1 | """Bisection algorithms."""
|
---|
2 |
|
---|
3 | def insort_right(a, x, lo=0, hi=None):
|
---|
4 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
5 |
|
---|
6 | If x is already in a, insert it to the right of the rightmost x.
|
---|
7 |
|
---|
8 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
9 | slice of a to be searched.
|
---|
10 | """
|
---|
11 |
|
---|
12 | if lo < 0:
|
---|
13 | raise ValueError('lo must be non-negative')
|
---|
14 | if hi is None:
|
---|
15 | hi = len(a)
|
---|
16 | while lo < hi:
|
---|
17 | mid = (lo+hi)//2
|
---|
18 | if x < a[mid]: hi = mid
|
---|
19 | else: lo = mid+1
|
---|
20 | a.insert(lo, x)
|
---|
21 |
|
---|
22 | insort = insort_right # backward compatibility
|
---|
23 |
|
---|
24 | def bisect_right(a, x, lo=0, hi=None):
|
---|
25 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
26 |
|
---|
27 | The return value i is such that all e in a[:i] have e <= x, and all e in
|
---|
28 | a[i:] have e > x. So if x already appears in the list, a.insert(x) will
|
---|
29 | insert just after the rightmost x already there.
|
---|
30 |
|
---|
31 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
32 | slice of a to be searched.
|
---|
33 | """
|
---|
34 |
|
---|
35 | if lo < 0:
|
---|
36 | raise ValueError('lo must be non-negative')
|
---|
37 | if hi is None:
|
---|
38 | hi = len(a)
|
---|
39 | while lo < hi:
|
---|
40 | mid = (lo+hi)//2
|
---|
41 | if x < a[mid]: hi = mid
|
---|
42 | else: lo = mid+1
|
---|
43 | return lo
|
---|
44 |
|
---|
45 | bisect = bisect_right # backward compatibility
|
---|
46 |
|
---|
47 | def insort_left(a, x, lo=0, hi=None):
|
---|
48 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
49 |
|
---|
50 | If x is already in a, insert it to the left of the leftmost x.
|
---|
51 |
|
---|
52 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
53 | slice of a to be searched.
|
---|
54 | """
|
---|
55 |
|
---|
56 | if lo < 0:
|
---|
57 | raise ValueError('lo must be non-negative')
|
---|
58 | if hi is None:
|
---|
59 | hi = len(a)
|
---|
60 | while lo < hi:
|
---|
61 | mid = (lo+hi)//2
|
---|
62 | if a[mid] < x: lo = mid+1
|
---|
63 | else: hi = mid
|
---|
64 | a.insert(lo, x)
|
---|
65 |
|
---|
66 |
|
---|
67 | def bisect_left(a, x, lo=0, hi=None):
|
---|
68 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
69 |
|
---|
70 | The return value i is such that all e in a[:i] have e < x, and all e in
|
---|
71 | a[i:] have e >= x. So if x already appears in the list, a.insert(x) will
|
---|
72 | insert just before the leftmost x already there.
|
---|
73 |
|
---|
74 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
75 | slice of a to be searched.
|
---|
76 | """
|
---|
77 |
|
---|
78 | if lo < 0:
|
---|
79 | raise ValueError('lo must be non-negative')
|
---|
80 | if hi is None:
|
---|
81 | hi = len(a)
|
---|
82 | while lo < hi:
|
---|
83 | mid = (lo+hi)//2
|
---|
84 | if a[mid] < x: lo = mid+1
|
---|
85 | else: hi = mid
|
---|
86 | return lo
|
---|
87 |
|
---|
88 | # Overwrite above definitions with a fast C implementation
|
---|
89 | try:
|
---|
90 | from _bisect import bisect_right, bisect_left, insort_left, insort_right, insort, bisect
|
---|
91 | except ImportError:
|
---|
92 | pass
|
---|