1 | /* Math module -- standard C math library functions, pi and e */
|
---|
2 |
|
---|
3 | /* Here are some comments from Tim Peters, extracted from the
|
---|
4 | discussion attached to http://bugs.python.org/issue1640. They
|
---|
5 | describe the general aims of the math module with respect to
|
---|
6 | special values, IEEE-754 floating-point exceptions, and Python
|
---|
7 | exceptions.
|
---|
8 |
|
---|
9 | These are the "spirit of 754" rules:
|
---|
10 |
|
---|
11 | 1. If the mathematical result is a real number, but of magnitude too
|
---|
12 | large to approximate by a machine float, overflow is signaled and the
|
---|
13 | result is an infinity (with the appropriate sign).
|
---|
14 |
|
---|
15 | 2. If the mathematical result is a real number, but of magnitude too
|
---|
16 | small to approximate by a machine float, underflow is signaled and the
|
---|
17 | result is a zero (with the appropriate sign).
|
---|
18 |
|
---|
19 | 3. At a singularity (a value x such that the limit of f(y) as y
|
---|
20 | approaches x exists and is an infinity), "divide by zero" is signaled
|
---|
21 | and the result is an infinity (with the appropriate sign). This is
|
---|
22 | complicated a little by that the left-side and right-side limits may
|
---|
23 | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
|
---|
24 | from the positive or negative directions. In that specific case, the
|
---|
25 | sign of the zero determines the result of 1/0.
|
---|
26 |
|
---|
27 | 4. At a point where a function has no defined result in the extended
|
---|
28 | reals (i.e., the reals plus an infinity or two), invalid operation is
|
---|
29 | signaled and a NaN is returned.
|
---|
30 |
|
---|
31 | And these are what Python has historically /tried/ to do (but not
|
---|
32 | always successfully, as platform libm behavior varies a lot):
|
---|
33 |
|
---|
34 | For #1, raise OverflowError.
|
---|
35 |
|
---|
36 | For #2, return a zero (with the appropriate sign if that happens by
|
---|
37 | accident ;-)).
|
---|
38 |
|
---|
39 | For #3 and #4, raise ValueError. It may have made sense to raise
|
---|
40 | Python's ZeroDivisionError in #3, but historically that's only been
|
---|
41 | raised for division by zero and mod by zero.
|
---|
42 |
|
---|
43 | */
|
---|
44 |
|
---|
45 | /*
|
---|
46 | In general, on an IEEE-754 platform the aim is to follow the C99
|
---|
47 | standard, including Annex 'F', whenever possible. Where the
|
---|
48 | standard recommends raising the 'divide-by-zero' or 'invalid'
|
---|
49 | floating-point exceptions, Python should raise a ValueError. Where
|
---|
50 | the standard recommends raising 'overflow', Python should raise an
|
---|
51 | OverflowError. In all other circumstances a value should be
|
---|
52 | returned.
|
---|
53 | */
|
---|
54 |
|
---|
55 | #include "Python.h"
|
---|
56 | #include "longintrepr.h" /* just for SHIFT */
|
---|
57 |
|
---|
58 | #ifdef _OSF_SOURCE
|
---|
59 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
---|
60 | extern double copysign(double, double);
|
---|
61 | #endif
|
---|
62 |
|
---|
63 | /* Call is_error when errno != 0, and where x is the result libm
|
---|
64 | * returned. is_error will usually set up an exception and return
|
---|
65 | * true (1), but may return false (0) without setting up an exception.
|
---|
66 | */
|
---|
67 | static int
|
---|
68 | is_error(double x)
|
---|
69 | {
|
---|
70 | int result = 1; /* presumption of guilt */
|
---|
71 | assert(errno); /* non-zero errno is a precondition for calling */
|
---|
72 | if (errno == EDOM)
|
---|
73 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
74 |
|
---|
75 | else if (errno == ERANGE) {
|
---|
76 | /* ANSI C generally requires libm functions to set ERANGE
|
---|
77 | * on overflow, but also generally *allows* them to set
|
---|
78 | * ERANGE on underflow too. There's no consistency about
|
---|
79 | * the latter across platforms.
|
---|
80 | * Alas, C99 never requires that errno be set.
|
---|
81 | * Here we suppress the underflow errors (libm functions
|
---|
82 | * should return a zero on underflow, and +- HUGE_VAL on
|
---|
83 | * overflow, so testing the result for zero suffices to
|
---|
84 | * distinguish the cases).
|
---|
85 | *
|
---|
86 | * On some platforms (Ubuntu/ia64) it seems that errno can be
|
---|
87 | * set to ERANGE for subnormal results that do *not* underflow
|
---|
88 | * to zero. So to be safe, we'll ignore ERANGE whenever the
|
---|
89 | * function result is less than one in absolute value.
|
---|
90 | */
|
---|
91 | if (fabs(x) < 1.0)
|
---|
92 | result = 0;
|
---|
93 | else
|
---|
94 | PyErr_SetString(PyExc_OverflowError,
|
---|
95 | "math range error");
|
---|
96 | }
|
---|
97 | else
|
---|
98 | /* Unexpected math error */
|
---|
99 | PyErr_SetFromErrno(PyExc_ValueError);
|
---|
100 | return result;
|
---|
101 | }
|
---|
102 |
|
---|
103 | /*
|
---|
104 | wrapper for atan2 that deals directly with special cases before
|
---|
105 | delegating to the platform libm for the remaining cases. This
|
---|
106 | is necessary to get consistent behaviour across platforms.
|
---|
107 | Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
|
---|
108 | always follow C99.
|
---|
109 | */
|
---|
110 |
|
---|
111 | static double
|
---|
112 | m_atan2(double y, double x)
|
---|
113 | {
|
---|
114 | if (Py_IS_NAN(x) || Py_IS_NAN(y))
|
---|
115 | return Py_NAN;
|
---|
116 | if (Py_IS_INFINITY(y)) {
|
---|
117 | if (Py_IS_INFINITY(x)) {
|
---|
118 | if (copysign(1., x) == 1.)
|
---|
119 | /* atan2(+-inf, +inf) == +-pi/4 */
|
---|
120 | return copysign(0.25*Py_MATH_PI, y);
|
---|
121 | else
|
---|
122 | /* atan2(+-inf, -inf) == +-pi*3/4 */
|
---|
123 | return copysign(0.75*Py_MATH_PI, y);
|
---|
124 | }
|
---|
125 | /* atan2(+-inf, x) == +-pi/2 for finite x */
|
---|
126 | return copysign(0.5*Py_MATH_PI, y);
|
---|
127 | }
|
---|
128 | if (Py_IS_INFINITY(x) || y == 0.) {
|
---|
129 | if (copysign(1., x) == 1.)
|
---|
130 | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
---|
131 | return copysign(0., y);
|
---|
132 | else
|
---|
133 | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
---|
134 | return copysign(Py_MATH_PI, y);
|
---|
135 | }
|
---|
136 | return atan2(y, x);
|
---|
137 | }
|
---|
138 |
|
---|
139 | /*
|
---|
140 | Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
|
---|
141 | log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
|
---|
142 | special values directly, passing positive non-special values through to
|
---|
143 | the system log/log10.
|
---|
144 | */
|
---|
145 |
|
---|
146 | static double
|
---|
147 | m_log(double x)
|
---|
148 | {
|
---|
149 | if (Py_IS_FINITE(x)) {
|
---|
150 | if (x > 0.0)
|
---|
151 | return log(x);
|
---|
152 | errno = EDOM;
|
---|
153 | if (x == 0.0)
|
---|
154 | return -Py_HUGE_VAL; /* log(0) = -inf */
|
---|
155 | else
|
---|
156 | return Py_NAN; /* log(-ve) = nan */
|
---|
157 | }
|
---|
158 | else if (Py_IS_NAN(x))
|
---|
159 | return x; /* log(nan) = nan */
|
---|
160 | else if (x > 0.0)
|
---|
161 | return x; /* log(inf) = inf */
|
---|
162 | else {
|
---|
163 | errno = EDOM;
|
---|
164 | return Py_NAN; /* log(-inf) = nan */
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | static double
|
---|
169 | m_log10(double x)
|
---|
170 | {
|
---|
171 | if (Py_IS_FINITE(x)) {
|
---|
172 | if (x > 0.0)
|
---|
173 | return log10(x);
|
---|
174 | errno = EDOM;
|
---|
175 | if (x == 0.0)
|
---|
176 | return -Py_HUGE_VAL; /* log10(0) = -inf */
|
---|
177 | else
|
---|
178 | return Py_NAN; /* log10(-ve) = nan */
|
---|
179 | }
|
---|
180 | else if (Py_IS_NAN(x))
|
---|
181 | return x; /* log10(nan) = nan */
|
---|
182 | else if (x > 0.0)
|
---|
183 | return x; /* log10(inf) = inf */
|
---|
184 | else {
|
---|
185 | errno = EDOM;
|
---|
186 | return Py_NAN; /* log10(-inf) = nan */
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | /*
|
---|
192 | math_1 is used to wrap a libm function f that takes a double
|
---|
193 | arguments and returns a double.
|
---|
194 |
|
---|
195 | The error reporting follows these rules, which are designed to do
|
---|
196 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
|
---|
197 | platforms.
|
---|
198 |
|
---|
199 | - a NaN result from non-NaN inputs causes ValueError to be raised
|
---|
200 | - an infinite result from finite inputs causes OverflowError to be
|
---|
201 | raised if can_overflow is 1, or raises ValueError if can_overflow
|
---|
202 | is 0.
|
---|
203 | - if the result is finite and errno == EDOM then ValueError is
|
---|
204 | raised
|
---|
205 | - if the result is finite and nonzero and errno == ERANGE then
|
---|
206 | OverflowError is raised
|
---|
207 |
|
---|
208 | The last rule is used to catch overflow on platforms which follow
|
---|
209 | C89 but for which HUGE_VAL is not an infinity.
|
---|
210 |
|
---|
211 | For the majority of one-argument functions these rules are enough
|
---|
212 | to ensure that Python's functions behave as specified in 'Annex F'
|
---|
213 | of the C99 standard, with the 'invalid' and 'divide-by-zero'
|
---|
214 | floating-point exceptions mapping to Python's ValueError and the
|
---|
215 | 'overflow' floating-point exception mapping to OverflowError.
|
---|
216 | math_1 only works for functions that don't have singularities *and*
|
---|
217 | the possibility of overflow; fortunately, that covers everything we
|
---|
218 | care about right now.
|
---|
219 | */
|
---|
220 |
|
---|
221 | static PyObject *
|
---|
222 | math_1(PyObject *arg, double (*func) (double), int can_overflow)
|
---|
223 | {
|
---|
224 | double x, r;
|
---|
225 | x = PyFloat_AsDouble(arg);
|
---|
226 | if (x == -1.0 && PyErr_Occurred())
|
---|
227 | return NULL;
|
---|
228 | errno = 0;
|
---|
229 | PyFPE_START_PROTECT("in math_1", return 0);
|
---|
230 | r = (*func)(x);
|
---|
231 | PyFPE_END_PROTECT(r);
|
---|
232 | if (Py_IS_NAN(r)) {
|
---|
233 | if (!Py_IS_NAN(x))
|
---|
234 | errno = EDOM;
|
---|
235 | else
|
---|
236 | errno = 0;
|
---|
237 | }
|
---|
238 | else if (Py_IS_INFINITY(r)) {
|
---|
239 | if (Py_IS_FINITE(x))
|
---|
240 | errno = can_overflow ? ERANGE : EDOM;
|
---|
241 | else
|
---|
242 | errno = 0;
|
---|
243 | }
|
---|
244 | if (errno && is_error(r))
|
---|
245 | return NULL;
|
---|
246 | else
|
---|
247 | return PyFloat_FromDouble(r);
|
---|
248 | }
|
---|
249 |
|
---|
250 | /*
|
---|
251 | math_2 is used to wrap a libm function f that takes two double
|
---|
252 | arguments and returns a double.
|
---|
253 |
|
---|
254 | The error reporting follows these rules, which are designed to do
|
---|
255 | the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
|
---|
256 | platforms.
|
---|
257 |
|
---|
258 | - a NaN result from non-NaN inputs causes ValueError to be raised
|
---|
259 | - an infinite result from finite inputs causes OverflowError to be
|
---|
260 | raised.
|
---|
261 | - if the result is finite and errno == EDOM then ValueError is
|
---|
262 | raised
|
---|
263 | - if the result is finite and nonzero and errno == ERANGE then
|
---|
264 | OverflowError is raised
|
---|
265 |
|
---|
266 | The last rule is used to catch overflow on platforms which follow
|
---|
267 | C89 but for which HUGE_VAL is not an infinity.
|
---|
268 |
|
---|
269 | For most two-argument functions (copysign, fmod, hypot, atan2)
|
---|
270 | these rules are enough to ensure that Python's functions behave as
|
---|
271 | specified in 'Annex F' of the C99 standard, with the 'invalid' and
|
---|
272 | 'divide-by-zero' floating-point exceptions mapping to Python's
|
---|
273 | ValueError and the 'overflow' floating-point exception mapping to
|
---|
274 | OverflowError.
|
---|
275 | */
|
---|
276 |
|
---|
277 | static PyObject *
|
---|
278 | math_2(PyObject *args, double (*func) (double, double), char *funcname)
|
---|
279 | {
|
---|
280 | PyObject *ox, *oy;
|
---|
281 | double x, y, r;
|
---|
282 | if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
|
---|
283 | return NULL;
|
---|
284 | x = PyFloat_AsDouble(ox);
|
---|
285 | y = PyFloat_AsDouble(oy);
|
---|
286 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
287 | return NULL;
|
---|
288 | errno = 0;
|
---|
289 | PyFPE_START_PROTECT("in math_2", return 0);
|
---|
290 | r = (*func)(x, y);
|
---|
291 | PyFPE_END_PROTECT(r);
|
---|
292 | if (Py_IS_NAN(r)) {
|
---|
293 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
294 | errno = EDOM;
|
---|
295 | else
|
---|
296 | errno = 0;
|
---|
297 | }
|
---|
298 | else if (Py_IS_INFINITY(r)) {
|
---|
299 | if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
|
---|
300 | errno = ERANGE;
|
---|
301 | else
|
---|
302 | errno = 0;
|
---|
303 | }
|
---|
304 | if (errno && is_error(r))
|
---|
305 | return NULL;
|
---|
306 | else
|
---|
307 | return PyFloat_FromDouble(r);
|
---|
308 | }
|
---|
309 |
|
---|
310 | #define FUNC1(funcname, func, can_overflow, docstring) \
|
---|
311 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
---|
312 | return math_1(args, func, can_overflow); \
|
---|
313 | }\
|
---|
314 | PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
---|
315 |
|
---|
316 | #define FUNC2(funcname, func, docstring) \
|
---|
317 | static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
---|
318 | return math_2(args, func, #funcname); \
|
---|
319 | }\
|
---|
320 | PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
---|
321 |
|
---|
322 | FUNC1(acos, acos, 0,
|
---|
323 | "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
|
---|
324 | FUNC1(acosh, acosh, 0,
|
---|
325 | "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
|
---|
326 | FUNC1(asin, asin, 0,
|
---|
327 | "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
|
---|
328 | FUNC1(asinh, asinh, 0,
|
---|
329 | "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
|
---|
330 | FUNC1(atan, atan, 0,
|
---|
331 | "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
|
---|
332 | FUNC2(atan2, m_atan2,
|
---|
333 | "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
|
---|
334 | "Unlike atan(y/x), the signs of both x and y are considered.")
|
---|
335 | FUNC1(atanh, atanh, 0,
|
---|
336 | "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
|
---|
337 | FUNC1(ceil, ceil, 0,
|
---|
338 | "ceil(x)\n\nReturn the ceiling of x as a float.\n"
|
---|
339 | "This is the smallest integral value >= x.")
|
---|
340 | FUNC2(copysign, copysign,
|
---|
341 | "copysign(x,y)\n\nReturn x with the sign of y.")
|
---|
342 | FUNC1(cos, cos, 0,
|
---|
343 | "cos(x)\n\nReturn the cosine of x (measured in radians).")
|
---|
344 | FUNC1(cosh, cosh, 1,
|
---|
345 | "cosh(x)\n\nReturn the hyperbolic cosine of x.")
|
---|
346 | FUNC1(exp, exp, 1,
|
---|
347 | "exp(x)\n\nReturn e raised to the power of x.")
|
---|
348 | FUNC1(fabs, fabs, 0,
|
---|
349 | "fabs(x)\n\nReturn the absolute value of the float x.")
|
---|
350 | FUNC1(floor, floor, 0,
|
---|
351 | "floor(x)\n\nReturn the floor of x as a float.\n"
|
---|
352 | "This is the largest integral value <= x.")
|
---|
353 | FUNC1(log1p, log1p, 1,
|
---|
354 | "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
|
---|
355 | The result is computed in a way which is accurate for x near zero.")
|
---|
356 | FUNC1(sin, sin, 0,
|
---|
357 | "sin(x)\n\nReturn the sine of x (measured in radians).")
|
---|
358 | FUNC1(sinh, sinh, 1,
|
---|
359 | "sinh(x)\n\nReturn the hyperbolic sine of x.")
|
---|
360 | FUNC1(sqrt, sqrt, 0,
|
---|
361 | "sqrt(x)\n\nReturn the square root of x.")
|
---|
362 | FUNC1(tan, tan, 0,
|
---|
363 | "tan(x)\n\nReturn the tangent of x (measured in radians).")
|
---|
364 | FUNC1(tanh, tanh, 0,
|
---|
365 | "tanh(x)\n\nReturn the hyperbolic tangent of x.")
|
---|
366 |
|
---|
367 | /* Precision summation function as msum() by Raymond Hettinger in
|
---|
368 | <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
|
---|
369 | enhanced with the exact partials sum and roundoff from Mark
|
---|
370 | Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
|
---|
371 | See those links for more details, proofs and other references.
|
---|
372 |
|
---|
373 | Note 1: IEEE 754R floating point semantics are assumed,
|
---|
374 | but the current implementation does not re-establish special
|
---|
375 | value semantics across iterations (i.e. handling -Inf + Inf).
|
---|
376 |
|
---|
377 | Note 2: No provision is made for intermediate overflow handling;
|
---|
378 | therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
|
---|
379 | sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
|
---|
380 | overflow of the first partial sum.
|
---|
381 |
|
---|
382 | Note 3: The intermediate values lo, yr, and hi are declared volatile so
|
---|
383 | aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
|
---|
384 | Also, the volatile declaration forces the values to be stored in memory as
|
---|
385 | regular doubles instead of extended long precision (80-bit) values. This
|
---|
386 | prevents double rounding because any addition or subtraction of two doubles
|
---|
387 | can be resolved exactly into double-sized hi and lo values. As long as the
|
---|
388 | hi value gets forced into a double before yr and lo are computed, the extra
|
---|
389 | bits in downstream extended precision operations (x87 for example) will be
|
---|
390 | exactly zero and therefore can be losslessly stored back into a double,
|
---|
391 | thereby preventing double rounding.
|
---|
392 |
|
---|
393 | Note 4: A similar implementation is in Modules/cmathmodule.c.
|
---|
394 | Be sure to update both when making changes.
|
---|
395 |
|
---|
396 | Note 5: The signature of math.fsum() differs from __builtin__.sum()
|
---|
397 | because the start argument doesn't make sense in the context of
|
---|
398 | accurate summation. Since the partials table is collapsed before
|
---|
399 | returning a result, sum(seq2, start=sum(seq1)) may not equal the
|
---|
400 | accurate result returned by sum(itertools.chain(seq1, seq2)).
|
---|
401 | */
|
---|
402 |
|
---|
403 | #define NUM_PARTIALS 32 /* initial partials array size, on stack */
|
---|
404 |
|
---|
405 | /* Extend the partials array p[] by doubling its size. */
|
---|
406 | static int /* non-zero on error */
|
---|
407 | _fsum_realloc(double **p_ptr, Py_ssize_t n,
|
---|
408 | double *ps, Py_ssize_t *m_ptr)
|
---|
409 | {
|
---|
410 | void *v = NULL;
|
---|
411 | Py_ssize_t m = *m_ptr;
|
---|
412 |
|
---|
413 | m += m; /* double */
|
---|
414 | if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
|
---|
415 | double *p = *p_ptr;
|
---|
416 | if (p == ps) {
|
---|
417 | v = PyMem_Malloc(sizeof(double) * m);
|
---|
418 | if (v != NULL)
|
---|
419 | memcpy(v, ps, sizeof(double) * n);
|
---|
420 | }
|
---|
421 | else
|
---|
422 | v = PyMem_Realloc(p, sizeof(double) * m);
|
---|
423 | }
|
---|
424 | if (v == NULL) { /* size overflow or no memory */
|
---|
425 | PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
|
---|
426 | return 1;
|
---|
427 | }
|
---|
428 | *p_ptr = (double*) v;
|
---|
429 | *m_ptr = m;
|
---|
430 | return 0;
|
---|
431 | }
|
---|
432 |
|
---|
433 | /* Full precision summation of a sequence of floats.
|
---|
434 |
|
---|
435 | def msum(iterable):
|
---|
436 | partials = [] # sorted, non-overlapping partial sums
|
---|
437 | for x in iterable:
|
---|
438 | i = 0
|
---|
439 | for y in partials:
|
---|
440 | if abs(x) < abs(y):
|
---|
441 | x, y = y, x
|
---|
442 | hi = x + y
|
---|
443 | lo = y - (hi - x)
|
---|
444 | if lo:
|
---|
445 | partials[i] = lo
|
---|
446 | i += 1
|
---|
447 | x = hi
|
---|
448 | partials[i:] = [x]
|
---|
449 | return sum_exact(partials)
|
---|
450 |
|
---|
451 | Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
|
---|
452 | are exactly equal to x+y. The inner loop applies hi/lo summation to each
|
---|
453 | partial so that the list of partial sums remains exact.
|
---|
454 |
|
---|
455 | Sum_exact() adds the partial sums exactly and correctly rounds the final
|
---|
456 | result (using the round-half-to-even rule). The items in partials remain
|
---|
457 | non-zero, non-special, non-overlapping and strictly increasing in
|
---|
458 | magnitude, but possibly not all having the same sign.
|
---|
459 |
|
---|
460 | Depends on IEEE 754 arithmetic guarantees and half-even rounding.
|
---|
461 | */
|
---|
462 |
|
---|
463 | static PyObject*
|
---|
464 | math_fsum(PyObject *self, PyObject *seq)
|
---|
465 | {
|
---|
466 | PyObject *item, *iter, *sum = NULL;
|
---|
467 | Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
|
---|
468 | double x, y, t, ps[NUM_PARTIALS], *p = ps;
|
---|
469 | double xsave, special_sum = 0.0, inf_sum = 0.0;
|
---|
470 | volatile double hi, yr, lo;
|
---|
471 |
|
---|
472 | iter = PyObject_GetIter(seq);
|
---|
473 | if (iter == NULL)
|
---|
474 | return NULL;
|
---|
475 |
|
---|
476 | PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
|
---|
477 |
|
---|
478 | for(;;) { /* for x in iterable */
|
---|
479 | assert(0 <= n && n <= m);
|
---|
480 | assert((m == NUM_PARTIALS && p == ps) ||
|
---|
481 | (m > NUM_PARTIALS && p != NULL));
|
---|
482 |
|
---|
483 | item = PyIter_Next(iter);
|
---|
484 | if (item == NULL) {
|
---|
485 | if (PyErr_Occurred())
|
---|
486 | goto _fsum_error;
|
---|
487 | break;
|
---|
488 | }
|
---|
489 | x = PyFloat_AsDouble(item);
|
---|
490 | Py_DECREF(item);
|
---|
491 | if (PyErr_Occurred())
|
---|
492 | goto _fsum_error;
|
---|
493 |
|
---|
494 | xsave = x;
|
---|
495 | for (i = j = 0; j < n; j++) { /* for y in partials */
|
---|
496 | y = p[j];
|
---|
497 | if (fabs(x) < fabs(y)) {
|
---|
498 | t = x; x = y; y = t;
|
---|
499 | }
|
---|
500 | hi = x + y;
|
---|
501 | yr = hi - x;
|
---|
502 | lo = y - yr;
|
---|
503 | if (lo != 0.0)
|
---|
504 | p[i++] = lo;
|
---|
505 | x = hi;
|
---|
506 | }
|
---|
507 |
|
---|
508 | n = i; /* ps[i:] = [x] */
|
---|
509 | if (x != 0.0) {
|
---|
510 | if (! Py_IS_FINITE(x)) {
|
---|
511 | /* a nonfinite x could arise either as
|
---|
512 | a result of intermediate overflow, or
|
---|
513 | as a result of a nan or inf in the
|
---|
514 | summands */
|
---|
515 | if (Py_IS_FINITE(xsave)) {
|
---|
516 | PyErr_SetString(PyExc_OverflowError,
|
---|
517 | "intermediate overflow in fsum");
|
---|
518 | goto _fsum_error;
|
---|
519 | }
|
---|
520 | if (Py_IS_INFINITY(xsave))
|
---|
521 | inf_sum += xsave;
|
---|
522 | special_sum += xsave;
|
---|
523 | /* reset partials */
|
---|
524 | n = 0;
|
---|
525 | }
|
---|
526 | else if (n >= m && _fsum_realloc(&p, n, ps, &m))
|
---|
527 | goto _fsum_error;
|
---|
528 | else
|
---|
529 | p[n++] = x;
|
---|
530 | }
|
---|
531 | }
|
---|
532 |
|
---|
533 | if (special_sum != 0.0) {
|
---|
534 | if (Py_IS_NAN(inf_sum))
|
---|
535 | PyErr_SetString(PyExc_ValueError,
|
---|
536 | "-inf + inf in fsum");
|
---|
537 | else
|
---|
538 | sum = PyFloat_FromDouble(special_sum);
|
---|
539 | goto _fsum_error;
|
---|
540 | }
|
---|
541 |
|
---|
542 | hi = 0.0;
|
---|
543 | if (n > 0) {
|
---|
544 | hi = p[--n];
|
---|
545 | /* sum_exact(ps, hi) from the top, stop when the sum becomes
|
---|
546 | inexact. */
|
---|
547 | while (n > 0) {
|
---|
548 | x = hi;
|
---|
549 | y = p[--n];
|
---|
550 | assert(fabs(y) < fabs(x));
|
---|
551 | hi = x + y;
|
---|
552 | yr = hi - x;
|
---|
553 | lo = y - yr;
|
---|
554 | if (lo != 0.0)
|
---|
555 | break;
|
---|
556 | }
|
---|
557 | /* Make half-even rounding work across multiple partials.
|
---|
558 | Needed so that sum([1e-16, 1, 1e16]) will round-up the last
|
---|
559 | digit to two instead of down to zero (the 1e-16 makes the 1
|
---|
560 | slightly closer to two). With a potential 1 ULP rounding
|
---|
561 | error fixed-up, math.fsum() can guarantee commutativity. */
|
---|
562 | if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
|
---|
563 | (lo > 0.0 && p[n-1] > 0.0))) {
|
---|
564 | y = lo * 2.0;
|
---|
565 | x = hi + y;
|
---|
566 | yr = x - hi;
|
---|
567 | if (y == yr)
|
---|
568 | hi = x;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | sum = PyFloat_FromDouble(hi);
|
---|
572 |
|
---|
573 | _fsum_error:
|
---|
574 | PyFPE_END_PROTECT(hi)
|
---|
575 | Py_DECREF(iter);
|
---|
576 | if (p != ps)
|
---|
577 | PyMem_Free(p);
|
---|
578 | return sum;
|
---|
579 | }
|
---|
580 |
|
---|
581 | #undef NUM_PARTIALS
|
---|
582 |
|
---|
583 | PyDoc_STRVAR(math_fsum_doc,
|
---|
584 | "sum(iterable)\n\n\
|
---|
585 | Return an accurate floating point sum of values in the iterable.\n\
|
---|
586 | Assumes IEEE-754 floating point arithmetic.");
|
---|
587 |
|
---|
588 | static PyObject *
|
---|
589 | math_factorial(PyObject *self, PyObject *arg)
|
---|
590 | {
|
---|
591 | long i, x;
|
---|
592 | PyObject *result, *iobj, *newresult;
|
---|
593 |
|
---|
594 | if (PyFloat_Check(arg)) {
|
---|
595 | double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
|
---|
596 | if (dx != floor(dx)) {
|
---|
597 | PyErr_SetString(PyExc_ValueError,
|
---|
598 | "factorial() only accepts integral values");
|
---|
599 | return NULL;
|
---|
600 | }
|
---|
601 | }
|
---|
602 |
|
---|
603 | x = PyInt_AsLong(arg);
|
---|
604 | if (x == -1 && PyErr_Occurred())
|
---|
605 | return NULL;
|
---|
606 | if (x < 0) {
|
---|
607 | PyErr_SetString(PyExc_ValueError,
|
---|
608 | "factorial() not defined for negative values");
|
---|
609 | return NULL;
|
---|
610 | }
|
---|
611 |
|
---|
612 | result = (PyObject *)PyInt_FromLong(1);
|
---|
613 | if (result == NULL)
|
---|
614 | return NULL;
|
---|
615 | for (i=1 ; i<=x ; i++) {
|
---|
616 | iobj = (PyObject *)PyInt_FromLong(i);
|
---|
617 | if (iobj == NULL)
|
---|
618 | goto error;
|
---|
619 | newresult = PyNumber_Multiply(result, iobj);
|
---|
620 | Py_DECREF(iobj);
|
---|
621 | if (newresult == NULL)
|
---|
622 | goto error;
|
---|
623 | Py_DECREF(result);
|
---|
624 | result = newresult;
|
---|
625 | }
|
---|
626 | return result;
|
---|
627 |
|
---|
628 | error:
|
---|
629 | Py_DECREF(result);
|
---|
630 | return NULL;
|
---|
631 | }
|
---|
632 |
|
---|
633 | PyDoc_STRVAR(math_factorial_doc,
|
---|
634 | "factorial(x) -> Integral\n"
|
---|
635 | "\n"
|
---|
636 | "Find x!. Raise a ValueError if x is negative or non-integral.");
|
---|
637 |
|
---|
638 | static PyObject *
|
---|
639 | math_trunc(PyObject *self, PyObject *number)
|
---|
640 | {
|
---|
641 | return PyObject_CallMethod(number, "__trunc__", NULL);
|
---|
642 | }
|
---|
643 |
|
---|
644 | PyDoc_STRVAR(math_trunc_doc,
|
---|
645 | "trunc(x:Real) -> Integral\n"
|
---|
646 | "\n"
|
---|
647 | "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
|
---|
648 |
|
---|
649 | static PyObject *
|
---|
650 | math_frexp(PyObject *self, PyObject *arg)
|
---|
651 | {
|
---|
652 | int i;
|
---|
653 | double x = PyFloat_AsDouble(arg);
|
---|
654 | if (x == -1.0 && PyErr_Occurred())
|
---|
655 | return NULL;
|
---|
656 | /* deal with special cases directly, to sidestep platform
|
---|
657 | differences */
|
---|
658 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
|
---|
659 | i = 0;
|
---|
660 | }
|
---|
661 | else {
|
---|
662 | PyFPE_START_PROTECT("in math_frexp", return 0);
|
---|
663 | x = frexp(x, &i);
|
---|
664 | PyFPE_END_PROTECT(x);
|
---|
665 | }
|
---|
666 | return Py_BuildValue("(di)", x, i);
|
---|
667 | }
|
---|
668 |
|
---|
669 | PyDoc_STRVAR(math_frexp_doc,
|
---|
670 | "frexp(x)\n"
|
---|
671 | "\n"
|
---|
672 | "Return the mantissa and exponent of x, as pair (m, e).\n"
|
---|
673 | "m is a float and e is an int, such that x = m * 2.**e.\n"
|
---|
674 | "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
|
---|
675 |
|
---|
676 | static PyObject *
|
---|
677 | math_ldexp(PyObject *self, PyObject *args)
|
---|
678 | {
|
---|
679 | double x, r;
|
---|
680 | PyObject *oexp;
|
---|
681 | long exp;
|
---|
682 | if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
|
---|
683 | return NULL;
|
---|
684 |
|
---|
685 | if (PyLong_Check(oexp)) {
|
---|
686 | /* on overflow, replace exponent with either LONG_MAX
|
---|
687 | or LONG_MIN, depending on the sign. */
|
---|
688 | exp = PyLong_AsLong(oexp);
|
---|
689 | if (exp == -1 && PyErr_Occurred()) {
|
---|
690 | if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
---|
691 | if (Py_SIZE(oexp) < 0) {
|
---|
692 | exp = LONG_MIN;
|
---|
693 | }
|
---|
694 | else {
|
---|
695 | exp = LONG_MAX;
|
---|
696 | }
|
---|
697 | PyErr_Clear();
|
---|
698 | }
|
---|
699 | else {
|
---|
700 | /* propagate any unexpected exception */
|
---|
701 | return NULL;
|
---|
702 | }
|
---|
703 | }
|
---|
704 | }
|
---|
705 | else if (PyInt_Check(oexp)) {
|
---|
706 | exp = PyInt_AS_LONG(oexp);
|
---|
707 | }
|
---|
708 | else {
|
---|
709 | PyErr_SetString(PyExc_TypeError,
|
---|
710 | "Expected an int or long as second argument "
|
---|
711 | "to ldexp.");
|
---|
712 | return NULL;
|
---|
713 | }
|
---|
714 |
|
---|
715 | if (x == 0. || !Py_IS_FINITE(x)) {
|
---|
716 | /* NaNs, zeros and infinities are returned unchanged */
|
---|
717 | r = x;
|
---|
718 | errno = 0;
|
---|
719 | } else if (exp > INT_MAX) {
|
---|
720 | /* overflow */
|
---|
721 | r = copysign(Py_HUGE_VAL, x);
|
---|
722 | errno = ERANGE;
|
---|
723 | } else if (exp < INT_MIN) {
|
---|
724 | /* underflow to +-0 */
|
---|
725 | r = copysign(0., x);
|
---|
726 | errno = 0;
|
---|
727 | } else {
|
---|
728 | errno = 0;
|
---|
729 | PyFPE_START_PROTECT("in math_ldexp", return 0);
|
---|
730 | r = ldexp(x, (int)exp);
|
---|
731 | PyFPE_END_PROTECT(r);
|
---|
732 | if (Py_IS_INFINITY(r))
|
---|
733 | errno = ERANGE;
|
---|
734 | }
|
---|
735 |
|
---|
736 | if (errno && is_error(r))
|
---|
737 | return NULL;
|
---|
738 | return PyFloat_FromDouble(r);
|
---|
739 | }
|
---|
740 |
|
---|
741 | PyDoc_STRVAR(math_ldexp_doc,
|
---|
742 | "ldexp(x, i) -> x * (2**i)");
|
---|
743 |
|
---|
744 | static PyObject *
|
---|
745 | math_modf(PyObject *self, PyObject *arg)
|
---|
746 | {
|
---|
747 | double y, x = PyFloat_AsDouble(arg);
|
---|
748 | if (x == -1.0 && PyErr_Occurred())
|
---|
749 | return NULL;
|
---|
750 | /* some platforms don't do the right thing for NaNs and
|
---|
751 | infinities, so we take care of special cases directly. */
|
---|
752 | if (!Py_IS_FINITE(x)) {
|
---|
753 | if (Py_IS_INFINITY(x))
|
---|
754 | return Py_BuildValue("(dd)", copysign(0., x), x);
|
---|
755 | else if (Py_IS_NAN(x))
|
---|
756 | return Py_BuildValue("(dd)", x, x);
|
---|
757 | }
|
---|
758 |
|
---|
759 | errno = 0;
|
---|
760 | PyFPE_START_PROTECT("in math_modf", return 0);
|
---|
761 | x = modf(x, &y);
|
---|
762 | PyFPE_END_PROTECT(x);
|
---|
763 | return Py_BuildValue("(dd)", x, y);
|
---|
764 | }
|
---|
765 |
|
---|
766 | PyDoc_STRVAR(math_modf_doc,
|
---|
767 | "modf(x)\n"
|
---|
768 | "\n"
|
---|
769 | "Return the fractional and integer parts of x. Both results carry the sign\n"
|
---|
770 | "of x and are floats.");
|
---|
771 |
|
---|
772 | /* A decent logarithm is easy to compute even for huge longs, but libm can't
|
---|
773 | do that by itself -- loghelper can. func is log or log10, and name is
|
---|
774 | "log" or "log10". Note that overflow isn't possible: a long can contain
|
---|
775 | no more than INT_MAX * SHIFT bits, so has value certainly less than
|
---|
776 | 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
|
---|
777 | small enough to fit in an IEEE single. log and log10 are even smaller.
|
---|
778 | */
|
---|
779 |
|
---|
780 | static PyObject*
|
---|
781 | loghelper(PyObject* arg, double (*func)(double), char *funcname)
|
---|
782 | {
|
---|
783 | /* If it is long, do it ourselves. */
|
---|
784 | if (PyLong_Check(arg)) {
|
---|
785 | double x;
|
---|
786 | int e;
|
---|
787 | x = _PyLong_AsScaledDouble(arg, &e);
|
---|
788 | if (x <= 0.0) {
|
---|
789 | PyErr_SetString(PyExc_ValueError,
|
---|
790 | "math domain error");
|
---|
791 | return NULL;
|
---|
792 | }
|
---|
793 | /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
|
---|
794 | log(x) + log(2) * e * PyLong_SHIFT.
|
---|
795 | CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
|
---|
796 | so force use of double. */
|
---|
797 | x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
|
---|
798 | return PyFloat_FromDouble(x);
|
---|
799 | }
|
---|
800 |
|
---|
801 | /* Else let libm handle it by itself. */
|
---|
802 | return math_1(arg, func, 0);
|
---|
803 | }
|
---|
804 |
|
---|
805 | static PyObject *
|
---|
806 | math_log(PyObject *self, PyObject *args)
|
---|
807 | {
|
---|
808 | PyObject *arg;
|
---|
809 | PyObject *base = NULL;
|
---|
810 | PyObject *num, *den;
|
---|
811 | PyObject *ans;
|
---|
812 |
|
---|
813 | if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
|
---|
814 | return NULL;
|
---|
815 |
|
---|
816 | num = loghelper(arg, m_log, "log");
|
---|
817 | if (num == NULL || base == NULL)
|
---|
818 | return num;
|
---|
819 |
|
---|
820 | den = loghelper(base, m_log, "log");
|
---|
821 | if (den == NULL) {
|
---|
822 | Py_DECREF(num);
|
---|
823 | return NULL;
|
---|
824 | }
|
---|
825 |
|
---|
826 | ans = PyNumber_Divide(num, den);
|
---|
827 | Py_DECREF(num);
|
---|
828 | Py_DECREF(den);
|
---|
829 | return ans;
|
---|
830 | }
|
---|
831 |
|
---|
832 | PyDoc_STRVAR(math_log_doc,
|
---|
833 | "log(x[, base]) -> the logarithm of x to the given base.\n\
|
---|
834 | If the base not specified, returns the natural logarithm (base e) of x.");
|
---|
835 |
|
---|
836 | static PyObject *
|
---|
837 | math_log10(PyObject *self, PyObject *arg)
|
---|
838 | {
|
---|
839 | return loghelper(arg, m_log10, "log10");
|
---|
840 | }
|
---|
841 |
|
---|
842 | PyDoc_STRVAR(math_log10_doc,
|
---|
843 | "log10(x) -> the base 10 logarithm of x.");
|
---|
844 |
|
---|
845 | static PyObject *
|
---|
846 | math_fmod(PyObject *self, PyObject *args)
|
---|
847 | {
|
---|
848 | PyObject *ox, *oy;
|
---|
849 | double r, x, y;
|
---|
850 | if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
|
---|
851 | return NULL;
|
---|
852 | x = PyFloat_AsDouble(ox);
|
---|
853 | y = PyFloat_AsDouble(oy);
|
---|
854 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
855 | return NULL;
|
---|
856 | /* fmod(x, +/-Inf) returns x for finite x. */
|
---|
857 | if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
|
---|
858 | return PyFloat_FromDouble(x);
|
---|
859 | errno = 0;
|
---|
860 | PyFPE_START_PROTECT("in math_fmod", return 0);
|
---|
861 | r = fmod(x, y);
|
---|
862 | PyFPE_END_PROTECT(r);
|
---|
863 | if (Py_IS_NAN(r)) {
|
---|
864 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
865 | errno = EDOM;
|
---|
866 | else
|
---|
867 | errno = 0;
|
---|
868 | }
|
---|
869 | if (errno && is_error(r))
|
---|
870 | return NULL;
|
---|
871 | else
|
---|
872 | return PyFloat_FromDouble(r);
|
---|
873 | }
|
---|
874 |
|
---|
875 | PyDoc_STRVAR(math_fmod_doc,
|
---|
876 | "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
|
---|
877 | " x % y may differ.");
|
---|
878 |
|
---|
879 | static PyObject *
|
---|
880 | math_hypot(PyObject *self, PyObject *args)
|
---|
881 | {
|
---|
882 | PyObject *ox, *oy;
|
---|
883 | double r, x, y;
|
---|
884 | if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
|
---|
885 | return NULL;
|
---|
886 | x = PyFloat_AsDouble(ox);
|
---|
887 | y = PyFloat_AsDouble(oy);
|
---|
888 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
889 | return NULL;
|
---|
890 | /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
|
---|
891 | if (Py_IS_INFINITY(x))
|
---|
892 | return PyFloat_FromDouble(fabs(x));
|
---|
893 | if (Py_IS_INFINITY(y))
|
---|
894 | return PyFloat_FromDouble(fabs(y));
|
---|
895 | errno = 0;
|
---|
896 | PyFPE_START_PROTECT("in math_hypot", return 0);
|
---|
897 | r = hypot(x, y);
|
---|
898 | PyFPE_END_PROTECT(r);
|
---|
899 | if (Py_IS_NAN(r)) {
|
---|
900 | if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
|
---|
901 | errno = EDOM;
|
---|
902 | else
|
---|
903 | errno = 0;
|
---|
904 | }
|
---|
905 | else if (Py_IS_INFINITY(r)) {
|
---|
906 | if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
|
---|
907 | errno = ERANGE;
|
---|
908 | else
|
---|
909 | errno = 0;
|
---|
910 | }
|
---|
911 | if (errno && is_error(r))
|
---|
912 | return NULL;
|
---|
913 | else
|
---|
914 | return PyFloat_FromDouble(r);
|
---|
915 | }
|
---|
916 |
|
---|
917 | PyDoc_STRVAR(math_hypot_doc,
|
---|
918 | "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
|
---|
919 |
|
---|
920 | /* pow can't use math_2, but needs its own wrapper: the problem is
|
---|
921 | that an infinite result can arise either as a result of overflow
|
---|
922 | (in which case OverflowError should be raised) or as a result of
|
---|
923 | e.g. 0.**-5. (for which ValueError needs to be raised.)
|
---|
924 | */
|
---|
925 |
|
---|
926 | static PyObject *
|
---|
927 | math_pow(PyObject *self, PyObject *args)
|
---|
928 | {
|
---|
929 | PyObject *ox, *oy;
|
---|
930 | double r, x, y;
|
---|
931 | int odd_y;
|
---|
932 |
|
---|
933 | if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
|
---|
934 | return NULL;
|
---|
935 | x = PyFloat_AsDouble(ox);
|
---|
936 | y = PyFloat_AsDouble(oy);
|
---|
937 | if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
---|
938 | return NULL;
|
---|
939 |
|
---|
940 | /* deal directly with IEEE specials, to cope with problems on various
|
---|
941 | platforms whose semantics don't exactly match C99 */
|
---|
942 | r = 0.; /* silence compiler warning */
|
---|
943 | if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
|
---|
944 | errno = 0;
|
---|
945 | if (Py_IS_NAN(x))
|
---|
946 | r = y == 0. ? 1. : x; /* NaN**0 = 1 */
|
---|
947 | else if (Py_IS_NAN(y))
|
---|
948 | r = x == 1. ? 1. : y; /* 1**NaN = 1 */
|
---|
949 | else if (Py_IS_INFINITY(x)) {
|
---|
950 | odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
|
---|
951 | if (y > 0.)
|
---|
952 | r = odd_y ? x : fabs(x);
|
---|
953 | else if (y == 0.)
|
---|
954 | r = 1.;
|
---|
955 | else /* y < 0. */
|
---|
956 | r = odd_y ? copysign(0., x) : 0.;
|
---|
957 | }
|
---|
958 | else if (Py_IS_INFINITY(y)) {
|
---|
959 | if (fabs(x) == 1.0)
|
---|
960 | r = 1.;
|
---|
961 | else if (y > 0. && fabs(x) > 1.0)
|
---|
962 | r = y;
|
---|
963 | else if (y < 0. && fabs(x) < 1.0) {
|
---|
964 | r = -y; /* result is +inf */
|
---|
965 | if (x == 0.) /* 0**-inf: divide-by-zero */
|
---|
966 | errno = EDOM;
|
---|
967 | }
|
---|
968 | else
|
---|
969 | r = 0.;
|
---|
970 | }
|
---|
971 | }
|
---|
972 | else {
|
---|
973 | /* let libm handle finite**finite */
|
---|
974 | errno = 0;
|
---|
975 | PyFPE_START_PROTECT("in math_pow", return 0);
|
---|
976 | r = pow(x, y);
|
---|
977 | PyFPE_END_PROTECT(r);
|
---|
978 | /* a NaN result should arise only from (-ve)**(finite
|
---|
979 | non-integer); in this case we want to raise ValueError. */
|
---|
980 | if (!Py_IS_FINITE(r)) {
|
---|
981 | if (Py_IS_NAN(r)) {
|
---|
982 | errno = EDOM;
|
---|
983 | }
|
---|
984 | /*
|
---|
985 | an infinite result here arises either from:
|
---|
986 | (A) (+/-0.)**negative (-> divide-by-zero)
|
---|
987 | (B) overflow of x**y with x and y finite
|
---|
988 | */
|
---|
989 | else if (Py_IS_INFINITY(r)) {
|
---|
990 | if (x == 0.)
|
---|
991 | errno = EDOM;
|
---|
992 | else
|
---|
993 | errno = ERANGE;
|
---|
994 | }
|
---|
995 | }
|
---|
996 | }
|
---|
997 |
|
---|
998 | if (errno && is_error(r))
|
---|
999 | return NULL;
|
---|
1000 | else
|
---|
1001 | return PyFloat_FromDouble(r);
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | PyDoc_STRVAR(math_pow_doc,
|
---|
1005 | "pow(x,y)\n\nReturn x**y (x to the power of y).");
|
---|
1006 |
|
---|
1007 | static const double degToRad = Py_MATH_PI / 180.0;
|
---|
1008 | static const double radToDeg = 180.0 / Py_MATH_PI;
|
---|
1009 |
|
---|
1010 | static PyObject *
|
---|
1011 | math_degrees(PyObject *self, PyObject *arg)
|
---|
1012 | {
|
---|
1013 | double x = PyFloat_AsDouble(arg);
|
---|
1014 | if (x == -1.0 && PyErr_Occurred())
|
---|
1015 | return NULL;
|
---|
1016 | return PyFloat_FromDouble(x * radToDeg);
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | PyDoc_STRVAR(math_degrees_doc,
|
---|
1020 | "degrees(x) -> converts angle x from radians to degrees");
|
---|
1021 |
|
---|
1022 | static PyObject *
|
---|
1023 | math_radians(PyObject *self, PyObject *arg)
|
---|
1024 | {
|
---|
1025 | double x = PyFloat_AsDouble(arg);
|
---|
1026 | if (x == -1.0 && PyErr_Occurred())
|
---|
1027 | return NULL;
|
---|
1028 | return PyFloat_FromDouble(x * degToRad);
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 | PyDoc_STRVAR(math_radians_doc,
|
---|
1032 | "radians(x) -> converts angle x from degrees to radians");
|
---|
1033 |
|
---|
1034 | static PyObject *
|
---|
1035 | math_isnan(PyObject *self, PyObject *arg)
|
---|
1036 | {
|
---|
1037 | double x = PyFloat_AsDouble(arg);
|
---|
1038 | if (x == -1.0 && PyErr_Occurred())
|
---|
1039 | return NULL;
|
---|
1040 | return PyBool_FromLong((long)Py_IS_NAN(x));
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | PyDoc_STRVAR(math_isnan_doc,
|
---|
1044 | "isnan(x) -> bool\n\
|
---|
1045 | Checks if float x is not a number (NaN)");
|
---|
1046 |
|
---|
1047 | static PyObject *
|
---|
1048 | math_isinf(PyObject *self, PyObject *arg)
|
---|
1049 | {
|
---|
1050 | double x = PyFloat_AsDouble(arg);
|
---|
1051 | if (x == -1.0 && PyErr_Occurred())
|
---|
1052 | return NULL;
|
---|
1053 | return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | PyDoc_STRVAR(math_isinf_doc,
|
---|
1057 | "isinf(x) -> bool\n\
|
---|
1058 | Checks if float x is infinite (positive or negative)");
|
---|
1059 |
|
---|
1060 | static PyMethodDef math_methods[] = {
|
---|
1061 | {"acos", math_acos, METH_O, math_acos_doc},
|
---|
1062 | {"acosh", math_acosh, METH_O, math_acosh_doc},
|
---|
1063 | {"asin", math_asin, METH_O, math_asin_doc},
|
---|
1064 | {"asinh", math_asinh, METH_O, math_asinh_doc},
|
---|
1065 | {"atan", math_atan, METH_O, math_atan_doc},
|
---|
1066 | {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
|
---|
1067 | {"atanh", math_atanh, METH_O, math_atanh_doc},
|
---|
1068 | {"ceil", math_ceil, METH_O, math_ceil_doc},
|
---|
1069 | {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
|
---|
1070 | {"cos", math_cos, METH_O, math_cos_doc},
|
---|
1071 | {"cosh", math_cosh, METH_O, math_cosh_doc},
|
---|
1072 | {"degrees", math_degrees, METH_O, math_degrees_doc},
|
---|
1073 | {"exp", math_exp, METH_O, math_exp_doc},
|
---|
1074 | {"fabs", math_fabs, METH_O, math_fabs_doc},
|
---|
1075 | {"factorial", math_factorial, METH_O, math_factorial_doc},
|
---|
1076 | {"floor", math_floor, METH_O, math_floor_doc},
|
---|
1077 | {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
|
---|
1078 | {"frexp", math_frexp, METH_O, math_frexp_doc},
|
---|
1079 | {"fsum", math_fsum, METH_O, math_fsum_doc},
|
---|
1080 | {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
|
---|
1081 | {"isinf", math_isinf, METH_O, math_isinf_doc},
|
---|
1082 | {"isnan", math_isnan, METH_O, math_isnan_doc},
|
---|
1083 | {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
|
---|
1084 | {"log", math_log, METH_VARARGS, math_log_doc},
|
---|
1085 | {"log1p", math_log1p, METH_O, math_log1p_doc},
|
---|
1086 | {"log10", math_log10, METH_O, math_log10_doc},
|
---|
1087 | {"modf", math_modf, METH_O, math_modf_doc},
|
---|
1088 | {"pow", math_pow, METH_VARARGS, math_pow_doc},
|
---|
1089 | {"radians", math_radians, METH_O, math_radians_doc},
|
---|
1090 | {"sin", math_sin, METH_O, math_sin_doc},
|
---|
1091 | {"sinh", math_sinh, METH_O, math_sinh_doc},
|
---|
1092 | {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
|
---|
1093 | {"tan", math_tan, METH_O, math_tan_doc},
|
---|
1094 | {"tanh", math_tanh, METH_O, math_tanh_doc},
|
---|
1095 | {"trunc", math_trunc, METH_O, math_trunc_doc},
|
---|
1096 | {NULL, NULL} /* sentinel */
|
---|
1097 | };
|
---|
1098 |
|
---|
1099 |
|
---|
1100 | PyDoc_STRVAR(module_doc,
|
---|
1101 | "This module is always available. It provides access to the\n"
|
---|
1102 | "mathematical functions defined by the C standard.");
|
---|
1103 |
|
---|
1104 | PyMODINIT_FUNC
|
---|
1105 | initmath(void)
|
---|
1106 | {
|
---|
1107 | PyObject *m;
|
---|
1108 |
|
---|
1109 | m = Py_InitModule3("math", math_methods, module_doc);
|
---|
1110 | if (m == NULL)
|
---|
1111 | goto finally;
|
---|
1112 |
|
---|
1113 | PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
|
---|
1114 | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
|
---|
1115 |
|
---|
1116 | finally:
|
---|
1117 | return;
|
---|
1118 | }
|
---|