source: python/vendor/Python-2.7.6/Demo/classes/Complex.py

Last change on this file was 2, checked in by Yuri Dario, 15 years ago

Initial import for vendor code.

  • Property svn:eol-style set to native
File size: 9.7 KB
Line 
1# Complex numbers
2# ---------------
3
4# [Now that Python has a complex data type built-in, this is not very
5# useful, but it's still a nice example class]
6
7# This module represents complex numbers as instances of the class Complex.
8# A Complex instance z has two data attribues, z.re (the real part) and z.im
9# (the imaginary part). In fact, z.re and z.im can have any value -- all
10# arithmetic operators work regardless of the type of z.re and z.im (as long
11# as they support numerical operations).
12#
13# The following functions exist (Complex is actually a class):
14# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
15# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
16# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
17# if z is a tuple(re, im) it will also be converted
18# PolarToComplex([r [,phi [,fullcircle]]]) ->
19# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
20# (r and phi default to 0)
21# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
22#
23# Complex numbers have the following methods:
24# z.abs() -> absolute value of z
25# z.radius() == z.abs()
26# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
27# z.phi([fullcircle]) == z.angle(fullcircle)
28#
29# These standard functions and unary operators accept complex arguments:
30# abs(z)
31# -z
32# +z
33# not z
34# repr(z) == `z`
35# str(z)
36# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
37# the result equals hash(z.re)
38# Note that hex(z) and oct(z) are not defined.
39#
40# These conversions accept complex arguments only if their imaginary part is zero:
41# int(z)
42# long(z)
43# float(z)
44#
45# The following operators accept two complex numbers, or one complex number
46# and one real number (int, long or float):
47# z1 + z2
48# z1 - z2
49# z1 * z2
50# z1 / z2
51# pow(z1, z2)
52# cmp(z1, z2)
53# Note that z1 % z2 and divmod(z1, z2) are not defined,
54# nor are shift and mask operations.
55#
56# The standard module math does not support complex numbers.
57# The cmath modules should be used instead.
58#
59# Idea:
60# add a class Polar(r, phi) and mixed-mode arithmetic which
61# chooses the most appropriate type for the result:
62# Complex for +,-,cmp
63# Polar for *,/,pow
64
65import math
66import sys
67
68twopi = math.pi*2.0
69halfpi = math.pi/2.0
70
71def IsComplex(obj):
72 return hasattr(obj, 're') and hasattr(obj, 'im')
73
74def ToComplex(obj):
75 if IsComplex(obj):
76 return obj
77 elif isinstance(obj, tuple):
78 return Complex(*obj)
79 else:
80 return Complex(obj)
81
82def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
83 phi = phi * (twopi / fullcircle)
84 return Complex(math.cos(phi)*r, math.sin(phi)*r)
85
86def Re(obj):
87 if IsComplex(obj):
88 return obj.re
89 return obj
90
91def Im(obj):
92 if IsComplex(obj):
93 return obj.im
94 return 0
95
96class Complex:
97
98 def __init__(self, re=0, im=0):
99 _re = 0
100 _im = 0
101 if IsComplex(re):
102 _re = re.re
103 _im = re.im
104 else:
105 _re = re
106 if IsComplex(im):
107 _re = _re - im.im
108 _im = _im + im.re
109 else:
110 _im = _im + im
111 # this class is immutable, so setting self.re directly is
112 # not possible.
113 self.__dict__['re'] = _re
114 self.__dict__['im'] = _im
115
116 def __setattr__(self, name, value):
117 raise TypeError, 'Complex numbers are immutable'
118
119 def __hash__(self):
120 if not self.im:
121 return hash(self.re)
122 return hash((self.re, self.im))
123
124 def __repr__(self):
125 if not self.im:
126 return 'Complex(%r)' % (self.re,)
127 else:
128 return 'Complex(%r, %r)' % (self.re, self.im)
129
130 def __str__(self):
131 if not self.im:
132 return repr(self.re)
133 else:
134 return 'Complex(%r, %r)' % (self.re, self.im)
135
136 def __neg__(self):
137 return Complex(-self.re, -self.im)
138
139 def __pos__(self):
140 return self
141
142 def __abs__(self):
143 return math.hypot(self.re, self.im)
144
145 def __int__(self):
146 if self.im:
147 raise ValueError, "can't convert Complex with nonzero im to int"
148 return int(self.re)
149
150 def __long__(self):
151 if self.im:
152 raise ValueError, "can't convert Complex with nonzero im to long"
153 return long(self.re)
154
155 def __float__(self):
156 if self.im:
157 raise ValueError, "can't convert Complex with nonzero im to float"
158 return float(self.re)
159
160 def __cmp__(self, other):
161 other = ToComplex(other)
162 return cmp((self.re, self.im), (other.re, other.im))
163
164 def __rcmp__(self, other):
165 other = ToComplex(other)
166 return cmp(other, self)
167
168 def __nonzero__(self):
169 return not (self.re == self.im == 0)
170
171 abs = radius = __abs__
172
173 def angle(self, fullcircle = twopi):
174 return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
175
176 phi = angle
177
178 def __add__(self, other):
179 other = ToComplex(other)
180 return Complex(self.re + other.re, self.im + other.im)
181
182 __radd__ = __add__
183
184 def __sub__(self, other):
185 other = ToComplex(other)
186 return Complex(self.re - other.re, self.im - other.im)
187
188 def __rsub__(self, other):
189 other = ToComplex(other)
190 return other - self
191
192 def __mul__(self, other):
193 other = ToComplex(other)
194 return Complex(self.re*other.re - self.im*other.im,
195 self.re*other.im + self.im*other.re)
196
197 __rmul__ = __mul__
198
199 def __div__(self, other):
200 other = ToComplex(other)
201 d = float(other.re*other.re + other.im*other.im)
202 if not d: raise ZeroDivisionError, 'Complex division'
203 return Complex((self.re*other.re + self.im*other.im) / d,
204 (self.im*other.re - self.re*other.im) / d)
205
206 def __rdiv__(self, other):
207 other = ToComplex(other)
208 return other / self
209
210 def __pow__(self, n, z=None):
211 if z is not None:
212 raise TypeError, 'Complex does not support ternary pow()'
213 if IsComplex(n):
214 if n.im:
215 if self.im: raise TypeError, 'Complex to the Complex power'
216 else: return exp(math.log(self.re)*n)
217 n = n.re
218 r = pow(self.abs(), n)
219 phi = n*self.angle()
220 return Complex(math.cos(phi)*r, math.sin(phi)*r)
221
222 def __rpow__(self, base):
223 base = ToComplex(base)
224 return pow(base, self)
225
226def exp(z):
227 r = math.exp(z.re)
228 return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
229
230
231def checkop(expr, a, b, value, fuzz = 1e-6):
232 print ' ', a, 'and', b,
233 try:
234 result = eval(expr)
235 except:
236 result = sys.exc_type
237 print '->', result
238 if isinstance(result, str) or isinstance(value, str):
239 ok = (result == value)
240 else:
241 ok = abs(result - value) <= fuzz
242 if not ok:
243 print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
244
245def test():
246 print 'test constructors'
247 constructor_test = (
248 # "expect" is an array [re,im] "got" the Complex.
249 ( (0,0), Complex() ),
250 ( (0,0), Complex() ),
251 ( (1,0), Complex(1) ),
252 ( (0,1), Complex(0,1) ),
253 ( (1,2), Complex(Complex(1,2)) ),
254 ( (1,3), Complex(Complex(1,2),1) ),
255 ( (0,0), Complex(0,Complex(0,0)) ),
256 ( (3,4), Complex(3,Complex(4)) ),
257 ( (-1,3), Complex(1,Complex(3,2)) ),
258 ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
259 cnt = [0,0]
260 for t in constructor_test:
261 cnt[0] += 1
262 if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
263 print " expected", t[0], "got", t[1]
264 cnt[1] += 1
265 print " ", cnt[1], "of", cnt[0], "tests failed"
266 # test operators
267 testsuite = {
268 'a+b': [
269 (1, 10, 11),
270 (1, Complex(0,10), Complex(1,10)),
271 (Complex(0,10), 1, Complex(1,10)),
272 (Complex(0,10), Complex(1), Complex(1,10)),
273 (Complex(1), Complex(0,10), Complex(1,10)),
274 ],
275 'a-b': [
276 (1, 10, -9),
277 (1, Complex(0,10), Complex(1,-10)),
278 (Complex(0,10), 1, Complex(-1,10)),
279 (Complex(0,10), Complex(1), Complex(-1,10)),
280 (Complex(1), Complex(0,10), Complex(1,-10)),
281 ],
282 'a*b': [
283 (1, 10, 10),
284 (1, Complex(0,10), Complex(0, 10)),
285 (Complex(0,10), 1, Complex(0,10)),
286 (Complex(0,10), Complex(1), Complex(0,10)),
287 (Complex(1), Complex(0,10), Complex(0,10)),
288 ],
289 'a/b': [
290 (1., 10, 0.1),
291 (1, Complex(0,10), Complex(0, -0.1)),
292 (Complex(0, 10), 1, Complex(0, 10)),
293 (Complex(0, 10), Complex(1), Complex(0, 10)),
294 (Complex(1), Complex(0,10), Complex(0, -0.1)),
295 ],
296 'pow(a,b)': [
297 (1, 10, 1),
298 (1, Complex(0,10), 1),
299 (Complex(0,10), 1, Complex(0,10)),
300 (Complex(0,10), Complex(1), Complex(0,10)),
301 (Complex(1), Complex(0,10), 1),
302 (2, Complex(4,0), 16),
303 ],
304 'cmp(a,b)': [
305 (1, 10, -1),
306 (1, Complex(0,10), 1),
307 (Complex(0,10), 1, -1),
308 (Complex(0,10), Complex(1), -1),
309 (Complex(1), Complex(0,10), 1),
310 ],
311 }
312 for expr in sorted(testsuite):
313 print expr + ':'
314 t = (expr,)
315 for item in testsuite[expr]:
316 checkop(*(t+item))
317
318
319if __name__ == '__main__':
320 test()
Note: See TracBrowser for help on using the repository browser.