778 | self)
|
---|
779 | elif other.is_snan():
|
---|
780 | return context._raise_error(InvalidOperation,
|
---|
781 | 'comparison involving sNaN',
|
---|
782 | other)
|
---|
783 | elif self.is_qnan():
|
---|
784 | return context._raise_error(InvalidOperation,
|
---|
785 | 'comparison involving NaN',
|
---|
786 | self)
|
---|
787 | elif other.is_qnan():
|
---|
788 | return context._raise_error(InvalidOperation,
|
---|
789 | 'comparison involving NaN',
|
---|
790 | other)
|
---|
791 | return 0
|
---|
792 |
|
---|
793 | def __nonzero__(self):
|
---|
794 | """Return True if self is nonzero; otherwise return False.
|
---|
795 |
|
---|
796 | NaNs and infinities are considered nonzero.
|
---|
797 | """
|
---|
798 | return self._is_special or self._int != '0'
|
---|
799 |
|
---|
800 | def _cmp(self, other):
|
---|
801 | """Compare the two non-NaN decimal instances self and other.
|
---|
802 |
|
---|
803 | Returns -1 if self < other, 0 if self == other and 1
|
---|
804 | if self > other. This routine is for internal use only."""
|
---|
805 |
|
---|
806 | if self._is_special or other._is_special:
|
---|
807 | self_inf = self._isinfinity()
|
---|
808 | other_inf = other._isinfinity()
|
---|
809 | if self_inf == other_inf:
|
---|
810 | return 0
|
---|
811 | elif self_inf < other_inf:
|
---|
812 | return -1
|
---|
813 | else:
|
---|
814 | return 1
|
---|
815 |
|
---|
816 | # check for zeros; Decimal('0') == Decimal('-0')
|
---|
817 | if not self:
|
---|
818 | if not other:
|
---|
819 | return 0
|
---|
820 | else:
|
---|
821 | return -((-1)**other._sign)
|
---|
822 | if not other:
|
---|
823 | return (-1)**self._sign
|
---|
824 |
|
---|
825 | # If different signs, neg one is less
|
---|
826 | if other._sign < self._sign:
|
---|
827 | return -1
|
---|
828 | if self._sign < other._sign:
|
---|
829 | return 1
|
---|
830 |
|
---|
831 | self_adjusted = self.adjusted()
|
---|
832 | other_adjusted = other.adjusted()
|
---|
833 | if self_adjusted == other_adjusted:
|
---|
834 | self_padded = self._int + '0'*(self._exp - other._exp)
|
---|
835 | other_padded = other._int + '0'*(other._exp - self._exp)
|
---|
836 | if self_padded == other_padded:
|
---|
837 | return 0
|
---|
838 | elif self_padded < other_padded:
|
---|
839 | return -(-1)**self._sign
|
---|
840 | else:
|
---|
841 | return (-1)**self._sign
|
---|
842 | elif self_adjusted > other_adjusted:
|
---|
843 | return (-1)**self._sign
|
---|
844 | else: # self_adjusted < other_adjusted
|
---|
845 | return -((-1)**self._sign)
|
---|
846 |
|
---|
847 | # Note: The Decimal standard doesn't cover rich comparisons for
|
---|
848 | # Decimals. In particular, the specification is silent on the
|
---|
849 | # subject of what should happen for a comparison involving a NaN.
|
---|
850 | # We take the following approach:
|
---|
851 | #
|
---|
852 | # == comparisons involving a quiet NaN always return False
|
---|
853 | # != comparisons involving a quiet NaN always return True
|
---|
854 | # == or != comparisons involving a signaling NaN signal
|
---|
855 | # InvalidOperation, and return False or True as above if the
|
---|
856 | # InvalidOperation is not trapped.
|
---|
857 | # <, >, <= and >= comparisons involving a (quiet or signaling)
|
---|
858 | # NaN signal InvalidOperation, and return False if the
|
---|
859 | # InvalidOperation is not trapped.
|
---|
860 | #
|
---|
861 | # This behavior is designed to conform as closely as possible to
|
---|
862 | # that specified by IEEE 754.
|
---|
863 |
|
---|
864 | def __eq__(self, other, context=None):
|
---|
865 | other = _convert_other(other, allow_float=True)
|
---|
866 | if other is NotImplemented:
|
---|
867 | return other
|
---|
868 | if self._check_nans(other, context):
|
---|
869 | return False
|
---|
870 | return self._cmp(other) == 0
|
---|
871 |
|
---|
872 | def __ne__(self, other, context=None):
|
---|
873 | other = _convert_other(other, allow_float=True)
|
---|
874 | if other is NotImplemented:
|
---|
875 | return other
|
---|
876 | if self._check_nans(other, context):
|
---|
877 | return True
|
---|
878 | return self._cmp(other) != 0
|
---|
879 |
|
---|
880 | def __lt__(self, other, context=None):
|
---|
881 | other = _convert_other(other, allow_float=True)
|
---|
882 | if other is NotImplemented:
|
---|
883 | return other
|
---|
884 | ans = self._compare_check_nans(other, context)
|
---|
885 | if ans:
|
---|
886 | return False
|
---|
887 | return self._cmp(other) < 0
|
---|
888 |
|
---|
889 | def __le__(self, other, context=None):
|
---|
890 | other = _convert_other(other, allow_float=True)
|
---|
891 | if other is NotImplemented:
|
---|
892 | return other
|
---|
893 | ans = self._compare_check_nans(other, context)
|
---|
894 | if ans:
|
---|
895 | return False
|
---|
896 | return self._cmp(other) <= 0
|
---|
897 |
|
---|
898 | def __gt__(self, other, context=None):
|
---|
899 | other = _convert_other(other, allow_float=True)
|
---|
900 | if other is NotImplemented:
|
---|
901 | return other
|
---|
902 | ans = self._compare_check_nans(other, context)
|
---|
903 | if ans:
|
---|
904 | return False
|
---|
905 | return self._cmp(other) > 0
|
---|
906 |
|
---|
907 | def __ge__(self, other, context=None):
|
---|
908 | other = _convert_other(other, allow_float=True)
|
---|
909 | if other is NotImplemented:
|
---|
910 | return other
|
---|
911 | ans = self._compare_check_nans(other, context)
|
---|
912 | if ans:
|
---|
913 | return False
|
---|
914 | return self._cmp(other) >= 0
|
---|
915 |
|
---|
916 | def compare(self, other, context=None):
|
---|
917 | """Compares one to another.
|
---|
918 |
|
---|
919 | -1 => a < b
|
---|
920 | 0 => a = b
|
---|
921 | 1 => a > b
|
---|
922 | NaN => one is NaN
|
---|
923 | Like __cmp__, but returns Decimal instances.
|
---|
924 | """
|
---|
925 | other = _convert_other(other, raiseit=True)
|
---|
926 |
|
---|
927 | # Compare(NaN, NaN) = NaN
|
---|
928 | if (self._is_special or other and other._is_special):
|
---|
929 | ans = self._check_nans(other, context)
|
---|
930 | if ans:
|
---|
931 | return ans
|
---|
932 |
|
---|
933 | return Decimal(self._cmp(other))
|
---|
934 |
|
---|
935 | def __hash__(self):
|
---|
936 | """x.__hash__() <==> hash(x)"""
|
---|
937 | # Decimal integers must hash the same as the ints
|
---|
938 | #
|
---|
939 | # The hash of a nonspecial noninteger Decimal must depend only
|
---|
940 | # on the value of that Decimal, and not on its representation.
|
---|
941 | # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
|
---|
942 |
|
---|
943 | # Equality comparisons involving signaling nans can raise an
|
---|
944 | # exception; since equality checks are implicitly and
|
---|
945 | # unpredictably used when checking set and dict membership, we
|
---|
946 | # prevent signaling nans from being used as set elements or
|
---|
947 | # dict keys by making __hash__ raise an exception.
|
---|
948 | if self._is_special:
|
---|
949 | if self.is_snan():
|
---|
950 | raise TypeError('Cannot hash a signaling NaN value.')
|
---|
951 | elif self.is_nan():
|
---|
952 | # 0 to match hash(float('nan'))
|
---|
953 | return 0
|
---|
954 | else:
|
---|
955 | # values chosen to match hash(float('inf')) and
|
---|
956 | # hash(float('-inf')).
|
---|
957 | if self._sign:
|
---|
958 | return -271828
|
---|
959 | else:
|
---|
960 | return 314159
|
---|
961 |
|
---|
962 | # In Python 2.7, we're allowing comparisons (but not
|
---|
963 | # arithmetic operations) between floats and Decimals; so if
|
---|
964 | # a Decimal instance is exactly representable as a float then
|
---|
965 | # its hash should match that of the float.
|
---|
966 | self_as_float = float(self)
|
---|
967 | if Decimal.from_float(self_as_float) == self:
|
---|
968 | return hash(self_as_float)
|
---|
969 |
|
---|
970 | if self._isinteger():
|
---|
971 | op = _WorkRep(self.to_integral_value())
|
---|
972 | # to make computation feasible for Decimals with large
|
---|
973 | # exponent, we use the fact that hash(n) == hash(m) for
|
---|
974 | # any two nonzero integers n and m such that (i) n and m
|
---|
975 | # have the same sign, and (ii) n is congruent to m modulo
|
---|
976 | # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
|
---|
977 | # hash((-1)**s*c*pow(10, e, 2**64-1).
|
---|
978 | return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
|
---|
979 | # The value of a nonzero nonspecial Decimal instance is
|
---|
980 | # faithfully represented by the triple consisting of its sign,
|
---|
981 | # its adjusted exponent, and its coefficient with trailing
|
---|
982 | # zeros removed.
|
---|
983 | return hash((self._sign,
|
---|
984 | self._exp+len(self._int),
|
---|
985 | self._int.rstrip('0')))
|
---|
986 |
|
---|
987 | def as_tuple(self):
|
---|
988 | """Represents the number as a triple tuple.
|
---|
989 |
|
---|
990 | To show the internals exactly as they are.
|
---|
991 | """
|
---|
992 | return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
|
---|
993 |
|
---|
994 | def __repr__(self):
|
---|
995 | """Represents the number as an instance of Decimal."""
|
---|
996 | # Invariant: eval(repr(d)) == d
|
---|
997 | return "Decimal('%s')" % str(self)
|
---|
998 |
|
---|
999 | def __str__(self, eng=False, context=None):
|
---|
1000 | """Return string representation of the number in scientific notation.
|
---|
1001 |
|
---|
1002 | Captures all of the information in the underlying representation.
|
---|
1003 | """
|
---|
1004 |
|
---|
1005 | sign = ['', '-'][self._sign]
|
---|
1006 | if self._is_special:
|
---|
1007 | if self._exp == 'F':
|
---|
1008 | return sign + 'Infinity'
|
---|
1009 | elif self._exp == 'n':
|
---|
1010 | return sign + 'NaN' + self._int
|
---|
1011 | else: # self._exp == 'N'
|
---|
1012 | return sign + 'sNaN' + self._int
|
---|
1013 |
|
---|
1014 | # number of digits of self._int to left of decimal point
|
---|
1015 | leftdigits = self._exp + len(self._int)
|
---|
1016 |
|
---|
1017 | # dotplace is number of digits of self._int to the left of the
|
---|
1018 | # decimal point in the mantissa of the output string (that is,
|
---|
1019 | # after adjusting the exponent)
|
---|
1020 | if self._exp <= 0 and leftdigits > -6:
|
---|
1021 | # no exponent required
|
---|
1022 | dotplace = leftdigits
|
---|
1023 | elif not eng:
|
---|
1024 | # usual scientific notation: 1 digit on left of the point
|
---|
1025 | dotplace = 1
|
---|
1026 | elif self._int == '0':
|
---|
1027 | # engineering notation, zero
|
---|
1028 | dotplace = (leftdigits + 1) % 3 - 1
|
---|
1029 | else:
|
---|
1030 | # engineering notation, nonzero
|
---|
1031 | dotplace = (leftdigits - 1) % 3 + 1
|
---|
1032 |
|
---|
1033 | if dotplace <= 0:
|
---|
1034 | intpart = '0'
|
---|
1035 | fracpart = '.' + '0'*(-dotplace) + self._int
|
---|
1036 | elif dotplace >= len(self._int):
|
---|
1037 | intpart = self._int+'0'*(dotplace-len(self._int))
|
---|
1038 | fracpart = ''
|
---|
1039 | else:
|
---|
1040 | intpart = self._int[:dotplace]
|
---|
1041 | fracpart = '.' + self._int[dotplace:]
|
---|
1042 | if leftdigits == dotplace:
|
---|
1043 | exp = ''
|
---|
1044 | else:
|
---|
1045 | if context is None:
|
---|
1046 | context = getcontext()
|
---|
1047 | exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
|
---|
1048 |
|
---|
1049 | return sign + intpart + fracpart + exp
|
---|
1050 |
|
---|
1051 | def to_eng_string(self, context=None):
|
---|
1052 | """Convert to engineering-type string.
|
---|
1053 |
|
---|
1054 | Engineering notation has an exponent which is a multiple of 3, so there
|
---|
1055 | are up to 3 digits left of the decimal place.
|
---|
1056 |
|
---|
1057 | Same rules for when in exponential and when as a value as in __str__.
|
---|
1058 | """
|
---|
1059 | return self.__str__(eng=True, context=context)
|
---|
1060 |
|
---|
1061 | def __neg__(self, context=None):
|
---|
1062 | """Returns a copy with the sign switched.
|
---|
1063 |
|
---|
1064 | Rounds, if it has reason.
|
---|
1065 | """
|
---|
1066 | if self._is_special:
|
---|
1067 | ans = self._check_nans(context=context)
|
---|
1068 | if ans:
|
---|
1069 | return ans
|
---|
1070 |
|
---|
1071 | if context is None:
|
---|
1072 | context = getcontext()
|
---|
1073 |
|
---|
1074 | if not self and context.rounding != ROUND_FLOOR:
|
---|
1075 | # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
|
---|
1076 | # in ROUND_FLOOR rounding mode.
|
---|
1077 | ans = self.copy_abs()
|
---|
1078 | else:
|
---|
1079 | ans = self.copy_negate()
|
---|
1080 |
|
---|
1081 | return ans._fix(context)
|
---|
1082 |
|
---|
1083 | def __pos__(self, context=None):
|
---|
1084 | """Returns a copy, unless it is a sNaN.
|
---|
1085 |
|
---|
1086 | Rounds the number (if more then precision digits)
|
---|
1087 | """
|
---|
1088 | if self._is_special:
|
---|
1089 | ans = self._check_nans(context=context)
|
---|
1090 | if ans:
|
---|
1091 | return ans
|
---|
1092 |
|
---|
1093 | if context is None:
|
---|
1094 | context = getcontext()
|
---|
1095 |
|
---|
1096 | if not self and context.rounding != ROUND_FLOOR:
|
---|
1097 | # + (-0) = 0, except in ROUND_FLOOR rounding mode.
|
---|
1098 | ans = self.copy_abs()
|
---|
1099 | else:
|
---|
1100 | ans = Decimal(self)
|
---|
1101 |
|
---|
1102 | return ans._fix(context)
|
---|
1103 |
|
---|
1104 | def __abs__(self, round=True, context=None):
|
---|
1105 | """Returns the absolute value of self.
|
---|
1106 |
|
---|
1107 | If the keyword argument 'round' is false, do not round. The
|
---|
1108 | expression self.__abs__(round=False) is equivalent to
|
---|
1109 | self.copy_abs().
|
---|
1110 | """
|
---|
1111 | if not round:
|
---|
1112 | return self.copy_abs()
|
---|
1113 |
|
---|
1114 | if self._is_special:
|
---|
1115 | ans = self._check_nans(context=context)
|
---|
1116 | if ans:
|
---|
1117 | return ans
|
---|
1118 |
|
---|
1119 | if self._sign:
|
---|
1120 | ans = self.__neg__(context=context)
|
---|
1121 | else:
|
---|
1122 | ans = self.__pos__(context=context)
|
---|
1123 |
|
---|
1124 | return ans
|
---|
1125 |
|
---|
1126 | def __add__(self, other, context=None):
|
---|
1127 | """Returns self + other.
|
---|
1128 |
|
---|
1129 | -INF + INF (or the reverse) cause InvalidOperation errors.
|
---|
1130 | """
|
---|
1131 | other = _convert_other(other)
|
---|
1132 | if other is NotImplemented:
|
---|
1133 | return other
|
---|
1134 |
|
---|
1135 | if context is None:
|
---|
1136 | context = getcontext()
|
---|
1137 |
|
---|
1138 | if self._is_special or other._is_special:
|
---|
1139 | ans = self._check_nans(other, context)
|
---|
1140 | if ans:
|
---|
1141 | return ans
|
---|
1142 |
|
---|
1143 | if self._isinfinity():
|
---|
1144 | # If both INF, same sign => same as both, opposite => error.
|
---|
1145 | if self._sign != other._sign and other._isinfinity():
|
---|
1146 | return context._raise_error(InvalidOperation, '-INF + INF')
|
---|
1147 | return Decimal(self)
|
---|
1148 | if other._isinfinity():
|
---|
1149 | return Decimal(other) # Can't both be infinity here
|
---|
1150 |
|
---|
1151 | exp = min(self._exp, other._exp)
|
---|
1152 | negativezero = 0
|
---|
1153 | if context.rounding == ROUND_FLOOR and self._sign != other._sign:
|
---|
1154 | # If the answer is 0, the sign should be negative, in this case.
|
---|
1155 | negativezero = 1
|
---|
1156 |
|
---|
1157 | if not self and not other:
|
---|
1158 | sign = min(self._sign, other._sign)
|
---|
1159 | if negativezero:
|
---|
1160 | sign = 1
|
---|
1161 | ans = _dec_from_triple(sign, '0', exp)
|
---|
1162 | ans = ans._fix(context)
|
---|
1163 | return ans
|
---|
1164 | if not self:
|
---|
1165 | exp = max(exp, other._exp - context.prec-1)
|
---|
1166 | ans = other._rescale(exp, context.rounding)
|
---|
1167 | ans = ans._fix(context)
|
---|
1168 | return ans
|
---|
1169 | if not other:
|
---|
1170 | exp = max(exp, self._exp - context.prec-1)
|
---|
1171 | ans = self._rescale(exp, context.rounding)
|
---|
1172 | ans = ans._fix(context)
|
---|
1173 | return ans
|
---|
1174 |
|
---|
1175 | op1 = _WorkRep(self)
|
---|
1176 | op2 = _WorkRep(other)
|
---|
1177 | op1, op2 = _normalize(op1, op2, context.prec)
|
---|
1178 |
|
---|
1179 | result = _WorkRep()
|
---|
1180 | if op1.sign != op2.sign:
|
---|
1181 | # Equal and opposite
|
---|
1182 | if op1.int == op2.int:
|
---|
1183 | ans = _dec_from_triple(negativezero, '0', exp)
|
---|
1184 | ans = ans._fix(context)
|
---|
1185 | return ans
|
---|
1186 | if op1.int < op2.int:
|
---|
1187 | op1, op2 = op2, op1
|
---|
1188 | # OK, now abs(op1) > abs(op2)
|
---|
1189 | if op1.sign == 1:
|
---|
1190 | result.sign = 1
|
---|
1191 | op1.sign, op2.sign = op2.sign, op1.sign
|
---|
1192 | else:
|
---|
1193 | result.sign = 0
|
---|
1194 | # So we know the sign, and op1 > 0.
|
---|
1195 | elif op1.sign == 1:
|
---|
1196 | result.sign = 1
|
---|
1197 | op1.sign, op2.sign = (0, 0)
|
---|
1198 | else:
|
---|
1199 | result.sign = 0
|
---|
1200 | # Now, op1 > abs(op2) > 0
|
---|
1201 |
|
---|
1202 | if op2.sign == 0:
|
---|
1203 | result.int = op1.int + op2.int
|
---|
1204 | else:
|
---|
1205 | result.int = op1.int - op2.int
|
---|
1206 |
|
---|
1207 | result.exp = op1.exp
|
---|
1208 | ans = Decimal(result)
|
---|
1209 | ans = ans._fix(context)
|
---|
1210 | return ans
|
---|
1211 |
|
---|
1212 | __radd__ = __add__
|
---|
1213 |
|
---|
1214 | def __sub__(self, other, context=None):
|
---|
1215 | """Return self - other"""
|
---|
1216 | other = _convert_other(other)
|
---|
1217 | if other is NotImplemented:
|
---|
1218 | return other
|
---|
1219 |
|
---|
1220 | if self._is_special or other._is_special:
|
---|
1221 | ans = self._check_nans(other, context=context)
|
---|
1222 | if ans:
|
---|
1223 | return ans
|
---|
1224 |
|
---|
1225 | # self - other is computed as self + other.copy_negate()
|
---|
1226 | return self.__add__(other.copy_negate(), context=context)
|
---|
1227 |
|
---|
1228 | def __rsub__(self, other, context=None):
|
---|
1229 | """Return other - self"""
|
---|
1230 | other = _convert_other(other)
|
---|
1231 | if other is NotImplemented:
|
---|
1232 | return other
|
---|
1233 |
|
---|
1234 | return other.__sub__(self, context=context)
|
---|
1235 |
|
---|
1236 | def __mul__(self, other, context=None):
|
---|
1237 | """Return self * other.
|
---|
1238 |
|
---|
1239 | (+-) INF * 0 (or its reverse) raise InvalidOperation.
|
---|
1240 | """
|
---|
1241 | other = _convert_other(other)
|
---|
1242 | if other is NotImplemented:
|
---|
1243 | return other
|
---|
1244 |
|
---|
1245 | if context is None:
|
---|
1246 | context = getcontext()
|
---|
1247 |
|
---|
1248 | resultsign = self._sign ^ other._sign
|
---|
1249 |
|
---|
1250 | if self._is_special or other._is_special:
|
---|
1251 | ans = self._check_nans(other, context)
|
---|
1252 | if ans:
|
---|
1253 | return ans
|
---|
1254 |
|
---|
1255 | if self._isinfinity():
|
---|
1256 | if not other:
|
---|
1257 | return context._raise_error(InvalidOperation, '(+-)INF * 0')
|
---|
1258 | return _SignedInfinity[resultsign]
|
---|
1259 |
|
---|
1260 | if other._isinfinity():
|
---|
1261 | if not self:
|
---|
1262 | return context._raise_error(InvalidOperation, '0 * (+-)INF')
|
---|
1263 | return _SignedInfinity[resultsign]
|
---|
1264 |
|
---|
1265 | resultexp = self._exp + other._exp
|
---|
1266 |
|
---|
1267 | # Special case for multiplying by zero
|
---|
1268 | if not self or not other:
|
---|
1269 | ans = _dec_from_triple(resultsign, '0', resultexp)
|
---|
1270 | # Fixing in case the exponent is out of bounds
|
---|
1271 | ans = ans._fix(context)
|
---|
1272 | return ans
|
---|
1273 |
|
---|
1274 | # Special case for multiplying by power of 10
|
---|
1275 | if self._int == '1':
|
---|
1276 | ans = _dec_from_triple(resultsign, other._int, resultexp)
|
---|
1277 | ans = ans._fix(context)
|
---|
1278 | return ans
|
---|
1279 | if other._int == '1':
|
---|
1280 | ans = _dec_from_triple(resultsign, self._int, resultexp)
|
---|
1281 | ans = ans._fix(context)
|
---|
1282 | return ans
|
---|
1283 |
|
---|
1284 | op1 = _WorkRep(self)
|
---|
1285 | op2 = _WorkRep(other)
|
---|
1286 |
|
---|
1287 | ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
|
---|
1288 | ans = ans._fix(context)
|
---|
1289 |
|
---|
1290 | return ans
|
---|
1291 | __rmul__ = __mul__
|
---|
1292 |
|
---|
1293 | def __truediv__(self, other, context=None):
|
---|
1294 | """Return self / other."""
|
---|
1295 | other = _convert_other(other)
|
---|
1296 | if other is NotImplemented:
|
---|
1297 | return NotImplemented
|
---|
1298 |
|
---|
1299 | if context is None:
|
---|
1300 | context = getcontext()
|
---|
1301 |
|
---|
1302 | sign = self._sign ^ other._sign
|
---|
1303 |
|
---|
1304 | if self._is_special or other._is_special:
|
---|
1305 | ans = self._check_nans(other, context)
|
---|
1306 | if ans:
|
---|
1307 | return ans
|
---|
1308 |
|
---|
1309 | if self._isinfinity() and other._isinfinity():
|
---|
1310 | return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
|
---|
1311 |
|
---|
1312 | if self._isinfinity():
|
---|
1313 | return _SignedInfinity[sign]
|
---|
1314 |
|
---|
1315 | if other._isinfinity():
|
---|
1316 | context._raise_error(Clamped, 'Division by infinity')
|
---|
1317 | return _dec_from_triple(sign, '0', context.Etiny())
|
---|
1318 |
|
---|
1319 | # Special cases for zeroes
|
---|
1320 | if not other:
|
---|
1321 | if not self:
|
---|
1322 | return context._raise_error(DivisionUndefined, '0 / 0')
|
---|
1323 | return context._raise_error(DivisionByZero, 'x / 0', sign)
|
---|
1324 |
|
---|
1325 | if not self:
|
---|
1326 | exp = self._exp - other._exp
|
---|
1327 | coeff = 0
|
---|
1328 | else:
|
---|
1329 | # OK, so neither = 0, INF or NaN
|
---|
1330 | shift = len(other._int) - len(self._int) + context.prec + 1
|
---|
1331 | exp = self._exp - other._exp - shift
|
---|
1332 | op1 = _WorkRep(self)
|
---|
1333 | op2 = _WorkRep(other)
|
---|
1334 | if shift >= 0:
|
---|
1335 | coeff, remainder = divmod(op1.int * 10**shift, op2.int)
|
---|
1336 | else:
|
---|
1337 | coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
|
---|
1338 | if remainder:
|
---|
1339 | # result is not exact; adjust to ensure correct rounding
|
---|
1340 | if coeff % 5 == 0:
|
---|
1341 | coeff += 1
|
---|
1342 | else:
|
---|
1343 | # result is exact; get as close to ideal exponent as possible
|
---|
1344 | ideal_exp = self._exp - other._exp
|
---|
1345 | while exp < ideal_exp and coeff % 10 == 0:
|
---|
1346 | coeff //= 10
|
---|
1347 | exp += 1
|
---|
1348 |
|
---|
1349 | ans = _dec_from_triple(sign, str(coeff), exp)
|
---|
1350 | return ans._fix(context)
|
---|
1351 |
|
---|
1352 | def _divide(self, other, context):
|
---|
1353 | """Return (self // other, self % other), to context.prec precision.
|
---|
1354 |
|
---|
1355 | Assumes that neither self nor other is a NaN, that self is not
|
---|
1356 | infinite and that other is nonzero.
|
---|
1357 | """
|
---|
1358 | sign = self._sign ^ other._sign
|
---|
1359 | if other._isinfinity():
|
---|
1360 | ideal_exp = self._exp
|
---|
1361 | else:
|
---|
1362 | ideal_exp = min(self._exp, other._exp)
|
---|
1363 |
|
---|
1364 | expdiff = self.adjusted() - other.adjusted()
|
---|
1365 | if not self or other._isinfinity() or expdiff <= -2:
|
---|
1366 | return (_dec_from_triple(sign, '0', 0),
|
---|
1367 | self._rescale(ideal_exp, context.rounding))
|
---|
1368 | if expdiff <= context.prec:
|
---|
1369 | op1 = _WorkRep(self)
|
---|
1370 | op2 = _WorkRep(other)
|
---|
1371 | if op1.exp >= op2.exp:
|
---|
1372 | op1.int *= 10**(op1.exp - op2.exp)
|
---|
1373 | else:
|
---|
1374 | op2.int *= 10**(op2.exp - op1.exp)
|
---|
1375 | q, r = divmod(op1.int, op2.int)
|
---|
1376 | if q < 10**context.prec:
|
---|
1377 | return (_dec_from_triple(sign, str(q), 0),
|
---|
1378 | _dec_from_triple(self._sign, str(r), ideal_exp))
|
---|
1379 |
|
---|
1380 | # Here the quotient is too large to be representable
|
---|
1381 | ans = context._raise_error(DivisionImpossible,
|
---|
1382 | 'quotient too large in //, % or divmod')
|
---|
1383 | return ans, ans
|
---|
1384 |
|
---|
1385 | def __rtruediv__(self, other, context=None):
|
---|
1386 | """Swaps self/other and returns __truediv__."""
|
---|
1387 | other = _convert_other(other)
|
---|
1388 | if other is NotImplemented:
|
---|
1389 | return other
|
---|
1390 | return other.__truediv__(self, context=context)
|
---|
1391 |
|
---|
1392 | __div__ = __truediv__
|
---|
1393 | __rdiv__ = __rtruediv__
|
---|
1394 |
|
---|
1395 | def __divmod__(self, other, context=None):
|
---|
1396 | """
|
---|
1397 | Return (self // other, self % other)
|
---|
1398 | """
|
---|
1399 | other = _convert_other(other)
|
---|
1400 | if other is NotImplemented:
|
---|
1401 | return other
|
---|
1402 |
|
---|
1403 | if context is None:
|
---|
1404 | context = getcontext()
|
---|
1405 |
|
---|
1406 | ans = self._check_nans(other, context)
|
---|
1407 | if ans:
|
---|
1408 | return (ans, ans)
|
---|
1409 |
|
---|
1410 | sign = self._sign ^ other._sign
|
---|
1411 | if self._isinfinity():
|
---|
1412 | if other._isinfinity():
|
---|
1413 | ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
|
---|
1414 | return ans, ans
|
---|
1415 | else:
|
---|
1416 | return (_SignedInfinity[sign],
|
---|
1417 | context._raise_error(InvalidOperation, 'INF % x'))
|
---|
1418 |
|
---|
1419 | if not other:
|
---|
1420 | if not self:
|
---|
1421 | ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
|
---|
1422 | return ans, ans
|
---|
1423 | else:
|
---|
1424 | return (context._raise_error(DivisionByZero, 'x // 0', sign),
|
---|
1425 | context._raise_error(InvalidOperation, 'x % 0'))
|
---|
1426 |
|
---|
1427 | quotient, remainder = self._divide(other, context)
|
---|
1428 | remainder = remainder._fix(context)
|
---|
1429 | return quotient, remainder
|
---|
1430 |
|
---|
1431 | def __rdivmod__(self, other, context=None):
|
---|
1432 | """Swaps self/other and returns __divmod__."""
|
---|
1433 | other = _convert_other(other)
|
---|
1434 | if other is NotImplemented:
|
---|
1435 | return other
|
---|
1436 | return other.__divmod__(self, context=context)
|
---|
1437 |
|
---|
1438 | def __mod__(self, other, context=None):
|
---|
1439 | """
|
---|
1440 | self % other
|
---|
1441 | """
|
---|
1442 | other = _convert_other(other)
|
---|
1443 | if other is NotImplemented:
|
---|
1444 | return other
|
---|
1445 |
|
---|
1446 | if context is None:
|
---|
1447 | context = getcontext()
|
---|
1448 |
|
---|
1449 | ans = self._check_nans(other, context)
|
---|
1450 | if ans:
|
---|
1451 | return ans
|
---|
1452 |
|
---|
1453 | if self._isinfinity():
|
---|
1454 | return context._raise_error(InvalidOperation, 'INF % x')
|
---|
1455 | elif not other:
|
---|
1456 | if self:
|
---|
1457 | return context._raise_error(InvalidOperation, 'x % 0')
|
---|
1458 | else:
|
---|
1459 | return context._raise_error(DivisionUndefined, '0 % 0')
|
---|
1460 |
|
---|
1461 | remainder = self._divide(other, context)[1]
|
---|
1462 | remainder = remainder._fix(context)
|
---|
1463 | return remainder
|
---|
1464 |
|
---|
1465 | def __rmod__(self, other, context=None):
|
---|
1466 | """Swaps self/other and returns __mod__."""
|
---|
1467 | other = _convert_other(other)
|
---|
1468 | if other is NotImplemented:
|
---|
1469 | return other
|
---|
1470 | return other.__mod__(self, context=context)
|
---|
1471 |
|
---|
1472 | def remainder_near(self, other, context=None):
|
---|
1473 | """
|
---|
1474 | Remainder nearest to 0- abs(remainder-near) <= other/2
|
---|
1475 | """
|
---|
1476 | if context is None:
|
---|
1477 | context = getcontext()
|
---|
1478 |
|
---|
1479 | other = _convert_other(other, raiseit=True)
|
---|
1480 |
|
---|
1481 | ans = self._check_nans(other, context)
|
---|
1482 | if ans:
|
---|
1483 | return ans
|
---|
1484 |
|
---|
1485 | # self == +/-infinity -> InvalidOperation
|
---|
1486 | if self._isinfinity():
|
---|
1487 | return context._raise_error(InvalidOperation,
|
---|
1488 | 'remainder_near(infinity, x)')
|
---|
1489 |
|
---|
1490 | # other == 0 -> either InvalidOperation or DivisionUndefined
|
---|
1491 | if not other:
|
---|
1492 | if self:
|
---|
1493 | return context._raise_error(InvalidOperation,
|
---|
1494 | 'remainder_near(x, 0)')
|
---|
1495 | else:
|
---|
1496 | return context._raise_error(DivisionUndefined,
|
---|
1497 | 'remainder_near(0, 0)')
|
---|
1498 |
|
---|
1499 | # other = +/-infinity -> remainder = self
|
---|
1500 | if other._isinfinity():
|
---|
1501 | ans = Decimal(self)
|
---|
1502 | return ans._fix(context)
|
---|
1503 |
|
---|
1504 | # self = 0 -> remainder = self, with ideal exponent
|
---|
1505 | ideal_exponent = min(self._exp, other._exp)
|
---|
1506 | if not self:
|
---|
1507 | ans = _dec_from_triple(self._sign, '0', ideal_exponent)
|
---|
1508 | return ans._fix(context)
|
---|
1509 |
|
---|
1510 | # catch most cases of large or small quotient
|
---|
1511 | expdiff = self.adjusted() - other.adjusted()
|
---|
1512 | if expdiff >= context.prec + 1:
|
---|
1513 | # expdiff >= prec+1 => abs(self/other) > 10**prec
|
---|
1514 | return context._raise_error(DivisionImpossible)
|
---|
1515 | if expdiff <= -2:
|
---|
1516 | # expdiff <= -2 => abs(self/other) < 0.1
|
---|
1517 | ans = self._rescale(ideal_exponent, context.rounding)
|
---|
1518 | return ans._fix(context)
|
---|
1519 |
|
---|
1520 | # adjust both arguments to have the same exponent, then divide
|
---|
1521 | op1 = _WorkRep(self)
|
---|
1522 | op2 = _WorkRep(other)
|
---|
1523 | if op1.exp >= op2.exp:
|
---|
1524 | op1.int *= 10**(op1.exp - op2.exp)
|
---|
1525 | else:
|
---|
1526 | op2.int *= 10**(op2.exp - op1.exp)
|
---|
1527 | q, r = divmod(op1.int, op2.int)
|
---|
1528 | # remainder is r*10**ideal_exponent; other is +/-op2.int *
|
---|
1529 | # 10**ideal_exponent. Apply correction to ensure that
|
---|
1530 | # abs(remainder) <= abs(other)/2
|
---|
1531 | if 2*r + (q&1) > op2.int:
|
---|
1532 | r -= op2.int
|
---|
1533 | q += 1
|
---|
1534 |
|
---|
1535 | if q >= 10**context.prec:
|
---|
1536 | return context._raise_error(DivisionImpossible)
|
---|
1537 |
|
---|
1538 | # result has same sign as self unless r is negative
|
---|
1539 | sign = self._sign
|
---|
1540 | if r < 0:
|
---|
1541 | sign = 1-sign
|
---|
1542 | r = -r
|
---|
1543 |
|
---|
1544 | ans = _dec_from_triple(sign, str(r), ideal_exponent)
|
---|
1545 | return ans._fix(context)
|
---|
1546 |
|
---|
1547 | def __floordiv__(self, other, context=None):
|
---|
1548 | """self // other"""
|
---|
1549 | other = _convert_other(other)
|
---|
1550 | if other is NotImplemented:
|
---|
1551 | return other
|
---|
1552 |
|
---|
1553 | if context is None:
|
---|
1554 | context = getcontext()
|
---|
1555 |
|
---|
1556 | ans = self._check_nans(other, context)
|
---|
1557 | if ans:
|
---|
1558 | return ans
|
---|
1559 |
|
---|
1560 | if self._isinfinity():
|
---|
1561 | if other._isinfinity():
|
---|
1562 | return context._raise_error(InvalidOperation, 'INF // INF')
|
---|
1563 | else:
|
---|
1564 | return _SignedInfinity[self._sign ^ other._sign]
|
---|
1565 |
|
---|
1566 | if not other:
|
---|
1567 | if self:
|
---|
1568 | return context._raise_error(DivisionByZero, 'x // 0',
|
---|
1569 | self._sign ^ other._sign)
|
---|
1570 | else:
|
---|
1571 | return context._raise_error(DivisionUndefined, '0 // 0')
|
---|
1572 |
|
---|
1573 | return self._divide(other, context)[0]
|
---|
1574 |
|
---|
1575 | def __rfloordiv__(self, other, context=None):
|
---|
1576 | """Swaps self/other and returns __floordiv__."""
|
---|
1577 | other = _convert_other(other)
|
---|
1578 | if other is NotImplemented:
|
---|
1579 | return other
|
---|
1580 | return other.__floordiv__(self, context=context)
|
---|
1581 |
|
---|
1582 | def __float__(self):
|
---|
1583 | """Float representation."""
|
---|
1584 | if self._isnan():
|
---|
1585 | if self.is_snan():
|
---|
1586 | raise ValueError("Cannot convert signaling NaN to float")
|
---|
1587 | s = "-nan" if self._sign else "nan"
|
---|
1588 | else:
|
---|
1589 | s = str(self)
|
---|
1590 | return float(s)
|
---|
1591 |
|
---|
1592 | def __int__(self):
|
---|
1593 | """Converts self to an int, truncating if necessary."""
|
---|
1594 | if self._is_special:
|
---|
1595 | if self._isnan():
|
---|
1596 | raise ValueError("Cannot convert NaN to integer")
|
---|
1597 | elif self._isinfinity():
|
---|
1598 | raise OverflowError("Cannot convert infinity to integer")
|
---|
1599 | s = (-1)**self._sign
|
---|
1600 | if self._exp >= 0:
|
---|
1601 | return s*int(self._int)*10**self._exp
|
---|
1602 | else:
|
---|
1603 | return s*int(self._int[:self._exp] or '0')
|
---|
1604 |
|
---|
1605 | __trunc__ = __int__
|
---|
1606 |
|
---|
1607 | def real(self):
|
---|
1608 | return self
|
---|
1609 | real = property(real)
|
---|
1610 |
|
---|
1611 | def imag(self):
|
---|
1612 | return Decimal(0)
|
---|
1613 | imag = property(imag)
|
---|
1614 |
|
---|
1615 | def conjugate(self):
|
---|
1616 | return self
|
---|
1617 |
|
---|
1618 | def __complex__(self):
|
---|
1619 | return complex(float(self))
|
---|
1620 |
|
---|
1621 | def __long__(self):
|
---|
1622 | """Converts to a long.
|
---|
1623 |
|
---|
1624 | Equivalent to long(int(self))
|
---|
1625 | """
|
---|
1626 | return long(self.__int__())
|
---|
1627 |
|
---|
1628 | def _fix_nan(self, context):
|
---|
1629 | """Decapitate the payload of a NaN to fit the context"""
|
---|
1630 | payload = self._int
|
---|
1631 |
|
---|
1632 | # maximum length of payload is precision if _clamp=0,
|
---|
1633 | # precision-1 if _clamp=1.
|
---|
1634 | max_payload_len = context.prec - context._clamp
|
---|
1635 | if len(payload) > max_payload_len:
|
---|
1636 | payload = payload[len(payload)-max_payload_len:].lstrip('0')
|
---|
1637 | return _dec_from_triple(self._sign, payload, self._exp, True)
|
---|
1638 | return Decimal(self)
|
---|
1639 |
|
---|
1640 | def _fix(self, context):
|
---|
1641 | """Round if it is necessary to keep self within prec precision.
|
---|
1642 |
|
---|
1643 | Rounds and fixes the exponent. Does not raise on a sNaN.
|
---|
1644 |
|
---|
1645 | Arguments:
|
---|
1646 | self - Decimal instance
|
---|
1647 | context - context used.
|
---|
1648 | """
|
---|
1649 |
|
---|
1650 | if self._is_special:
|
---|
1651 | if self._isnan():
|
---|
1652 | # decapitate payload if necessary
|
---|
1653 | return self._fix_nan(context)
|
---|
1654 | else:
|
---|
1655 | # self is +/-Infinity; return unaltered
|
---|
1656 | return Decimal(self)
|
---|
1657 |
|
---|
1658 | # if self is zero then exponent should be between Etiny and
|
---|
1659 | # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
|
---|
1660 | Etiny = context.Etiny()
|
---|
1661 | Etop = context.Etop()
|
---|
1662 | if not self:
|
---|
1663 | exp_max = [context.Emax, Etop][context._clamp]
|
---|
1664 | new_exp = min(max(self._exp, Etiny), exp_max)
|
---|
1665 | if new_exp != self._exp:
|
---|
1666 | context._raise_error(Clamped)
|
---|
1667 | return _dec_from_triple(self._sign, '0', new_exp)
|
---|
1668 | else:
|
---|
1669 | return Decimal(self)
|
---|
1670 |
|
---|
1671 | # exp_min is the smallest allowable exponent of the result,
|
---|
1672 | # equal to max(self.adjusted()-context.prec+1, Etiny)
|
---|
1673 | exp_min = len(self._int) + self._exp - context.prec
|
---|
1674 | if exp_min > Etop:
|
---|
1675 | # overflow: exp_min > Etop iff self.adjusted() > Emax
|
---|
1676 | ans = context._raise_error(Overflow, 'above Emax', self._sign)
|
---|
1677 | context._raise_error(Inexact)
|
---|
1678 | context._raise_error(Rounded)
|
---|
1679 | return ans
|
---|
1680 |
|
---|
1681 | self_is_subnormal = exp_min < Etiny
|
---|
1682 | if self_is_subnormal:
|
---|
1683 | exp_min = Etiny
|
---|
1684 |
|
---|
1685 | # round if self has too many digits
|
---|
1686 | if self._exp < exp_min:
|
---|
1687 | digits = len(self._int) + self._exp - exp_min
|
---|
1688 | if digits < 0:
|
---|
1689 | self = _dec_from_triple(self._sign, '1', exp_min-1)
|
---|
1690 | digits = 0
|
---|
1691 | rounding_method = self._pick_rounding_function[context.rounding]
|
---|
1692 | changed = rounding_method(self, digits)
|
---|
1693 | coeff = self._int[:digits] or '0'
|
---|
1694 | if changed > 0:
|
---|
1695 | coeff = str(int(coeff)+1)
|
---|
1696 | if len(coeff) > context.prec:
|
---|
1697 | coeff = coeff[:-1]
|
---|
1698 | exp_min += 1
|
---|
1699 |
|
---|
1700 | # check whether the rounding pushed the exponent out of range
|
---|
1701 | if exp_min > Etop:
|
---|
1702 | ans = context._raise_error(Overflow, 'above Emax', self._sign)
|
---|
1703 | else:
|
---|
1704 | ans = _dec_from_triple(self._sign, coeff, exp_min)
|
---|
1705 |
|
---|
1706 | # raise the appropriate signals, taking care to respect
|
---|
1707 | # the precedence described in the specification
|
---|
1708 | if changed and self_is_subnormal:
|
---|
1709 | context._raise_error(Underflow)
|
---|
1710 | if self_is_subnormal:
|
---|
1711 | context._raise_error(Subnormal)
|
---|
1712 | if changed:
|
---|
1713 | context._raise_error(Inexact)
|
---|
1714 | context._raise_error(Rounded)
|
---|
1715 | if not ans:
|
---|
1716 | # raise Clamped on underflow to 0
|
---|
1717 | context._raise_error(Clamped)
|
---|
1718 | return ans
|
---|
1719 |
|
---|
1720 | if self_is_subnormal:
|
---|
1721 | context._raise_error(Subnormal)
|
---|
1722 |
|
---|
1723 | # fold down if _clamp == 1 and self has too few digits
|
---|
1724 | if context._clamp == 1 and self._exp > Etop:
|
---|
1725 | context._raise_error(Clamped)
|
---|
1726 | self_padded = self._int + '0'*(self._exp - Etop)
|
---|
1727 | return _dec_from_triple(self._sign, self_padded, Etop)
|
---|
1728 |
|
---|
1729 | # here self was representable to begin with; return unchanged
|
---|
1730 | return Decimal(self)
|
---|
1731 |
|
---|
1732 | # for each of the rounding functions below:
|
---|
1733 | # self is a finite, nonzero Decimal
|
---|
1734 | # prec is an integer satisfying 0 <= prec < len(self._int)
|
---|
1735 | #
|
---|
1736 | # each function returns either -1, 0, or 1, as follows:
|
---|
1737 | # 1 indicates that self should be rounded up (away from zero)
|
---|
1738 | # 0 indicates that self should be truncated, and that all the
|
---|
1739 | # digits to be truncated are zeros (so the value is unchanged)
|
---|
1740 | # -1 indicates that there are nonzero digits to be truncated
|
---|
1741 |
|
---|
1742 | def _round_down(self, prec):
|
---|
1743 | """Also known as round-towards-0, truncate."""
|
---|
1744 | if _all_zeros(self._int, prec):
|
---|
1745 | return 0
|
---|
1746 | else:
|
---|
1747 | return -1
|
---|
1748 |
|
---|
1749 | def _round_up(self, prec):
|
---|
1750 | """Rounds away from 0."""
|
---|
1751 | return -self._round_down(prec)
|
---|
1752 |
|
---|
1753 | def _round_half_up(self, prec):
|
---|
1754 | """Rounds 5 up (away from 0)"""
|
---|
1755 | if self._int[prec] in '56789':
|
---|
1756 | return 1
|
---|
1757 | elif _all_zeros(self._int, prec):
|
---|
1758 | return 0
|
---|
1759 | else:
|
---|
1760 | return -1
|
---|
1761 |
|
---|
1762 | def _round_half_down(self, prec):
|
---|
1763 | """Round 5 down"""
|
---|
1764 | if _exact_half(self._int, prec):
|
---|
1765 | return -1
|
---|
1766 | else:
|
---|
1767 | return self._round_half_up(prec)
|
---|
1768 |
|
---|
1769 | def _round_half_even(self, prec):
|
---|
1770 | """Round 5 to even, rest to nearest."""
|
---|
1771 | if _exact_half(self._int, prec) and \
|
---|
1772 | (prec == 0 or self._int[prec-1] in '02468'):
|
---|
1773 | return -1
|
---|
1774 | else:
|
---|
1775 | return self._round_half_up(prec)
|
---|
1776 |
|
---|
1777 | def _round_ceiling(self, prec):
|
---|
1778 | """Rounds up (not away from 0 if negative.)"""
|
---|
1779 | if self._sign:
|
---|
1780 | return self._round_down(prec)
|
---|
1781 | else:
|
---|
1782 | return -self._round_down(prec)
|
---|
1783 |
|
---|
1784 | def _round_floor(self, prec):
|
---|
1785 | """Rounds down (not towards 0 if negative)"""
|
---|
1786 | if not self._sign:
|
---|
1787 | return self._round_down(prec)
|
---|
1788 | else:
|
---|
1789 | return -self._round_down(prec)
|
---|
1790 |
|
---|
1791 | def _round_05up(self, prec):
|
---|
1792 | """Round down unless digit prec-1 is 0 or 5."""
|
---|
1793 | if prec and self._int[prec-1] not in '05':
|
---|
1794 | return self._round_down(prec)
|
---|
1795 | else:
|
---|
1796 | return -self._round_down(prec)
|
---|
1797 |
|
---|
1798 | _pick_rounding_function = dict(
|
---|
1799 | ROUND_DOWN = _round_down,
|
---|
1800 | ROUND_UP = _round_up,
|
---|
1801 | ROUND_HALF_UP = _round_half_up,
|
---|
1802 | ROUND_HALF_DOWN = _round_half_down,
|
---|
1803 | ROUND_HALF_EVEN = _round_half_even,
|
---|
1804 | ROUND_CEILING = _round_ceiling,
|
---|
1805 | ROUND_FLOOR = _round_floor,
|
---|
1806 | ROUND_05UP = _round_05up,
|
---|
1807 | )
|
---|
1808 |
|
---|
1809 | def fma(self, other, third, context=None):
|
---|
1810 | """Fused multiply-add.
|
---|
1811 |
|
---|
1812 | Returns self*other+third with no rounding of the intermediate
|
---|
1813 | product self*other.
|
---|
1814 |
|
---|
1815 | self and other are multiplied together, with no rounding of
|
---|
1816 | the result. The third operand is then added to the result,
|
---|
1817 | and a single final rounding is performed.
|
---|
1818 | """
|
---|
1819 |
|
---|
1820 | other = _convert_other(other, raiseit=True)
|
---|
1821 |
|
---|
1822 | # compute product; raise InvalidOperation if either operand is
|
---|
1823 | # a signaling NaN or if the product is zero times infinity.
|
---|
1824 | if self._is_special or other._is_special:
|
---|
1825 | if context is None:
|
---|
1826 | context = getcontext()
|
---|
1827 | if self._exp == 'N':
|
---|
1828 | return context._raise_error(InvalidOperation, 'sNaN', self)
|
---|
1829 | if other._exp == 'N':
|
---|
1830 | return context._raise_error(InvalidOperation, 'sNaN', other)
|
---|
1831 | if self._exp == 'n':
|
---|
1832 | product = self
|
---|
1833 | elif other._exp == 'n':
|
---|
1834 | product = other
|
---|
1835 | elif self._exp == 'F':
|
---|
1836 | if not other:
|
---|
1837 | return context._raise_error(InvalidOperation,
|
---|
1838 | 'INF * 0 in fma')
|
---|
1839 | product = _SignedInfinity[self._sign ^ other._sign]
|
---|
1840 | elif other._exp == 'F':
|
---|
1841 | if not self:
|
---|
1842 | return context._raise_error(InvalidOperation,
|
---|
1843 | '0 * INF in fma')
|
---|
1844 | product = _SignedInfinity[self._sign ^ other._sign]
|
---|
1845 | else:
|
---|
1846 | product = _dec_from_triple(self._sign ^ other._sign,
|
---|
1847 | str(int(self._int) * int(other._int)),
|
---|
1848 | self._exp + other._exp)
|
---|
1849 |
|
---|
1850 | third = _convert_other(third, raiseit=True)
|
---|
1851 | return product.__add__(third, context)
|
---|
1852 |
|
---|
1853 | def _power_modulo(self, other, modulo, context=None):
|
---|
1854 | """Three argument version of __pow__"""
|
---|
1855 |
|
---|
1856 | # if can't convert other and modulo to Decimal, raise
|
---|
1857 | # TypeError; there's no point returning NotImplemented (no
|
---|
1858 | # equivalent of __rpow__ for three argument pow)
|
---|
1859 | other = _convert_other(other, raiseit=True)
|
---|
1860 | modulo = _convert_other(modulo, raiseit=True)
|
---|
1861 |
|
---|
1862 | if context is None:
|
---|
1863 | context = getcontext()
|
---|
1864 |
|
---|
1865 | # deal with NaNs: if there are any sNaNs then first one wins,
|
---|
1866 | # (i.e. behaviour for NaNs is identical to that of fma)
|
---|
1867 | self_is_nan = self._isnan()
|
---|
1868 | other_is_nan = other._isnan()
|
---|
1869 | modulo_is_nan = modulo._isnan()
|
---|
1870 | if self_is_nan or other_is_nan or modulo_is_nan:
|
---|
1871 | if self_is_nan == 2:
|
---|
1872 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1873 | self)
|
---|
1874 | if other_is_nan == 2:
|
---|
1875 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1876 | other)
|
---|
1877 | if modulo_is_nan == 2:
|
---|
1878 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1879 | modulo)
|
---|
1880 | if self_is_nan:
|
---|
1881 | return self._fix_nan(context)
|
---|
1882 | if other_is_nan:
|
---|
1883 | return other._fix_nan(context)
|
---|
1884 | return modulo._fix_nan(context)
|
---|
1885 |
|
---|
1886 | # check inputs: we apply same restrictions as Python's pow()
|
---|
1887 | if not (self._isinteger() and
|
---|
1888 | other._isinteger() and
|
---|
1889 | modulo._isinteger()):
|
---|
1890 | return context._raise_error(InvalidOperation,
|
---|
1891 | 'pow() 3rd argument not allowed '
|
---|
1892 | 'unless all arguments are integers')
|
---|
1893 | if other < 0:
|
---|
1894 | return context._raise_error(InvalidOperation,
|
---|
1895 | 'pow() 2nd argument cannot be '
|
---|
1896 | 'negative when 3rd argument specified')
|
---|
1897 | if not modulo:
|
---|
1898 | return context._raise_error(InvalidOperation,
|
---|
1899 | 'pow() 3rd argument cannot be 0')
|
---|
1900 |
|
---|
1901 | # additional restriction for decimal: the modulus must be less
|
---|
1902 | # than 10**prec in absolute value
|
---|
1903 | if modulo.adjusted() >= context.prec:
|
---|
1904 | return context._raise_error(InvalidOperation,
|
---|
1905 | 'insufficient precision: pow() 3rd '
|
---|
1906 | 'argument must not have more than '
|
---|
1907 | 'precision digits')
|
---|
1908 |
|
---|
1909 | # define 0**0 == NaN, for consistency with two-argument pow
|
---|
1910 | # (even though it hurts!)
|
---|
1911 | if not other and not self:
|
---|
1912 | return context._raise_error(InvalidOperation,
|
---|
1913 | 'at least one of pow() 1st argument '
|
---|
1914 | 'and 2nd argument must be nonzero ;'
|
---|
1915 | '0**0 is not defined')
|
---|
1916 |
|
---|
1917 | # compute sign of result
|
---|
1918 | if other._iseven():
|
---|
1919 | sign = 0
|
---|
1920 | else:
|
---|
1921 | sign = self._sign
|
---|
1922 |
|
---|
1923 | # convert modulo to a Python integer, and self and other to
|
---|
1924 | # Decimal integers (i.e. force their exponents to be >= 0)
|
---|
1925 | modulo = abs(int(modulo))
|
---|
1926 | base = _WorkRep(self.to_integral_value())
|
---|
1927 | exponent = _WorkRep(other.to_integral_value())
|
---|
1928 |
|
---|
1929 | # compute result using integer pow()
|
---|
1930 | base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
|
---|
1931 | for i in xrange(exponent.exp):
|
---|
1932 | base = pow(base, 10, modulo)
|
---|
1933 | base = pow(base, exponent.int, modulo)
|
---|
1934 |
|
---|
1935 | return _dec_from_triple(sign, str(base), 0)
|
---|
1936 |
|
---|
1937 | def _power_exact(self, other, p):
|
---|
1938 | """Attempt to compute self**other exactly.
|
---|
1939 |
|
---|
1940 | Given Decimals self and other and an integer p, attempt to
|
---|
1941 | compute an exact result for the power self**other, with p
|
---|
1942 | digits of precision. Return None if self**other is not
|
---|
1943 | exactly representable in p digits.
|
---|
1944 |
|
---|
1945 | Assumes that elimination of special cases has already been
|
---|
1946 | performed: self and other must both be nonspecial; self must
|
---|
1947 | be positive and not numerically equal to 1; other must be
|
---|
1948 | nonzero. For efficiency, other._exp should not be too large,
|
---|
1949 | so that 10**abs(other._exp) is a feasible calculation."""
|
---|
1950 |
|
---|
1951 | # In the comments below, we write x for the value of self and y for the
|
---|
1952 | # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
|
---|
1953 | # and yc positive integers not divisible by 10.
|
---|
1954 |
|
---|
1955 | # The main purpose of this method is to identify the *failure*
|
---|
1956 | # of x**y to be exactly representable with as little effort as
|
---|
1957 | # possible. So we look for cheap and easy tests that
|
---|
1958 | # eliminate the possibility of x**y being exact. Only if all
|
---|
1959 | # these tests are passed do we go on to actually compute x**y.
|
---|
1960 |
|
---|
1961 | # Here's the main idea. Express y as a rational number m/n, with m and
|
---|
1962 | # n relatively prime and n>0. Then for x**y to be exactly
|
---|
1963 | # representable (at *any* precision), xc must be the nth power of a
|
---|
1964 | # positive integer and xe must be divisible by n. If y is negative
|
---|
1965 | # then additionally xc must be a power of either 2 or 5, hence a power
|
---|
1966 | # of 2**n or 5**n.
|
---|
1967 | #
|
---|
1968 | # There's a limit to how small |y| can be: if y=m/n as above
|
---|
1969 | # then:
|
---|
1970 | #
|
---|
1971 | # (1) if xc != 1 then for the result to be representable we
|
---|
1972 | # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
---|
1973 | # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
---|
1974 | # 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
---|
1975 | # representable.
|
---|
1976 | #
|
---|
1977 | # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
---|
1978 | # |y| < 1/|xe| then the result is not representable.
|
---|
1979 | #
|
---|
1980 | # Note that since x is not equal to 1, at least one of (1) and
|
---|
1981 | # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
---|
1982 | # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
---|
1983 | #
|
---|
1984 | # There's also a limit to how large y can be, at least if it's
|
---|
1985 | # positive: the normalized result will have coefficient xc**y,
|
---|
1986 | # so if it's representable then xc**y < 10**p, and y <
|
---|
1987 | # p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
---|
1988 | # not exactly representable.
|
---|
1989 |
|
---|
1990 | # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
---|
1991 | # so |y| < 1/xe and the result is not representable.
|
---|
1992 | # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
---|
1993 | # < 1/nbits(xc).
|
---|
1994 |
|
---|
1995 | x = _WorkRep(self)
|
---|
1996 | xc, xe = x.int, x.exp
|
---|
1997 | while xc % 10 == 0:
|
---|
1998 | xc //= 10
|
---|
1999 | xe += 1
|
---|
2000 |
|
---|
2001 | y = _WorkRep(other)
|
---|
2002 | yc, ye = y.int, y.exp
|
---|
2003 | while yc % 10 == 0:
|
---|
2004 | yc //= 10
|
---|
2005 | ye += 1
|
---|
2006 |
|
---|
2007 | # case where xc == 1: result is 10**(xe*y), with xe*y
|
---|
2008 | # required to be an integer
|
---|
2009 | if xc == 1:
|
---|
2010 | xe *= yc
|
---|
2011 | # result is now 10**(xe * 10**ye); xe * 10**ye must be integral
|
---|
2012 | while xe % 10 == 0:
|
---|
2013 | xe //= 10
|
---|
2014 | ye += 1
|
---|
2015 | if ye < 0:
|
---|
2016 | return None
|
---|
2017 | exponent = xe * 10**ye
|
---|
2018 | if y.sign == 1:
|
---|
2019 | exponent = -exponent
|
---|
2020 | # if other is a nonnegative integer, use ideal exponent
|
---|
2021 | if other._isinteger() and other._sign == 0:
|
---|
2022 | ideal_exponent = self._exp*int(other)
|
---|
2023 | zeros = min(exponent-ideal_exponent, p-1)
|
---|
2024 | else:
|
---|
2025 | zeros = 0
|
---|
2026 | return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
|
---|
2027 |
|
---|
2028 | # case where y is negative: xc must be either a power
|
---|
2029 | # of 2 or a power of 5.
|
---|
2030 | if y.sign == 1:
|
---|
2031 | last_digit = xc % 10
|
---|
2032 | if last_digit in (2,4,6,8):
|
---|
2033 | # quick test for power of 2
|
---|
2034 | if xc & -xc != xc:
|
---|
2035 | return None
|
---|
2036 | # now xc is a power of 2; e is its exponent
|
---|
2037 | e = _nbits(xc)-1
|
---|
2038 |
|
---|
2039 | # We now have:
|
---|
2040 | #
|
---|
2041 | # x = 2**e * 10**xe, e > 0, and y < 0.
|
---|
2042 | #
|
---|
2043 | # The exact result is:
|
---|
2044 | #
|
---|
2045 | # x**y = 5**(-e*y) * 10**(e*y + xe*y)
|
---|
2046 | #
|
---|
2047 | # provided that both e*y and xe*y are integers. Note that if
|
---|
2048 | # 5**(-e*y) >= 10**p, then the result can't be expressed
|
---|
2049 | # exactly with p digits of precision.
|
---|
2050 | #
|
---|
2051 | # Using the above, we can guard against large values of ye.
|
---|
2052 | # 93/65 is an upper bound for log(10)/log(5), so if
|
---|
2053 | #
|
---|
2054 | # ye >= len(str(93*p//65))
|
---|
2055 | #
|
---|
2056 | # then
|
---|
2057 | #
|
---|
2058 | # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
|
---|
2059 | #
|
---|
2060 | # so 5**(-e*y) >= 10**p, and the coefficient of the result
|
---|
2061 | # can't be expressed in p digits.
|
---|
2062 |
|
---|
2063 | # emax >= largest e such that 5**e < 10**p.
|
---|
2064 | emax = p*93//65
|
---|
2065 | if ye >= len(str(emax)):
|
---|
2066 | return None
|
---|
2067 |
|
---|
2068 | # Find -e*y and -xe*y; both must be integers
|
---|
2069 | e = _decimal_lshift_exact(e * yc, ye)
|
---|
2070 | xe = _decimal_lshift_exact(xe * yc, ye)
|
---|
2071 | if e is None or xe is None:
|
---|
2072 | return None
|
---|
2073 |
|
---|
2074 | if e > emax:
|
---|
2075 | return None
|
---|
2076 | xc = 5**e
|
---|
2077 |
|
---|
2078 | elif last_digit == 5:
|
---|
2079 | # e >= log_5(xc) if xc is a power of 5; we have
|
---|
2080 | # equality all the way up to xc=5**2658
|
---|
2081 | e = _nbits(xc)*28//65
|
---|
2082 | xc, remainder = divmod(5**e, xc)
|
---|
2083 | if remainder:
|
---|
2084 | return None
|
---|
2085 | while xc % 5 == 0:
|
---|
2086 | xc //= 5
|
---|
2087 | e -= 1
|
---|
2088 |
|
---|
2089 | # Guard against large values of ye, using the same logic as in
|
---|
2090 | # the 'xc is a power of 2' branch. 10/3 is an upper bound for
|
---|
2091 | # log(10)/log(2).
|
---|
2092 | emax = p*10//3
|
---|
2093 | if ye >= len(str(emax)):
|
---|
2094 | return None
|
---|
2095 |
|
---|
2096 | e = _decimal_lshift_exact(e * yc, ye)
|
---|
2097 | xe = _decimal_lshift_exact(xe * yc, ye)
|
---|
2098 | if e is None or xe is None:
|
---|
2099 | return None
|
---|
2100 |
|
---|
2101 | if e > emax:
|
---|
2102 | return None
|
---|
2103 | xc = 2**e
|
---|
2104 | else:
|
---|
2105 | return None
|
---|
2106 |
|
---|
2107 | if xc >= 10**p:
|
---|
2108 | return None
|
---|
2109 | xe = -e-xe
|
---|
2110 | return _dec_from_triple(0, str(xc), xe)
|
---|
2111 |
|
---|
2112 | # now y is positive; find m and n such that y = m/n
|
---|
2113 | if ye >= 0:
|
---|
2114 | m, n = yc*10**ye, 1
|
---|
2115 | else:
|
---|
2116 | if xe != 0 and len(str(abs(yc*xe))) <= -ye:
|
---|
2117 | return None
|
---|
2118 | xc_bits = _nbits(xc)
|
---|
2119 | if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
|
---|
2120 | return None
|
---|
2121 | m, n = yc, 10**(-ye)
|
---|
2122 | while m % 2 == n % 2 == 0:
|
---|
2123 | m //= 2
|
---|
2124 | n //= 2
|
---|
2125 | while m % 5 == n % 5 == 0:
|
---|
2126 | m //= 5
|
---|
2127 | n //= 5
|
---|
2128 |
|
---|
2129 | # compute nth root of xc*10**xe
|
---|
2130 | if n > 1:
|
---|
2131 | # if 1 < xc < 2**n then xc isn't an nth power
|
---|
2132 | if xc != 1 and xc_bits <= n:
|
---|
2133 | return None
|
---|
2134 |
|
---|
2135 | xe, rem = divmod(xe, n)
|
---|
2136 | if rem != 0:
|
---|
2137 | return None
|
---|
2138 |
|
---|
2139 | # compute nth root of xc using Newton's method
|
---|
2140 | a = 1L << -(-_nbits(xc)//n) # initial estimate
|
---|
2141 | while True:
|
---|
2142 | q, r = divmod(xc, a**(n-1))
|
---|
2143 | if a <= q:
|
---|
2144 | break
|
---|
2145 | else:
|
---|
2146 | a = (a*(n-1) + q)//n
|
---|
2147 | if not (a == q and r == 0):
|
---|
2148 | return None
|
---|
2149 | xc = a
|
---|
2150 |
|
---|
2151 | # now xc*10**xe is the nth root of the original xc*10**xe
|
---|
2152 | # compute mth power of xc*10**xe
|
---|
2153 |
|
---|
2154 | # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
---|
2155 | # 10**p and the result is not representable.
|
---|
2156 | if xc > 1 and m > p*100//_log10_lb(xc):
|
---|
2157 | return None
|
---|
2158 | xc = xc**m
|
---|
2159 | xe *= m
|
---|
2160 | if xc > 10**p:
|
---|
2161 | return None
|
---|
2162 |
|
---|
2163 | # by this point the result *is* exactly representable
|
---|
2164 | # adjust the exponent to get as close as possible to the ideal
|
---|
2165 | # exponent, if necessary
|
---|
2166 | str_xc = str(xc)
|
---|
2167 | if other._isinteger() and other._sign == 0:
|
---|
2168 | ideal_exponent = self._exp*int(other)
|
---|
2169 | zeros = min(xe-ideal_exponent, p-len(str_xc))
|
---|
2170 | else:
|
---|
2171 | zeros = 0
|
---|
2172 | return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
|
---|
2173 |
|
---|
2174 | def __pow__(self, other, modulo=None, context=None):
|
---|
2175 | """Return self ** other [ % modulo].
|
---|
2176 |
|
---|
2177 | With two arguments, compute self**other.
|
---|
2178 |
|
---|
2179 | With three arguments, compute (self**other) % modulo. For the
|
---|
2180 | three argument form, the following restrictions on the
|
---|
2181 | arguments hold:
|
---|
2182 |
|
---|
2183 | - all three arguments must be integral
|
---|
2184 | - other must be nonnegative
|
---|
2185 | - either self or other (or both) must be nonzero
|
---|
2186 | - modulo must be nonzero and must have at most p digits,
|
---|
2187 | where p is the context precision.
|
---|
2188 |
|
---|
2189 | If any of these restrictions is violated the InvalidOperation
|
---|
2190 | flag is raised.
|
---|
2191 |
|
---|
2192 | The result of pow(self, other, modulo) is identical to the
|
---|
2193 | result that would be obtained by computing (self**other) %
|
---|
2194 | modulo with unbounded precision, but is computed more
|
---|
2195 | efficiently. It is always exact.
|
---|
2196 | """
|
---|
2197 |
|
---|
2198 | if modulo is not None:
|
---|
2199 | return self._power_modulo(other, modulo, context)
|
---|
2200 |
|
---|
2201 | other = _convert_other(other)
|
---|
2202 | if other is NotImplemented:
|
---|
2203 | return other
|
---|
2204 |
|
---|
2205 | if context is None:
|
---|
2206 | context = getcontext()
|
---|
2207 |
|
---|
2208 | # either argument is a NaN => result is NaN
|
---|
2209 | ans = self._check_nans(other, context)
|
---|
2210 | if ans:
|
---|
2211 | return ans
|
---|
2212 |
|
---|
2213 | # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
---|
2214 | if not other:
|
---|
2215 | if not self:
|
---|
2216 | return context._raise_error(InvalidOperation, '0 ** 0')
|
---|
2217 | else:
|
---|
2218 | return _One
|
---|
2219 |
|
---|
2220 | # result has sign 1 iff self._sign is 1 and other is an odd integer
|
---|
2221 | result_sign = 0
|
---|
2222 | if self._sign == 1:
|
---|
2223 | if other._isinteger():
|
---|
2224 | if not other._iseven():
|
---|
2225 | result_sign = 1
|
---|
2226 | else:
|
---|
2227 | # -ve**noninteger = NaN
|
---|
2228 | # (-0)**noninteger = 0**noninteger
|
---|
2229 | if self:
|
---|
2230 | return context._raise_error(InvalidOperation,
|
---|
2231 | 'x ** y with x negative and y not an integer')
|
---|
2232 | # negate self, without doing any unwanted rounding
|
---|
2233 | self = self.copy_negate()
|
---|
2234 |
|
---|
2235 | # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
---|
2236 | if not self:
|
---|
2237 | if other._sign == 0:
|
---|
2238 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2239 | else:
|
---|
2240 | return _SignedInfinity[result_sign]
|
---|
2241 |
|
---|
2242 | # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
---|
2243 | if self._isinfinity():
|
---|
2244 | if other._sign == 0:
|
---|
2245 | return _SignedInfinity[result_sign]
|
---|
2246 | else:
|
---|
2247 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2248 |
|
---|
2249 | # 1**other = 1, but the choice of exponent and the flags
|
---|
2250 | # depend on the exponent of self, and on whether other is a
|
---|
2251 | # positive integer, a negative integer, or neither
|
---|
2252 | if self == _One:
|
---|
2253 | if other._isinteger():
|
---|
2254 | # exp = max(self._exp*max(int(other), 0),
|
---|
2255 | # 1-context.prec) but evaluating int(other) directly
|
---|
2256 | # is dangerous until we know other is small (other
|
---|
2257 | # could be 1e999999999)
|
---|
2258 | if other._sign == 1:
|
---|
2259 | multiplier = 0
|
---|
2260 | elif other > context.prec:
|
---|
2261 | multiplier = context.prec
|
---|
2262 | else:
|
---|
2263 | multiplier = int(other)
|
---|
2264 |
|
---|
2265 | exp = self._exp * multiplier
|
---|
2266 | if exp < 1-context.prec:
|
---|
2267 | exp = 1-context.prec
|
---|
2268 | context._raise_error(Rounded)
|
---|
2269 | else:
|
---|
2270 | context._raise_error(Inexact)
|
---|
2271 | context._raise_error(Rounded)
|
---|
2272 | exp = 1-context.prec
|
---|
2273 |
|
---|
2274 | return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
|
---|
2275 |
|
---|
2276 | # compute adjusted exponent of self
|
---|
2277 | self_adj = self.adjusted()
|
---|
2278 |
|
---|
2279 | # self ** infinity is infinity if self > 1, 0 if self < 1
|
---|
2280 | # self ** -infinity is infinity if self < 1, 0 if self > 1
|
---|
2281 | if other._isinfinity():
|
---|
2282 | if (other._sign == 0) == (self_adj < 0):
|
---|
2283 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2284 | else:
|
---|
2285 | return _SignedInfinity[result_sign]
|
---|
2286 |
|
---|
2287 | # from here on, the result always goes through the call
|
---|
2288 | # to _fix at the end of this function.
|
---|
2289 | ans = None
|
---|
2290 | exact = False
|
---|
2291 |
|
---|
2292 | # crude test to catch cases of extreme overflow/underflow. If
|
---|
2293 | # log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
---|
2294 | # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
---|
2295 | # self**other >= 10**(Emax+1), so overflow occurs. The test
|
---|
2296 | # for underflow is similar.
|
---|
2297 | bound = self._log10_exp_bound() + other.adjusted()
|
---|
2298 | if (self_adj >= 0) == (other._sign == 0):
|
---|
2299 | # self > 1 and other +ve, or self < 1 and other -ve
|
---|
2300 | # possibility of overflow
|
---|
2301 | if bound >= len(str(context.Emax)):
|
---|
2302 | ans = _dec_from_triple(result_sign, '1', context.Emax+1)
|
---|
2303 | else:
|
---|
2304 | # self > 1 and other -ve, or self < 1 and other +ve
|
---|
2305 | # possibility of underflow to 0
|
---|
2306 | Etiny = context.Etiny()
|
---|
2307 | if bound >= len(str(-Etiny)):
|
---|
2308 | ans = _dec_from_triple(result_sign, '1', Etiny-1)
|
---|
2309 |
|
---|
2310 | # try for an exact result with precision +1
|
---|
2311 | if ans is None:
|
---|
2312 | ans = self._power_exact(other, context.prec + 1)
|
---|
2313 | if ans is not None:
|
---|
2314 | if result_sign == 1:
|
---|
2315 | ans = _dec_from_triple(1, ans._int, ans._exp)
|
---|
2316 | exact = True
|
---|
2317 |
|
---|
2318 | # usual case: inexact result, x**y computed directly as exp(y*log(x))
|
---|
2319 | if ans is None:
|
---|
2320 | p = context.prec
|
---|
2321 | x = _WorkRep(self)
|
---|
2322 | xc, xe = x.int, x.exp
|
---|
2323 | y = _WorkRep(other)
|
---|
2324 | yc, ye = y.int, y.exp
|
---|
2325 | if y.sign == 1:
|
---|
2326 | yc = -yc
|
---|
2327 |
|
---|
2328 | # compute correctly rounded result: start with precision +3,
|
---|
2329 | # then increase precision until result is unambiguously roundable
|
---|
2330 | extra = 3
|
---|
2331 | while True:
|
---|
2332 | coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
---|
2333 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
---|
2334 | break
|
---|
2335 | extra += 3
|
---|
2336 |
|
---|
2337 | ans = _dec_from_triple(result_sign, str(coeff), exp)
|
---|
2338 |
|
---|
2339 | # unlike exp, ln and log10, the power function respects the
|
---|
2340 | # rounding mode; no need to switch to ROUND_HALF_EVEN here
|
---|
2341 |
|
---|
2342 | # There's a difficulty here when 'other' is not an integer and
|
---|
2343 | # the result is exact. In this case, the specification
|
---|
2344 | # requires that the Inexact flag be raised (in spite of
|
---|
2345 | # exactness), but since the result is exact _fix won't do this
|
---|
2346 | # for us. (Correspondingly, the Underflow signal should also
|
---|
2347 | # be raised for subnormal results.) We can't directly raise
|
---|
2348 | # these signals either before or after calling _fix, since
|
---|
2349 | # that would violate the precedence for signals. So we wrap
|
---|
2350 | # the ._fix call in a temporary context, and reraise
|
---|
2351 | # afterwards.
|
---|
2352 | if exact and not other._isinteger():
|
---|
2353 | # pad with zeros up to length context.prec+1 if necessary; this
|
---|
2354 | # ensures that the Rounded signal will be raised.
|
---|
2355 | if len(ans._int) <= context.prec:
|
---|
2356 | expdiff = context.prec + 1 - len(ans._int)
|
---|
2357 | ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
|
---|
2358 | ans._exp-expdiff)
|
---|
2359 |
|
---|
2360 | # create a copy of the current context, with cleared flags/traps
|
---|
2361 | newcontext = context.copy()
|
---|
2362 | newcontext.clear_flags()
|
---|
2363 | for exception in _signals:
|
---|
2364 | newcontext.traps[exception] = 0
|
---|
2365 |
|
---|
2366 | # round in the new context
|
---|
2367 | ans = ans._fix(newcontext)
|
---|
2368 |
|
---|
2369 | # raise Inexact, and if necessary, Underflow
|
---|
2370 | newcontext._raise_error(Inexact)
|
---|
2371 | if newcontext.flags[Subnormal]:
|
---|
2372 | newcontext._raise_error(Underflow)
|
---|
2373 |
|
---|
2374 | # propagate signals to the original context; _fix could
|
---|
2375 | # have raised any of Overflow, Underflow, Subnormal,
|
---|
2376 | # Inexact, Rounded, Clamped. Overflow needs the correct
|
---|
2377 | # arguments. Note that the order of the exceptions is
|
---|
2378 | # important here.
|
---|
2379 | if newcontext.flags[Overflow]:
|
---|
2380 | context._raise_error(Overflow, 'above Emax', ans._sign)
|
---|
2381 | for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
|
---|
2382 | if newcontext.flags[exception]:
|
---|
2383 | context._raise_error(exception)
|
---|
2384 |
|
---|
2385 | else:
|
---|
2386 | ans = ans._fix(context)
|
---|
2387 |
|
---|
2388 | return ans
|
---|
2389 |
|
---|
2390 | def __rpow__(self, other, context=None):
|
---|
2391 | """Swaps self/other and returns __pow__."""
|
---|
2392 | other = _convert_other(other)
|
---|
2393 | if other is NotImplemented:
|
---|
2394 | return other
|
---|
2395 | return other.__pow__(self, context=context)
|
---|
2396 |
|
---|
2397 | def normalize(self, context=None):
|
---|
2398 | """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
|
---|
2399 |
|
---|
2400 | if context is None:
|
---|
2401 | context = getcontext()
|
---|
2402 |
|
---|
2403 | if self._is_special:
|
---|
2404 | ans = self._check_nans(context=context)
|
---|
2405 | if ans:
|
---|
2406 | return ans
|
---|
2407 |
|
---|
2408 | dup = self._fix(context)
|
---|
2409 | if dup._isinfinity():
|
---|
2410 | return dup
|
---|
2411 |
|
---|
2412 | if not dup:
|
---|
2413 | return _dec_from_triple(dup._sign, '0', 0)
|
---|
2414 | exp_max = [context.Emax, context.Etop()][context._clamp]
|
---|
2415 | end = len(dup._int)
|
---|
2416 | exp = dup._exp
|
---|
2417 | while dup._int[end-1] == '0' and exp < exp_max:
|
---|
2418 | exp += 1
|
---|
2419 | end -= 1
|
---|
2420 | return _dec_from_triple(dup._sign, dup._int[:end], exp)
|
---|
2421 |
|
---|
2422 | def quantize(self, exp, rounding=None, context=None, watchexp=True):
|
---|
2423 | """Quantize self so its exponent is the same as that of exp.
|
---|
2424 |
|
---|
2425 | Similar to self._rescale(exp._exp) but with error checking.
|
---|
2426 | """
|
---|
2427 | exp = _convert_other(exp, raiseit=True)
|
---|
2428 |
|
---|
2429 | if context is None:
|
---|
2430 | context = getcontext()
|
---|
2431 | if rounding is None:
|
---|
2432 | rounding = context.rounding
|
---|
2433 |
|
---|
2434 | if self._is_special or exp._is_special:
|
---|
2435 | ans = self._check_nans(exp, context)
|
---|
2436 | if ans:
|
---|
2437 | return ans
|
---|
2438 |
|
---|
2439 | if exp._isinfinity() or self._isinfinity():
|
---|
2440 | if exp._isinfinity() and self._isinfinity():
|
---|
2441 | return Decimal(self) # if both are inf, it is OK
|
---|
2442 | return context._raise_error(InvalidOperation,
|
---|
2443 | 'quantize with one INF')
|
---|
2444 |
|
---|
2445 | # if we're not watching exponents, do a simple rescale
|
---|
2446 | if not watchexp:
|
---|
2447 | ans = self._rescale(exp._exp, rounding)
|
---|
2448 | # raise Inexact and Rounded where appropriate
|
---|
2449 | if ans._exp > self._exp:
|
---|
2450 | context._raise_error(Rounded)
|
---|
2451 | if ans != self:
|
---|
2452 | context._raise_error(Inexact)
|
---|
2453 | return ans
|
---|
2454 |
|
---|
2455 | # exp._exp should be between Etiny and Emax
|
---|
2456 | if not (context.Etiny() <= exp._exp <= context.Emax):
|
---|
2457 | return context._raise_error(InvalidOperation,
|
---|
2458 | 'target exponent out of bounds in quantize')
|
---|
2459 |
|
---|
2460 | if not self:
|
---|
2461 | ans = _dec_from_triple(self._sign, '0', exp._exp)
|
---|
2462 | return ans._fix(context)
|
---|
2463 |
|
---|
2464 | self_adjusted = self.adjusted()
|
---|
2465 | if self_adjusted > context.Emax:
|
---|
2466 | return context._raise_error(InvalidOperation,
|
---|
2467 | 'exponent of quantize result too large for current context')
|
---|
2468 | if self_adjusted - exp._exp + 1 > context.prec:
|
---|
2469 | return context._raise_error(InvalidOperation,
|
---|
2470 | 'quantize result has too many digits for current context')
|
---|
2471 |
|
---|
2472 | ans = self._rescale(exp._exp, rounding)
|
---|
2473 | if ans.adjusted() > context.Emax:
|
---|
2474 | return context._raise_error(InvalidOperation,
|
---|
2475 | 'exponent of quantize result too large for current context')
|
---|
2476 | if len(ans._int) > context.prec:
|
---|
2477 | return context._raise_error(InvalidOperation,
|
---|
2478 | 'quantize result has too many digits for current context')
|
---|
2479 |
|
---|
2480 | # raise appropriate flags
|
---|
2481 | if ans and ans.adjusted() < context.Emin:
|
---|
2482 | context._raise_error(Subnormal)
|
---|
2483 | if ans._exp > self._exp:
|
---|
2484 | if ans != self:
|
---|
2485 | context._raise_error(Inexact)
|
---|
2486 | context._raise_error(Rounded)
|
---|
2487 |
|
---|
2488 | # call to fix takes care of any necessary folddown, and
|
---|
2489 | # signals Clamped if necessary
|
---|
2490 | ans = ans._fix(context)
|
---|
2491 | return ans
|
---|
2492 |
|
---|
2493 | def same_quantum(self, other):
|
---|
2494 | """Return True if self and other have the same exponent; otherwise
|
---|
2495 | return False.
|
---|
2496 |
|
---|
2497 | If either operand is a special value, the following rules are used:
|
---|
2498 | * return True if both operands are infinities
|
---|
2499 | * return True if both operands are NaNs
|
---|
2500 | * otherwise, return False.
|
---|
2501 | """
|
---|
2502 | other = _convert_other(other, raiseit=True)
|
---|
2503 | if self._is_special or other._is_special:
|
---|
2504 | return (self.is_nan() and other.is_nan() or
|
---|
2505 | self.is_infinite() and other.is_infinite())
|
---|
2506 | return self._exp == other._exp
|
---|
2507 |
|
---|
2508 | def _rescale(self, exp, rounding):
|
---|
2509 | """Rescale self so that the exponent is exp, either by padding with zeros
|
---|
2510 | or by truncating digits, using the given rounding mode.
|
---|
2511 |
|
---|
2512 | Specials are returned without change. This operation is
|
---|
2513 | quiet: it raises no flags, and uses no information from the
|
---|
2514 | context.
|
---|
2515 |
|
---|
2516 | exp = exp to scale to (an integer)
|
---|
2517 | rounding = rounding mode
|
---|
2518 | """
|
---|
2519 | if self._is_special:
|
---|
2520 | return Decimal(self)
|
---|
2521 | if not self:
|
---|
2522 | return _dec_from_triple(self._sign, '0', exp)
|
---|
2523 |
|
---|
2524 | if self._exp >= exp:
|
---|
2525 | # pad answer with zeros if necessary
|
---|
2526 | return _dec_from_triple(self._sign,
|
---|
2527 | self._int + '0'*(self._exp - exp), exp)
|
---|
2528 |
|
---|
2529 | # too many digits; round and lose data. If self.adjusted() <
|
---|
2530 | # exp-1, replace self by 10**(exp-1) before rounding
|
---|
2531 | digits = len(self._int) + self._exp - exp
|
---|
2532 | if digits < 0:
|
---|
2533 | self = _dec_from_triple(self._sign, '1', exp-1)
|
---|
2534 | digits = 0
|
---|
2535 | this_function = self._pick_rounding_function[rounding]
|
---|
2536 | changed = this_function(self, digits)
|
---|
2537 | coeff = self._int[:digits] or '0'
|
---|
2538 | if changed == 1:
|
---|
2539 | coeff = str(int(coeff)+1)
|
---|
2540 | return _dec_from_triple(self._sign, coeff, exp)
|
---|
2541 |
|
---|
2542 | def _round(self, places, rounding):
|
---|
2543 | """Round a nonzero, nonspecial Decimal to a fixed number of
|
---|
2544 | significant figures, using the given rounding mode.
|
---|
2545 |
|
---|
2546 | Infinities, NaNs and zeros are returned unaltered.
|
---|
2547 |
|
---|
2548 | This operation is quiet: it raises no flags, and uses no
|
---|
2549 | information from the context.
|
---|
2550 |
|
---|
2551 | """
|
---|
2552 | if places <= 0:
|
---|
2553 | raise ValueError("argument should be at least 1 in _round")
|
---|
2554 | if self._is_special or not self:
|
---|
2555 | return Decimal(self)
|
---|
2556 | ans = self._rescale(self.adjusted()+1-places, rounding)
|
---|
2557 | # it can happen that the rescale alters the adjusted exponent;
|
---|
2558 | # for example when rounding 99.97 to 3 significant figures.
|
---|
2559 | # When this happens we end up with an extra 0 at the end of
|
---|
2560 | # the number; a second rescale fixes this.
|
---|
2561 | if ans.adjusted() != self.adjusted():
|
---|
2562 | ans = ans._rescale(ans.adjusted()+1-places, rounding)
|
---|
2563 | return ans
|
---|
2564 |
|
---|
2565 | def to_integral_exact(self, rounding=None, context=None):
|
---|
2566 | """Rounds to a nearby integer.
|
---|
2567 |
|
---|
2568 | If no rounding mode is specified, take the rounding mode from
|
---|
2569 | the context. This method raises the Rounded and Inexact flags
|
---|
2570 | when appropriate.
|
---|
2571 |
|
---|
2572 | See also: to_integral_value, which does exactly the same as
|
---|
2573 | this method except that it doesn't raise Inexact or Rounded.
|
---|
2574 | """
|
---|
2575 | if self._is_special:
|
---|
2576 | ans = self._check_nans(context=context)
|
---|
2577 | if ans:
|
---|
2578 | return ans
|
---|
2579 | return Decimal(self)
|
---|
2580 | if self._exp >= 0:
|
---|
2581 | return Decimal(self)
|
---|
2582 | if not self:
|
---|
2583 | return _dec_from_triple(self._sign, '0', 0)
|
---|
2584 | if context is None:
|
---|
2585 | context = getcontext()
|
---|
2586 | if rounding is None:
|
---|
2587 | rounding = context.rounding
|
---|
2588 | ans = self._rescale(0, rounding)
|
---|
2589 | if ans != self:
|
---|
2590 | context._raise_error(Inexact)
|
---|
2591 | context._raise_error(Rounded)
|
---|
2592 | return ans
|
---|
2593 |
|
---|
2594 | def to_integral_value(self, rounding=None, context=None):
|
---|
2595 | """Rounds to the nearest integer, without raising inexact, rounded."""
|
---|
2596 | if context is None:
|
---|
2597 | context = getcontext()
|
---|
2598 | if rounding is None:
|
---|
2599 | rounding = context.rounding
|
---|
2600 | if self._is_special:
|
---|
2601 | ans = self._check_nans(context=context)
|
---|
2602 | if ans:
|
---|
2603 | return ans
|
---|
2604 | return Decimal(self)
|
---|
2605 | if self._exp >= 0:
|
---|
2606 | return Decimal(self)
|
---|
2607 | else:
|
---|
2608 | return self._rescale(0, rounding)
|
---|
2609 |
|
---|
2610 | # the method name changed, but we provide also the old one, for compatibility
|
---|
2611 | to_integral = to_integral_value
|
---|
2612 |
|
---|
2613 | def sqrt(self, context=None):
|
---|
2614 | """Return the square root of self."""
|
---|
2615 | if context is None:
|
---|
2616 | context = getcontext()
|
---|
2617 |
|
---|
2618 | if self._is_special:
|
---|
2619 | ans = self._check_nans(context=context)
|
---|
2620 | if ans:
|
---|
2621 | return ans
|
---|
2622 |
|
---|
2623 | if self._isinfinity() and self._sign == 0:
|
---|
2624 | return Decimal(self)
|
---|
2625 |
|
---|
2626 | if not self:
|
---|
2627 | # exponent = self._exp // 2. sqrt(-0) = -0
|
---|
2628 | ans = _dec_from_triple(self._sign, '0', self._exp // 2)
|
---|
2629 | return ans._fix(context)
|
---|
2630 |
|
---|
2631 | if self._sign == 1:
|
---|
2632 | return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
|
---|
2633 |
|
---|
2634 | # At this point self represents a positive number. Let p be
|
---|
2635 | # the desired precision and express self in the form c*100**e
|
---|
2636 | # with c a positive real number and e an integer, c and e
|
---|
2637 | # being chosen so that 100**(p-1) <= c < 100**p. Then the
|
---|
2638 | # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
|
---|
2639 | # <= sqrt(c) < 10**p, so the closest representable Decimal at
|
---|
2640 | # precision p is n*10**e where n = round_half_even(sqrt(c)),
|
---|
2641 | # the closest integer to sqrt(c) with the even integer chosen
|
---|
2642 | # in the case of a tie.
|
---|
2643 | #
|
---|
2644 | # To ensure correct rounding in all cases, we use the
|
---|
2645 | # following trick: we compute the square root to an extra
|
---|
2646 | # place (precision p+1 instead of precision p), rounding down.
|
---|
2647 | # Then, if the result is inexact and its last digit is 0 or 5,
|
---|
2648 | # we increase the last digit to 1 or 6 respectively; if it's
|
---|
2649 | # exact we leave the last digit alone. Now the final round to
|
---|
2650 | # p places (or fewer in the case of underflow) will round
|
---|
2651 | # correctly and raise the appropriate flags.
|
---|
2652 |
|
---|
2653 | # use an extra digit of precision
|
---|
2654 | prec = context.prec+1
|
---|
2655 |
|
---|
2656 | # write argument in the form c*100**e where e = self._exp//2
|
---|
2657 | # is the 'ideal' exponent, to be used if the square root is
|
---|
2658 | # exactly representable. l is the number of 'digits' of c in
|
---|
2659 | # base 100, so that 100**(l-1) <= c < 100**l.
|
---|
2660 | op = _WorkRep(self)
|
---|
2661 | e = op.exp >> 1
|
---|
2662 | if op.exp & 1:
|
---|
2663 | c = op.int * 10
|
---|
2664 | l = (len(self._int) >> 1) + 1
|
---|
2665 | else:
|
---|
2666 | c = op.int
|
---|
2667 | l = len(self._int)+1 >> 1
|
---|
2668 |
|
---|
2669 | # rescale so that c has exactly prec base 100 'digits'
|
---|
2670 | shift = prec-l
|
---|
2671 | if shift >= 0:
|
---|
2672 | c *= 100**shift
|
---|
2673 | exact = True
|
---|
2674 | else:
|
---|
2675 | c, remainder = divmod(c, 100**-shift)
|
---|
2676 | exact = not remainder
|
---|
2677 | e -= shift
|
---|
2678 |
|
---|
2679 | # find n = floor(sqrt(c)) using Newton's method
|
---|
2680 | n = 10**prec
|
---|
2681 | while True:
|
---|
2682 | q = c//n
|
---|
2683 | if n <= q:
|
---|
2684 | break
|
---|
2685 | else:
|
---|
2686 | n = n + q >> 1
|
---|
2687 | exact = exact and n*n == c
|
---|
2688 |
|
---|
2689 | if exact:
|
---|
2690 | # result is exact; rescale to use ideal exponent e
|
---|
2691 | if shift >= 0:
|
---|
2692 | # assert n % 10**shift == 0
|
---|
2693 | n //= 10**shift
|
---|
2694 | else:
|
---|
2695 | n *= 10**-shift
|
---|
2696 | e += shift
|
---|
2697 | else:
|
---|
2698 | # result is not exact; fix last digit as described above
|
---|
2699 | if n % 5 == 0:
|
---|
2700 | n += 1
|
---|
2701 |
|
---|
2702 | ans = _dec_from_triple(0, str(n), e)
|
---|
2703 |
|
---|
2704 | # round, and fit to current context
|
---|
2705 | context = context._shallow_copy()
|
---|
2706 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
2707 | ans = ans._fix(context)
|
---|
2708 | context.rounding = rounding
|
---|
2709 |
|
---|
2710 | return ans
|
---|
2711 |
|
---|
2712 | def max(self, other, context=None):
|
---|
2713 | """Returns the larger value.
|
---|
2714 |
|
---|
2715 | Like max(self, other) except if one is not a number, returns
|
---|
2716 | NaN (and signals if one is sNaN). Also rounds.
|
---|
2717 | """
|
---|
2718 | other = _convert_other(other, raiseit=True)
|
---|
2719 |
|
---|
2720 | if context is None:
|
---|
2721 | context = getcontext()
|
---|
2722 |
|
---|
2723 | if self._is_special or other._is_special:
|
---|
2724 | # If one operand is a quiet NaN and the other is number, then the
|
---|
2725 | # number is always returned
|
---|
2726 | sn = self._isnan()
|
---|
2727 | on = other._isnan()
|
---|
2728 | if sn or on:
|
---|
2729 | if on == 1 and sn == 0:
|
---|
2730 | return self._fix(context)
|
---|
2731 | if sn == 1 and on == 0:
|
---|
2732 | return other._fix(context)
|
---|
2733 | return self._check_nans(other, context)
|
---|
2734 |
|
---|
2735 | c = self._cmp(other)
|
---|
2736 | if c == 0:
|
---|
2737 | # If both operands are finite and equal in numerical value
|
---|
2738 | # then an ordering is applied:
|
---|
2739 | #
|
---|
2740 | # If the signs differ then max returns the operand with the
|
---|
2741 | # positive sign and min returns the operand with the negative sign
|
---|
2742 | #
|
---|
2743 | # If the signs are the same then the exponent is used to select
|
---|
2744 | # the result. This is exactly the ordering used in compare_total.
|
---|
2745 | c = self.compare_total(other)
|
---|
2746 |
|
---|
2747 | if c == -1:
|
---|
2748 | ans = other
|
---|
2749 | else:
|
---|
2750 | ans = self
|
---|
2751 |
|
---|
2752 | return ans._fix(context)
|
---|
2753 |
|
---|
2754 | def min(self, other, context=None):
|
---|
2755 | """Returns the smaller value.
|
---|
2756 |
|
---|
2757 | Like min(self, other) except if one is not a number, returns
|
---|
2758 | NaN (and signals if one is sNaN). Also rounds.
|
---|
2759 | """
|
---|
2760 | other = _convert_other(other, raiseit=True)
|
---|
2761 |
|
---|
2762 | if context is None:
|
---|
2763 | context = getcontext()
|
---|
2764 |
|
---|
2765 | if self._is_special or other._is_special:
|
---|
2766 | # If one operand is a quiet NaN and the other is number, then the
|
---|
2767 | # number is always returned
|
---|
2768 | sn = self._isnan()
|
---|
2769 | on = other._isnan()
|
---|
2770 | if sn or on:
|
---|
2771 | if on == 1 and sn == 0:
|
---|
2772 | return self._fix(context)
|
---|
2773 | if sn == 1 and on == 0:
|
---|
2774 | return other._fix(context)
|
---|
2775 | return self._check_nans(other, context)
|
---|
2776 |
|
---|
2777 | c = self._cmp(other)
|
---|
2778 | if c == 0:
|
---|
2779 | c = self.compare_total(other)
|
---|
2780 |
|
---|
2781 | if c == -1:
|
---|
2782 | ans = self
|
---|
2783 | else:
|
---|
2784 | ans = other
|
---|
2785 |
|
---|
2786 | return ans._fix(context)
|
---|
2787 |
|
---|
2788 | def _isinteger(self):
|
---|
2789 | """Returns whether self is an integer"""
|
---|
2790 | if self._is_special:
|
---|
2791 | return False
|
---|
2792 | if self._exp >= 0:
|
---|
2793 | return True
|
---|
2794 | rest = self._int[self._exp:]
|
---|
2795 | return rest == '0'*len(rest)
|
---|
2796 |
|
---|
2797 | def _iseven(self):
|
---|
2798 | """Returns True if self is even. Assumes self is an integer."""
|
---|
2799 | if not self or self._exp > 0:
|
---|
2800 | return True
|
---|
2801 | return self._int[-1+self._exp] in '02468'
|
---|
2802 |
|
---|
2803 | def adjusted(self):
|
---|
2804 | """Return the adjusted exponent of self"""
|
---|
2805 | try:
|
---|
2806 | return self._exp + len(self._int) - 1
|
---|
2807 | # If NaN or Infinity, self._exp is string
|
---|
2808 | except TypeError:
|
---|
2809 | return 0
|
---|
2810 |
|
---|
2811 | def canonical(self, context=None):
|
---|
2812 | """Returns the same Decimal object.
|
---|
2813 |
|
---|
2814 | As we do not have different encodings for the same number, the
|
---|
2815 | received object already is in its canonical form.
|
---|
2816 | """
|
---|
2817 | return self
|
---|
2818 |
|
---|
2819 | def compare_signal(self, other, context=None):
|
---|
2820 | """Compares self to the other operand numerically.
|
---|
2821 |
|
---|
2822 | It's pretty much like compare(), but all NaNs signal, with signaling
|
---|
2823 | NaNs taking precedence over quiet NaNs.
|
---|
2824 | """
|
---|
2825 | other = _convert_other(other, raiseit = True)
|
---|
2826 | ans = self._compare_check_nans(other, context)
|
---|
2827 | if ans:
|
---|
2828 | return ans
|
---|
2829 | return self.compare(other, context=context)
|
---|
2830 |
|
---|
2831 | def compare_total(self, other):
|
---|
2832 | """Compares self to other using the abstract representations.
|
---|
2833 |
|
---|
2834 | This is not like the standard compare, which use their numerical
|
---|
2835 | value. Note that a total ordering is defined for all possible abstract
|
---|
2836 | representations.
|
---|
2837 | """
|
---|
2838 | other = _convert_other(other, raiseit=True)
|
---|
2839 |
|
---|
2840 | # if one is negative and the other is positive, it's easy
|
---|
2841 | if self._sign and not other._sign:
|
---|
2842 | return _NegativeOne
|
---|
2843 | if not self._sign and other._sign:
|
---|
2844 | return _One
|
---|
2845 | sign = self._sign
|
---|
2846 |
|
---|
2847 | # let's handle both NaN types
|
---|
2848 | self_nan = self._isnan()
|
---|
2849 | other_nan = other._isnan()
|
---|
2850 | if self_nan or other_nan:
|
---|
2851 | if self_nan == other_nan:
|
---|
2852 | # compare payloads as though they're integers
|
---|
2853 | self_key = len(self._int), self._int
|
---|
2854 | other_key = len(other._int), other._int
|
---|
2855 | if self_key < other_key:
|
---|
2856 | if sign:
|
---|
2857 | return _One
|
---|
2858 | else:
|
---|
2859 | return _NegativeOne
|
---|
2860 | if self_key > other_key:
|
---|
2861 | if sign:
|
---|
2862 | return _NegativeOne
|
---|
2863 | else:
|
---|
2864 | return _One
|
---|
2865 | return _Zero
|
---|
2866 |
|
---|
2867 | if sign:
|
---|
2868 | if self_nan == 1:
|
---|
2869 | return _NegativeOne
|
---|
2870 | if other_nan == 1:
|
---|
2871 | return _One
|
---|
2872 | if self_nan == 2:
|
---|
2873 | return _NegativeOne
|
---|
2874 | if other_nan == 2:
|
---|
2875 | return _One
|
---|
2876 | else:
|
---|
2877 | if self_nan == 1:
|
---|
2878 | return _One
|
---|
2879 | if other_nan == 1:
|
---|
2880 | return _NegativeOne
|
---|
2881 | if self_nan == 2:
|
---|
2882 | return _One
|
---|
2883 | if other_nan == 2:
|
---|
2884 | return _NegativeOne
|
---|
2885 |
|
---|
2886 | if self < other:
|
---|
2887 | return _NegativeOne
|
---|
2888 | if self > other:
|
---|
2889 | return _One
|
---|
2890 |
|
---|
2891 | if self._exp < other._exp:
|
---|
2892 | if sign:
|
---|
2893 | return _One
|
---|
2894 | else:
|
---|
2895 | return _NegativeOne
|
---|
2896 | if self._exp > other._exp:
|
---|
2897 | if sign:
|
---|
2898 | return _NegativeOne
|
---|
2899 | else:
|
---|
2900 | return _One
|
---|
2901 | return _Zero
|
---|
2902 |
|
---|
2903 |
|
---|
2904 | def compare_total_mag(self, other):
|
---|
2905 | """Compares self to other using abstract repr., ignoring sign.
|
---|
2906 |
|
---|
2907 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
---|
2908 | """
|
---|
2909 | other = _convert_other(other, raiseit=True)
|
---|
2910 |
|
---|
2911 | s = self.copy_abs()
|
---|
2912 | o = other.copy_abs()
|
---|
2913 | return s.compare_total(o)
|
---|
2914 |
|
---|
2915 | def copy_abs(self):
|
---|
2916 | """Returns a copy with the sign set to 0. """
|
---|
2917 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
---|
2918 |
|
---|
2919 | def copy_negate(self):
|
---|
2920 | """Returns a copy with the sign inverted."""
|
---|
2921 | if self._sign:
|
---|
2922 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
---|
2923 | else:
|
---|
2924 | return _dec_from_triple(1, self._int, self._exp, self._is_special)
|
---|
2925 |
|
---|
2926 | def copy_sign(self, other):
|
---|
2927 | """Returns self with the sign of other."""
|
---|
2928 | other = _convert_other(other, raiseit=True)
|
---|
2929 | return _dec_from_triple(other._sign, self._int,
|
---|
2930 | self._exp, self._is_special)
|
---|
2931 |
|
---|
2932 | def exp(self, context=None):
|
---|
2933 | """Returns e ** self."""
|
---|
2934 |
|
---|
2935 | if context is None:
|
---|
2936 | context = getcontext()
|
---|
2937 |
|
---|
2938 | # exp(NaN) = NaN
|
---|
2939 | ans = self._check_nans(context=context)
|
---|
2940 | if ans:
|
---|
2941 | return ans
|
---|
2942 |
|
---|
2943 | # exp(-Infinity) = 0
|
---|
2944 | if self._isinfinity() == -1:
|
---|
2945 | return _Zero
|
---|
2946 |
|
---|
2947 | # exp(0) = 1
|
---|
2948 | if not self:
|
---|
2949 | return _One
|
---|
2950 |
|
---|
2951 | # exp(Infinity) = Infinity
|
---|
2952 | if self._isinfinity() == 1:
|
---|
2953 | return Decimal(self)
|
---|
2954 |
|
---|
2955 | # the result is now guaranteed to be inexact (the true
|
---|
2956 | # mathematical result is transcendental). There's no need to
|
---|
2957 | # raise Rounded and Inexact here---they'll always be raised as
|
---|
2958 | # a result of the call to _fix.
|
---|
2959 | p = context.prec
|
---|
2960 | adj = self.adjusted()
|
---|
2961 |
|
---|
2962 | # we only need to do any computation for quite a small range
|
---|
2963 | # of adjusted exponents---for example, -29 <= adj <= 10 for
|
---|
2964 | # the default context. For smaller exponent the result is
|
---|
2965 | # indistinguishable from 1 at the given precision, while for
|
---|
2966 | # larger exponent the result either overflows or underflows.
|
---|
2967 | if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
|
---|
2968 | # overflow
|
---|
2969 | ans = _dec_from_triple(0, '1', context.Emax+1)
|
---|
2970 | elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
|
---|
2971 | # underflow to 0
|
---|
2972 | ans = _dec_from_triple(0, '1', context.Etiny()-1)
|
---|
2973 | elif self._sign == 0 and adj < -p:
|
---|
2974 | # p+1 digits; final round will raise correct flags
|
---|
2975 | ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
|
---|
2976 | elif self._sign == 1 and adj < -p-1:
|
---|
2977 | # p+1 digits; final round will raise correct flags
|
---|
2978 | ans = _dec_from_triple(0, '9'*(p+1), -p-1)
|
---|
2979 | # general case
|
---|
2980 | else:
|
---|
2981 | op = _WorkRep(self)
|
---|
2982 | c, e = op.int, op.exp
|
---|
2983 | if op.sign == 1:
|
---|
2984 | c = -c
|
---|
2985 |
|
---|
2986 | # compute correctly rounded result: increase precision by
|
---|
2987 | # 3 digits at a time until we get an unambiguously
|
---|
2988 | # roundable result
|
---|
2989 | extra = 3
|
---|
2990 | while True:
|
---|
2991 | coeff, exp = _dexp(c, e, p+extra)
|
---|
2992 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
---|
2993 | break
|
---|
2994 | extra += 3
|
---|
2995 |
|
---|
2996 | ans = _dec_from_triple(0, str(coeff), exp)
|
---|
2997 |
|
---|
2998 | # at this stage, ans should round correctly with *any*
|
---|
2999 | # rounding mode, not just with ROUND_HALF_EVEN
|
---|
3000 | context = context._shallow_copy()
|
---|
3001 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
3002 | ans = ans._fix(context)
|
---|
3003 | context.rounding = rounding
|
---|
3004 |
|
---|
3005 | return ans
|
---|
3006 |
|
---|
3007 | def is_canonical(self):
|
---|
3008 | """Return True if self is canonical; otherwise return False.
|
---|
3009 |
|
---|
3010 | Currently, the encoding of a Decimal instance is always
|
---|
3011 | canonical, so this method returns True for any Decimal.
|
---|
3012 | """
|
---|
3013 | return True
|
---|
3014 |
|
---|
3015 | def is_finite(self):
|
---|
3016 | """Return True if self is finite; otherwise return False.
|
---|
3017 |
|
---|
3018 | A Decimal instance is considered finite if it is neither
|
---|
3019 | infinite nor a NaN.
|
---|
3020 | """
|
---|
3021 | return not self._is_special
|
---|
3022 |
|
---|
3023 | def is_infinite(self):
|
---|
3024 | """Return True if self is infinite; otherwise return False."""
|
---|
3025 | return self._exp == 'F'
|
---|
3026 |
|
---|
3027 | def is_nan(self):
|
---|
3028 | """Return True if self is a qNaN or sNaN; otherwise return False."""
|
---|
3029 | return self._exp in ('n', 'N')
|
---|
3030 |
|
---|
3031 | def is_normal(self, context=None):
|
---|
3032 | """Return True if self is a normal number; otherwise return False."""
|
---|
3033 | if self._is_special or not self:
|
---|
3034 | return False
|
---|
3035 | if context is None:
|
---|
3036 | context = getcontext()
|
---|
3037 | return context.Emin <= self.adjusted()
|
---|
3038 |
|
---|
3039 | def is_qnan(self):
|
---|
3040 | """Return True if self is a quiet NaN; otherwise return False."""
|
---|
3041 | return self._exp == 'n'
|
---|
3042 |
|
---|
3043 | def is_signed(self):
|
---|
3044 | """Return True if self is negative; otherwise return False."""
|
---|
3045 | return self._sign == 1
|
---|
3046 |
|
---|
3047 | def is_snan(self):
|
---|
3048 | """Return True if self is a signaling NaN; otherwise return False."""
|
---|
3049 | return self._exp == 'N'
|
---|
3050 |
|
---|
3051 | def is_subnormal(self, context=None):
|
---|
3052 | """Return True if self is subnormal; otherwise return False."""
|
---|
3053 | if self._is_special or not self:
|
---|
3054 | return False
|
---|
3055 | if context is None:
|
---|
3056 | context = getcontext()
|
---|
3057 | return self.adjusted() < context.Emin
|
---|
3058 |
|
---|
3059 | def is_zero(self):
|
---|
3060 | """Return True if self is a zero; otherwise return False."""
|
---|
3061 | return not self._is_special and self._int == '0'
|
---|
3062 |
|
---|
3063 | def _ln_exp_bound(self):
|
---|
3064 | """Compute a lower bound for the adjusted exponent of self.ln().
|
---|
3065 | In other words, compute r such that self.ln() >= 10**r. Assumes
|
---|
3066 | that self is finite and positive and that self != 1.
|
---|
3067 | """
|
---|
3068 |
|
---|
3069 | # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
---|
3070 | adj = self._exp + len(self._int) - 1
|
---|
3071 | if adj >= 1:
|
---|
3072 | # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
---|
3073 | return len(str(adj*23//10)) - 1
|
---|
3074 | if adj <= -2:
|
---|
3075 | # argument <= 0.1
|
---|
3076 | return len(str((-1-adj)*23//10)) - 1
|
---|
3077 | op = _WorkRep(self)
|
---|
3078 | c, e = op.int, op.exp
|
---|
3079 | if adj == 0:
|
---|
3080 | # 1 < self < 10
|
---|
3081 | num = str(c-10**-e)
|
---|
3082 | den = str(c)
|
---|
3083 | return len(num) - len(den) - (num < den)
|
---|
3084 | # adj == -1, 0.1 <= self < 1
|
---|
3085 | return e + len(str(10**-e - c)) - 1
|
---|
3086 |
|
---|
3087 |
|
---|
3088 | def ln(self, context=None):
|
---|
3089 | """Returns the natural (base e) logarithm of self."""
|
---|
3090 |
|
---|
3091 | if context is None:
|
---|
3092 | context = getcontext()
|
---|
3093 |
|
---|
3094 | # ln(NaN) = NaN
|
---|
3095 | ans = self._check_nans(context=context)
|
---|
3096 | if ans:
|
---|
3097 | return ans
|
---|
3098 |
|
---|
3099 | # ln(0.0) == -Infinity
|
---|
3100 | if not self:
|
---|
3101 | return _NegativeInfinity
|
---|
3102 |
|
---|
3103 | # ln(Infinity) = Infinity
|
---|
3104 | if self._isinfinity() == 1:
|
---|
3105 | return _Infinity
|
---|
3106 |
|
---|
3107 | # ln(1.0) == 0.0
|
---|
3108 | if self == _One:
|
---|
3109 | return _Zero
|
---|
3110 |
|
---|
3111 | # ln(negative) raises InvalidOperation
|
---|
3112 | if self._sign == 1:
|
---|
3113 | return context._raise_error(InvalidOperation,
|
---|
3114 | 'ln of a negative value')
|
---|
3115 |
|
---|
3116 | # result is irrational, so necessarily inexact
|
---|
3117 | op = _WorkRep(self)
|
---|
3118 | c, e = op.int, op.exp
|
---|
3119 | p = context.prec
|
---|
3120 |
|
---|
3121 | # correctly rounded result: repeatedly increase precision by 3
|
---|
3122 | # until we get an unambiguously roundable result
|
---|
3123 | places = p - self._ln_exp_bound() + 2 # at least p+3 places
|
---|
3124 | while True:
|
---|
3125 | coeff = _dlog(c, e, places)
|
---|
3126 | # assert len(str(abs(coeff)))-p >= 1
|
---|
3127 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
---|
3128 | break
|
---|
3129 | places += 3
|
---|
3130 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
---|
3131 |
|
---|
3132 | context = context._shallow_copy()
|
---|
3133 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
3134 | ans = ans._fix(context)
|
---|
3135 | context.rounding = rounding
|
---|
3136 | return ans
|
---|
3137 |
|
---|
3138 | def _log10_exp_bound(self):
|
---|
3139 | """Compute a lower bound for the adjusted exponent of self.log10().
|
---|
3140 | In other words, find r such that self.log10() >= 10**r.
|
---|
3141 | Assumes that self is finite and positive and that self != 1.
|
---|
3142 | """
|
---|
3143 |
|
---|
3144 | # For x >= 10 or x < 0.1 we only need a bound on the integer
|
---|
3145 | # part of log10(self), and this comes directly from the
|
---|
3146 | # exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
---|
3147 | # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
---|
3148 | # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
---|
3149 |
|
---|
3150 | adj = self._exp + len(self._int) - 1
|
---|
3151 | if adj >= 1:
|
---|
3152 | # self >= 10
|
---|
3153 | return len(str(adj))-1
|
---|
3154 | if adj <= -2:
|
---|
3155 | # self < 0.1
|
---|
3156 | return len(str(-1-adj))-1
|
---|
3157 | op = _WorkRep(self)
|
---|
3158 | c, e = op.int, op.exp
|
---|
3159 | if adj == 0:
|
---|
3160 | # 1 < self < 10
|
---|
3161 | num = str(c-10**-e)
|
---|
3162 | den = str(231*c)
|
---|
3163 | return len(num) - len(den) - (num < den) + 2
|
---|
3164 | # adj == -1, 0.1 <= self < 1
|
---|
3165 | num = str(10**-e-c)
|
---|
3166 | return len(num) + e - (num < "231") - 1
|
---|
3167 |
|
---|
3168 | def log10(self, context=None):
|
---|
3169 | """Returns the base 10 logarithm of self."""
|
---|
3170 |
|
---|
3171 | if context is None:
|
---|
3172 | context = getcontext()
|
---|
3173 |
|
---|
3174 | # log10(NaN) = NaN
|
---|
3175 | ans = self._check_nans(context=context)
|
---|
3176 | if ans:
|
---|
3177 | return ans
|
---|
3178 |
|
---|
3179 | # log10(0.0) == -Infinity
|
---|
3180 | if not self:
|
---|
3181 | return _NegativeInfinity
|
---|
3182 |
|
---|
3183 | # log10(Infinity) = Infinity
|
---|
3184 | if self._isinfinity() == 1:
|
---|
3185 | return _Infinity
|
---|
3186 |
|
---|
3187 | # log10(negative or -Infinity) raises InvalidOperation
|
---|
3188 | if self._sign == 1:
|
---|
3189 | return context._raise_error(InvalidOperation,
|
---|
3190 | 'log10 of a negative value')
|
---|
3191 |
|
---|
3192 | # log10(10**n) = n
|
---|
3193 | if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
|
---|
3194 | # answer may need rounding
|
---|
3195 | ans = Decimal(self._exp + len(self._int) - 1)
|
---|
3196 | else:
|
---|
3197 | # result is irrational, so necessarily inexact
|
---|
3198 | op = _WorkRep(self)
|
---|
3199 | c, e = op.int, op.exp
|
---|
3200 | p = context.prec
|
---|
3201 |
|
---|
3202 | # correctly rounded result: repeatedly increase precision
|
---|
3203 | # until result is unambiguously roundable
|
---|
3204 | places = p-self._log10_exp_bound()+2
|
---|
3205 | while True:
|
---|
3206 | coeff = _dlog10(c, e, places)
|
---|
3207 | # assert len(str(abs(coeff)))-p >= 1
|
---|
3208 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
---|
3209 | break
|
---|
3210 | places += 3
|
---|
3211 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
---|
3212 |
|
---|
3213 | context = context._shallow_copy()
|
---|
3214 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
3215 | ans = ans._fix(context)
|
---|
3216 | context.rounding = rounding
|
---|
3217 | return ans
|
---|
3218 |
|
---|
3219 | def logb(self, context=None):
|
---|
3220 | """ Returns the exponent of the magnitude of self's MSD.
|
---|
3221 |
|
---|
3222 | The result is the integer which is the exponent of the magnitude
|
---|
3223 | of the most significant digit of self (as though it were truncated
|
---|
3224 | to a single digit while maintaining the value of that digit and
|
---|
3225 | without limiting the resulting exponent).
|
---|
3226 | """
|
---|
3227 | # logb(NaN) = NaN
|
---|
3228 | ans = self._check_nans(context=context)
|
---|
3229 | if ans:
|
---|
3230 | return ans
|
---|
3231 |
|
---|
3232 | if context is None:
|
---|
3233 | context = getcontext()
|
---|
3234 |
|
---|
3235 | # logb(+/-Inf) = +Inf
|
---|
3236 | if self._isinfinity():
|
---|
3237 | return _Infinity
|
---|
3238 |
|
---|
3239 | # logb(0) = -Inf, DivisionByZero
|
---|
3240 | if not self:
|
---|
3241 | return context._raise_error(DivisionByZero, 'logb(0)', 1)
|
---|
3242 |
|
---|
3243 | # otherwise, simply return the adjusted exponent of self, as a
|
---|
3244 | # Decimal. Note that no attempt is made to fit the result
|
---|
3245 | # into the current context.
|
---|
3246 | ans = Decimal(self.adjusted())
|
---|
3247 | return ans._fix(context)
|
---|
3248 |
|
---|
3249 | def _islogical(self):
|
---|
3250 | """Return True if self is a logical operand.
|
---|
3251 |
|
---|
3252 | For being logical, it must be a finite number with a sign of 0,
|
---|
3253 | an exponent of 0, and a coefficient whose digits must all be
|
---|
3254 | either 0 or 1.
|
---|
3255 | """
|
---|
3256 | if self._sign != 0 or self._exp != 0:
|
---|
3257 | return False
|
---|
3258 | for dig in self._int:
|
---|
3259 | if dig not in '01':
|
---|
3260 | return False
|
---|
3261 | return True
|
---|
3262 |
|
---|
3263 | def _fill_logical(self, context, opa, opb):
|
---|
3264 | dif = context.prec - len(opa)
|
---|
3265 | if dif > 0:
|
---|
3266 | opa = '0'*dif + opa
|
---|
3267 | elif dif < 0:
|
---|
3268 | opa = opa[-context.prec:]
|
---|
3269 | dif = context.prec - len(opb)
|
---|
3270 | if dif > 0:
|
---|
3271 | opb = '0'*dif + opb
|
---|
3272 | elif dif < 0:
|
---|
3273 | opb = opb[-context.prec:]
|
---|
3274 | return opa, opb
|
---|
3275 |
|
---|
3276 | def logical_and(self, other, context=None):
|
---|
3277 | """Applies an 'and' operation between self and other's digits."""
|
---|
3278 | if context is None:
|
---|
3279 | context = getcontext()
|
---|
3280 |
|
---|
3281 | other = _convert_other(other, raiseit=True)
|
---|
3282 |
|
---|
3283 | if not self._islogical() or not other._islogical():
|
---|
3284 | return context._raise_error(InvalidOperation)
|
---|
3285 |
|
---|
3286 | # fill to context.prec
|
---|
3287 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3288 |
|
---|
3289 | # make the operation, and clean starting zeroes
|
---|
3290 | result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
|
---|
3291 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3292 |
|
---|
3293 | def logical_invert(self, context=None):
|
---|
3294 | """Invert all its digits."""
|
---|
3295 | if context is None:
|
---|
3296 | context = getcontext()
|
---|
3297 | return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
|
---|
3298 | context)
|
---|
3299 |
|
---|
3300 | def logical_or(self, other, context=None):
|
---|
3301 | """Applies an 'or' operation between self and other's digits."""
|
---|
3302 | if context is None:
|
---|
3303 | context = getcontext()
|
---|
3304 |
|
---|
3305 | other = _convert_other(other, raiseit=True)
|
---|
3306 |
|
---|
3307 | if not self._islogical() or not other._islogical():
|
---|
3308 | return context._raise_error(InvalidOperation)
|
---|
3309 |
|
---|
3310 | # fill to context.prec
|
---|
3311 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3312 |
|
---|
3313 | # make the operation, and clean starting zeroes
|
---|
3314 | result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
|
---|
3315 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3316 |
|
---|
3317 | def logical_xor(self, other, context=None):
|
---|
3318 | """Applies an 'xor' operation between self and other's digits."""
|
---|
3319 | if context is None:
|
---|
3320 | context = getcontext()
|
---|
3321 |
|
---|
3322 | other = _convert_other(other, raiseit=True)
|
---|
3323 |
|
---|
3324 | if not self._islogical() or not other._islogical():
|
---|
3325 | return context._raise_error(InvalidOperation)
|
---|
3326 |
|
---|
3327 | # fill to context.prec
|
---|
3328 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3329 |
|
---|
3330 | # make the operation, and clean starting zeroes
|
---|
3331 | result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
|
---|
3332 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3333 |
|
---|
3334 | def max_mag(self, other, context=None):
|
---|
3335 | """Compares the values numerically with their sign ignored."""
|
---|
3336 | other = _convert_other(other, raiseit=True)
|
---|
3337 |
|
---|
3338 | if context is None:
|
---|
3339 | context = getcontext()
|
---|
3340 |
|
---|
3341 | if self._is_special or other._is_special:
|
---|
3342 | # If one operand is a quiet NaN and the other is number, then the
|
---|
3343 | # number is always returned
|
---|
3344 | sn = self._isnan()
|
---|
3345 | on = other._isnan()
|
---|
3346 | if sn or on:
|
---|
3347 | if on == 1 and sn == 0:
|
---|
3348 | return self._fix(context)
|
---|
3349 | if sn == 1 and on == 0:
|
---|
3350 | return other._fix(context)
|
---|
3351 | return self._check_nans(other, context)
|
---|
3352 |
|
---|
3353 | c = self.copy_abs()._cmp(other.copy_abs())
|
---|
3354 | if c == 0:
|
---|
3355 | c = self.compare_total(other)
|
---|
3356 |
|
---|
3357 | if c == -1:
|
---|
3358 | ans = other
|
---|
3359 | else:
|
---|
3360 | ans = self
|
---|
3361 |
|
---|
3362 | return ans._fix(context)
|
---|
3363 |
|
---|
3364 | def min_mag(self, other, context=None):
|
---|
3365 | """Compares the values numerically with their sign ignored."""
|
---|
3366 | other = _convert_other(other, raiseit=True)
|
---|
3367 |
|
---|
3368 | if context is None:
|
---|
3369 | context = getcontext()
|
---|
3370 |
|
---|
3371 | if self._is_special or other._is_special:
|
---|
3372 | # If one operand is a quiet NaN and the other is number, then the
|
---|
3373 | # number is always returned
|
---|
3374 | sn = self._isnan()
|
---|
3375 | on = other._isnan()
|
---|
3376 | if sn or on:
|
---|
3377 | if on == 1 and sn == 0:
|
---|
3378 | return self._fix(context)
|
---|
3379 | if sn == 1 and on == 0:
|
---|
3380 | return other._fix(context)
|
---|
3381 | return self._check_nans(other, context)
|
---|
3382 |
|
---|
3383 | c = self.copy_abs()._cmp(other.copy_abs())
|
---|
3384 | if c == 0:
|
---|
3385 | c = self.compare_total(other)
|
---|
3386 |
|
---|
3387 | if c == -1:
|
---|
3388 | ans = self
|
---|
3389 | else:
|
---|
3390 | ans = other
|
---|
3391 |
|
---|
3392 | return ans._fix(context)
|
---|
3393 |
|
---|
3394 | def next_minus(self, context=None):
|
---|
3395 | """Returns the largest representable number smaller than itself."""
|
---|
3396 | if context is None:
|
---|
3397 | context = getcontext()
|
---|
3398 |
|
---|
3399 | ans = self._check_nans(context=context)
|
---|
3400 | if ans:
|
---|
3401 | return ans
|
---|
3402 |
|
---|
3403 | if self._isinfinity() == -1:
|
---|
3404 | return _NegativeInfinity
|
---|
3405 | if self._isinfinity() == 1:
|
---|
3406 | return _dec_from_triple(0, '9'*context.prec, context.Etop())
|
---|
3407 |
|
---|
3408 | context = context.copy()
|
---|
3409 | context._set_rounding(ROUND_FLOOR)
|
---|
3410 | context._ignore_all_flags()
|
---|
3411 | new_self = self._fix(context)
|
---|
3412 | if new_self != self:
|
---|
3413 | return new_self
|
---|
3414 | return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
|
---|
3415 | context)
|
---|
3416 |
|
---|
3417 | def next_plus(self, context=None):
|
---|
3418 | """Returns the smallest representable number larger than itself."""
|
---|
3419 | if context is None:
|
---|
3420 | context = getcontext()
|
---|
3421 |
|
---|
3422 | ans = self._check_nans(context=context)
|
---|
3423 | if ans:
|
---|
3424 | return ans
|
---|
3425 |
|
---|
3426 | if self._isinfinity() == 1:
|
---|
3427 | return _Infinity
|
---|
3428 | if self._isinfinity() == -1:
|
---|
3429 | return _dec_from_triple(1, '9'*context.prec, context.Etop())
|
---|
3430 |
|
---|
3431 | context = context.copy()
|
---|
3432 | context._set_rounding(ROUND_CEILING)
|
---|
3433 | context._ignore_all_flags()
|
---|
3434 | new_self = self._fix(context)
|
---|
3435 | if new_self != self:
|
---|
3436 | return new_self
|
---|
3437 | return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
|
---|
3438 | context)
|
---|
3439 |
|
---|
3440 | def next_toward(self, other, context=None):
|
---|
3441 | """Returns the number closest to self, in the direction towards other.
|
---|
3442 |
|
---|
3443 | The result is the closest representable number to self
|
---|
3444 | (excluding self) that is in the direction towards other,
|
---|
3445 | unless both have the same value. If the two operands are
|
---|
3446 | numerically equal, then the result is a copy of self with the
|
---|
3447 | sign set to be the same as the sign of other.
|
---|
3448 | """
|
---|
3449 | other = _convert_other(other, raiseit=True)
|
---|
3450 |
|
---|
3451 | if context is None:
|
---|
3452 | context = getcontext()
|
---|
3453 |
|
---|
3454 | ans = self._check_nans(other, context)
|
---|
3455 | if ans:
|
---|
3456 | return ans
|
---|
3457 |
|
---|
3458 | comparison = self._cmp(other)
|
---|
3459 | if comparison == 0:
|
---|
3460 | return self.copy_sign(other)
|
---|
3461 |
|
---|
3462 | if comparison == -1:
|
---|
3463 | ans = self.next_plus(context)
|
---|
3464 | else: # comparison == 1
|
---|
3465 | ans = self.next_minus(context)
|
---|
3466 |
|
---|
3467 | # decide which flags to raise using value of ans
|
---|
3468 | if ans._isinfinity():
|
---|
3469 | context._raise_error(Overflow,
|
---|
3470 | 'Infinite result from next_toward',
|
---|
3471 | ans._sign)
|
---|
3472 | context._raise_error(Inexact)
|
---|
3473 | context._raise_error(Rounded)
|
---|
3474 | elif ans.adjusted() < context.Emin:
|
---|
3475 | context._raise_error(Underflow)
|
---|
3476 | context._raise_error(Subnormal)
|
---|
3477 | context._raise_error(Inexact)
|
---|
3478 | context._raise_error(Rounded)
|
---|
3479 | # if precision == 1 then we don't raise Clamped for a
|
---|
3480 | # result 0E-Etiny.
|
---|
3481 | if not ans:
|
---|
3482 | context._raise_error(Clamped)
|
---|
3483 |
|
---|
3484 | return ans
|
---|
3485 |
|
---|
3486 | def number_class(self, context=None):
|
---|
3487 | """Returns an indication of the class of self.
|
---|
3488 |
|
---|
3489 | The class is one of the following strings:
|
---|
3490 | sNaN
|
---|
3491 | NaN
|
---|
3492 | -Infinity
|
---|
3493 | -Normal
|
---|
3494 | -Subnormal
|
---|
3495 | -Zero
|
---|
3496 | +Zero
|
---|
3497 | +Subnormal
|
---|
3498 | +Normal
|
---|
3499 | +Infinity
|
---|
3500 | """
|
---|
3501 | if self.is_snan():
|
---|
3502 | return "sNaN"
|
---|
3503 | if self.is_qnan():
|
---|
3504 | return "NaN"
|
---|
3505 | inf = self._isinfinity()
|
---|
3506 | if inf == 1:
|
---|
3507 | return "+Infinity"
|
---|
3508 | if inf == -1:
|
---|
3509 | return "-Infinity"
|
---|
3510 | if self.is_zero():
|
---|
3511 | if self._sign:
|
---|
3512 | return "-Zero"
|
---|
3513 | else:
|
---|
3514 | return "+Zero"
|
---|
3515 | if context is None:
|
---|
3516 | context = getcontext()
|
---|
3517 | if self.is_subnormal(context=context):
|
---|
3518 | if self._sign:
|
---|
3519 | return "-Subnormal"
|
---|
3520 | else:
|
---|
3521 | return "+Subnormal"
|
---|
3522 | # just a normal, regular, boring number, :)
|
---|
3523 | if self._sign:
|
---|
3524 | return "-Normal"
|
---|
3525 | else:
|
---|
3526 | return "+Normal"
|
---|
3527 |
|
---|
3528 | def radix(self):
|
---|
3529 | """Just returns 10, as this is Decimal, :)"""
|
---|
3530 | return Decimal(10)
|
---|
3531 |
|
---|
3532 | def rotate(self, other, context=None):
|
---|
3533 | """Returns a rotated copy of self, value-of-other times."""
|
---|
3534 | if context is None:
|
---|
3535 | context = getcontext()
|
---|
3536 |
|
---|
3537 | other = _convert_other(other, raiseit=True)
|
---|
3538 |
|
---|
3539 | ans = self._check_nans(other, context)
|
---|
3540 | if ans:
|
---|
3541 | return ans
|
---|
3542 |
|
---|
3543 | if other._exp != 0:
|
---|
3544 | return context._raise_error(InvalidOperation)
|
---|
3545 | if not (-context.prec <= int(other) <= context.prec):
|
---|
3546 | return context._raise_error(InvalidOperation)
|
---|
3547 |
|
---|
3548 | if self._isinfinity():
|
---|
3549 | return Decimal(self)
|
---|
3550 |
|
---|
3551 | # get values, pad if necessary
|
---|
3552 | torot = int(other)
|
---|
3553 | rotdig = self._int
|
---|
3554 | topad = context.prec - len(rotdig)
|
---|
3555 | if topad > 0:
|
---|
3556 | rotdig = '0'*topad + rotdig
|
---|
3557 | elif topad < 0:
|
---|
3558 | rotdig = rotdig[-topad:]
|
---|
3559 |
|
---|
3560 | # let's rotate!
|
---|
3561 | rotated = rotdig[torot:] + rotdig[:torot]
|
---|
3562 | return _dec_from_triple(self._sign,
|
---|
3563 | rotated.lstrip('0') or '0', self._exp)
|
---|
3564 |
|
---|
3565 | def scaleb(self, other, context=None):
|
---|
3566 | """Returns self operand after adding the second value to its exp."""
|
---|
3567 | if context is None:
|
---|
3568 | context = getcontext()
|
---|
3569 |
|
---|
3570 | other = _convert_other(other, raiseit=True)
|
---|
3571 |
|
---|
3572 | ans = self._check_nans(other, context)
|
---|
3573 | if ans:
|
---|
3574 | return ans
|
---|
3575 |
|
---|
3576 | if other._exp != 0:
|
---|
3577 | return context._raise_error(InvalidOperation)
|
---|
3578 | liminf = -2 * (context.Emax + context.prec)
|
---|
3579 | limsup = 2 * (context.Emax + context.prec)
|
---|
3580 | if not (liminf <= int(other) <= limsup):
|
---|
3581 | return context._raise_error(InvalidOperation)
|
---|
3582 |
|
---|
3583 | if self._isinfinity():
|
---|
3584 | return Decimal(self)
|
---|
3585 |
|
---|
3586 | d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
|
---|
3587 | d = d._fix(context)
|
---|
3588 | return d
|
---|
3589 |
|
---|
3590 | def shift(self, other, context=None):
|
---|
3591 | """Returns a shifted copy of self, value-of-other times."""
|
---|
3592 | if context is None:
|
---|
3593 | context = getcontext()
|
---|
3594 |
|
---|
3595 | other = _convert_other(other, raiseit=True)
|
---|
3596 |
|
---|
3597 | ans = self._check_nans(other, context)
|
---|
3598 | if ans:
|
---|
3599 | return ans
|
---|
3600 |
|
---|
3601 | if other._exp != 0:
|
---|
3602 | return context._raise_error(InvalidOperation)
|
---|
3603 | if not (-context.prec <= int(other) <= context.prec):
|
---|
3604 | return context._raise_error(InvalidOperation)
|
---|
3605 |
|
---|
3606 | if self._isinfinity():
|
---|
3607 | return Decimal(self)
|
---|
3608 |
|
---|
3609 | # get values, pad if necessary
|
---|
3610 | torot = int(other)
|
---|
3611 | rotdig = self._int
|
---|
3612 | topad = context.prec - len(rotdig)
|
---|
3613 | if topad > 0:
|
---|
3614 | rotdig = '0'*topad + rotdig
|
---|
3615 | elif topad < 0:
|
---|
3616 | rotdig = rotdig[-topad:]
|
---|
3617 |
|
---|
3618 | # let's shift!
|
---|
3619 | if torot < 0:
|
---|
3620 | shifted = rotdig[:torot]
|
---|
3621 | else:
|
---|
3622 | shifted = rotdig + '0'*torot
|
---|
3623 | shifted = shifted[-context.prec:]
|
---|
3624 |
|
---|
3625 | return _dec_from_triple(self._sign,
|
---|
3626 | shifted.lstrip('0') or '0', self._exp)
|
---|
3627 |
|
---|
3628 | # Support for pickling, copy, and deepcopy
|
---|
3629 | def __reduce__(self):
|
---|
3630 | return (self.__class__, (str(self),))
|
---|
3631 |
|
---|
3632 | def __copy__(self):
|
---|
3633 | if type(self) is Decimal:
|
---|
3634 | return self # I'm immutable; therefore I am my own clone
|
---|
3635 | return self.__class__(str(self))
|
---|
3636 |
|
---|
3637 | def __deepcopy__(self, memo):
|
---|
3638 | if type(self) is Decimal:
|
---|
3639 | return self # My components are also immutable
|
---|
3640 | return self.__class__(str(self))
|
---|
3641 |
|
---|
3642 | # PEP 3101 support. the _localeconv keyword argument should be
|
---|
3643 | # considered private: it's provided for ease of testing only.
|
---|
3644 | def __format__(self, specifier, context=None, _localeconv=None):
|
---|
3645 | """Format a Decimal instance according to the given specifier.
|
---|
3646 |
|
---|
3647 | The specifier should be a standard format specifier, with the
|
---|
3648 | form described in PEP 3101. Formatting types 'e', 'E', 'f',
|
---|
3649 | 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
|
---|
3650 | type is omitted it defaults to 'g' or 'G', depending on the
|
---|
3651 | value of context.capitals.
|
---|
3652 | """
|
---|
3653 |
|
---|
3654 | # Note: PEP 3101 says that if the type is not present then
|
---|
3655 | # there should be at least one digit after the decimal point.
|
---|
3656 | # We take the liberty of ignoring this requirement for
|
---|
3657 | # Decimal---it's presumably there to make sure that
|
---|
3658 | # format(float, '') behaves similarly to str(float).
|
---|
3659 | if context is None:
|
---|
3660 | context = getcontext()
|
---|
3661 |
|
---|
3662 | spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
|
---|
3663 |
|
---|
3664 | # special values don't care about the type or precision
|
---|
3665 | if self._is_special:
|
---|
3666 | sign = _format_sign(self._sign, spec)
|
---|
3667 | body = str(self.copy_abs())
|
---|
3668 | return _format_align(sign, body, spec)
|
---|
3669 |
|
---|
3670 | # a type of None defaults to 'g' or 'G', depending on context
|
---|
3671 | if spec['type'] is None:
|
---|
3672 | spec['type'] = ['g', 'G'][context.capitals]
|
---|
3673 |
|
---|
3674 | # if type is '%', adjust exponent of self accordingly
|
---|
3675 | if spec['type'] == '%':
|
---|
3676 | self = _dec_from_triple(self._sign, self._int, self._exp+2)
|
---|
3677 |
|
---|
3678 | # round if necessary, taking rounding mode from the context
|
---|
3679 | rounding = context.rounding
|
---|
3680 | precision = spec['precision']
|
---|
3681 | if precision is not None:
|
---|
3682 | if spec['type'] in 'eE':
|
---|
3683 | self = self._round(precision+1, rounding)
|
---|
3684 | elif spec['type'] in 'fF%':
|
---|
3685 | self = self._rescale(-precision, rounding)
|
---|
3686 | elif spec['type'] in 'gG' and len(self._int) > precision:
|
---|
3687 | self = self._round(precision, rounding)
|
---|
3688 | # special case: zeros with a positive exponent can't be
|
---|
3689 | # represented in fixed point; rescale them to 0e0.
|
---|
3690 | if not self and self._exp > 0 and spec['type'] in 'fF%':
|
---|
3691 | self = self._rescale(0, rounding)
|
---|
3692 |
|
---|
3693 | # figure out placement of the decimal point
|
---|
3694 | leftdigits = self._exp + len(self._int)
|
---|
3695 | if spec['type'] in 'eE':
|
---|
3696 | if not self and precision is not None:
|
---|
3697 | dotplace = 1 - precision
|
---|
3698 | else:
|
---|
3699 | dotplace = 1
|
---|
3700 | elif spec['type'] in 'fF%':
|
---|
3701 | dotplace = leftdigits
|
---|
3702 | elif spec['type'] in 'gG':
|
---|
3703 | if self._exp <= 0 and leftdigits > -6:
|
---|
3704 | dotplace = leftdigits
|
---|
3705 | else:
|
---|
3706 | dotplace = 1
|
---|
3707 |
|
---|
3708 | # find digits before and after decimal point, and get exponent
|
---|
3709 | if dotplace < 0:
|
---|
3710 | intpart = '0'
|
---|
3711 | fracpart = '0'*(-dotplace) + self._int
|
---|
3712 | elif dotplace > len(self._int):
|
---|
3713 | intpart = self._int + '0'*(dotplace-len(self._int))
|
---|
3714 | fracpart = ''
|
---|
3715 | else:
|
---|
3716 | intpart = self._int[:dotplace] or '0'
|
---|
3717 | fracpart = self._int[dotplace:]
|
---|
3718 | exp = leftdigits-dotplace
|
---|
3719 |
|
---|
3720 | # done with the decimal-specific stuff; hand over the rest
|
---|
3721 | # of the formatting to the _format_number function
|
---|
3722 | return _format_number(self._sign, intpart, fracpart, exp, spec)
|
---|
3723 |
|
---|
3724 | def _dec_from_triple(sign, coefficient, exponent, special=False):
|
---|
3725 | """Create a decimal instance directly, without any validation,
|
---|
3726 | normalization (e.g. removal of leading zeros) or argument
|
---|
3727 | conversion.
|
---|
3728 |
|
---|
3729 | This function is for *internal use only*.
|
---|
3730 | """
|
---|
3731 |
|
---|
3732 | self = object.__new__(Decimal)
|
---|
3733 | self._sign = sign
|
---|
3734 | self._int = coefficient
|
---|
3735 | self._exp = exponent
|
---|
3736 | self._is_special = special
|
---|
3737 |
|
---|
3738 | return self
|
---|
3739 |
|
---|
3740 | # Register Decimal as a kind of Number (an abstract base class).
|
---|
3741 | # However, do not register it as Real (because Decimals are not
|
---|
3742 | # interoperable with floats).
|
---|
3743 | _numbers.Number.register(Decimal)
|
---|
3744 |
|
---|
3745 |
|
---|
3746 | ##### Context class #######################################################
|
---|
3747 |
|
---|
3748 | class _ContextManager(object):
|
---|
3749 | """Context manager class to support localcontext().
|
---|
3750 |
|
---|
3751 | Sets a copy of the supplied context in __enter__() and restores
|
---|
3752 | the previous decimal context in __exit__()
|
---|
3753 | """
|
---|
3754 | def __init__(self, new_context):
|
---|
3755 | self.new_context = new_context.copy()
|
---|
3756 | def __enter__(self):
|
---|
3757 | self.saved_context = getcontext()
|
---|
3758 | setcontext(self.new_context)
|
---|
3759 | return self.new_context
|
---|
3760 | def __exit__(self, t, v, tb):
|
---|
3761 | setcontext(self.saved_context)
|
---|
3762 |
|
---|
3763 | class Context(object):
|
---|
3764 | """Contains the context for a Decimal instance.
|
---|
3765 |
|
---|
3766 | Contains:
|
---|
3767 | prec - precision (for use in rounding, division, square roots..)
|
---|
3768 | rounding - rounding type (how you round)
|
---|
3769 | traps - If traps[exception] = 1, then the exception is
|
---|
3770 | raised when it is caused. Otherwise, a value is
|
---|
3771 | substituted in.
|
---|
3772 | flags - When an exception is caused, flags[exception] is set.
|
---|
3773 | (Whether or not the trap_enabler is set)
|
---|
3774 | Should be reset by user of Decimal instance.
|
---|
3775 | Emin - Minimum exponent
|
---|
3776 | Emax - Maximum exponent
|
---|
3777 | capitals - If 1, 1*10^1 is printed as 1E+1.
|
---|
3778 | If 0, printed as 1e1
|
---|
3779 | _clamp - If 1, change exponents if too high (Default 0)
|
---|
3780 | """
|
---|
3781 |
|
---|
3782 | def __init__(self, prec=None, rounding=None,
|
---|
3783 | traps=None, flags=None,
|
---|
3784 | Emin=None, Emax=None,
|
---|
3785 | capitals=None, _clamp=0,
|
---|
3786 | _ignored_flags=None):
|
---|
3787 | # Set defaults; for everything except flags and _ignored_flags,
|
---|
3788 | # inherit from DefaultContext.
|
---|
3789 | try:
|
---|
3790 | dc = DefaultContext
|
---|
3791 | except NameError:
|
---|
3792 | pass
|
---|
3793 |
|
---|
3794 | self.prec = prec if prec is not None else dc.prec
|
---|
3795 | self.rounding = rounding if rounding is not None else dc.rounding
|
---|
3796 | self.Emin = Emin if Emin is not None else dc.Emin
|
---|
3797 | self.Emax = Emax if Emax is not None else dc.Emax
|
---|
3798 | self.capitals = capitals if capitals is not None else dc.capitals
|
---|
3799 | self._clamp = _clamp if _clamp is not None else dc._clamp
|
---|
3800 |
|
---|
3801 | if _ignored_flags is None:
|
---|
3802 | self._ignored_flags = []
|
---|
3803 | else:
|
---|
3804 | self._ignored_flags = _ignored_flags
|
---|
3805 |
|
---|
3806 | if traps is None:
|
---|
3807 | self.traps = dc.traps.copy()
|
---|
3808 | elif not isinstance(traps, dict):
|
---|
3809 | self.traps = dict((s, int(s in traps)) for s in _signals)
|
---|
3810 | else:
|
---|
3811 | self.traps = traps
|
---|
3812 |
|
---|
3813 | if flags is None:
|
---|
3814 | self.flags = dict.fromkeys(_signals, 0)
|
---|
3815 | elif not isinstance(flags, dict):
|
---|
3816 | self.flags = dict((s, int(s in flags)) for s in _signals)
|
---|
3817 | else:
|
---|
3818 | self.flags = flags
|
---|
3819 |
|
---|
3820 | def __repr__(self):
|
---|
3821 | """Show the current context."""
|
---|
3822 | s = []
|
---|
3823 | s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
|
---|
3824 | 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
|
---|
3825 | % vars(self))
|
---|
3826 | names = [f.__name__ for f, v in self.flags.items() if v]
|
---|
3827 | s.append('flags=[' + ', '.join(names) + ']')
|
---|
3828 | names = [t.__name__ for t, v in self.traps.items() if v]
|
---|
3829 | s.append('traps=[' + ', '.join(names) + ']')
|
---|
3830 | return ', '.join(s) + ')'
|
---|
3831 |
|
---|
3832 | def clear_flags(self):
|
---|
3833 | """Reset all flags to zero"""
|
---|
3834 | for flag in self.flags:
|
---|
3835 | self.flags[flag] = 0
|
---|
3836 |
|
---|
3837 | def _shallow_copy(self):
|
---|
3838 | """Returns a shallow copy from self."""
|
---|
3839 | nc = Context(self.prec, self.rounding, self.traps,
|
---|
3840 | self.flags, self.Emin, self.Emax,
|
---|
3841 | self.capitals, self._clamp, self._ignored_flags)
|
---|
3842 | return nc
|
---|
3843 |
|
---|
3844 | def copy(self):
|
---|
3845 | """Returns a deep copy from self."""
|
---|
3846 | nc = Context(self.prec, self.rounding, self.traps.copy(),
|
---|
3847 | self.flags.copy(), self.Emin, self.Emax,
|
---|
3848 | self.capitals, self._clamp, self._ignored_flags)
|
---|
3849 | return nc
|
---|
3850 | __copy__ = copy
|
---|
3851 |
|
---|
3852 | def _raise_error(self, condition, explanation = None, *args):
|
---|
3853 | """Handles an error
|
---|
3854 |
|
---|
3855 | If the flag is in _ignored_flags, returns the default response.
|
---|
3856 | Otherwise, it sets the flag, then, if the corresponding
|
---|
3857 | trap_enabler is set, it reraises the exception. Otherwise, it returns
|
---|
3858 | the default value after setting the flag.
|
---|
3859 | """
|
---|
3860 | error = _condition_map.get(condition, condition)
|
---|
3861 | if error in self._ignored_flags:
|
---|
3862 | # Don't touch the flag
|
---|
3863 | return error().handle(self, *args)
|
---|
3864 |
|
---|
3865 | self.flags[error] = 1
|
---|
3866 | if not self.traps[error]:
|
---|
3867 | # The errors define how to handle themselves.
|
---|
3868 | return condition().handle(self, *args)
|
---|
3869 |
|
---|
3870 | # Errors should only be risked on copies of the context
|
---|
3871 | # self._ignored_flags = []
|
---|
3872 | raise error(explanation)
|
---|
3873 |
|
---|
3874 | def _ignore_all_flags(self):
|
---|
3875 | """Ignore all flags, if they are raised"""
|
---|
3876 | return self._ignore_flags(*_signals)
|
---|
3877 |
|
---|
3878 | def _ignore_flags(self, *flags):
|
---|
3879 | """Ignore the flags, if they are raised"""
|
---|
3880 | # Do not mutate-- This way, copies of a context leave the original
|
---|
3881 | # alone.
|
---|
3882 | self._ignored_flags = (self._ignored_flags + list(flags))
|
---|
3883 | return list(flags)
|
---|
3884 |
|
---|
3885 | def _regard_flags(self, *flags):
|
---|
3886 | """Stop ignoring the flags, if they are raised"""
|
---|
3887 | if flags and isinstance(flags[0], (tuple,list)):
|
---|
3888 | flags = flags[0]
|
---|
3889 | for flag in flags:
|
---|
3890 | self._ignored_flags.remove(flag)
|
---|
3891 |
|
---|
3892 | # We inherit object.__hash__, so we must deny this explicitly
|
---|
3893 | __hash__ = None
|
---|
3894 |
|
---|
3895 | def Etiny(self):
|
---|
3896 | """Returns Etiny (= Emin - prec + 1)"""
|
---|
3897 | return int(self.Emin - self.prec + 1)
|
---|
3898 |
|
---|
3899 | def Etop(self):
|
---|
3900 | """Returns maximum exponent (= Emax - prec + 1)"""
|
---|
3901 | return int(self.Emax - self.prec + 1)
|
---|
3902 |
|
---|
3903 | def _set_rounding(self, type):
|
---|
3904 | """Sets the rounding type.
|
---|
3905 |
|
---|
3906 | Sets the rounding type, and returns the current (previous)
|
---|
3907 | rounding type. Often used like:
|
---|
3908 |
|
---|
3909 | context = context.copy()
|
---|
3910 | # so you don't change the calling context
|
---|
3911 | # if an error occurs in the middle.
|
---|
3912 | rounding = context._set_rounding(ROUND_UP)
|
---|
3913 | val = self.__sub__(other, context=context)
|
---|
3914 | context._set_rounding(rounding)
|
---|
3915 |
|
---|
3916 | This will make it round up for that operation.
|
---|
3917 | """
|
---|
3918 | rounding = self.rounding
|
---|
3919 | self.rounding= type
|
---|
3920 | return rounding
|
---|
3921 |
|
---|
3922 | def create_decimal(self, num='0'):
|
---|
3923 | """Creates a new Decimal instance but using self as context.
|
---|
3924 |
|
---|
3925 | This method implements the to-number operation of the
|
---|
3926 | IBM Decimal specification."""
|
---|
3927 |
|
---|
3928 | if isinstance(num, basestring) and num != num.strip():
|
---|
3929 | return self._raise_error(ConversionSyntax,
|
---|
3930 | "no trailing or leading whitespace is "
|
---|
3931 | "permitted.")
|
---|
3932 |
|
---|
3933 | d = Decimal(num, context=self)
|
---|
3934 | if d._isnan() and len(d._int) > self.prec - self._clamp:
|
---|
3935 | return self._raise_error(ConversionSyntax,
|
---|
3936 | "diagnostic info too long in NaN")
|
---|
3937 | return d._fix(self)
|
---|
3938 |
|
---|
3939 | def create_decimal_from_float(self, f):
|
---|
3940 | """Creates a new Decimal instance from a float but rounding using self
|
---|
3941 | as the context.
|
---|
3942 |
|
---|
3943 | >>> context = Context(prec=5, rounding=ROUND_DOWN)
|
---|
3944 | >>> context.create_decimal_from_float(3.1415926535897932)
|
---|
3945 | Decimal('3.1415')
|
---|
3946 | >>> context = Context(prec=5, traps=[Inexact])
|
---|
3947 | >>> context.create_decimal_from_float(3.1415926535897932)
|
---|
3948 | Traceback (most recent call last):
|
---|
3949 | ...
|
---|
3950 | Inexact: None
|
---|
3951 |
|
---|
3952 | """
|
---|
3953 | d = Decimal.from_float(f) # An exact conversion
|
---|
3954 | return d._fix(self) # Apply the context rounding
|
---|
3955 |
|
---|
3956 | # Methods
|
---|
3957 | def abs(self, a):
|
---|
3958 | """Returns the absolute value of the operand.
|
---|
3959 |
|
---|
3960 | If the operand is negative, the result is the same as using the minus
|
---|
3961 | operation on the operand. Otherwise, the result is the same as using
|
---|
3962 | the plus operation on the operand.
|
---|
3963 |
|
---|
3964 | >>> ExtendedContext.abs(Decimal('2.1'))
|
---|
3965 | Decimal('2.1')
|
---|
3966 | >>> ExtendedContext.abs(Decimal('-100'))
|
---|
3967 | Decimal('100')
|
---|
3968 | >>> ExtendedContext.abs(Decimal('101.5'))
|
---|
3969 | Decimal('101.5')
|
---|
3970 | >>> ExtendedContext.abs(Decimal('-101.5'))
|
---|
3971 | Decimal('101.5')
|
---|
3972 | >>> ExtendedContext.abs(-1)
|
---|
3973 | Decimal('1')
|
---|
3974 | """
|
---|
3975 | a = _convert_other(a, raiseit=True)
|
---|
3976 | return a.__abs__(context=self)
|
---|
3977 |
|
---|
3978 | def add(self, a, b):
|
---|
3979 | """Return the sum of the two operands.
|
---|
3980 |
|
---|
3981 | >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
|
---|
3982 | Decimal('19.00')
|
---|
3983 | >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
|
---|
3984 | Decimal('1.02E+4')
|
---|
3985 | >>> ExtendedContext.add(1, Decimal(2))
|
---|
3986 | Decimal('3')
|
---|
3987 | >>> ExtendedContext.add(Decimal(8), 5)
|
---|
3988 | Decimal('13')
|
---|
3989 | >>> ExtendedContext.add(5, 5)
|
---|
3990 | Decimal('10')
|
---|
3991 | """
|
---|
3992 | a = _convert_other(a, raiseit=True)
|
---|
3993 | r = a.__add__(b, context=self)
|
---|
3994 | if r is NotImplemented:
|
---|
3995 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
3996 | else:
|
---|
3997 | return r
|
---|
3998 |
|
---|
3999 | def _apply(self, a):
|
---|
4000 | return str(a._fix(self))
|
---|
4001 |
|
---|
4002 | def canonical(self, a):
|
---|
4003 | """Returns the same Decimal object.
|
---|
4004 |
|
---|
4005 | As we do not have different encodings for the same number, the
|
---|
4006 | received object already is in its canonical form.
|
---|
4007 |
|
---|
4008 | >>> ExtendedContext.canonical(Decimal('2.50'))
|
---|
4009 | Decimal('2.50')
|
---|
4010 | """
|
---|
4011 | return a.canonical(context=self)
|
---|
4012 |
|
---|
4013 | def compare(self, a, b):
|
---|
4014 | """Compares values numerically.
|
---|
4015 |
|
---|
4016 | If the signs of the operands differ, a value representing each operand
|
---|
4017 | ('-1' if the operand is less than zero, '0' if the operand is zero or
|
---|
4018 | negative zero, or '1' if the operand is greater than zero) is used in
|
---|
4019 | place of that operand for the comparison instead of the actual
|
---|
4020 | operand.
|
---|
4021 |
|
---|
4022 | The comparison is then effected by subtracting the second operand from
|
---|
4023 | the first and then returning a value according to the result of the
|
---|
4024 | subtraction: '-1' if the result is less than zero, '0' if the result is
|
---|
4025 | zero or negative zero, or '1' if the result is greater than zero.
|
---|
4026 |
|
---|
4027 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
|
---|
4028 | Decimal('-1')
|
---|
4029 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
|
---|
4030 | Decimal('0')
|
---|
4031 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
|
---|
4032 | Decimal('0')
|
---|
4033 | >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
|
---|
4034 | Decimal('1')
|
---|
4035 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
|
---|
4036 | Decimal('1')
|
---|
4037 | >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
|
---|
4038 | Decimal('-1')
|
---|
4039 | >>> ExtendedContext.compare(1, 2)
|
---|
4040 | Decimal('-1')
|
---|
4041 | >>> ExtendedContext.compare(Decimal(1), 2)
|
---|
4042 | Decimal('-1')
|
---|
4043 | >>> ExtendedContext.compare(1, Decimal(2))
|
---|
4044 | Decimal('-1')
|
---|
4045 | """
|
---|
4046 | a = _convert_other(a, raiseit=True)
|
---|
4047 | return a.compare(b, context=self)
|
---|
4048 |
|
---|
4049 | def compare_signal(self, a, b):
|
---|
4050 | """Compares the values of the two operands numerically.
|
---|
4051 |
|
---|
4052 | It's pretty much like compare(), but all NaNs signal, with signaling
|
---|
4053 | NaNs taking precedence over quiet NaNs.
|
---|
4054 |
|
---|
4055 | >>> c = ExtendedContext
|
---|
4056 | >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
|
---|
4057 | Decimal('-1')
|
---|
4058 | >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
|
---|
4059 | Decimal('0')
|
---|
4060 | >>> c.flags[InvalidOperation] = 0
|
---|
4061 | >>> print c.flags[InvalidOperation]
|
---|
4062 | 0
|
---|
4063 | >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
|
---|
4064 | Decimal('NaN')
|
---|
4065 | >>> print c.flags[InvalidOperation]
|
---|
4066 | 1
|
---|
4067 | >>> c.flags[InvalidOperation] = 0
|
---|
4068 | >>> print c.flags[InvalidOperation]
|
---|
4069 | 0
|
---|
4070 | >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
|
---|
4071 | Decimal('NaN')
|
---|
4072 | >>> print c.flags[InvalidOperation]
|
---|
4073 | 1
|
---|
4074 | >>> c.compare_signal(-1, 2)
|
---|
4075 | Decimal('-1')
|
---|
4076 | >>> c.compare_signal(Decimal(-1), 2)
|
---|
4077 | Decimal('-1')
|
---|
4078 | >>> c.compare_signal(-1, Decimal(2))
|
---|
4079 | Decimal('-1')
|
---|
4080 | """
|
---|
4081 | a = _convert_other(a, raiseit=True)
|
---|
4082 | return a.compare_signal(b, context=self)
|
---|
4083 |
|
---|
4084 | def compare_total(self, a, b):
|
---|
4085 | """Compares two operands using their abstract representation.
|
---|
4086 |
|
---|
4087 | This is not like the standard compare, which use their numerical
|
---|
4088 | value. Note that a total ordering is defined for all possible abstract
|
---|
4089 | representations.
|
---|
4090 |
|
---|
4091 | >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
|
---|
4092 | Decimal('-1')
|
---|
4093 | >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
|
---|
4094 | Decimal('-1')
|
---|
4095 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
|
---|
4096 | Decimal('-1')
|
---|
4097 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
|
---|
4098 | Decimal('0')
|
---|
4099 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
|
---|
4100 | Decimal('1')
|
---|
4101 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
|
---|
4102 | Decimal('-1')
|
---|
4103 | >>> ExtendedContext.compare_total(1, 2)
|
---|
4104 | Decimal('-1')
|
---|
4105 | >>> ExtendedContext.compare_total(Decimal(1), 2)
|
---|
4106 | Decimal('-1')
|
---|
4107 | >>> ExtendedContext.compare_total(1, Decimal(2))
|
---|
4108 | Decimal('-1')
|
---|
4109 | """
|
---|
4110 | a = _convert_other(a, raiseit=True)
|
---|
4111 | return a.compare_total(b)
|
---|
4112 |
|
---|
4113 | def compare_total_mag(self, a, b):
|
---|
4114 | """Compares two operands using their abstract representation ignoring sign.
|
---|
4115 |
|
---|
4116 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
---|
4117 | """
|
---|
4118 | a = _convert_other(a, raiseit=True)
|
---|
4119 | return a.compare_total_mag(b)
|
---|
4120 |
|
---|
4121 | def copy_abs(self, a):
|
---|
4122 | """Returns a copy of the operand with the sign set to 0.
|
---|
4123 |
|
---|
4124 | >>> ExtendedContext.copy_abs(Decimal('2.1'))
|
---|
4125 | Decimal('2.1')
|
---|
4126 | >>> ExtendedContext.copy_abs(Decimal('-100'))
|
---|
4127 | Decimal('100')
|
---|
4128 | >>> ExtendedContext.copy_abs(-1)
|
---|
4129 | Decimal('1')
|
---|
4130 | """
|
---|
4131 | a = _convert_other(a, raiseit=True)
|
---|
4132 | return a.copy_abs()
|
---|
4133 |
|
---|
4134 | def copy_decimal(self, a):
|
---|
4135 | """Returns a copy of the decimal object.
|
---|
4136 |
|
---|
4137 | >>> ExtendedContext.copy_decimal(Decimal('2.1'))
|
---|
4138 | Decimal('2.1')
|
---|
4139 | >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
|
---|
4140 | Decimal('-1.00')
|
---|
4141 | >>> ExtendedContext.copy_decimal(1)
|
---|
4142 | Decimal('1')
|
---|
4143 | """
|
---|
4144 | a = _convert_other(a, raiseit=True)
|
---|
4145 | return Decimal(a)
|
---|
4146 |
|
---|
4147 | def copy_negate(self, a):
|
---|
4148 | """Returns a copy of the operand with the sign inverted.
|
---|
4149 |
|
---|
4150 | >>> ExtendedContext.copy_negate(Decimal('101.5'))
|
---|
4151 | Decimal('-101.5')
|
---|
4152 | >>> ExtendedContext.copy_negate(Decimal('-101.5'))
|
---|
4153 | Decimal('101.5')
|
---|
4154 | >>> ExtendedContext.copy_negate(1)
|
---|
4155 | Decimal('-1')
|
---|
4156 | """
|
---|
4157 | a = _convert_other(a, raiseit=True)
|
---|
4158 | return a.copy_negate()
|
---|
4159 |
|
---|
4160 | def copy_sign(self, a, b):
|
---|
4161 | """Copies the second operand's sign to the first one.
|
---|
4162 |
|
---|
4163 | In detail, it returns a copy of the first operand with the sign
|
---|
4164 | equal to the sign of the second operand.
|
---|
4165 |
|
---|
4166 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
|
---|
4167 | Decimal('1.50')
|
---|
4168 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
|
---|
4169 | Decimal('1.50')
|
---|
4170 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
|
---|
4171 | Decimal('-1.50')
|
---|
4172 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
|
---|
4173 | Decimal('-1.50')
|
---|
4174 | >>> ExtendedContext.copy_sign(1, -2)
|
---|
4175 | Decimal('-1')
|
---|
4176 | >>> ExtendedContext.copy_sign(Decimal(1), -2)
|
---|
4177 | Decimal('-1')
|
---|
4178 | >>> ExtendedContext.copy_sign(1, Decimal(-2))
|
---|
4179 | Decimal('-1')
|
---|
4180 | """
|
---|
4181 | a = _convert_other(a, raiseit=True)
|
---|
4182 | return a.copy_sign(b)
|
---|
4183 |
|
---|
4184 | def divide(self, a, b):
|
---|
4185 | """Decimal division in a specified context.
|
---|
4186 |
|
---|
4187 | >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
|
---|
4188 | Decimal('0.333333333')
|
---|
4189 | >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
|
---|
4190 | Decimal('0.666666667')
|
---|
4191 | >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
|
---|
4192 | Decimal('2.5')
|
---|
4193 | >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
|
---|
4194 | Decimal('0.1')
|
---|
4195 | >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
|
---|
4196 | Decimal('1')
|
---|
4197 | >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
|
---|
4198 | Decimal('4.00')
|
---|
4199 | >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
|
---|
4200 | Decimal('1.20')
|
---|
4201 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
|
---|
4202 | Decimal('10')
|
---|
4203 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
|
---|
4204 | Decimal('1000')
|
---|
4205 | >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
|
---|
4206 | Decimal('1.20E+6')
|
---|
4207 | >>> ExtendedContext.divide(5, 5)
|
---|
4208 | Decimal('1')
|
---|
4209 | >>> ExtendedContext.divide(Decimal(5), 5)
|
---|
4210 | Decimal('1')
|
---|
4211 | >>> ExtendedContext.divide(5, Decimal(5))
|
---|
4212 | Decimal('1')
|
---|
4213 | """
|
---|
4214 | a = _convert_other(a, raiseit=True)
|
---|
4215 | r = a.__div__(b, context=self)
|
---|
4216 | if r is NotImplemented:
|
---|
4217 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
4218 | else:
|
---|
4219 | return r
|
---|
4220 |
|
---|
4221 | def divide_int(self, a, b):
|
---|
4222 | """Divides two numbers and returns the integer part of the result.
|
---|
4223 |
|
---|
4224 | >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
|
---|
4225 | Decimal('0')
|
---|
4226 | >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
|
---|
4227 | Decimal('3')
|
---|
4228 | >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
|
---|
4229 | Decimal('3')
|
---|
4230 | >>> ExtendedContext.divide_int(10, 3)
|
---|
4231 | Decimal('3')
|
---|
4232 | >>> ExtendedContext.divide_int(Decimal(10), 3)
|
---|
4233 | Decimal('3')
|
---|
4234 | >>> ExtendedContext.divide_int(10, Decimal(3))
|
---|
4235 | Decimal('3')
|
---|
4236 | """
|
---|
4237 | a = _convert_other(a, raiseit=True)
|
---|
4238 | r = a.__floordiv__(b, context=self)
|
---|
4239 | if r is NotImplemented:
|
---|
4240 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
4241 | else:
|
---|
4242 | return r
|
---|
4243 |
|
---|
4244 | def divmod(self, a, b):
|
---|
4245 | """Return (a // b, a % b).
|
---|
4246 |
|
---|
4247 | >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
|
---|
4248 | (Decimal('2'), Decimal('2'))
|
---|
4249 | >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
|
---|
4250 | (Decimal('2'), Decimal('0'))
|
---|
4251 | >>> ExtendedContext.divmod(8, 4)
|
---|
4252 | (Decimal('2'), Decimal('0'))
|
---|
4253 | >>> ExtendedContext.divmod(Decimal(8), 4)
|
---|
4254 | (Decimal('2'), Decimal('0'))
|
---|
4255 | >>> ExtendedContext.divmod(8, Decimal(4))
|
---|
4256 | (Decimal('2'), Decimal('0'))
|
---|
4257 | """
|
---|
4258 | a = _convert_other(a, raiseit=True)
|
---|
4259 | r = a.__divmod__(b, context=self)
|
---|
4260 | if r is NotImplemented:
|
---|
4261 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
4262 | else:
|
---|
4263 | return r
|
---|
4264 |
|
---|
4265 | def exp(self, a):
|
---|
4266 | """Returns e ** a.
|
---|
4267 |
|
---|
4268 | >>> c = ExtendedContext.copy()
|
---|
4269 | >>> c.Emin = -999
|
---|
4270 | >>> c.Emax = 999
|
---|
4271 | >>> c.exp(Decimal('-Infinity'))
|
---|
4272 | Decimal('0')
|
---|
4273 | >>> c.exp(Decimal('-1'))
|
---|
4274 | Decimal('0.367879441')
|
---|
4275 | >>> c.exp(Decimal('0'))
|
---|
4276 | Decimal('1')
|
---|
4277 | >>> c.exp(Decimal('1'))
|
---|
4278 | Decimal('2.71828183')
|
---|
4279 | >>> c.exp(Decimal('0.693147181'))
|
---|
4280 | Decimal('2.00000000')
|
---|
4281 | >>> c.exp(Decimal('+Infinity'))
|
---|
4282 | Decimal('Infinity')
|
---|
4283 | >>> c.exp(10)
|
---|
4284 | Decimal('22026.4658')
|
---|
4285 | """
|
---|
4286 | a =_convert_other(a, raiseit=True)
|
---|
4287 | return a.exp(context=self)
|
---|
4288 |
|
---|
4289 | def fma(self, a, b, c):
|
---|
4290 | """Returns a multiplied by b, plus c.
|
---|
4291 |
|
---|
4292 | The first two operands are multiplied together, using multiply,
|
---|
4293 | the third operand is then added to the result of that
|
---|
4294 | multiplication, using add, all with only one final rounding.
|
---|
4295 |
|
---|
4296 | >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
|
---|
4297 | Decimal('22')
|
---|
4298 | >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
|
---|
4299 | Decimal('-8')
|
---|
4300 | >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
|
---|
4301 | Decimal('1.38435736E+12')
|
---|
4302 | >>> ExtendedContext.fma(1, 3, 4)
|
---|
4303 | Decimal('7')
|
---|
4304 | >>> ExtendedContext.fma(1, Decimal(3), 4)
|
---|
4305 | Decimal('7')
|
---|
4306 | >>> ExtendedContext.fma(1, 3, Decimal(4))
|
---|
4307 | Decimal('7')
|
---|
4308 | """
|
---|
4309 | a = _convert_other(a, raiseit=True)
|
---|
4310 | return a.fma(b, c, context=self)
|
---|
4311 |
|
---|
4312 | def is_canonical(self, a):
|
---|
4313 | """Return True if the operand is canonical; otherwise return False.
|
---|
4314 |
|
---|
4315 | Currently, the encoding of a Decimal instance is always
|
---|
4316 | canonical, so this method returns True for any Decimal.
|
---|
4317 |
|
---|
4318 | >>> ExtendedContext.is_canonical(Decimal('2.50'))
|
---|
4319 | True
|
---|
4320 | """
|
---|
4321 | return a.is_canonical()
|
---|
4322 |
|
---|
4323 | def is_finite(self, a):
|
---|
4324 | """Return True if the operand is finite; otherwise return False.
|
---|
4325 |
|
---|
4326 | A Decimal instance is considered finite if it is neither
|
---|
4327 | infinite nor a NaN.
|
---|
4328 |
|
---|
4329 | >>> ExtendedContext.is_finite(Decimal('2.50'))
|
---|
4330 | True
|
---|
4331 | >>> ExtendedContext.is_finite(Decimal('-0.3'))
|
---|
4332 | True
|
---|
4333 | >>> ExtendedContext.is_finite(Decimal('0'))
|
---|
4334 | True
|
---|
4335 | >>> ExtendedContext.is_finite(Decimal('Inf'))
|
---|
4336 | False
|
---|
4337 | >>> ExtendedContext.is_finite(Decimal('NaN'))
|
---|
4338 | False
|
---|
4339 | >>> ExtendedContext.is_finite(1)
|
---|
4340 | True
|
---|
4341 | """
|
---|
4342 | a = _convert_other(a, raiseit=True)
|
---|
4343 | return a.is_finite()
|
---|
4344 |
|
---|
4345 | def is_infinite(self, a):
|
---|
4346 | """Return True if the operand is infinite; otherwise return False.
|
---|
4347 |
|
---|
4348 | >>> ExtendedContext.is_infinite(Decimal('2.50'))
|
---|
4349 | False
|
---|
4350 | >>> ExtendedContext.is_infinite(Decimal('-Inf'))
|
---|
4351 | True
|
---|
4352 | >>> ExtendedContext.is_infinite(Decimal('NaN'))
|
---|
4353 | False
|
---|
4354 | >>> ExtendedContext.is_infinite(1)
|
---|
4355 | False
|
---|
4356 | """
|
---|
4357 | a = _convert_other(a, raiseit=True)
|
---|
4358 | return a.is_infinite()
|
---|
4359 |
|
---|
4360 | def is_nan(self, a):
|
---|
4361 | """Return True if the operand is a qNaN or sNaN;
|
---|
4362 | otherwise return False.
|
---|
4363 |
|
---|
4364 | >>> ExtendedContext.is_nan(Decimal('2.50'))
|
---|
4365 | False
|
---|
4366 | >>> ExtendedContext.is_nan(Decimal('NaN'))
|
---|
4367 | True
|
---|
4368 | >>> ExtendedContext.is_nan(Decimal('-sNaN'))
|
---|
4369 | True
|
---|
4370 | >>> ExtendedContext.is_nan(1)
|
---|
4371 | False
|
---|
4372 | """
|
---|
4373 | a = _convert_other(a, raiseit=True)
|
---|
4374 | return a.is_nan()
|
---|
4375 |
|
---|
4376 | def is_normal(self, a):
|
---|
4377 | """Return True if the operand is a normal number;
|
---|
4378 | otherwise return False.
|
---|
4379 |
|
---|
4380 | >>> c = ExtendedContext.copy()
|
---|
4381 | >>> c.Emin = -999
|
---|
4382 | >>> c.Emax = 999
|
---|
4383 | >>> c.is_normal(Decimal('2.50'))
|
---|
4384 | True
|
---|
4385 | >>> c.is_normal(Decimal('0.1E-999'))
|
---|
4386 | False
|
---|
4387 | >>> c.is_normal(Decimal('0.00'))
|
---|
4388 | False
|
---|
4389 | >>> c.is_normal(Decimal('-Inf'))
|
---|
4390 | False
|
---|
4391 | >>> c.is_normal(Decimal('NaN'))
|
---|
4392 | False
|
---|
4393 | >>> c.is_normal(1)
|
---|
4394 | True
|
---|
4395 | """
|
---|
4396 | a = _convert_other(a, raiseit=True)
|
---|
4397 | return a.is_normal(context=self)
|
---|
4398 |
|
---|
4399 | def is_qnan(self, a):
|
---|
4400 | """Return True if the operand is a quiet NaN; otherwise return False.
|
---|
4401 |
|
---|
4402 | >>> ExtendedContext.is_qnan(Decimal('2.50'))
|
---|
4403 | False
|
---|
4404 | >>> ExtendedContext.is_qnan(Decimal('NaN'))
|
---|
4405 | True
|
---|
4406 | >>> ExtendedContext.is_qnan(Decimal('sNaN'))
|
---|
4407 | False
|
---|
4408 | >>> ExtendedContext.is_qnan(1)
|
---|
4409 | False
|
---|
4410 | """
|
---|
4411 | a = _convert_other(a, raiseit=True)
|
---|
4412 | return a.is_qnan()
|
---|
4413 |
|
---|
4414 | def is_signed(self, a):
|
---|
4415 | """Return True if the operand is negative; otherwise return False.
|
---|
4416 |
|
---|
4417 | >>> ExtendedContext.is_signed(Decimal('2.50'))
|
---|
4418 | False
|
---|
4419 | >>> ExtendedContext.is_signed(Decimal('-12'))
|
---|
4420 | True
|
---|
4421 | >>> ExtendedContext.is_signed(Decimal('-0'))
|
---|
4422 | True
|
---|
4423 | >>> ExtendedContext.is_signed(8)
|
---|
4424 | False
|
---|
4425 | >>> ExtendedContext.is_signed(-8)
|
---|
4426 | True
|
---|
4427 | """
|
---|
4428 | a = _convert_other(a, raiseit=True)
|
---|
4429 | return a.is_signed()
|
---|
4430 |
|
---|
4431 | def is_snan(self, a):
|
---|
4432 | """Return True if the operand is a signaling NaN;
|
---|
4433 | otherwise return False.
|
---|
4434 |
|
---|
4435 | >>> ExtendedContext.is_snan(Decimal('2.50'))
|
---|
4436 | False
|
---|
4437 | >>> ExtendedContext.is_snan(Decimal('NaN'))
|
---|
4438 | False
|
---|
4439 | >>> ExtendedContext.is_snan(Decimal('sNaN'))
|
---|
4440 | True
|
---|
4441 | >>> ExtendedContext.is_snan(1)
|
---|
4442 | False
|
---|
4443 | """
|
---|
4444 | a = _convert_other(a, raiseit=True)
|
---|
4445 | return a.is_snan()
|
---|
4446 |
|
---|
4447 | def is_subnormal(self, a):
|
---|
4448 | """Return True if the operand is subnormal; otherwise return False.
|
---|
4449 |
|
---|
4450 | >>> c = ExtendedContext.copy()
|
---|
4451 | >>> c.Emin = -999
|
---|
4452 | >>> c.Emax = 999
|
---|
4453 | >>> c.is_subnormal(Decimal('2.50'))
|
---|
4454 | False
|
---|
4455 | >>> c.is_subnormal(Decimal('0.1E-999'))
|
---|
4456 | True
|
---|
4457 | >>> c.is_subnormal(Decimal('0.00'))
|
---|
4458 | False
|
---|
4459 | >>> c.is_subnormal(Decimal('-Inf'))
|
---|
4460 | False
|
---|
4461 | >>> c.is_subnormal(Decimal('NaN'))
|
---|
4462 | False
|
---|
4463 | >>> c.is_subnormal(1)
|
---|
4464 | False
|
---|
4465 | """
|
---|
4466 | a = _convert_other(a, raiseit=True)
|
---|
4467 | return a.is_subnormal(context=self)
|
---|
4468 |
|
---|
4469 | def is_zero(self, a):
|
---|
4470 | """Return True if the operand is a zero; otherwise return False.
|
---|
4471 |
|
---|
4472 | >>> ExtendedContext.is_zero(Decimal('0'))
|
---|
4473 | True
|
---|
4474 | >>> ExtendedContext.is_zero(Decimal('2.50'))
|
---|
4475 | False
|
---|
4476 | >>> ExtendedContext.is_zero(Decimal('-0E+2'))
|
---|
4477 | True
|
---|
4478 | >>> ExtendedContext.is_zero(1)
|
---|
4479 | False
|
---|
4480 | >>> ExtendedContext.is_zero(0)
|
---|
4481 | True
|
---|
4482 | """
|
---|
4483 | a = _convert_other(a, raiseit=True)
|
---|
4484 | return a.is_zero()
|
---|
4485 |
|
---|
4486 | def ln(self, a):
|
---|
4487 | """Returns the natural (base e) logarithm of the operand.
|
---|
4488 |
|
---|
4489 | >>> c = ExtendedContext.copy()
|
---|
4490 | >>> c.Emin = -999
|
---|
4491 | >>> c.Emax = 999
|
---|
4492 | >>> c.ln(Decimal('0'))
|
---|
4493 | Decimal('-Infinity')
|
---|
4494 | >>> c.ln(Decimal('1.000'))
|
---|
4495 | Decimal('0')
|
---|
4496 | >>> c.ln(Decimal('2.71828183'))
|
---|
4497 | Decimal('1.00000000')
|
---|
4498 | >>> c.ln(Decimal('10'))
|
---|
4499 | Decimal('2.30258509')
|
---|
4500 | >>> c.ln(Decimal('+Infinity'))
|
---|
4501 | Decimal('Infinity')
|
---|
4502 | >>> c.ln(1)
|
---|
4503 | Decimal('0')
|
---|
4504 | """
|
---|
4505 | a = _convert_other(a, raiseit=True)
|
---|
4506 | return a.ln(context=self)
|
---|
4507 |
|
---|
4508 | def log10(self, a):
|
---|
4509 | """Returns the base 10 logarithm of the operand.
|
---|
4510 |
|
---|
4511 | >>> c = ExtendedContext.copy()
|
---|
4512 | >>> c.Emin = -999
|
---|
4513 | >>> c.Emax = 999
|
---|
4514 | >>> c.log10(Decimal('0'))
|
---|
4515 | Decimal('-Infinity')
|
---|
4516 | >>> c.log10(Decimal('0.001'))
|
---|
4517 | Decimal('-3')
|
---|
4518 | >>> c.log10(Decimal('1.000'))
|
---|
4519 | Decimal('0')
|
---|
4520 | >>> c.log10(Decimal('2'))
|
---|
4521 | Decimal('0.301029996')
|
---|
4522 | >>> c.log10(Decimal('10'))
|
---|
4523 | Decimal('1')
|
---|
4524 | >>> c.log10(Decimal('70'))
|
---|
4525 | Decimal('1.84509804')
|
---|
4526 | >>> c.log10(Decimal('+Infinity'))
|
---|
4527 | Decimal('Infinity')
|
---|
4528 | >>> c.log10(0)
|
---|
4529 | Decimal('-Infinity')
|
---|
4530 | >>> c.log10(1)
|
---|
4531 | Decimal('0')
|
---|
4532 | """
|
---|
4533 | a = _convert_other(a, raiseit=True)
|
---|
4534 | return a.log10(context=self)
|
---|
4535 |
|
---|
4536 | def logb(self, a):
|
---|
4537 | """ Returns the exponent of the magnitude of the operand's MSD.
|
---|
4538 |
|
---|
4539 | The result is the integer which is the exponent of the magnitude
|
---|
4540 | of the most significant digit of the operand (as though the
|
---|
4541 | operand were truncated to a single digit while maintaining the
|
---|
4542 | value of that digit and without limiting the resulting exponent).
|
---|
4543 |
|
---|
4544 | >>> ExtendedContext.logb(Decimal('250'))
|
---|
4545 | Decimal('2')
|
---|
4546 | >>> ExtendedContext.logb(Decimal('2.50'))
|
---|
4547 | Decimal('0')
|
---|
4548 | >>> ExtendedContext.logb(Decimal('0.03'))
|
---|
4549 | Decimal('-2')
|
---|
4550 | >>> ExtendedContext.logb(Decimal('0'))
|
---|
4551 | Decimal('-Infinity')
|
---|
4552 | >>> ExtendedContext.logb(1)
|
---|
4553 | Decimal('0')
|
---|
4554 | >>> ExtendedContext.logb(10)
|
---|
4555 | Decimal('1')
|
---|
4556 | >>> ExtendedContext.logb(100)
|
---|
4557 | Decimal('2')
|
---|
4558 | """
|
---|
4559 | a = _convert_other(a, raiseit=True)
|
---|
4560 | return a.logb(context=self)
|
---|
4561 |
|
---|
4562 | def logical_and(self, a, b):
|
---|
4563 | """Applies the logical operation 'and' between each operand's digits.
|
---|
4564 |
|
---|
4565 | The operands must be both logical numbers.
|
---|
4566 |
|
---|
4567 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
|
---|
4568 | Decimal('0')
|
---|
4569 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
|
---|
4570 | Decimal('0')
|
---|
4571 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
|
---|
4572 | Decimal('0')
|
---|
4573 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
|
---|
4574 | Decimal('1')
|
---|
4575 | >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
|
---|
4576 | Decimal('1000')
|
---|
4577 | >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
|
---|
4578 | Decimal('10')
|
---|
4579 | >>> ExtendedContext.logical_and(110, 1101)
|
---|
4580 | Decimal('100')
|
---|
4581 | >>> ExtendedContext.logical_and(Decimal(110), 1101)
|
---|
4582 | Decimal('100')
|
---|
4583 | >>> ExtendedContext.logical_and(110, Decimal(1101))
|
---|
4584 | Decimal('100')
|
---|
4585 | """
|
---|
4586 | a = _convert_other(a, raiseit=True)
|
---|
4587 | return a.logical_and(b, context=self)
|
---|
4588 |
|
---|
4589 | def logical_invert(self, a):
|
---|
4590 | """Invert all the digits in the operand.
|
---|
4591 |
|
---|
4592 | The operand must be a logical number.
|
---|
4593 |
|
---|
4594 | >>> ExtendedContext.logical_invert(Decimal('0'))
|
---|
4595 | Decimal('111111111')
|
---|
4596 | >>> ExtendedContext.logical_invert(Decimal('1'))
|
---|
4597 | Decimal('111111110')
|
---|
4598 | >>> ExtendedContext.logical_invert(Decimal('111111111'))
|
---|
4599 | Decimal('0')
|
---|
4600 | >>> ExtendedContext.logical_invert(Decimal('101010101'))
|
---|
4601 | Decimal('10101010')
|
---|
4602 | >>> ExtendedContext.logical_invert(1101)
|
---|
4603 | Decimal('111110010')
|
---|
4604 | """
|
---|
4605 | a = _convert_other(a, raiseit=True)
|
---|
4606 | return a.logical_invert(context=self)
|
---|
4607 |
|
---|
4608 | def logical_or(self, a, b):
|
---|
4609 | """Applies the logical operation 'or' between each operand's digits.
|
---|
4610 |
|
---|
4611 | The operands must be both logical numbers.
|
---|
4612 |
|
---|
4613 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
|
---|
4614 | Decimal('0')
|
---|
4615 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
|
---|
4616 | Decimal('1')
|
---|
4617 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
|
---|
4618 | Decimal('1')
|
---|
4619 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
|
---|
4620 | Decimal('1')
|
---|
4621 | >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
|
---|
4622 | Decimal('1110')
|
---|
4623 | >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
|
---|
4624 | Decimal('1110')
|
---|
4625 | >>> ExtendedContext.logical_or(110, 1101)
|
---|
4626 | Decimal('1111')
|
---|
4627 | >>> ExtendedContext.logical_or(Decimal(110), 1101)
|
---|
4628 | Decimal('1111')
|
---|
4629 | >>> ExtendedContext.logical_or(110, Decimal(1101))
|
---|
4630 | Decimal('1111')
|
---|
4631 | """
|
---|
4632 | a = _convert_other(a, raiseit=True)
|
---|
4633 | return a.logical_or(b, context=self)
|
---|
4634 |
|
---|
4635 | def logical_xor(self, a, b):
|
---|
4636 | """Applies the logical operation 'xor' between each operand's digits.
|
---|
4637 |
|
---|
4638 | The operands must be both logical numbers.
|
---|
4639 |
|
---|
4640 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
|
---|
4641 | Decimal('0')
|
---|
4642 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
|
---|
4643 | Decimal('1')
|
---|
4644 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
|
---|
4645 | Decimal('1')
|
---|
4646 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
|
---|
4647 | Decimal('0')
|
---|
4648 | >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
|
---|
4649 | Decimal('110')
|
---|
4650 | >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
|
---|
4651 | Decimal('1101')
|
---|
4652 | >>> ExtendedContext.logical_xor(110, 1101)
|
---|
4653 | Decimal('1011')
|
---|
4654 | >>> ExtendedContext.logical_xor(Decimal(110), 1101)
|
---|
4655 | Decimal('1011')
|
---|
4656 | >>> ExtendedContext.logical_xor(110, Decimal(1101))
|
---|
4657 | Decimal('1011')
|
---|
4658 | """
|
---|
4659 | a = _convert_other(a, raiseit=True)
|
---|
4660 | return a.logical_xor(b, context=self)
|
---|
4661 |
|
---|
4662 | def max(self, a, b):
|
---|
4663 | """max compares two values numerically and returns the maximum.
|
---|
4664 |
|
---|
4665 | If either operand is a NaN then the general rules apply.
|
---|
4666 | Otherwise, the operands are compared as though by the compare
|
---|
4667 | operation. If they are numerically equal then the left-hand operand
|
---|
4668 | is chosen as the result. Otherwise the maximum (closer to positive
|
---|
4669 | infinity) of the two operands is chosen as the result.
|
---|
4670 |
|
---|
4671 | >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
|
---|
4672 | Decimal('3')
|
---|
4673 | >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
|
---|
4674 | Decimal('3')
|
---|
4675 | >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
|
---|
4676 | Decimal('1')
|
---|
4677 | >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
|
---|
4678 | Decimal('7')
|
---|
4679 | >>> ExtendedContext.max(1, 2)
|
---|
4680 | Decimal('2')
|
---|
4681 | >>> ExtendedContext.max(Decimal(1), 2)
|
---|
4682 | Decimal('2')
|
---|
4683 | >>> ExtendedContext.max(1, Decimal(2))
|
---|
4684 | Decimal('2')
|
---|
4685 | """
|
---|
4686 | a = _convert_other(a, raiseit=True)
|
---|
4687 | return a.max(b, context=self)
|
---|
4688 |
|
---|
4689 | def max_mag(self, a, b):
|
---|
4690 | """Compares the values numerically with their sign ignored.
|
---|
4691 |
|
---|
4692 | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
|
---|
4693 | Decimal('7')
|
---|
4694 | >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
|
---|
4695 | Decimal('-10')
|
---|
4696 | >>> ExtendedContext.max_mag(1, -2)
|
---|
4697 | Decimal('-2')
|
---|
4698 | >>> ExtendedContext.max_mag(Decimal(1), -2)
|
---|
4699 | Decimal('-2')
|
---|
4700 | >>> ExtendedContext.max_mag(1, Decimal(-2))
|
---|
4701 | Decimal('-2')
|
---|
4702 | """
|
---|
4703 | a = _convert_other(a, raiseit=True)
|
---|
4704 | return a.max_mag(b, context=self)
|
---|
4705 |
|
---|
4706 | def min(self, a, b):
|
---|
4707 | """min compares two values numerically and returns the minimum.
|
---|
4708 |
|
---|
4709 | If either operand is a NaN then the general rules apply.
|
---|
4710 | Otherwise, the operands are compared as though by the compare
|
---|
4711 | operation. If they are numerically equal then the left-hand operand
|
---|
4712 | is chosen as the result. Otherwise the minimum (closer to negative
|
---|
4713 | infinity) of the two operands is chosen as the result.
|
---|
4714 |
|
---|
4715 | >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
|
---|
4716 | Decimal('2')
|
---|
4717 | >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
|
---|
4718 | Decimal('-10')
|
---|
4719 | >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
|
---|
4720 | Decimal('1.0')
|
---|
4721 | >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
|
---|
4722 | Decimal('7')
|
---|
4723 | >>> ExtendedContext.min(1, 2)
|
---|
4724 | Decimal('1')
|
---|
4725 | >>> ExtendedContext.min(Decimal(1), 2)
|
---|
4726 | Decimal('1')
|
---|
4727 | >>> ExtendedContext.min(1, Decimal(29))
|
---|
4728 | Decimal('1')
|
---|
4729 | """
|
---|
4730 | a = _convert_other(a, raiseit=True)
|
---|
4731 | return a.min(b, context=self)
|
---|
4732 |
|
---|
4733 | def min_mag(self, a, b):
|
---|
4734 | """Compares the values numerically with their sign ignored.
|
---|
4735 |
|
---|
4736 | >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
|
---|
4737 | Decimal('-2')
|
---|
4738 | >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
|
---|
4739 | Decimal('-3')
|
---|
4740 | >>> ExtendedContext.min_mag(1, -2)
|
---|
4741 | Decimal('1')
|
---|
4742 | >>> ExtendedContext.min_mag(Decimal(1), -2)
|
---|
4743 | Decimal('1')
|
---|
4744 | >>> ExtendedContext.min_mag(1, Decimal(-2))
|
---|
4745 | Decimal('1')
|
---|
4746 | """
|
---|
4747 | a = _convert_other(a, raiseit=True)
|
---|
4748 | return a.min_mag(b, context=self)
|
---|
4749 |
|
---|
4750 | def minus(self, a):
|
---|
4751 | """Minus corresponds to unary prefix minus in Python.
|
---|
4752 |
|
---|
4753 | The operation is evaluated using the same rules as subtract; the
|
---|
4754 | operation minus(a) is calculated as subtract('0', a) where the '0'
|
---|
4755 | has the same exponent as the operand.
|
---|
4756 |
|
---|
4757 | >>> ExtendedContext.minus(Decimal('1.3'))
|
---|
4758 | Decimal('-1.3')
|
---|
4759 | >>> ExtendedContext.minus(Decimal('-1.3'))
|
---|
4760 | Decimal('1.3')
|
---|
4761 | >>> ExtendedContext.minus(1)
|
---|
4762 | Decimal('-1')
|
---|
4763 | """
|
---|
4764 | a = _convert_other(a, raiseit=True)
|
---|
4765 | return a.__neg__(context=self)
|
---|
4766 |
|
---|
4767 | def multiply(self, a, b):
|
---|
4768 | """multiply multiplies two operands.
|
---|
4769 |
|
---|
4770 | If either operand is a special value then the general rules apply.
|
---|
4771 | Otherwise, the operands are multiplied together
|
---|
4772 | ('long multiplication'), resulting in a number which may be as long as
|
---|
4773 | the sum of the lengths of the two operands.
|
---|
4774 |
|
---|
4775 | >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
|
---|
4776 | Decimal('3.60')
|
---|
4777 | >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
|
---|
4778 | Decimal('21')
|
---|
4779 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
|
---|
4780 | Decimal('0.72')
|
---|
4781 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
|
---|
4782 | Decimal('-0.0')
|
---|
4783 | >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
|
---|
4784 | Decimal('4.28135971E+11')
|
---|
4785 | >>> ExtendedContext.multiply(7, 7)
|
---|
4786 | Decimal('49')
|
---|
4787 | >>> ExtendedContext.multiply(Decimal(7), 7)
|
---|
4788 | Decimal('49')
|
---|
4789 | >>> ExtendedContext.multiply(7, Decimal(7))
|
---|
4790 | Decimal('49')
|
---|
4791 | """
|
---|
4792 | a = _convert_other(a, raiseit=True)
|
---|
4793 | r = a.__mul__(b, context=self)
|
---|
4794 | if r is NotImplemented:
|
---|
4795 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
4796 | else:
|
---|
4797 | return r
|
---|
4798 |
|
---|
4799 | def next_minus(self, a):
|
---|
4800 | """Returns the largest representable number smaller than a.
|
---|
4801 |
|
---|
4802 | >>> c = ExtendedContext.copy()
|
---|
4803 | >>> c.Emin = -999
|
---|
4804 | >>> c.Emax = 999
|
---|
4805 | >>> ExtendedContext.next_minus(Decimal('1'))
|
---|
4806 | Decimal('0.999999999')
|
---|
4807 | >>> c.next_minus(Decimal('1E-1007'))
|
---|
4808 | Decimal('0E-1007')
|
---|
4809 | >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
|
---|
4810 | Decimal('-1.00000004')
|
---|
4811 | >>> c.next_minus(Decimal('Infinity'))
|
---|
4812 | Decimal('9.99999999E+999')
|
---|
4813 | >>> c.next_minus(1)
|
---|
4814 | Decimal('0.999999999')
|
---|
4815 | """
|
---|
4816 | a = _convert_other(a, raiseit=True)
|
---|
4817 | return a.next_minus(context=self)
|
---|
4818 |
|
---|
4819 | def next_plus(self, a):
|
---|
4820 | """Returns the smallest representable number larger than a.
|
---|
4821 |
|
---|
4822 | >>> c = ExtendedContext.copy()
|
---|
4823 | >>> c.Emin = -999
|
---|
4824 | >>> c.Emax = 999
|
---|
4825 | >>> ExtendedContext.next_plus(Decimal('1'))
|
---|
4826 | Decimal('1.00000001')
|
---|
4827 | >>> c.next_plus(Decimal('-1E-1007'))
|
---|
4828 | Decimal('-0E-1007')
|
---|
4829 | >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
|
---|
4830 | Decimal('-1.00000002')
|
---|
4831 | >>> c.next_plus(Decimal('-Infinity'))
|
---|
4832 | Decimal('-9.99999999E+999')
|
---|
4833 | >>> c.next_plus(1)
|
---|
4834 | Decimal('1.00000001')
|
---|
4835 | """
|
---|
4836 | a = _convert_other(a, raiseit=True)
|
---|
4837 | return a.next_plus(context=self)
|
---|
4838 |
|
---|
4839 | def next_toward(self, a, b):
|
---|
4840 | """Returns the number closest to a, in direction towards b.
|
---|
4841 |
|
---|
4842 | The result is the closest representable number from the first
|
---|
4843 | operand (but not the first operand) that is in the direction
|
---|
4844 | towards the second operand, unless the operands have the same
|
---|
4845 | value.
|
---|
4846 |
|
---|
4847 | >>> c = ExtendedContext.copy()
|
---|
4848 | >>> c.Emin = -999
|
---|
4849 | >>> c.Emax = 999
|
---|
4850 | >>> c.next_toward(Decimal('1'), Decimal('2'))
|
---|
4851 | Decimal('1.00000001')
|
---|
4852 | >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
|
---|
4853 | Decimal('-0E-1007')
|
---|
4854 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
|
---|
4855 | Decimal('-1.00000002')
|
---|
4856 | >>> c.next_toward(Decimal('1'), Decimal('0'))
|
---|
4857 | Decimal('0.999999999')
|
---|
4858 | >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
|
---|
4859 | Decimal('0E-1007')
|
---|
4860 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
|
---|
4861 | Decimal('-1.00000004')
|
---|
4862 | >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
|
---|
4863 | Decimal('-0.00')
|
---|
4864 | >>> c.next_toward(0, 1)
|
---|
4865 | Decimal('1E-1007')
|
---|
4866 | >>> c.next_toward(Decimal(0), 1)
|
---|
4867 | Decimal('1E-1007')
|
---|
4868 | >>> c.next_toward(0, Decimal(1))
|
---|
4869 | Decimal('1E-1007')
|
---|
4870 | """
|
---|
4871 | a = _convert_other(a, raiseit=True)
|
---|
4872 | return a.next_toward(b, context=self)
|
---|
4873 |
|
---|
4874 | def normalize(self, a):
|
---|
4875 | """normalize reduces an operand to its simplest form.
|
---|
4876 |
|
---|
4877 | Essentially a plus operation with all trailing zeros removed from the
|
---|
4878 | result.
|
---|
4879 |
|
---|
4880 | >>> ExtendedContext.normalize(Decimal('2.1'))
|
---|
4881 | Decimal('2.1')
|
---|
4882 | >>> ExtendedContext.normalize(Decimal('-2.0'))
|
---|
4883 | Decimal('-2')
|
---|
4884 | >>> ExtendedContext.normalize(Decimal('1.200'))
|
---|
4885 | Decimal('1.2')
|
---|
4886 | >>> ExtendedContext.normalize(Decimal('-120'))
|
---|
4887 | Decimal('-1.2E+2')
|
---|
4888 | >>> ExtendedContext.normalize(Decimal('120.00'))
|
---|
4889 | Decimal('1.2E+2')
|
---|
4890 | >>> ExtendedContext.normalize(Decimal('0.00'))
|
---|
4891 | Decimal('0')
|
---|
4892 | >>> ExtendedContext.normalize(6)
|
---|
4893 | Decimal('6')
|
---|
4894 | """
|
---|
4895 | a = _convert_other(a, raiseit=True)
|
---|
4896 | return a.normalize(context=self)
|
---|
4897 |
|
---|
4898 | def number_class(self, a):
|
---|
4899 | """Returns an indication of the class of the operand.
|
---|
4900 |
|
---|
4901 | The class is one of the following strings:
|
---|
4902 | -sNaN
|
---|
4903 | -NaN
|
---|
4904 | -Infinity
|
---|
4905 | -Normal
|
---|
4906 | -Subnormal
|
---|
4907 | -Zero
|
---|
4908 | +Zero
|
---|
4909 | +Subnormal
|
---|
4910 | +Normal
|
---|
4911 | +Infinity
|
---|
4912 |
|
---|
4913 | >>> c = Context(ExtendedContext)
|
---|
4914 | >>> c.Emin = -999
|
---|
4915 | >>> c.Emax = 999
|
---|
4916 | >>> c.number_class(Decimal('Infinity'))
|
---|
4917 | '+Infinity'
|
---|
4918 | >>> c.number_class(Decimal('1E-10'))
|
---|
4919 | '+Normal'
|
---|
4920 | >>> c.number_class(Decimal('2.50'))
|
---|
4921 | '+Normal'
|
---|
4922 | >>> c.number_class(Decimal('0.1E-999'))
|
---|
4923 | '+Subnormal'
|
---|
4924 | >>> c.number_class(Decimal('0'))
|
---|
4925 | '+Zero'
|
---|
4926 | >>> c.number_class(Decimal('-0'))
|
---|
4927 | '-Zero'
|
---|
4928 | >>> c.number_class(Decimal('-0.1E-999'))
|
---|
4929 | '-Subnormal'
|
---|
4930 | >>> c.number_class(Decimal('-1E-10'))
|
---|
4931 | '-Normal'
|
---|
4932 | >>> c.number_class(Decimal('-2.50'))
|
---|
4933 | '-Normal'
|
---|
4934 | >>> c.number_class(Decimal('-Infinity'))
|
---|
4935 | '-Infinity'
|
---|
4936 | >>> c.number_class(Decimal('NaN'))
|
---|
4937 | 'NaN'
|
---|
4938 | >>> c.number_class(Decimal('-NaN'))
|
---|
4939 | 'NaN'
|
---|
4940 | >>> c.number_class(Decimal('sNaN'))
|
---|
4941 | 'sNaN'
|
---|
4942 | >>> c.number_class(123)
|
---|
4943 | '+Normal'
|
---|
4944 | """
|
---|
4945 | a = _convert_other(a, raiseit=True)
|
---|
4946 | return a.number_class(context=self)
|
---|
4947 |
|
---|
4948 | def plus(self, a):
|
---|
4949 | """Plus corresponds to unary prefix plus in Python.
|
---|
4950 |
|
---|
4951 | The operation is evaluated using the same rules as add; the
|
---|
4952 | operation plus(a) is calculated as add('0', a) where the '0'
|
---|
4953 | has the same exponent as the operand.
|
---|
4954 |
|
---|
4955 | >>> ExtendedContext.plus(Decimal('1.3'))
|
---|
4956 | Decimal('1.3')
|
---|
4957 | >>> ExtendedContext.plus(Decimal('-1.3'))
|
---|
4958 | Decimal('-1.3')
|
---|
4959 | >>> ExtendedContext.plus(-1)
|
---|
4960 | Decimal('-1')
|
---|
4961 | """
|
---|
4962 | a = _convert_other(a, raiseit=True)
|
---|
4963 | return a.__pos__(context=self)
|
---|
4964 |
|
---|
4965 | def power(self, a, b, modulo=None):
|
---|
4966 | """Raises a to the power of b, to modulo if given.
|
---|
4967 |
|
---|
4968 | With two arguments, compute a**b. If a is negative then b
|
---|
4969 | must be integral. The result will be inexact unless b is
|
---|
4970 | integral and the result is finite and can be expressed exactly
|
---|
4971 | in 'precision' digits.
|
---|
4972 |
|
---|
4973 | With three arguments, compute (a**b) % modulo. For the
|
---|
4974 | three argument form, the following restrictions on the
|
---|
4975 | arguments hold:
|
---|
4976 |
|
---|
4977 | - all three arguments must be integral
|
---|
4978 | - b must be nonnegative
|
---|
4979 | - at least one of a or b must be nonzero
|
---|
4980 | - modulo must be nonzero and have at most 'precision' digits
|
---|
4981 |
|
---|
4982 | The result of pow(a, b, modulo) is identical to the result
|
---|
4983 | that would be obtained by computing (a**b) % modulo with
|
---|
4984 | unbounded precision, but is computed more efficiently. It is
|
---|
4985 | always exact.
|
---|
4986 |
|
---|
4987 | >>> c = ExtendedContext.copy()
|
---|
4988 | >>> c.Emin = -999
|
---|
4989 | >>> c.Emax = 999
|
---|
4990 | >>> c.power(Decimal('2'), Decimal('3'))
|
---|
4991 | Decimal('8')
|
---|
4992 | >>> c.power(Decimal('-2'), Decimal('3'))
|
---|
4993 | Decimal('-8')
|
---|
4994 | >>> c.power(Decimal('2'), Decimal('-3'))
|
---|
4995 | Decimal('0.125')
|
---|
4996 | >>> c.power(Decimal('1.7'), Decimal('8'))
|
---|
4997 | Decimal('69.7575744')
|
---|
4998 | >>> c.power(Decimal('10'), Decimal('0.301029996'))
|
---|
4999 | Decimal('2.00000000')
|
---|
5000 | >>> c.power(Decimal('Infinity'), Decimal('-1'))
|
---|
5001 | Decimal('0')
|
---|
5002 | >>> c.power(Decimal('Infinity'), Decimal('0'))
|
---|
5003 | Decimal('1')
|
---|
5004 | >>> c.power(Decimal('Infinity'), Decimal('1'))
|
---|
5005 | Decimal('Infinity')
|
---|
5006 | >>> c.power(Decimal('-Infinity'), Decimal('-1'))
|
---|
5007 | Decimal('-0')
|
---|
5008 | >>> c.power(Decimal('-Infinity'), Decimal('0'))
|
---|
5009 | Decimal('1')
|
---|
5010 | >>> c.power(Decimal('-Infinity'), Decimal('1'))
|
---|
5011 | Decimal('-Infinity')
|
---|
5012 | >>> c.power(Decimal('-Infinity'), Decimal('2'))
|
---|
5013 | Decimal('Infinity')
|
---|
5014 | >>> c.power(Decimal('0'), Decimal('0'))
|
---|
5015 | Decimal('NaN')
|
---|
5016 |
|
---|
5017 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
|
---|
5018 | Decimal('11')
|
---|
5019 | >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
|
---|
5020 | Decimal('-11')
|
---|
5021 | >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
|
---|
5022 | Decimal('1')
|
---|
5023 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
|
---|
5024 | Decimal('11')
|
---|
5025 | >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
|
---|
5026 | Decimal('11729830')
|
---|
5027 | >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
|
---|
5028 | Decimal('-0')
|
---|
5029 | >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
|
---|
5030 | Decimal('1')
|
---|
5031 | >>> ExtendedContext.power(7, 7)
|
---|
5032 | Decimal('823543')
|
---|
5033 | >>> ExtendedContext.power(Decimal(7), 7)
|
---|
5034 | Decimal('823543')
|
---|
5035 | >>> ExtendedContext.power(7, Decimal(7), 2)
|
---|
5036 | Decimal('1')
|
---|
5037 | """
|
---|
5038 | a = _convert_other(a, raiseit=True)
|
---|
5039 | r = a.__pow__(b, modulo, context=self)
|
---|
5040 | if r is NotImplemented:
|
---|
5041 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
5042 | else:
|
---|
5043 | return r
|
---|
5044 |
|
---|
5045 | def quantize(self, a, b):
|
---|
5046 | """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
|
---|
5047 |
|
---|
5048 | The coefficient of the result is derived from that of the left-hand
|
---|
5049 | operand. It may be rounded using the current rounding setting (if the
|
---|
5050 | exponent is being increased), multiplied by a positive power of ten (if
|
---|
5051 | the exponent is being decreased), or is unchanged (if the exponent is
|
---|
5052 | already equal to that of the right-hand operand).
|
---|
5053 |
|
---|
5054 | Unlike other operations, if the length of the coefficient after the
|
---|
5055 | quantize operation would be greater than precision then an Invalid
|
---|
5056 | operation condition is raised. This guarantees that, unless there is
|
---|
5057 | an error condition, the exponent of the result of a quantize is always
|
---|
5058 | equal to that of the right-hand operand.
|
---|
5059 |
|
---|
5060 | Also unlike other operations, quantize will never raise Underflow, even
|
---|
5061 | if the result is subnormal and inexact.
|
---|
5062 |
|
---|
5063 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
|
---|
5064 | Decimal('2.170')
|
---|
5065 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
|
---|
5066 | Decimal('2.17')
|
---|
5067 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
|
---|
5068 | Decimal('2.2')
|
---|
5069 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
|
---|
5070 | Decimal('2')
|
---|
5071 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
|
---|
5072 | Decimal('0E+1')
|
---|
5073 | >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
|
---|
5074 | Decimal('-Infinity')
|
---|
5075 | >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
|
---|
5076 | Decimal('NaN')
|
---|
5077 | >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
|
---|
5078 | Decimal('-0')
|
---|
5079 | >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
|
---|
5080 | Decimal('-0E+5')
|
---|
5081 | >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
|
---|
5082 | Decimal('NaN')
|
---|
5083 | >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
|
---|
5084 | Decimal('NaN')
|
---|
5085 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
|
---|
5086 | Decimal('217.0')
|
---|
5087 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
|
---|
5088 | Decimal('217')
|
---|
5089 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
|
---|
5090 | Decimal('2.2E+2')
|
---|
5091 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
|
---|
5092 | Decimal('2E+2')
|
---|
5093 | >>> ExtendedContext.quantize(1, 2)
|
---|
5094 | Decimal('1')
|
---|
5095 | >>> ExtendedContext.quantize(Decimal(1), 2)
|
---|
5096 | Decimal('1')
|
---|
5097 | >>> ExtendedContext.quantize(1, Decimal(2))
|
---|
5098 | Decimal('1')
|
---|
5099 | """
|
---|
5100 | a = _convert_other(a, raiseit=True)
|
---|
5101 | return a.quantize(b, context=self)
|
---|
5102 |
|
---|
5103 | def radix(self):
|
---|
5104 | """Just returns 10, as this is Decimal, :)
|
---|
5105 |
|
---|
5106 | >>> ExtendedContext.radix()
|
---|
5107 | Decimal('10')
|
---|
5108 | """
|
---|
5109 | return Decimal(10)
|
---|
5110 |
|
---|
5111 | def remainder(self, a, b):
|
---|
5112 | """Returns the remainder from integer division.
|
---|
5113 |
|
---|
5114 | The result is the residue of the dividend after the operation of
|
---|
5115 | calculating integer division as described for divide-integer, rounded
|
---|
5116 | to precision digits if necessary. The sign of the result, if
|
---|
5117 | non-zero, is the same as that of the original dividend.
|
---|
5118 |
|
---|
5119 | This operation will fail under the same conditions as integer division
|
---|
5120 | (that is, if integer division on the same two operands would fail, the
|
---|
5121 | remainder cannot be calculated).
|
---|
5122 |
|
---|
5123 | >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
|
---|
5124 | Decimal('2.1')
|
---|
5125 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
|
---|
5126 | Decimal('1')
|
---|
5127 | >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
|
---|
5128 | Decimal('-1')
|
---|
5129 | >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
|
---|
5130 | Decimal('0.2')
|
---|
5131 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
|
---|
5132 | Decimal('0.1')
|
---|
5133 | >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
|
---|
5134 | Decimal('1.0')
|
---|
5135 | >>> ExtendedContext.remainder(22, 6)
|
---|
5136 | Decimal('4')
|
---|
5137 | >>> ExtendedContext.remainder(Decimal(22), 6)
|
---|
5138 | Decimal('4')
|
---|
5139 | >>> ExtendedContext.remainder(22, Decimal(6))
|
---|
5140 | Decimal('4')
|
---|
5141 | """
|
---|
5142 | a = _convert_other(a, raiseit=True)
|
---|
5143 | r = a.__mod__(b, context=self)
|
---|
5144 | if r is NotImplemented:
|
---|
5145 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
5146 | else:
|
---|
5147 | return r
|
---|
5148 |
|
---|
5149 | def remainder_near(self, a, b):
|
---|
5150 | """Returns to be "a - b * n", where n is the integer nearest the exact
|
---|
5151 | value of "x / b" (if two integers are equally near then the even one
|
---|
5152 | is chosen). If the result is equal to 0 then its sign will be the
|
---|
5153 | sign of a.
|
---|
5154 |
|
---|
5155 | This operation will fail under the same conditions as integer division
|
---|
5156 | (that is, if integer division on the same two operands would fail, the
|
---|
5157 | remainder cannot be calculated).
|
---|
5158 |
|
---|
5159 | >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
|
---|
5160 | Decimal('-0.9')
|
---|
5161 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
|
---|
5162 | Decimal('-2')
|
---|
5163 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
|
---|
5164 | Decimal('1')
|
---|
5165 | >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
|
---|
5166 | Decimal('-1')
|
---|
5167 | >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
|
---|
5168 | Decimal('0.2')
|
---|
5169 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
|
---|
5170 | Decimal('0.1')
|
---|
5171 | >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
|
---|
5172 | Decimal('-0.3')
|
---|
5173 | >>> ExtendedContext.remainder_near(3, 11)
|
---|
5174 | Decimal('3')
|
---|
5175 | >>> ExtendedContext.remainder_near(Decimal(3), 11)
|
---|
5176 | Decimal('3')
|
---|
5177 | >>> ExtendedContext.remainder_near(3, Decimal(11))
|
---|
5178 | Decimal('3')
|
---|
5179 | """
|
---|
5180 | a = _convert_other(a, raiseit=True)
|
---|
5181 | return a.remainder_near(b, context=self)
|
---|
5182 |
|
---|
5183 | def rotate(self, a, b):
|
---|
5184 | """Returns a rotated copy of a, b times.
|
---|
5185 |
|
---|
5186 | The coefficient of the result is a rotated copy of the digits in
|
---|
5187 | the coefficient of the first operand. The number of places of
|
---|
5188 | rotation is taken from the absolute value of the second operand,
|
---|
5189 | with the rotation being to the left if the second operand is
|
---|
5190 | positive or to the right otherwise.
|
---|
5191 |
|
---|
5192 | >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
|
---|
5193 | Decimal('400000003')
|
---|
5194 | >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
|
---|
5195 | Decimal('12')
|
---|
5196 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
|
---|
5197 | Decimal('891234567')
|
---|
5198 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
|
---|
5199 | Decimal('123456789')
|
---|
5200 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
|
---|
5201 | Decimal('345678912')
|
---|
5202 | >>> ExtendedContext.rotate(1333333, 1)
|
---|
5203 | Decimal('13333330')
|
---|
5204 | >>> ExtendedContext.rotate(Decimal(1333333), 1)
|
---|
5205 | Decimal('13333330')
|
---|
5206 | >>> ExtendedContext.rotate(1333333, Decimal(1))
|
---|
5207 | Decimal('13333330')
|
---|
5208 | """
|
---|
5209 | a = _convert_other(a, raiseit=True)
|
---|
5210 | return a.rotate(b, context=self)
|
---|
5211 |
|
---|
5212 | def same_quantum(self, a, b):
|
---|
5213 | """Returns True if the two operands have the same exponent.
|
---|
5214 |
|
---|
5215 | The result is never affected by either the sign or the coefficient of
|
---|
5216 | either operand.
|
---|
5217 |
|
---|
5218 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
|
---|
5219 | False
|
---|
5220 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
|
---|
5221 | True
|
---|
5222 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
|
---|
5223 | False
|
---|
5224 | >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
|
---|
5225 | True
|
---|
5226 | >>> ExtendedContext.same_quantum(10000, -1)
|
---|
5227 | True
|
---|
5228 | >>> ExtendedContext.same_quantum(Decimal(10000), -1)
|
---|
5229 | True
|
---|
5230 | >>> ExtendedContext.same_quantum(10000, Decimal(-1))
|
---|
5231 | True
|
---|
5232 | """
|
---|
5233 | a = _convert_other(a, raiseit=True)
|
---|
5234 | return a.same_quantum(b)
|
---|
5235 |
|
---|
5236 | def scaleb (self, a, b):
|
---|
5237 | """Returns the first operand after adding the second value its exp.
|
---|
5238 |
|
---|
5239 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
|
---|
5240 | Decimal('0.0750')
|
---|
5241 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
|
---|
5242 | Decimal('7.50')
|
---|
5243 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
|
---|
5244 | Decimal('7.50E+3')
|
---|
5245 | >>> ExtendedContext.scaleb(1, 4)
|
---|
5246 | Decimal('1E+4')
|
---|
5247 | >>> ExtendedContext.scaleb(Decimal(1), 4)
|
---|
5248 | Decimal('1E+4')
|
---|
5249 | >>> ExtendedContext.scaleb(1, Decimal(4))
|
---|
5250 | Decimal('1E+4')
|
---|
5251 | """
|
---|
5252 | a = _convert_other(a, raiseit=True)
|
---|
5253 | return a.scaleb(b, context=self)
|
---|
5254 |
|
---|
5255 | def shift(self, a, b):
|
---|
5256 | """Returns a shifted copy of a, b times.
|
---|
5257 |
|
---|
5258 | The coefficient of the result is a shifted copy of the digits
|
---|
5259 | in the coefficient of the first operand. The number of places
|
---|
5260 | to shift is taken from the absolute value of the second operand,
|
---|
5261 | with the shift being to the left if the second operand is
|
---|
5262 | positive or to the right otherwise. Digits shifted into the
|
---|
5263 | coefficient are zeros.
|
---|
5264 |
|
---|
5265 | >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
|
---|
5266 | Decimal('400000000')
|
---|
5267 | >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
|
---|
5268 | Decimal('0')
|
---|
5269 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
|
---|
5270 | Decimal('1234567')
|
---|
5271 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
|
---|
5272 | Decimal('123456789')
|
---|
5273 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
|
---|
5274 | Decimal('345678900')
|
---|
5275 | >>> ExtendedContext.shift(88888888, 2)
|
---|
5276 | Decimal('888888800')
|
---|
5277 | >>> ExtendedContext.shift(Decimal(88888888), 2)
|
---|
5278 | Decimal('888888800')
|
---|
5279 | >>> ExtendedContext.shift(88888888, Decimal(2))
|
---|
5280 | Decimal('888888800')
|
---|
5281 | """
|
---|
5282 | a = _convert_other(a, raiseit=True)
|
---|
5283 | return a.shift(b, context=self)
|
---|
5284 |
|
---|
5285 | def sqrt(self, a):
|
---|
5286 | """Square root of a non-negative number to context precision.
|
---|
5287 |
|
---|
5288 | If the result must be inexact, it is rounded using the round-half-even
|
---|
5289 | algorithm.
|
---|
5290 |
|
---|
5291 | >>> ExtendedContext.sqrt(Decimal('0'))
|
---|
5292 | Decimal('0')
|
---|
5293 | >>> ExtendedContext.sqrt(Decimal('-0'))
|
---|
5294 | Decimal('-0')
|
---|
5295 | >>> ExtendedContext.sqrt(Decimal('0.39'))
|
---|
5296 | Decimal('0.624499800')
|
---|
5297 | >>> ExtendedContext.sqrt(Decimal('100'))
|
---|
5298 | Decimal('10')
|
---|
5299 | >>> ExtendedContext.sqrt(Decimal('1'))
|
---|
5300 | Decimal('1')
|
---|
5301 | >>> ExtendedContext.sqrt(Decimal('1.0'))
|
---|
5302 | Decimal('1.0')
|
---|
5303 | >>> ExtendedContext.sqrt(Decimal('1.00'))
|
---|
5304 | Decimal('1.0')
|
---|
5305 | >>> ExtendedContext.sqrt(Decimal('7'))
|
---|
5306 | Decimal('2.64575131')
|
---|
5307 | >>> ExtendedContext.sqrt(Decimal('10'))
|
---|
5308 | Decimal('3.16227766')
|
---|
5309 | >>> ExtendedContext.sqrt(2)
|
---|
5310 | Decimal('1.41421356')
|
---|
5311 | >>> ExtendedContext.prec
|
---|
5312 | 9
|
---|
5313 | """
|
---|
5314 | a = _convert_other(a, raiseit=True)
|
---|
5315 | return a.sqrt(context=self)
|
---|
5316 |
|
---|
5317 | def subtract(self, a, b):
|
---|
5318 | """Return the difference between the two operands.
|
---|
5319 |
|
---|
5320 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
|
---|
5321 | Decimal('0.23')
|
---|
5322 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
|
---|
5323 | Decimal('0.00')
|
---|
5324 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
|
---|
5325 | Decimal('-0.77')
|
---|
5326 | >>> ExtendedContext.subtract(8, 5)
|
---|
5327 | Decimal('3')
|
---|
5328 | >>> ExtendedContext.subtract(Decimal(8), 5)
|
---|
5329 | Decimal('3')
|
---|
5330 | >>> ExtendedContext.subtract(8, Decimal(5))
|
---|
5331 | Decimal('3')
|
---|
5332 | """
|
---|
5333 | a = _convert_other(a, raiseit=True)
|
---|
5334 | r = a.__sub__(b, context=self)
|
---|
5335 | if r is NotImplemented:
|
---|
5336 | raise TypeError("Unable to convert %s to Decimal" % b)
|
---|
5337 | else:
|
---|
5338 | return r
|
---|
5339 |
|
---|
5340 | def to_eng_string(self, a):
|
---|
5341 | """Converts a number to a string, using scientific notation.
|
---|
5342 |
|
---|
5343 | The operation is not affected by the context.
|
---|
5344 | """
|
---|
5345 | a = _convert_other(a, raiseit=True)
|
---|
5346 | return a.to_eng_string(context=self)
|
---|
5347 |
|
---|
5348 | def to_sci_string(self, a):
|
---|
5349 | """Converts a number to a string, using scientific notation.
|
---|
5350 |
|
---|
5351 | The operation is not affected by the context.
|
---|
5352 | """
|
---|
5353 | a = _convert_other(a, raiseit=True)
|
---|
5354 | return a.__str__(context=self)
|
---|
5355 |
|
---|
5356 | def to_integral_exact(self, a):
|
---|
5357 | """Rounds to an integer.
|
---|
5358 |
|
---|
5359 | When the operand has a negative exponent, the result is the same
|
---|
5360 | as using the quantize() operation using the given operand as the
|
---|
5361 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
---|
5362 | of the operand as the precision setting; Inexact and Rounded flags
|
---|
5363 | are allowed in this operation. The rounding mode is taken from the
|
---|
5364 | context.
|
---|
5365 |
|
---|
5366 | >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
|
---|
5367 | Decimal('2')
|
---|
5368 | >>> ExtendedContext.to_integral_exact(Decimal('100'))
|
---|
5369 | Decimal('100')
|
---|
5370 | >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
|
---|
5371 | Decimal('100')
|
---|
5372 | >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
|
---|
5373 | Decimal('102')
|
---|
5374 | >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
|
---|
5375 | Decimal('-102')
|
---|
5376 | >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
|
---|
5377 | Decimal('1.0E+6')
|
---|
5378 | >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
|
---|
5379 | Decimal('7.89E+77')
|
---|
5380 | >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
|
---|
5381 | Decimal('-Infinity')
|
---|
5382 | """
|
---|
5383 | a = _convert_other(a, raiseit=True)
|
---|
5384 | return a.to_integral_exact(context=self)
|
---|
5385 |
|
---|
5386 | def to_integral_value(self, a):
|
---|
5387 | """Rounds to an integer.
|
---|
5388 |
|
---|
5389 | When the operand has a negative exponent, the result is the same
|
---|
5390 | as using the quantize() operation using the given operand as the
|
---|
5391 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
---|
5392 | of the operand as the precision setting, except that no flags will
|
---|
5393 | be set. The rounding mode is taken from the context.
|
---|
5394 |
|
---|
5395 | >>> ExtendedContext.to_integral_value(Decimal('2.1'))
|
---|
5396 | Decimal('2')
|
---|
5397 | >>> ExtendedContext.to_integral_value(Decimal('100'))
|
---|
5398 | Decimal('100')
|
---|
5399 | >>> ExtendedContext.to_integral_value(Decimal('100.0'))
|
---|
5400 | Decimal('100')
|
---|
5401 | >>> ExtendedContext.to_integral_value(Decimal('101.5'))
|
---|
5402 | Decimal('102')
|
---|
5403 | >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
|
---|
5404 | Decimal('-102')
|
---|
5405 | >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
|
---|
5406 | Decimal('1.0E+6')
|
---|
5407 | >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
|
---|
5408 | Decimal('7.89E+77')
|
---|
5409 | >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
|
---|
5410 | Decimal('-Infinity')
|
---|
5411 | """
|
---|
5412 | a = _convert_other(a, raiseit=True)
|
---|
5413 | return a.to_integral_value(context=self)
|
---|
5414 |
|
---|
5415 | # the method name changed, but we provide also the old one, for compatibility
|
---|
5416 | to_integral = to_integral_value
|
---|
5417 |
|
---|
5418 | class _WorkRep(object):
|
---|
5419 | __slots__ = ('sign','int','exp')
|
---|
5420 | # sign: 0 or 1
|
---|
5421 | # int: int or long
|
---|
5422 | # exp: None, int, or string
|
---|
5423 |
|
---|
5424 | def __init__(self, value=None):
|
---|
5425 | if value is None:
|
---|
5426 | self.sign = None
|
---|
5427 | self.int = 0
|
---|
5428 | self.exp = None
|
---|
5429 | elif isinstance(value, Decimal):
|
---|
5430 | self.sign = value._sign
|
---|
5431 | self.int = int(value._int)
|
---|
5432 | self.exp = value._exp
|
---|
5433 | else:
|
---|
5434 | # assert isinstance(value, tuple)
|
---|
5435 | self.sign = value[0]
|
---|
5436 | self.int = value[1]
|
---|
5437 | self.exp = value[2]
|
---|
5438 |
|
---|
5439 | def __repr__(self):
|
---|
5440 | return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
|
---|
5441 |
|
---|
5442 | __str__ = __repr__
|
---|
5443 |
|
---|
5444 |
|
---|
5445 |
|
---|
5446 | def _normalize(op1, op2, prec = 0):
|
---|
5447 | """Normalizes op1, op2 to have the same exp and length of coefficient.
|
---|
5448 |
|
---|
5449 | Done during addition.
|
---|
5450 | """
|
---|
5451 | if op1.exp < op2.exp:
|
---|
5452 | tmp = op2
|
---|
5453 | other = op1
|
---|
5454 | else:
|
---|
5455 | tmp = op1
|
---|
5456 | other = op2
|
---|
5457 |
|
---|
5458 | # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
|
---|
5459 | # Then adding 10**exp to tmp has the same effect (after rounding)
|
---|
5460 | # as adding any positive quantity smaller than 10**exp; similarly
|
---|
5461 | # for subtraction. So if other is smaller than 10**exp we replace
|
---|
5462 | # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
|
---|
5463 | tmp_len = len(str(tmp.int))
|
---|
5464 | other_len = len(str(other.int))
|
---|
5465 | exp = tmp.exp + min(-1, tmp_len - prec - 2)
|
---|
5466 | if other_len + other.exp - 1 < exp:
|
---|
5467 | other.int = 1
|
---|
5468 | other.exp = exp
|
---|
5469 |
|
---|
5470 | tmp.int *= 10 ** (tmp.exp - other.exp)
|
---|
5471 | tmp.exp = other.exp
|
---|
5472 | return op1, op2
|
---|
5473 |
|
---|
5474 | ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
|
---|
5475 |
|
---|
5476 | # This function from Tim Peters was taken from here:
|
---|
5477 | # http://mail.python.org/pipermail/python-list/1999-July/007758.html
|
---|
5478 | # The correction being in the function definition is for speed, and
|
---|
5479 | # the whole function is not resolved with math.log because of avoiding
|
---|
5480 | # the use of floats.
|
---|
5481 | def _nbits(n, correction = {
|
---|
5482 | '0': 4, '1': 3, '2': 2, '3': 2,
|
---|
5483 | '4': 1, '5': 1, '6': 1, '7': 1,
|
---|
5484 | '8': 0, '9': 0, 'a': 0, 'b': 0,
|
---|
5485 | 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
|
---|
5486 | """Number of bits in binary representation of the positive integer n,
|
---|
5487 | or 0 if n == 0.
|
---|
5488 | """
|
---|
5489 | if n < 0:
|
---|
5490 | raise ValueError("The argument to _nbits should be nonnegative.")
|
---|
5491 | hex_n = "%x" % n
|
---|
5492 | return 4*len(hex_n) - correction[hex_n[0]]
|
---|
5493 |
|
---|
5494 | def _decimal_lshift_exact(n, e):
|
---|
5495 | """ Given integers n and e, return n * 10**e if it's an integer, else None.
|
---|
5496 |
|
---|
5497 | The computation is designed to avoid computing large powers of 10
|
---|
5498 | unnecessarily.
|
---|
5499 |
|
---|
5500 | >>> _decimal_lshift_exact(3, 4)
|
---|
5501 | 30000
|
---|
5502 | >>> _decimal_lshift_exact(300, -999999999) # returns None
|
---|
5503 |
|
---|
5504 | """
|
---|
5505 | if n == 0:
|
---|
5506 | return 0
|
---|
5507 | elif e >= 0:
|
---|
5508 | return n * 10**e
|
---|
5509 | else:
|
---|
5510 | # val_n = largest power of 10 dividing n.
|
---|
5511 | str_n = str(abs(n))
|
---|
5512 | val_n = len(str_n) - len(str_n.rstrip('0'))
|
---|
5513 | return None if val_n < -e else n // 10**-e
|
---|
5514 |
|
---|
5515 | def _sqrt_nearest(n, a):
|
---|
5516 | """Closest integer to the square root of the positive integer n. a is
|
---|
5517 | an initial approximation to the square root. Any positive integer
|
---|
5518 | will do for a, but the closer a is to the square root of n the
|
---|
5519 | faster convergence will be.
|
---|
5520 |
|
---|
5521 | """
|
---|
5522 | if n <= 0 or a <= 0:
|
---|
5523 | raise ValueError("Both arguments to _sqrt_nearest should be positive.")
|
---|
5524 |
|
---|
5525 | b=0
|
---|
5526 | while a != b:
|
---|
5527 | b, a = a, a--n//a>>1
|
---|
5528 | return a
|
---|
5529 |
|
---|
5530 | def _rshift_nearest(x, shift):
|
---|
5531 | """Given an integer x and a nonnegative integer shift, return closest
|
---|
5532 | integer to x / 2**shift; use round-to-even in case of a tie.
|
---|
5533 |
|
---|
5534 | """
|
---|
5535 | b, q = 1L << shift, x >> shift
|
---|
5536 | return q + (2*(x & (b-1)) + (q&1) > b)
|
---|
5537 |
|
---|
5538 | def _div_nearest(a, b):
|
---|
5539 | """Closest integer to a/b, a and b positive integers; rounds to even
|
---|
5540 | in the case of a tie.
|
---|
5541 |
|
---|
5542 | """
|
---|
5543 | q, r = divmod(a, b)
|
---|
5544 | return q + (2*r + (q&1) > b)
|
---|
5545 |
|
---|
5546 | def _ilog(x, M, L = 8):
|
---|
5547 | """Integer approximation to M*log(x/M), with absolute error boundable
|
---|
5548 | in terms only of x/M.
|
---|
5549 |
|
---|
5550 | Given positive integers x and M, return an integer approximation to
|
---|
5551 | M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
---|
5552 | between the approximation and the exact result is at most 22. For
|
---|
5553 | L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
---|
5554 | both cases these are upper bounds on the error; it will usually be
|
---|
5555 | much smaller."""
|
---|
5556 |
|
---|
5557 | # The basic algorithm is the following: let log1p be the function
|
---|
5558 | # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
---|
5559 | # the reduction
|
---|
5560 | #
|
---|
5561 | # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
---|
5562 | #
|
---|
5563 | # repeatedly until the argument to log1p is small (< 2**-L in
|
---|
5564 | # absolute value). For small y we can use the Taylor series
|
---|
5565 | # expansion
|
---|
5566 | #
|
---|
5567 | # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
---|
5568 | #
|
---|
5569 | # truncating at T such that y**T is small enough. The whole
|
---|
5570 | # computation is carried out in a form of fixed-point arithmetic,
|
---|
5571 | # with a real number z being represented by an integer
|
---|
5572 | # approximation to z*M. To avoid loss of precision, the y below
|
---|
5573 | # is actually an integer approximation to 2**R*y*M, where R is the
|
---|
5574 | # number of reductions performed so far.
|
---|
5575 |
|
---|
5576 | y = x-M
|
---|
5577 | # argument reduction; R = number of reductions performed
|
---|
5578 | R = 0
|
---|
5579 | while (R <= L and long(abs(y)) << L-R >= M or
|
---|
5580 | R > L and abs(y) >> R-L >= M):
|
---|
5581 | y = _div_nearest(long(M*y) << 1,
|
---|
5582 | M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
|
---|
5583 | R += 1
|
---|
5584 |
|
---|
5585 | # Taylor series with T terms
|
---|
5586 | T = -int(-10*len(str(M))//(3*L))
|
---|
5587 | yshift = _rshift_nearest(y, R)
|
---|
5588 | w = _div_nearest(M, T)
|
---|
5589 | for k in xrange(T-1, 0, -1):
|
---|
5590 | w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
|
---|
5591 |
|
---|
5592 | return _div_nearest(w*y, M)
|
---|
5593 |
|
---|
5594 | def _dlog10(c, e, p):
|
---|
5595 | """Given integers c, e and p with c > 0, p >= 0, compute an integer
|
---|
5596 | approximation to 10**p * log10(c*10**e), with an absolute error of
|
---|
5597 | at most 1. Assumes that c*10**e is not exactly 1."""
|
---|
5598 |
|
---|
5599 | # increase precision by 2; compensate for this by dividing
|
---|
5600 | # final result by 100
|
---|
5601 | p += 2
|
---|
5602 |
|
---|
5603 | # write c*10**e as d*10**f with either:
|
---|
5604 | # f >= 0 and 1 <= d <= 10, or
|
---|
5605 | # f <= 0 and 0.1 <= d <= 1.
|
---|
5606 | # Thus for c*10**e close to 1, f = 0
|
---|
5607 | l = len(str(c))
|
---|
5608 | f = e+l - (e+l >= 1)
|
---|
5609 |
|
---|
5610 | if p > 0:
|
---|
5611 | M = 10**p
|
---|
5612 | k = e+p-f
|
---|
5613 | if k >= 0:
|
---|
5614 | c *= 10**k
|
---|
5615 | else:
|
---|
5616 | c = _div_nearest(c, 10**-k)
|
---|
5617 |
|
---|
5618 | log_d = _ilog(c, M) # error < 5 + 22 = 27
|
---|
5619 | log_10 = _log10_digits(p) # error < 1
|
---|
5620 | log_d = _div_nearest(log_d*M, log_10)
|
---|
5621 | log_tenpower = f*M # exact
|
---|
5622 | else:
|
---|
5623 | log_d = 0 # error < 2.31
|
---|
5624 | log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
---|
5625 |
|
---|
5626 | return _div_nearest(log_tenpower+log_d, 100)
|
---|
5627 |
|
---|
5628 | def _dlog(c, e, p):
|
---|
5629 | """Given integers c, e and p with c > 0, compute an integer
|
---|
5630 | approximation to 10**p * log(c*10**e), with an absolute error of
|
---|
5631 | at most 1. Assumes that c*10**e is not exactly 1."""
|
---|
5632 |
|
---|
5633 | # Increase precision by 2. The precision increase is compensated
|
---|
5634 | # for at the end with a division by 100.
|
---|
5635 | p += 2
|
---|
5636 |
|
---|
5637 | # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
---|
5638 | # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
---|
5639 | # as 10**p * log(d) + 10**p*f * log(10).
|
---|
5640 | l = len(str(c))
|
---|
5641 | f = e+l - (e+l >= 1)
|
---|
5642 |
|
---|
5643 | # compute approximation to 10**p*log(d), with error < 27
|
---|
5644 | if p > 0:
|
---|
5645 | k = e+p-f
|
---|
5646 | if k >= 0:
|
---|
5647 | c *= 10**k
|
---|
5648 | else:
|
---|
5649 | c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
---|
5650 |
|
---|
5651 | # _ilog magnifies existing error in c by a factor of at most 10
|
---|
5652 | log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
---|
5653 | else:
|
---|
5654 | # p <= 0: just approximate the whole thing by 0; error < 2.31
|
---|
5655 | log_d = 0
|
---|
5656 |
|
---|
5657 | # compute approximation to f*10**p*log(10), with error < 11.
|
---|
5658 | if f:
|
---|
5659 | extra = len(str(abs(f)))-1
|
---|
5660 | if p + extra >= 0:
|
---|
5661 | # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
---|
5662 | # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
---|
5663 | f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
---|
5664 | else:
|
---|
5665 | f_log_ten = 0
|
---|
5666 | else:
|
---|
5667 | f_log_ten = 0
|
---|
5668 |
|
---|
5669 | # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
---|
5670 | return _div_nearest(f_log_ten + log_d, 100)
|
---|
5671 |
|
---|
5672 | class _Log10Memoize(object):
|
---|
5673 | """Class to compute, store, and allow retrieval of, digits of the
|
---|
5674 | constant log(10) = 2.302585.... This constant is needed by
|
---|
5675 | Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
|
---|
5676 | def __init__(self):
|
---|
5677 | self.digits = "23025850929940456840179914546843642076011014886"
|
---|
5678 |
|
---|
5679 | def getdigits(self, p):
|
---|
5680 | """Given an integer p >= 0, return floor(10**p)*log(10).
|
---|
5681 |
|
---|
5682 | For example, self.getdigits(3) returns 2302.
|
---|
5683 | """
|
---|
5684 | # digits are stored as a string, for quick conversion to
|
---|
5685 | # integer in the case that we've already computed enough
|
---|
5686 | # digits; the stored digits should always be correct
|
---|
5687 | # (truncated, not rounded to nearest).
|
---|
5688 | if p < 0:
|
---|
5689 | raise ValueError("p should be nonnegative")
|
---|
5690 |
|
---|
5691 | if p >= len(self.digits):
|
---|
5692 | # compute p+3, p+6, p+9, ... digits; continue until at
|
---|
5693 | # least one of the extra digits is nonzero
|
---|
5694 | extra = 3
|
---|
5695 | while True:
|
---|
5696 | # compute p+extra digits, correct to within 1ulp
|
---|
5697 | M = 10**(p+extra+2)
|
---|
5698 | digits = str(_div_nearest(_ilog(10*M, M), 100))
|
---|
5699 | if digits[-extra:] != '0'*extra:
|
---|
5700 | break
|
---|
5701 | extra += 3
|
---|
5702 | # keep all reliable digits so far; remove trailing zeros
|
---|
5703 | # and next nonzero digit
|
---|
5704 | self.digits = digits.rstrip('0')[:-1]
|
---|
5705 | return int(self.digits[:p+1])
|
---|
5706 |
|
---|
5707 | _log10_digits = _Log10Memoize().getdigits
|
---|
5708 |
|
---|
5709 | def _iexp(x, M, L=8):
|
---|
5710 | """Given integers x and M, M > 0, such that x/M is small in absolute
|
---|
5711 | value, compute an integer approximation to M*exp(x/M). For 0 <=
|
---|
5712 | x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
---|
5713 | is usually much smaller)."""
|
---|
5714 |
|
---|
5715 | # Algorithm: to compute exp(z) for a real number z, first divide z
|
---|
5716 | # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
---|
5717 | # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
---|
5718 | # series
|
---|
5719 | #
|
---|
5720 | # expm1(x) = x + x**2/2! + x**3/3! + ...
|
---|
5721 | #
|
---|
5722 | # Now use the identity
|
---|
5723 | #
|
---|
5724 | # expm1(2x) = expm1(x)*(expm1(x)+2)
|
---|
5725 | #
|
---|
5726 | # R times to compute the sequence expm1(z/2**R),
|
---|
5727 | # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
---|
5728 |
|
---|
5729 | # Find R such that x/2**R/M <= 2**-L
|
---|
5730 | R = _nbits((long(x)<<L)//M)
|
---|
5731 |
|
---|
5732 | # Taylor series. (2**L)**T > M
|
---|
5733 | T = -int(-10*len(str(M))//(3*L))
|
---|
5734 | y = _div_nearest(x, T)
|
---|
5735 | Mshift = long(M)<<R
|
---|
5736 | for i in xrange(T-1, 0, -1):
|
---|
5737 | y = _div_nearest(x*(Mshift + y), Mshift * i)
|
---|
5738 |
|
---|
5739 | # Expansion
|
---|
5740 | for k in xrange(R-1, -1, -1):
|
---|
5741 | Mshift = long(M)<<(k+2)
|
---|
5742 | y = _div_nearest(y*(y+Mshift), Mshift)
|
---|
5743 |
|
---|
5744 | return M+y
|
---|
5745 |
|
---|
5746 | def _dexp(c, e, p):
|
---|
5747 | """Compute an approximation to exp(c*10**e), with p decimal places of
|
---|
5748 | precision.
|
---|
5749 |
|
---|
5750 | Returns integers d, f such that:
|
---|
5751 |
|
---|
5752 | 10**(p-1) <= d <= 10**p, and
|
---|
5753 | (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
---|
5754 |
|
---|
5755 | In other words, d*10**f is an approximation to exp(c*10**e) with p
|
---|
5756 | digits of precision, and with an error in d of at most 1. This is
|
---|
5757 | almost, but not quite, the same as the error being < 1ulp: when d
|
---|
5758 | = 10**(p-1) the error could be up to 10 ulp."""
|
---|
5759 |
|
---|
5760 | # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
---|
5761 | p += 2
|
---|
5762 |
|
---|
5763 | # compute log(10) with extra precision = adjusted exponent of c*10**e
|
---|
5764 | extra = max(0, e + len(str(c)) - 1)
|
---|
5765 | q = p + extra
|
---|
5766 |
|
---|
5767 | # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
---|
5768 | # rounding down
|
---|
5769 | shift = e+q
|
---|
5770 | if shift >= 0:
|
---|
5771 | cshift = c*10**shift
|
---|
5772 | else:
|
---|
5773 | cshift = c//10**-shift
|
---|
5774 | quot, rem = divmod(cshift, _log10_digits(q))
|
---|
5775 |
|
---|
5776 | # reduce remainder back to original precision
|
---|
5777 | rem = _div_nearest(rem, 10**extra)
|
---|
5778 |
|
---|
5779 | # error in result of _iexp < 120; error after division < 0.62
|
---|
5780 | return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
---|
5781 |
|
---|
5782 | def _dpower(xc, xe, yc, ye, p):
|
---|
5783 | """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
---|
5784 | y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
---|
5785 |
|
---|
5786 | 10**(p-1) <= c <= 10**p, and
|
---|
5787 | (c-1)*10**e < x**y < (c+1)*10**e
|
---|
5788 |
|
---|
5789 | in other words, c*10**e is an approximation to x**y with p digits
|
---|
5790 | of precision, and with an error in c of at most 1. (This is
|
---|
5791 | almost, but not quite, the same as the error being < 1ulp: when c
|
---|
5792 | == 10**(p-1) we can only guarantee error < 10ulp.)
|
---|
5793 |
|
---|
5794 | We assume that: x is positive and not equal to 1, and y is nonzero.
|
---|
5795 | """
|
---|
5796 |
|
---|
5797 | # Find b such that 10**(b-1) <= |y| <= 10**b
|
---|
5798 | b = len(str(abs(yc))) + ye
|
---|
5799 |
|
---|
5800 | # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
---|
5801 | lxc = _dlog(xc, xe, p+b+1)
|
---|
5802 |
|
---|
5803 | # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
---|
5804 | shift = ye-b
|
---|
5805 | if shift >= 0:
|
---|
5806 | pc = lxc*yc*10**shift
|
---|
5807 | else:
|
---|
5808 | pc = _div_nearest(lxc*yc, 10**-shift)
|
---|
5809 |
|
---|
5810 | if pc == 0:
|
---|
5811 | # we prefer a result that isn't exactly 1; this makes it
|
---|
5812 | # easier to compute a correctly rounded result in __pow__
|
---|
5813 | if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
|
---|
5814 | coeff, exp = 10**(p-1)+1, 1-p
|
---|
5815 | else:
|
---|
5816 | coeff, exp = 10**p-1, -p
|
---|
5817 | else:
|
---|
5818 | coeff, exp = _dexp(pc, -(p+1), p+1)
|
---|
5819 | coeff = _div_nearest(coeff, 10)
|
---|
5820 | exp += 1
|
---|
5821 |
|
---|
5822 | return coeff, exp
|
---|
5823 |
|
---|
5824 | def _log10_lb(c, correction = {
|
---|
5825 | '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
|
---|
5826 | '6': 23, '7': 16, '8': 10, '9': 5}):
|
---|
5827 | """Compute a lower bound for 100*log10(c) for a positive integer c."""
|
---|
5828 | if c <= 0:
|
---|
5829 | raise ValueError("The argument to _log10_lb should be nonnegative.")
|
---|
5830 | str_c = str(c)
|
---|
5831 | return 100*len(str_c) - correction[str_c[0]]
|
---|
5832 |
|
---|
5833 | ##### Helper Functions ####################################################
|
---|
5834 |
|
---|
5835 | def _convert_other(other, raiseit=False, allow_float=False):
|
---|
5836 | """Convert other to Decimal.
|
---|
5837 |
|
---|
5838 | Verifies that it's ok to use in an implicit construction.
|
---|
5839 | If allow_float is true, allow conversion from float; this
|
---|
5840 | is used in the comparison methods (__eq__ and friends).
|
---|
5841 |
|
---|
5842 | """
|
---|
5843 | if isinstance(other, Decimal):
|
---|
5844 | return other
|
---|
5845 | if isinstance(other, (int, long)):
|
---|
5846 | return Decimal(other)
|
---|
5847 | if allow_float and isinstance(other, float):
|
---|
5848 | return Decimal.from_float(other)
|
---|
5849 |
|
---|
5850 | if raiseit:
|
---|
5851 | raise TypeError("Unable to convert %s to Decimal" % other)
|
---|
5852 | return NotImplemented
|
---|
5853 |
|
---|
5854 | ##### Setup Specific Contexts ############################################
|
---|
5855 |
|
---|
5856 | # The default context prototype used by Context()
|
---|
5857 | # Is mutable, so that new contexts can have different default values
|
---|
5858 |
|
---|
5859 | DefaultContext = Context(
|
---|
5860 | prec=28, rounding=ROUND_HALF_EVEN,
|
---|
5861 | traps=[DivisionByZero, Overflow, InvalidOperation],
|
---|
5862 | flags=[],
|
---|
5863 | Emax=999999999,
|
---|
5864 | Emin=-999999999,
|
---|
5865 | capitals=1
|
---|
5866 | )
|
---|
5867 |
|
---|
5868 | # Pre-made alternate contexts offered by the specification
|
---|
5869 | # Don't change these; the user should be able to select these
|
---|
5870 | # contexts and be able to reproduce results from other implementations
|
---|
5871 | # of the spec.
|
---|
5872 |
|
---|
5873 | BasicContext = Context(
|
---|
5874 | prec=9, rounding=ROUND_HALF_UP,
|
---|
5875 | traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
|
---|
5876 | flags=[],
|
---|
5877 | )
|
---|
5878 |
|
---|
5879 | ExtendedContext = Context(
|
---|
5880 | prec=9, rounding=ROUND_HALF_EVEN,
|
---|
5881 | traps=[],
|
---|
5882 | flags=[],
|
---|
5883 | )
|
---|
5884 |
|
---|
5885 |
|
---|
5886 | ##### crud for parsing strings #############################################
|
---|
5887 | #
|
---|
5888 | # Regular expression used for parsing numeric strings. Additional
|
---|
5889 | # comments:
|
---|
5890 | #
|
---|
5891 | # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
|
---|
5892 | # whitespace. But note that the specification disallows whitespace in
|
---|
5893 | # a numeric string.
|
---|
5894 | #
|
---|
5895 | # 2. For finite numbers (not infinities and NaNs) the body of the
|
---|
5896 | # number between the optional sign and the optional exponent must have
|
---|
5897 | # at least one decimal digit, possibly after the decimal point. The
|
---|
5898 | # lookahead expression '(?=\d|\.\d)' checks this.
|
---|
5899 |
|
---|
5900 | import re
|
---|
5901 | _parser = re.compile(r""" # A numeric string consists of:
|
---|
5902 | # \s*
|
---|
5903 | (?P<sign>[-+])? # an optional sign, followed by either...
|
---|
5904 | (
|
---|
5905 | (?=\d|\.\d) # ...a number (with at least one digit)
|
---|
5906 | (?P<int>\d*) # having a (possibly empty) integer part
|
---|
5907 | (\.(?P<frac>\d*))? # followed by an optional fractional part
|
---|
5908 | (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
|
---|
5909 | |
|
---|
5910 | Inf(inity)? # ...an infinity, or...
|
---|
5911 | |
|
---|
5912 | (?P<signal>s)? # ...an (optionally signaling)
|
---|
5913 | NaN # NaN
|
---|
5914 | (?P<diag>\d*) # with (possibly empty) diagnostic info.
|
---|
5915 | )
|
---|
5916 | # \s*
|
---|
5917 | \Z
|
---|
5918 | """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match
|
---|
5919 |
|
---|
5920 | _all_zeros = re.compile('0*$').match
|
---|
5921 | _exact_half = re.compile('50*$').match
|
---|
5922 |
|
---|
5923 | ##### PEP3101 support functions ##############################################
|
---|
5924 | # The functions in this section have little to do with the Decimal
|
---|
5925 | # class, and could potentially be reused or adapted for other pure
|
---|
5926 | # Python numeric classes that want to implement __format__
|
---|
5927 | #
|
---|
5928 | # A format specifier for Decimal looks like:
|
---|
5929 | #
|
---|
5930 | # [[fill]align][sign][0][minimumwidth][,][.precision][type]
|
---|
5931 |
|
---|
5932 | _parse_format_specifier_regex = re.compile(r"""\A
|
---|
5933 | (?:
|
---|
5934 | (?P<fill>.)?
|
---|
5935 | (?P<align>[<>=^])
|
---|
5936 | )?
|
---|
5937 | (?P<sign>[-+ ])?
|
---|
5938 | (?P<zeropad>0)?
|
---|
5939 | (?P<minimumwidth>(?!0)\d+)?
|
---|
5940 | (?P<thousands_sep>,)?
|
---|
5941 | (?:\.(?P<precision>0|(?!0)\d+))?
|
---|
5942 | (?P<type>[eEfFgGn%])?
|
---|
5943 | \Z
|
---|
5944 | """, re.VERBOSE)
|
---|
5945 |
|
---|
5946 | del re
|
---|
5947 |
|
---|
5948 | # The locale module is only needed for the 'n' format specifier. The
|
---|
5949 | # rest of the PEP 3101 code functions quite happily without it, so we
|
---|
5950 | # don't care too much if locale isn't present.
|
---|
5951 | try:
|
---|
5952 | import locale as _locale
|
---|
5953 | except ImportError:
|
---|
5954 | pass
|
---|
5955 |
|
---|
5956 | def _parse_format_specifier(format_spec, _localeconv=None):
|
---|
5957 | """Parse and validate a format specifier.
|
---|
5958 |
|
---|
5959 | Turns a standard numeric format specifier into a dict, with the
|
---|
5960 | following entries:
|
---|
5961 |
|
---|
5962 | fill: fill character to pad field to minimum width
|
---|
5963 | align: alignment type, either '<', '>', '=' or '^'
|
---|
5964 | sign: either '+', '-' or ' '
|
---|
5965 | minimumwidth: nonnegative integer giving minimum width
|
---|
5966 | zeropad: boolean, indicating whether to pad with zeros
|
---|
5967 | thousands_sep: string to use as thousands separator, or ''
|
---|
5968 | grouping: grouping for thousands separators, in format
|
---|
5969 | used by localeconv
|
---|
5970 | decimal_point: string to use for decimal point
|
---|
5971 | precision: nonnegative integer giving precision, or None
|
---|
5972 | type: one of the characters 'eEfFgG%', or None
|
---|
5973 | unicode: boolean (always True for Python 3.x)
|
---|
5974 |
|
---|
5975 | """
|
---|
5976 | m = _parse_format_specifier_regex.match(format_spec)
|
---|
5977 | if m is None:
|
---|
5978 | raise ValueError("Invalid format specifier: " + format_spec)
|
---|
5979 |
|
---|
5980 | # get the dictionary
|
---|
5981 | format_dict = m.groupdict()
|
---|
5982 |
|
---|
5983 | # zeropad; defaults for fill and alignment. If zero padding
|
---|
5984 | # is requested, the fill and align fields should be absent.
|
---|
5985 | fill = format_dict['fill']
|
---|
5986 | align = format_dict['align']
|
---|
5987 | format_dict['zeropad'] = (format_dict['zeropad'] is not None)
|
---|
5988 | if format_dict['zeropad']:
|
---|
5989 | if fill is not None:
|
---|
5990 | raise ValueError("Fill character conflicts with '0'"
|
---|
5991 | " in format specifier: " + format_spec)
|
---|
5992 | if align is not None:
|
---|
5993 | raise ValueError("Alignment conflicts with '0' in "
|
---|
5994 | "format specifier: " + format_spec)
|
---|
5995 | format_dict['fill'] = fill or ' '
|
---|
5996 | # PEP 3101 originally specified that the default alignment should
|
---|
5997 | # be left; it was later agreed that right-aligned makes more sense
|
---|
5998 | # for numeric types. See http://bugs.python.org/issue6857.
|
---|
5999 | format_dict['align'] = align or '>'
|
---|
6000 |
|
---|
6001 | # default sign handling: '-' for negative, '' for positive
|
---|
6002 | if format_dict['sign'] is None:
|
---|
6003 | format_dict['sign'] = '-'
|
---|
6004 |
|
---|
6005 | # minimumwidth defaults to 0; precision remains None if not given
|
---|
6006 | format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
|
---|
6007 | if format_dict['precision'] is not None:
|
---|
6008 | format_dict['precision'] = int(format_dict['precision'])
|
---|
6009 |
|
---|
6010 | # if format type is 'g' or 'G' then a precision of 0 makes little
|
---|
6011 | # sense; convert it to 1. Same if format type is unspecified.
|
---|
6012 | if format_dict['precision'] == 0:
|
---|
6013 | if format_dict['type'] is None or format_dict['type'] in 'gG':
|
---|
6014 | format_dict['precision'] = 1
|
---|
6015 |
|
---|
6016 | # determine thousands separator, grouping, and decimal separator, and
|
---|
6017 | # add appropriate entries to format_dict
|
---|
6018 | if format_dict['type'] == 'n':
|
---|
6019 | # apart from separators, 'n' behaves just like 'g'
|
---|
6020 | format_dict['type'] = 'g'
|
---|
6021 | if _localeconv is None:
|
---|
6022 | _localeconv = _locale.localeconv()
|
---|
6023 | if format_dict['thousands_sep'] is not None:
|
---|
6024 | raise ValueError("Explicit thousands separator conflicts with "
|
---|
6025 | "'n' type in format specifier: " + format_spec)
|
---|
6026 | format_dict['thousands_sep'] = _localeconv['thousands_sep']
|
---|
6027 | format_dict['grouping'] = _localeconv['grouping']
|
---|
6028 | format_dict['decimal_point'] = _localeconv['decimal_point']
|
---|
6029 | else:
|
---|
6030 | if format_dict['thousands_sep'] is None:
|
---|
6031 | format_dict['thousands_sep'] = ''
|
---|
6032 | format_dict['grouping'] = [3, 0]
|
---|
6033 | format_dict['decimal_point'] = '.'
|
---|
6034 |
|
---|
6035 | # record whether return type should be str or unicode
|
---|
6036 | format_dict['unicode'] = isinstance(format_spec, unicode)
|
---|
6037 |
|
---|
6038 | return format_dict
|
---|
6039 |
|
---|
6040 | def _format_align(sign, body, spec):
|
---|
6041 | """Given an unpadded, non-aligned numeric string 'body' and sign
|
---|
6042 | string 'sign', add padding and alignment conforming to the given
|
---|
6043 | format specifier dictionary 'spec' (as produced by
|
---|
6044 | parse_format_specifier).
|
---|
6045 |
|
---|
6046 | Also converts result to unicode if necessary.
|
---|
6047 |
|
---|
6048 | """
|
---|
6049 | # how much extra space do we have to play with?
|
---|
6050 | minimumwidth = spec['minimumwidth']
|
---|
6051 | fill = spec['fill']
|
---|
6052 | padding = fill*(minimumwidth - len(sign) - len(body))
|
---|
6053 |
|
---|
6054 | align = spec['align']
|
---|
6055 | if align == '<':
|
---|
6056 | result = sign + body + padding
|
---|
6057 | elif align == '>':
|
---|
6058 | result = padding + sign + body
|
---|
6059 | elif align == '=':
|
---|
6060 | result = sign + padding + body
|
---|
6061 | elif align == '^':
|
---|
6062 | half = len(padding)//2
|
---|
6063 | result = padding[:half] + sign + body + padding[half:]
|
---|
6064 | else:
|
---|
6065 | raise ValueError('Unrecognised alignment field')
|
---|
6066 |
|
---|
6067 | # make sure that result is unicode if necessary
|
---|
6068 | if spec['unicode']:
|
---|
6069 | result = unicode(result)
|
---|
6070 |
|
---|
6071 | return result
|
---|
6072 |
|
---|
6073 | def _group_lengths(grouping):
|
---|
6074 | """Convert a localeconv-style grouping into a (possibly infinite)
|
---|
6075 | iterable of integers representing group lengths.
|
---|
6076 |
|
---|
6077 | """
|
---|
6078 | # The result from localeconv()['grouping'], and the input to this
|
---|
6079 | # function, should be a list of integers in one of the
|
---|
6080 | # following three forms:
|
---|
6081 | #
|
---|
6082 | # (1) an empty list, or
|
---|
6083 | # (2) nonempty list of positive integers + [0]
|
---|
6084 | # (3) list of positive integers + [locale.CHAR_MAX], or
|
---|
6085 |
|
---|
6086 | from itertools import chain, repeat
|
---|
6087 | if not grouping:
|
---|
6088 | return []
|
---|
6089 | elif grouping[-1] == 0 and len(grouping) >= 2:
|
---|
6090 | return chain(grouping[:-1], repeat(grouping[-2]))
|
---|
6091 | elif grouping[-1] == _locale.CHAR_MAX:
|
---|
6092 | return grouping[:-1]
|
---|
6093 | else:
|
---|
6094 | raise ValueError('unrecognised format for grouping')
|
---|
6095 |
|
---|
6096 | def _insert_thousands_sep(digits, spec, min_width=1):
|
---|
6097 | """Insert thousands separators into a digit string.
|
---|
6098 |
|
---|
6099 | spec is a dictionary whose keys should include 'thousands_sep' and
|
---|
6100 | 'grouping'; typically it's the result of parsing the format
|
---|
6101 | specifier using _parse_format_specifier.
|
---|
6102 |
|
---|
6103 | The min_width keyword argument gives the minimum length of the
|
---|
6104 | result, which will be padded on the left with zeros if necessary.
|
---|
6105 |
|
---|
6106 | If necessary, the zero padding adds an extra '0' on the left to
|
---|
6107 | avoid a leading thousands separator. For example, inserting
|
---|
6108 | commas every three digits in '123456', with min_width=8, gives
|
---|
6109 | '0,123,456', even though that has length 9.
|
---|
6110 |
|
---|
6111 | """
|
---|
6112 |
|
---|
6113 | sep = spec['thousands_sep']
|
---|
6114 | grouping = spec['grouping']
|
---|
6115 |
|
---|
6116 | groups = []
|
---|
6117 | for l in _group_lengths(grouping):
|
---|
6118 | if l <= 0:
|
---|
6119 | raise ValueError("group length should be positive")
|
---|
6120 | # max(..., 1) forces at least 1 digit to the left of a separator
|
---|
6121 | l = min(max(len(digits), min_width, 1), l)
|
---|
6122 | groups.append('0'*(l - len(digits)) + digits[-l:])
|
---|
6123 | digits = digits[:-l]
|
---|
6124 | min_width -= l
|
---|
6125 | if not digits and min_width <= 0:
|
---|
6126 | break
|
---|
6127 | min_width -= len(sep)
|
---|
6128 | else:
|
---|
6129 | l = max(len(digits), min_width, 1)
|
---|
6130 | groups.append('0'*(l - len(digits)) + digits[-l:])
|
---|
6131 | return sep.join(reversed(groups))
|
---|
6132 |
|
---|
6133 | def _format_sign(is_negative, spec):
|
---|
6134 | """Determine sign character."""
|
---|
6135 |
|
---|
6136 | if is_negative:
|
---|
6137 | return '-'
|
---|
6138 | elif spec['sign'] in ' +':
|
---|
6139 | return spec['sign']
|
---|
6140 | else:
|
---|
6141 | return ''
|
---|
6142 |
|
---|
6143 | def _format_number(is_negative, intpart, fracpart, exp, spec):
|
---|
6144 | """Format a number, given the following data:
|
---|
6145 |
|
---|
6146 | is_negative: true if the number is negative, else false
|
---|
6147 | intpart: string of digits that must appear before the decimal point
|
---|
6148 | fracpart: string of digits that must come after the point
|
---|
6149 | exp: exponent, as an integer
|
---|
6150 | spec: dictionary resulting from parsing the format specifier
|
---|
6151 |
|
---|
6152 | This function uses the information in spec to:
|
---|
6153 | insert separators (decimal separator and thousands separators)
|
---|
6154 | format the sign
|
---|
6155 | format the exponent
|
---|
6156 | add trailing '%' for the '%' type
|
---|
6157 | zero-pad if necessary
|
---|
6158 | fill and align if necessary
|
---|
6159 | """
|
---|
6160 |
|
---|
6161 | sign = _format_sign(is_negative, spec)
|
---|
6162 |
|
---|
6163 | if fracpart:
|
---|
6164 | fracpart = spec['decimal_point'] + fracpart
|
---|
6165 |
|
---|
6166 | if exp != 0 or spec['type'] in 'eE':
|
---|
6167 | echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
|
---|
6168 | fracpart += "{0}{1:+}".format(echar, exp)
|
---|
6169 | if spec['type'] == '%':
|
---|
6170 | fracpart += '%'
|
---|
6171 |
|
---|
6172 | if spec['zeropad']:
|
---|
6173 | min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
|
---|
6174 | else:
|
---|
6175 | min_width = 0
|
---|
6176 | intpart = _insert_thousands_sep(intpart, spec, min_width)
|
---|
6177 |
|
---|
6178 | return _format_align(sign, intpart+fracpart, spec)
|
---|
6179 |
|
---|
6180 |
|
---|
6181 | ##### Useful Constants (internal use only) ################################
|
---|
6182 |
|
---|
6183 | # Reusable defaults
|
---|
6184 | _Infinity = Decimal('Inf')
|
---|
6185 | _NegativeInfinity = Decimal('-Inf')
|
---|
6186 | _NaN = Decimal('NaN')
|
---|
6187 | _Zero = Decimal(0)
|
---|
6188 | _One = Decimal(1)
|
---|
6189 | _NegativeOne = Decimal(-1)
|
---|
6190 |
|
---|
6191 | # _SignedInfinity[sign] is infinity w/ that sign
|
---|
6192 | _SignedInfinity = (_Infinity, _NegativeInfinity)
|
---|
6193 |
|
---|
6194 |
|
---|
6195 |
|
---|
6196 | if __name__ == '__main__':
|
---|
6197 | import doctest, sys
|
---|
6198 | doctest.testmod(sys.modules[__name__])
|
---|