1 | # Defines classes that provide synchronization objects. Note that use of
|
---|
2 | # this module requires that your Python support threads.
|
---|
3 | #
|
---|
4 | # condition(lock=None) # a POSIX-like condition-variable object
|
---|
5 | # barrier(n) # an n-thread barrier
|
---|
6 | # event() # an event object
|
---|
7 | # semaphore(n=1) # a semaphore object, with initial count n
|
---|
8 | # mrsw() # a multiple-reader single-writer lock
|
---|
9 | #
|
---|
10 | # CONDITIONS
|
---|
11 | #
|
---|
12 | # A condition object is created via
|
---|
13 | # import this_module
|
---|
14 | # your_condition_object = this_module.condition(lock=None)
|
---|
15 | #
|
---|
16 | # As explained below, a condition object has a lock associated with it,
|
---|
17 | # used in the protocol to protect condition data. You can specify a
|
---|
18 | # lock to use in the constructor, else the constructor will allocate
|
---|
19 | # an anonymous lock for you. Specifying a lock explicitly can be useful
|
---|
20 | # when more than one condition keys off the same set of shared data.
|
---|
21 | #
|
---|
22 | # Methods:
|
---|
23 | # .acquire()
|
---|
24 | # acquire the lock associated with the condition
|
---|
25 | # .release()
|
---|
26 | # release the lock associated with the condition
|
---|
27 | # .wait()
|
---|
28 | # block the thread until such time as some other thread does a
|
---|
29 | # .signal or .broadcast on the same condition, and release the
|
---|
30 | # lock associated with the condition. The lock associated with
|
---|
31 | # the condition MUST be in the acquired state at the time
|
---|
32 | # .wait is invoked.
|
---|
33 | # .signal()
|
---|
34 | # wake up exactly one thread (if any) that previously did a .wait
|
---|
35 | # on the condition; that thread will awaken with the lock associated
|
---|
36 | # with the condition in the acquired state. If no threads are
|
---|
37 | # .wait'ing, this is a nop. If more than one thread is .wait'ing on
|
---|
38 | # the condition, any of them may be awakened.
|
---|
39 | # .broadcast()
|
---|
40 | # wake up all threads (if any) that are .wait'ing on the condition;
|
---|
41 | # the threads are woken up serially, each with the lock in the
|
---|
42 | # acquired state, so should .release() as soon as possible. If no
|
---|
43 | # threads are .wait'ing, this is a nop.
|
---|
44 | #
|
---|
45 | # Note that if a thread does a .wait *while* a signal/broadcast is
|
---|
46 | # in progress, it's guaranteeed to block until a subsequent
|
---|
47 | # signal/broadcast.
|
---|
48 | #
|
---|
49 | # Secret feature: `broadcast' actually takes an integer argument,
|
---|
50 | # and will wake up exactly that many waiting threads (or the total
|
---|
51 | # number waiting, if that's less). Use of this is dubious, though,
|
---|
52 | # and probably won't be supported if this form of condition is
|
---|
53 | # reimplemented in C.
|
---|
54 | #
|
---|
55 | # DIFFERENCES FROM POSIX
|
---|
56 | #
|
---|
57 | # + A separate mutex is not needed to guard condition data. Instead, a
|
---|
58 | # condition object can (must) be .acquire'ed and .release'ed directly.
|
---|
59 | # This eliminates a common error in using POSIX conditions.
|
---|
60 | #
|
---|
61 | # + Because of implementation difficulties, a POSIX `signal' wakes up
|
---|
62 | # _at least_ one .wait'ing thread. Race conditions make it difficult
|
---|
63 | # to stop that. This implementation guarantees to wake up only one,
|
---|
64 | # but you probably shouldn't rely on that.
|
---|
65 | #
|
---|
66 | # PROTOCOL
|
---|
67 | #
|
---|
68 | # Condition objects are used to block threads until "some condition" is
|
---|
69 | # true. E.g., a thread may wish to wait until a producer pumps out data
|
---|
70 | # for it to consume, or a server may wish to wait until someone requests
|
---|
71 | # its services, or perhaps a whole bunch of threads want to wait until a
|
---|
72 | # preceding pass over the data is complete. Early models for conditions
|
---|
73 | # relied on some other thread figuring out when a blocked thread's
|
---|
74 | # condition was true, and made the other thread responsible both for
|
---|
75 | # waking up the blocked thread and guaranteeing that it woke up with all
|
---|
76 | # data in a correct state. This proved to be very delicate in practice,
|
---|
77 | # and gave conditions a bad name in some circles.
|
---|
78 | #
|
---|
79 | # The POSIX model addresses these problems by making a thread responsible
|
---|
80 | # for ensuring that its own state is correct when it wakes, and relies
|
---|
81 | # on a rigid protocol to make this easy; so long as you stick to the
|
---|
82 | # protocol, POSIX conditions are easy to "get right":
|
---|
83 | #
|
---|
84 | # A) The thread that's waiting for some arbitrarily-complex condition
|
---|
85 | # (ACC) to become true does:
|
---|
86 | #
|
---|
87 | # condition.acquire()
|
---|
88 | # while not (code to evaluate the ACC):
|
---|
89 | # condition.wait()
|
---|
90 | # # That blocks the thread, *and* releases the lock. When a
|
---|
91 | # # condition.signal() happens, it will wake up some thread that
|
---|
92 | # # did a .wait, *and* acquire the lock again before .wait
|
---|
93 | # # returns.
|
---|
94 | # #
|
---|
95 | # # Because the lock is acquired at this point, the state used
|
---|
96 | # # in evaluating the ACC is frozen, so it's safe to go back &
|
---|
97 | # # reevaluate the ACC.
|
---|
98 | #
|
---|
99 | # # At this point, ACC is true, and the thread has the condition
|
---|
100 | # # locked.
|
---|
101 | # # So code here can safely muck with the shared state that
|
---|
102 | # # went into evaluating the ACC -- if it wants to.
|
---|
103 | # # When done mucking with the shared state, do
|
---|
104 | # condition.release()
|
---|
105 | #
|
---|
106 | # B) Threads that are mucking with shared state that may affect the
|
---|
107 | # ACC do:
|
---|
108 | #
|
---|
109 | # condition.acquire()
|
---|
110 | # # muck with shared state
|
---|
111 | # condition.release()
|
---|
112 | # if it's possible that ACC is true now:
|
---|
113 | # condition.signal() # or .broadcast()
|
---|
114 | #
|
---|
115 | # Note: You may prefer to put the "if" clause before the release().
|
---|
116 | # That's fine, but do note that anyone waiting on the signal will
|
---|
117 | # stay blocked until the release() is done (since acquiring the
|
---|
118 | # condition is part of what .wait() does before it returns).
|
---|
119 | #
|
---|
120 | # TRICK OF THE TRADE
|
---|
121 | #
|
---|
122 | # With simpler forms of conditions, it can be impossible to know when
|
---|
123 | # a thread that's supposed to do a .wait has actually done it. But
|
---|
124 | # because this form of condition releases a lock as _part_ of doing a
|
---|
125 | # wait, the state of that lock can be used to guarantee it.
|
---|
126 | #
|
---|
127 | # E.g., suppose thread A spawns thread B and later wants to wait for B to
|
---|
128 | # complete:
|
---|
129 | #
|
---|
130 | # In A: In B:
|
---|
131 | #
|
---|
132 | # B_done = condition() ... do work ...
|
---|
133 | # B_done.acquire() B_done.acquire(); B_done.release()
|
---|
134 | # spawn B B_done.signal()
|
---|
135 | # ... some time later ... ... and B exits ...
|
---|
136 | # B_done.wait()
|
---|
137 | #
|
---|
138 | # Because B_done was in the acquire'd state at the time B was spawned,
|
---|
139 | # B's attempt to acquire B_done can't succeed until A has done its
|
---|
140 | # B_done.wait() (which releases B_done). So B's B_done.signal() is
|
---|
141 | # guaranteed to be seen by the .wait(). Without the lock trick, B
|
---|
142 | # may signal before A .waits, and then A would wait forever.
|
---|
143 | #
|
---|
144 | # BARRIERS
|
---|
145 | #
|
---|
146 | # A barrier object is created via
|
---|
147 | # import this_module
|
---|
148 | # your_barrier = this_module.barrier(num_threads)
|
---|
149 | #
|
---|
150 | # Methods:
|
---|
151 | # .enter()
|
---|
152 | # the thread blocks until num_threads threads in all have done
|
---|
153 | # .enter(). Then the num_threads threads that .enter'ed resume,
|
---|
154 | # and the barrier resets to capture the next num_threads threads
|
---|
155 | # that .enter it.
|
---|
156 | #
|
---|
157 | # EVENTS
|
---|
158 | #
|
---|
159 | # An event object is created via
|
---|
160 | # import this_module
|
---|
161 | # your_event = this_module.event()
|
---|
162 | #
|
---|
163 | # An event has two states, `posted' and `cleared'. An event is
|
---|
164 | # created in the cleared state.
|
---|
165 | #
|
---|
166 | # Methods:
|
---|
167 | #
|
---|
168 | # .post()
|
---|
169 | # Put the event in the posted state, and resume all threads
|
---|
170 | # .wait'ing on the event (if any).
|
---|
171 | #
|
---|
172 | # .clear()
|
---|
173 | # Put the event in the cleared state.
|
---|
174 | #
|
---|
175 | # .is_posted()
|
---|
176 | # Returns 0 if the event is in the cleared state, or 1 if the event
|
---|
177 | # is in the posted state.
|
---|
178 | #
|
---|
179 | # .wait()
|
---|
180 | # If the event is in the posted state, returns immediately.
|
---|
181 | # If the event is in the cleared state, blocks the calling thread
|
---|
182 | # until the event is .post'ed by another thread.
|
---|
183 | #
|
---|
184 | # Note that an event, once posted, remains posted until explicitly
|
---|
185 | # cleared. Relative to conditions, this is both the strength & weakness
|
---|
186 | # of events. It's a strength because the .post'ing thread doesn't have to
|
---|
187 | # worry about whether the threads it's trying to communicate with have
|
---|
188 | # already done a .wait (a condition .signal is seen only by threads that
|
---|
189 | # do a .wait _prior_ to the .signal; a .signal does not persist). But
|
---|
190 | # it's a weakness because .clear'ing an event is error-prone: it's easy
|
---|
191 | # to mistakenly .clear an event before all the threads you intended to
|
---|
192 | # see the event get around to .wait'ing on it. But so long as you don't
|
---|
193 | # need to .clear an event, events are easy to use safely.
|
---|
194 | #
|
---|
195 | # SEMAPHORES
|
---|
196 | #
|
---|
197 | # A semaphore object is created via
|
---|
198 | # import this_module
|
---|
199 | # your_semaphore = this_module.semaphore(count=1)
|
---|
200 | #
|
---|
201 | # A semaphore has an integer count associated with it. The initial value
|
---|
202 | # of the count is specified by the optional argument (which defaults to
|
---|
203 | # 1) passed to the semaphore constructor.
|
---|
204 | #
|
---|
205 | # Methods:
|
---|
206 | #
|
---|
207 | # .p()
|
---|
208 | # If the semaphore's count is greater than 0, decrements the count
|
---|
209 | # by 1 and returns.
|
---|
210 | # Else if the semaphore's count is 0, blocks the calling thread
|
---|
211 | # until a subsequent .v() increases the count. When that happens,
|
---|
212 | # the count will be decremented by 1 and the calling thread resumed.
|
---|
213 | #
|
---|
214 | # .v()
|
---|
215 | # Increments the semaphore's count by 1, and wakes up a thread (if
|
---|
216 | # any) blocked by a .p(). It's an (detected) error for a .v() to
|
---|
217 | # increase the semaphore's count to a value larger than the initial
|
---|
218 | # count.
|
---|
219 | #
|
---|
220 | # MULTIPLE-READER SINGLE-WRITER LOCKS
|
---|
221 | #
|
---|
222 | # A mrsw lock is created via
|
---|
223 | # import this_module
|
---|
224 | # your_mrsw_lock = this_module.mrsw()
|
---|
225 | #
|
---|
226 | # This kind of lock is often useful with complex shared data structures.
|
---|
227 | # The object lets any number of "readers" proceed, so long as no thread
|
---|
228 | # wishes to "write". When a (one or more) thread declares its intention
|
---|
229 | # to "write" (e.g., to update a shared structure), all current readers
|
---|
230 | # are allowed to finish, and then a writer gets exclusive access; all
|
---|
231 | # other readers & writers are blocked until the current writer completes.
|
---|
232 | # Finally, if some thread is waiting to write and another is waiting to
|
---|
233 | # read, the writer takes precedence.
|
---|
234 | #
|
---|
235 | # Methods:
|
---|
236 | #
|
---|
237 | # .read_in()
|
---|
238 | # If no thread is writing or waiting to write, returns immediately.
|
---|
239 | # Else blocks until no thread is writing or waiting to write. So
|
---|
240 | # long as some thread has completed a .read_in but not a .read_out,
|
---|
241 | # writers are blocked.
|
---|
242 | #
|
---|
243 | # .read_out()
|
---|
244 | # Use sometime after a .read_in to declare that the thread is done
|
---|
245 | # reading. When all threads complete reading, a writer can proceed.
|
---|
246 | #
|
---|
247 | # .write_in()
|
---|
248 | # If no thread is writing (has completed a .write_in, but hasn't yet
|
---|
249 | # done a .write_out) or reading (similarly), returns immediately.
|
---|
250 | # Else blocks the calling thread, and threads waiting to read, until
|
---|
251 | # the current writer completes writing or all the current readers
|
---|
252 | # complete reading; if then more than one thread is waiting to
|
---|
253 | # write, one of them is allowed to proceed, but which one is not
|
---|
254 | # specified.
|
---|
255 | #
|
---|
256 | # .write_out()
|
---|
257 | # Use sometime after a .write_in to declare that the thread is done
|
---|
258 | # writing. Then if some other thread is waiting to write, it's
|
---|
259 | # allowed to proceed. Else all threads (if any) waiting to read are
|
---|
260 | # allowed to proceed.
|
---|
261 | #
|
---|
262 | # .write_to_read()
|
---|
263 | # Use instead of a .write_in to declare that the thread is done
|
---|
264 | # writing but wants to continue reading without other writers
|
---|
265 | # intervening. If there are other threads waiting to write, they
|
---|
266 | # are allowed to proceed only if the current thread calls
|
---|
267 | # .read_out; threads waiting to read are only allowed to proceed
|
---|
268 | # if there are no threads waiting to write. (This is a
|
---|
269 | # weakness of the interface!)
|
---|
270 |
|
---|
271 | import thread
|
---|
272 |
|
---|
273 | class condition:
|
---|
274 | def __init__(self, lock=None):
|
---|
275 | # the lock actually used by .acquire() and .release()
|
---|
276 | if lock is None:
|
---|
277 | self.mutex = thread.allocate_lock()
|
---|
278 | else:
|
---|
279 | if hasattr(lock, 'acquire') and \
|
---|
280 | hasattr(lock, 'release'):
|
---|
281 | self.mutex = lock
|
---|
282 | else:
|
---|
283 | raise TypeError, 'condition constructor requires ' \
|
---|
284 | 'a lock argument'
|
---|
285 |
|
---|
286 | # lock used to block threads until a signal
|
---|
287 | self.checkout = thread.allocate_lock()
|
---|
288 | self.checkout.acquire()
|
---|
289 |
|
---|
290 | # internal critical-section lock, & the data it protects
|
---|
291 | self.idlock = thread.allocate_lock()
|
---|
292 | self.id = 0
|
---|
293 | self.waiting = 0 # num waiters subject to current release
|
---|
294 | self.pending = 0 # num waiters awaiting next signal
|
---|
295 | self.torelease = 0 # num waiters to release
|
---|
296 | self.releasing = 0 # 1 iff release is in progress
|
---|
297 |
|
---|
298 | def acquire(self):
|
---|
299 | self.mutex.acquire()
|
---|
300 |
|
---|
301 | def release(self):
|
---|
302 | self.mutex.release()
|
---|
303 |
|
---|
304 | def wait(self):
|
---|
305 | mutex, checkout, idlock = self.mutex, self.checkout, self.idlock
|
---|
306 | if not mutex.locked():
|
---|
307 | raise ValueError, \
|
---|
308 | "condition must be .acquire'd when .wait() invoked"
|
---|
309 |
|
---|
310 | idlock.acquire()
|
---|
311 | myid = self.id
|
---|
312 | self.pending = self.pending + 1
|
---|
313 | idlock.release()
|
---|
314 |
|
---|
315 | mutex.release()
|
---|
316 |
|
---|
317 | while 1:
|
---|
318 | checkout.acquire(); idlock.acquire()
|
---|
319 | if myid < self.id:
|
---|
320 | break
|
---|
321 | checkout.release(); idlock.release()
|
---|
322 |
|
---|
323 | self.waiting = self.waiting - 1
|
---|
324 | self.torelease = self.torelease - 1
|
---|
325 | if self.torelease:
|
---|
326 | checkout.release()
|
---|
327 | else:
|
---|
328 | self.releasing = 0
|
---|
329 | if self.waiting == self.pending == 0:
|
---|
330 | self.id = 0
|
---|
331 | idlock.release()
|
---|
332 | mutex.acquire()
|
---|
333 |
|
---|
334 | def signal(self):
|
---|
335 | self.broadcast(1)
|
---|
336 |
|
---|
337 | def broadcast(self, num = -1):
|
---|
338 | if num < -1:
|
---|
339 | raise ValueError, '.broadcast called with num %r' % (num,)
|
---|
340 | if num == 0:
|
---|
341 | return
|
---|
342 | self.idlock.acquire()
|
---|
343 | if self.pending:
|
---|
344 | self.waiting = self.waiting + self.pending
|
---|
345 | self.pending = 0
|
---|
346 | self.id = self.id + 1
|
---|
347 | if num == -1:
|
---|
348 | self.torelease = self.waiting
|
---|
349 | else:
|
---|
350 | self.torelease = min( self.waiting,
|
---|
351 | self.torelease + num )
|
---|
352 | if self.torelease and not self.releasing:
|
---|
353 | self.releasing = 1
|
---|
354 | self.checkout.release()
|
---|
355 | self.idlock.release()
|
---|
356 |
|
---|
357 | class barrier:
|
---|
358 | def __init__(self, n):
|
---|
359 | self.n = n
|
---|
360 | self.togo = n
|
---|
361 | self.full = condition()
|
---|
362 |
|
---|
363 | def enter(self):
|
---|
364 | full = self.full
|
---|
365 | full.acquire()
|
---|
366 | self.togo = self.togo - 1
|
---|
367 | if self.togo:
|
---|
368 | full.wait()
|
---|
369 | else:
|
---|
370 | self.togo = self.n
|
---|
371 | full.broadcast()
|
---|
372 | full.release()
|
---|
373 |
|
---|
374 | class event:
|
---|
375 | def __init__(self):
|
---|
376 | self.state = 0
|
---|
377 | self.posted = condition()
|
---|
378 |
|
---|
379 | def post(self):
|
---|
380 | self.posted.acquire()
|
---|
381 | self.state = 1
|
---|
382 | self.posted.broadcast()
|
---|
383 | self.posted.release()
|
---|
384 |
|
---|
385 | def clear(self):
|
---|
386 | self.posted.acquire()
|
---|
387 | self.state = 0
|
---|
388 | self.posted.release()
|
---|
389 |
|
---|
390 | def is_posted(self):
|
---|
391 | self.posted.acquire()
|
---|
392 | answer = self.state
|
---|
393 | self.posted.release()
|
---|
394 | return answer
|
---|
395 |
|
---|
396 | def wait(self):
|
---|
397 | self.posted.acquire()
|
---|
398 | if not self.state:
|
---|
399 | self.posted.wait()
|
---|
400 | self.posted.release()
|
---|
401 |
|
---|
402 | class semaphore:
|
---|
403 | def __init__(self, count=1):
|
---|
404 | if count <= 0:
|
---|
405 | raise ValueError, 'semaphore count %d; must be >= 1' % count
|
---|
406 | self.count = count
|
---|
407 | self.maxcount = count
|
---|
408 | self.nonzero = condition()
|
---|
409 |
|
---|
410 | def p(self):
|
---|
411 | self.nonzero.acquire()
|
---|
412 | while self.count == 0:
|
---|
413 | self.nonzero.wait()
|
---|
414 | self.count = self.count - 1
|
---|
415 | self.nonzero.release()
|
---|
416 |
|
---|
417 | def v(self):
|
---|
418 | self.nonzero.acquire()
|
---|
419 | if self.count == self.maxcount:
|
---|
420 | raise ValueError, '.v() tried to raise semaphore count above ' \
|
---|
421 | 'initial value %r' % self.maxcount
|
---|
422 | self.count = self.count + 1
|
---|
423 | self.nonzero.signal()
|
---|
424 | self.nonzero.release()
|
---|
425 |
|
---|
426 | class mrsw:
|
---|
427 | def __init__(self):
|
---|
428 | # critical-section lock & the data it protects
|
---|
429 | self.rwOK = thread.allocate_lock()
|
---|
430 | self.nr = 0 # number readers actively reading (not just waiting)
|
---|
431 | self.nw = 0 # number writers either waiting to write or writing
|
---|
432 | self.writing = 0 # 1 iff some thread is writing
|
---|
433 |
|
---|
434 | # conditions
|
---|
435 | self.readOK = condition(self.rwOK) # OK to unblock readers
|
---|
436 | self.writeOK = condition(self.rwOK) # OK to unblock writers
|
---|
437 |
|
---|
438 | def read_in(self):
|
---|
439 | self.rwOK.acquire()
|
---|
440 | while self.nw:
|
---|
441 | self.readOK.wait()
|
---|
442 | self.nr = self.nr + 1
|
---|
443 | self.rwOK.release()
|
---|
444 |
|
---|
445 | def read_out(self):
|
---|
446 | self.rwOK.acquire()
|
---|
447 | if self.nr <= 0:
|
---|
448 | raise ValueError, \
|
---|
449 | '.read_out() invoked without an active reader'
|
---|
450 | self.nr = self.nr - 1
|
---|
451 | if self.nr == 0:
|
---|
452 | self.writeOK.signal()
|
---|
453 | self.rwOK.release()
|
---|
454 |
|
---|
455 | def write_in(self):
|
---|
456 | self.rwOK.acquire()
|
---|
457 | self.nw = self.nw + 1
|
---|
458 | while self.writing or self.nr:
|
---|
459 | self.writeOK.wait()
|
---|
460 | self.writing = 1
|
---|
461 | self.rwOK.release()
|
---|
462 |
|
---|
463 | def write_out(self):
|
---|
464 | self.rwOK.acquire()
|
---|
465 | if not self.writing:
|
---|
466 | raise ValueError, \
|
---|
467 | '.write_out() invoked without an active writer'
|
---|
468 | self.writing = 0
|
---|
469 | self.nw = self.nw - 1
|
---|
470 | if self.nw:
|
---|
471 | self.writeOK.signal()
|
---|
472 | else:
|
---|
473 | self.readOK.broadcast()
|
---|
474 | self.rwOK.release()
|
---|
475 |
|
---|
476 | def write_to_read(self):
|
---|
477 | self.rwOK.acquire()
|
---|
478 | if not self.writing:
|
---|
479 | raise ValueError, \
|
---|
480 | '.write_to_read() invoked without an active writer'
|
---|
481 | self.writing = 0
|
---|
482 | self.nw = self.nw - 1
|
---|
483 | self.nr = self.nr + 1
|
---|
484 | if not self.nw:
|
---|
485 | self.readOK.broadcast()
|
---|
486 | self.rwOK.release()
|
---|
487 |
|
---|
488 | # The rest of the file is a test case, that runs a number of parallelized
|
---|
489 | # quicksorts in parallel. If it works, you'll get about 600 lines of
|
---|
490 | # tracing output, with a line like
|
---|
491 | # test passed! 209 threads created in all
|
---|
492 | # as the last line. The content and order of preceding lines will
|
---|
493 | # vary across runs.
|
---|
494 |
|
---|
495 | def _new_thread(func, *args):
|
---|
496 | global TID
|
---|
497 | tid.acquire(); id = TID = TID+1; tid.release()
|
---|
498 | io.acquire(); alive.append(id); \
|
---|
499 | print 'starting thread', id, '--', len(alive), 'alive'; \
|
---|
500 | io.release()
|
---|
501 | thread.start_new_thread( func, (id,) + args )
|
---|
502 |
|
---|
503 | def _qsort(tid, a, l, r, finished):
|
---|
504 | # sort a[l:r]; post finished when done
|
---|
505 | io.acquire(); print 'thread', tid, 'qsort', l, r; io.release()
|
---|
506 | if r-l > 1:
|
---|
507 | pivot = a[l]
|
---|
508 | j = l+1 # make a[l:j] <= pivot, and a[j:r] > pivot
|
---|
509 | for i in range(j, r):
|
---|
510 | if a[i] <= pivot:
|
---|
511 | a[j], a[i] = a[i], a[j]
|
---|
512 | j = j + 1
|
---|
513 | a[l], a[j-1] = a[j-1], pivot
|
---|
514 |
|
---|
515 | l_subarray_sorted = event()
|
---|
516 | r_subarray_sorted = event()
|
---|
517 | _new_thread(_qsort, a, l, j-1, l_subarray_sorted)
|
---|
518 | _new_thread(_qsort, a, j, r, r_subarray_sorted)
|
---|
519 | l_subarray_sorted.wait()
|
---|
520 | r_subarray_sorted.wait()
|
---|
521 |
|
---|
522 | io.acquire(); print 'thread', tid, 'qsort done'; \
|
---|
523 | alive.remove(tid); io.release()
|
---|
524 | finished.post()
|
---|
525 |
|
---|
526 | def _randarray(tid, a, finished):
|
---|
527 | io.acquire(); print 'thread', tid, 'randomizing array'; \
|
---|
528 | io.release()
|
---|
529 | for i in range(1, len(a)):
|
---|
530 | wh.acquire(); j = randint(0,i); wh.release()
|
---|
531 | a[i], a[j] = a[j], a[i]
|
---|
532 | io.acquire(); print 'thread', tid, 'randomizing done'; \
|
---|
533 | alive.remove(tid); io.release()
|
---|
534 | finished.post()
|
---|
535 |
|
---|
536 | def _check_sort(a):
|
---|
537 | if a != range(len(a)):
|
---|
538 | raise ValueError, ('a not sorted', a)
|
---|
539 |
|
---|
540 | def _run_one_sort(tid, a, bar, done):
|
---|
541 | # randomize a, and quicksort it
|
---|
542 | # for variety, all the threads running this enter a barrier
|
---|
543 | # at the end, and post `done' after the barrier exits
|
---|
544 | io.acquire(); print 'thread', tid, 'randomizing', a; \
|
---|
545 | io.release()
|
---|
546 | finished = event()
|
---|
547 | _new_thread(_randarray, a, finished)
|
---|
548 | finished.wait()
|
---|
549 |
|
---|
550 | io.acquire(); print 'thread', tid, 'sorting', a; io.release()
|
---|
551 | finished.clear()
|
---|
552 | _new_thread(_qsort, a, 0, len(a), finished)
|
---|
553 | finished.wait()
|
---|
554 | _check_sort(a)
|
---|
555 |
|
---|
556 | io.acquire(); print 'thread', tid, 'entering barrier'; \
|
---|
557 | io.release()
|
---|
558 | bar.enter()
|
---|
559 | io.acquire(); print 'thread', tid, 'leaving barrier'; \
|
---|
560 | io.release()
|
---|
561 | io.acquire(); alive.remove(tid); io.release()
|
---|
562 | bar.enter() # make sure they've all removed themselves from alive
|
---|
563 | ## before 'done' is posted
|
---|
564 | bar.enter() # just to be cruel
|
---|
565 | done.post()
|
---|
566 |
|
---|
567 | def test():
|
---|
568 | global TID, tid, io, wh, randint, alive
|
---|
569 | import random
|
---|
570 | randint = random.randint
|
---|
571 |
|
---|
572 | TID = 0 # thread ID (1, 2, ...)
|
---|
573 | tid = thread.allocate_lock() # for changing TID
|
---|
574 | io = thread.allocate_lock() # for printing, and 'alive'
|
---|
575 | wh = thread.allocate_lock() # for calls to random
|
---|
576 | alive = [] # IDs of active threads
|
---|
577 |
|
---|
578 | NSORTS = 5
|
---|
579 | arrays = []
|
---|
580 | for i in range(NSORTS):
|
---|
581 | arrays.append( range( (i+1)*10 ) )
|
---|
582 |
|
---|
583 | bar = barrier(NSORTS)
|
---|
584 | finished = event()
|
---|
585 | for i in range(NSORTS):
|
---|
586 | _new_thread(_run_one_sort, arrays[i], bar, finished)
|
---|
587 | finished.wait()
|
---|
588 |
|
---|
589 | print 'all threads done, and checking results ...'
|
---|
590 | if alive:
|
---|
591 | raise ValueError, ('threads still alive at end', alive)
|
---|
592 | for i in range(NSORTS):
|
---|
593 | a = arrays[i]
|
---|
594 | if len(a) != (i+1)*10:
|
---|
595 | raise ValueError, ('length of array', i, 'screwed up')
|
---|
596 | _check_sort(a)
|
---|
597 |
|
---|
598 | print 'test passed!', TID, 'threads created in all'
|
---|
599 |
|
---|
600 | if __name__ == '__main__':
|
---|
601 | test()
|
---|
602 |
|
---|
603 | # end of module
|
---|