1 | /* The PyObject_ memory family: high-level object memory interfaces.
|
---|
2 | See pymem.h for the low-level PyMem_ family.
|
---|
3 | */
|
---|
4 |
|
---|
5 | #ifndef Py_OBJIMPL_H
|
---|
6 | #define Py_OBJIMPL_H
|
---|
7 |
|
---|
8 | #include "pymem.h"
|
---|
9 |
|
---|
10 | #ifdef __cplusplus
|
---|
11 | extern "C" {
|
---|
12 | #endif
|
---|
13 |
|
---|
14 | /* BEWARE:
|
---|
15 |
|
---|
16 | Each interface exports both functions and macros. Extension modules should
|
---|
17 | use the functions, to ensure binary compatibility across Python versions.
|
---|
18 | Because the Python implementation is free to change internal details, and
|
---|
19 | the macros may (or may not) expose details for speed, if you do use the
|
---|
20 | macros you must recompile your extensions with each Python release.
|
---|
21 |
|
---|
22 | Never mix calls to PyObject_ memory functions with calls to the platform
|
---|
23 | malloc/realloc/ calloc/free, or with calls to PyMem_.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /*
|
---|
27 | Functions and macros for modules that implement new object types.
|
---|
28 |
|
---|
29 | - PyObject_New(type, typeobj) allocates memory for a new object of the given
|
---|
30 | type, and initializes part of it. 'type' must be the C structure type used
|
---|
31 | to represent the object, and 'typeobj' the address of the corresponding
|
---|
32 | type object. Reference count and type pointer are filled in; the rest of
|
---|
33 | the bytes of the object are *undefined*! The resulting expression type is
|
---|
34 | 'type *'. The size of the object is determined by the tp_basicsize field
|
---|
35 | of the type object.
|
---|
36 |
|
---|
37 | - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
|
---|
38 | object with room for n items. In addition to the refcount and type pointer
|
---|
39 | fields, this also fills in the ob_size field.
|
---|
40 |
|
---|
41 | - PyObject_Del(op) releases the memory allocated for an object. It does not
|
---|
42 | run a destructor -- it only frees the memory. PyObject_Free is identical.
|
---|
43 |
|
---|
44 | - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
|
---|
45 | allocate memory. Instead of a 'type' parameter, they take a pointer to a
|
---|
46 | new object (allocated by an arbitrary allocator), and initialize its object
|
---|
47 | header fields.
|
---|
48 |
|
---|
49 | Note that objects created with PyObject_{New, NewVar} are allocated using the
|
---|
50 | specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
|
---|
51 | enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG
|
---|
52 | is also #defined.
|
---|
53 |
|
---|
54 | In case a specific form of memory management is needed (for example, if you
|
---|
55 | must use the platform malloc heap(s), or shared memory, or C++ local storage or
|
---|
56 | operator new), you must first allocate the object with your custom allocator,
|
---|
57 | then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
|
---|
58 | specific fields: reference count, type pointer, possibly others. You should
|
---|
59 | be aware that Python no control over these objects because they don't
|
---|
60 | cooperate with the Python memory manager. Such objects may not be eligible
|
---|
61 | for automatic garbage collection and you have to make sure that they are
|
---|
62 | released accordingly whenever their destructor gets called (cf. the specific
|
---|
63 | form of memory management you're using).
|
---|
64 |
|
---|
65 | Unless you have specific memory management requirements, use
|
---|
66 | PyObject_{New, NewVar, Del}.
|
---|
67 | */
|
---|
68 |
|
---|
69 | /*
|
---|
70 | * Raw object memory interface
|
---|
71 | * ===========================
|
---|
72 | */
|
---|
73 |
|
---|
74 | /* Functions to call the same malloc/realloc/free as used by Python's
|
---|
75 | object allocator. If WITH_PYMALLOC is enabled, these may differ from
|
---|
76 | the platform malloc/realloc/free. The Python object allocator is
|
---|
77 | designed for fast, cache-conscious allocation of many "small" objects,
|
---|
78 | and with low hidden memory overhead.
|
---|
79 |
|
---|
80 | PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
|
---|
81 |
|
---|
82 | PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
|
---|
83 | PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
|
---|
84 | at p.
|
---|
85 |
|
---|
86 | Returned pointers must be checked for NULL explicitly; no action is
|
---|
87 | performed on failure other than to return NULL (no warning it printed, no
|
---|
88 | exception is set, etc).
|
---|
89 |
|
---|
90 | For allocating objects, use PyObject_{New, NewVar} instead whenever
|
---|
91 | possible. The PyObject_{Malloc, Realloc, Free} family is exposed
|
---|
92 | so that you can exploit Python's small-block allocator for non-object
|
---|
93 | uses. If you must use these routines to allocate object memory, make sure
|
---|
94 | the object gets initialized via PyObject_{Init, InitVar} after obtaining
|
---|
95 | the raw memory.
|
---|
96 | */
|
---|
97 | PyAPI_FUNC(void *) PyObject_Malloc(size_t);
|
---|
98 | PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
|
---|
99 | PyAPI_FUNC(void) PyObject_Free(void *);
|
---|
100 |
|
---|
101 |
|
---|
102 | /* Macros */
|
---|
103 | #ifdef WITH_PYMALLOC
|
---|
104 | #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */
|
---|
105 | PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
|
---|
106 | PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
|
---|
107 | PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
|
---|
108 | PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
|
---|
109 | PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
|
---|
110 | PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
|
---|
111 | #define PyObject_MALLOC _PyObject_DebugMalloc
|
---|
112 | #define PyObject_Malloc _PyObject_DebugMalloc
|
---|
113 | #define PyObject_REALLOC _PyObject_DebugRealloc
|
---|
114 | #define PyObject_Realloc _PyObject_DebugRealloc
|
---|
115 | #define PyObject_FREE _PyObject_DebugFree
|
---|
116 | #define PyObject_Free _PyObject_DebugFree
|
---|
117 |
|
---|
118 | #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
|
---|
119 | #define PyObject_MALLOC PyObject_Malloc
|
---|
120 | #define PyObject_REALLOC PyObject_Realloc
|
---|
121 | #define PyObject_FREE PyObject_Free
|
---|
122 | #endif
|
---|
123 |
|
---|
124 | #else /* ! WITH_PYMALLOC */
|
---|
125 | #define PyObject_MALLOC PyMem_MALLOC
|
---|
126 | #define PyObject_REALLOC PyMem_REALLOC
|
---|
127 | #define PyObject_FREE PyMem_FREE
|
---|
128 |
|
---|
129 | #endif /* WITH_PYMALLOC */
|
---|
130 |
|
---|
131 | #define PyObject_Del PyObject_Free
|
---|
132 | #define PyObject_DEL PyObject_FREE
|
---|
133 |
|
---|
134 | /* for source compatibility with 2.2 */
|
---|
135 | #define _PyObject_Del PyObject_Free
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * Generic object allocator interface
|
---|
139 | * ==================================
|
---|
140 | */
|
---|
141 |
|
---|
142 | /* Functions */
|
---|
143 | PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
|
---|
144 | PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
|
---|
145 | PyTypeObject *, Py_ssize_t);
|
---|
146 | PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
|
---|
147 | PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
|
---|
148 |
|
---|
149 | #define PyObject_New(type, typeobj) \
|
---|
150 | ( (type *) _PyObject_New(typeobj) )
|
---|
151 | #define PyObject_NewVar(type, typeobj, n) \
|
---|
152 | ( (type *) _PyObject_NewVar((typeobj), (n)) )
|
---|
153 |
|
---|
154 | /* Macros trading binary compatibility for speed. See also pymem.h.
|
---|
155 | Note that these macros expect non-NULL object pointers.*/
|
---|
156 | #define PyObject_INIT(op, typeobj) \
|
---|
157 | ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
|
---|
158 | #define PyObject_INIT_VAR(op, typeobj, size) \
|
---|
159 | ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
|
---|
160 |
|
---|
161 | #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
|
---|
162 |
|
---|
163 | /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
|
---|
164 | vrbl-size object with nitems items, exclusive of gc overhead (if any). The
|
---|
165 | value is rounded up to the closest multiple of sizeof(void *), in order to
|
---|
166 | ensure that pointer fields at the end of the object are correctly aligned
|
---|
167 | for the platform (this is of special importance for subclasses of, e.g.,
|
---|
168 | str or long, so that pointers can be stored after the embedded data).
|
---|
169 |
|
---|
170 | Note that there's no memory wastage in doing this, as malloc has to
|
---|
171 | return (at worst) pointer-aligned memory anyway.
|
---|
172 | */
|
---|
173 | #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
|
---|
174 | # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
|
---|
175 | #endif
|
---|
176 |
|
---|
177 | #define _PyObject_VAR_SIZE(typeobj, nitems) \
|
---|
178 | (size_t) \
|
---|
179 | ( ( (typeobj)->tp_basicsize + \
|
---|
180 | (nitems)*(typeobj)->tp_itemsize + \
|
---|
181 | (SIZEOF_VOID_P - 1) \
|
---|
182 | ) & ~(SIZEOF_VOID_P - 1) \
|
---|
183 | )
|
---|
184 |
|
---|
185 | #define PyObject_NEW(type, typeobj) \
|
---|
186 | ( (type *) PyObject_Init( \
|
---|
187 | (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
|
---|
188 |
|
---|
189 | #define PyObject_NEW_VAR(type, typeobj, n) \
|
---|
190 | ( (type *) PyObject_InitVar( \
|
---|
191 | (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
|
---|
192 | (typeobj), (n)) )
|
---|
193 |
|
---|
194 | /* This example code implements an object constructor with a custom
|
---|
195 | allocator, where PyObject_New is inlined, and shows the important
|
---|
196 | distinction between two steps (at least):
|
---|
197 | 1) the actual allocation of the object storage;
|
---|
198 | 2) the initialization of the Python specific fields
|
---|
199 | in this storage with PyObject_{Init, InitVar}.
|
---|
200 |
|
---|
201 | PyObject *
|
---|
202 | YourObject_New(...)
|
---|
203 | {
|
---|
204 | PyObject *op;
|
---|
205 |
|
---|
206 | op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
|
---|
207 | if (op == NULL)
|
---|
208 | return PyErr_NoMemory();
|
---|
209 |
|
---|
210 | PyObject_Init(op, &YourTypeStruct);
|
---|
211 |
|
---|
212 | op->ob_field = value;
|
---|
213 | ...
|
---|
214 | return op;
|
---|
215 | }
|
---|
216 |
|
---|
217 | Note that in C++, the use of the new operator usually implies that
|
---|
218 | the 1st step is performed automatically for you, so in a C++ class
|
---|
219 | constructor you would start directly with PyObject_Init/InitVar
|
---|
220 | */
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Garbage Collection Support
|
---|
224 | * ==========================
|
---|
225 | */
|
---|
226 |
|
---|
227 | /* C equivalent of gc.collect(). */
|
---|
228 | PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
|
---|
229 |
|
---|
230 | /* Test if a type has a GC head */
|
---|
231 | #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
|
---|
232 |
|
---|
233 | /* Test if an object has a GC head */
|
---|
234 | #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
|
---|
235 | (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
|
---|
236 |
|
---|
237 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
|
---|
238 | #define PyObject_GC_Resize(type, op, n) \
|
---|
239 | ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
|
---|
240 |
|
---|
241 | /* for source compatibility with 2.2 */
|
---|
242 | #define _PyObject_GC_Del PyObject_GC_Del
|
---|
243 |
|
---|
244 | /* GC information is stored BEFORE the object structure. */
|
---|
245 | typedef union _gc_head {
|
---|
246 | struct {
|
---|
247 | union _gc_head *gc_next;
|
---|
248 | union _gc_head *gc_prev;
|
---|
249 | Py_ssize_t gc_refs;
|
---|
250 | } gc;
|
---|
251 | long double dummy; /* force worst-case alignment */
|
---|
252 | } PyGC_Head;
|
---|
253 |
|
---|
254 | extern PyGC_Head *_PyGC_generation0;
|
---|
255 |
|
---|
256 | #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
|
---|
257 |
|
---|
258 | #define _PyGC_REFS_UNTRACKED (-2)
|
---|
259 | #define _PyGC_REFS_REACHABLE (-3)
|
---|
260 | #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4)
|
---|
261 |
|
---|
262 | /* Tell the GC to track this object. NB: While the object is tracked the
|
---|
263 | * collector it must be safe to call the ob_traverse method. */
|
---|
264 | #define _PyObject_GC_TRACK(o) do { \
|
---|
265 | PyGC_Head *g = _Py_AS_GC(o); \
|
---|
266 | if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
|
---|
267 | Py_FatalError("GC object already tracked"); \
|
---|
268 | g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
|
---|
269 | g->gc.gc_next = _PyGC_generation0; \
|
---|
270 | g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
|
---|
271 | g->gc.gc_prev->gc.gc_next = g; \
|
---|
272 | _PyGC_generation0->gc.gc_prev = g; \
|
---|
273 | } while (0);
|
---|
274 |
|
---|
275 | /* Tell the GC to stop tracking this object.
|
---|
276 | * gc_next doesn't need to be set to NULL, but doing so is a good
|
---|
277 | * way to provoke memory errors if calling code is confused.
|
---|
278 | */
|
---|
279 | #define _PyObject_GC_UNTRACK(o) do { \
|
---|
280 | PyGC_Head *g = _Py_AS_GC(o); \
|
---|
281 | assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
|
---|
282 | g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
|
---|
283 | g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
|
---|
284 | g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
|
---|
285 | g->gc.gc_next = NULL; \
|
---|
286 | } while (0);
|
---|
287 |
|
---|
288 | PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
|
---|
289 | PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
|
---|
290 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
|
---|
291 | PyAPI_FUNC(void) PyObject_GC_Track(void *);
|
---|
292 | PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
|
---|
293 | PyAPI_FUNC(void) PyObject_GC_Del(void *);
|
---|
294 |
|
---|
295 | #define PyObject_GC_New(type, typeobj) \
|
---|
296 | ( (type *) _PyObject_GC_New(typeobj) )
|
---|
297 | #define PyObject_GC_NewVar(type, typeobj, n) \
|
---|
298 | ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
|
---|
299 |
|
---|
300 |
|
---|
301 | /* Utility macro to help write tp_traverse functions.
|
---|
302 | * To use this macro, the tp_traverse function must name its arguments
|
---|
303 | * "visit" and "arg". This is intended to keep tp_traverse functions
|
---|
304 | * looking as much alike as possible.
|
---|
305 | */
|
---|
306 | #define Py_VISIT(op) \
|
---|
307 | do { \
|
---|
308 | if (op) { \
|
---|
309 | int vret = visit((PyObject *)(op), arg); \
|
---|
310 | if (vret) \
|
---|
311 | return vret; \
|
---|
312 | } \
|
---|
313 | } while (0)
|
---|
314 |
|
---|
315 | /* This is here for the sake of backwards compatibility. Extensions that
|
---|
316 | * use the old GC API will still compile but the objects will not be
|
---|
317 | * tracked by the GC. */
|
---|
318 | #define PyGC_HEAD_SIZE 0
|
---|
319 | #define PyObject_GC_Init(op)
|
---|
320 | #define PyObject_GC_Fini(op)
|
---|
321 | #define PyObject_AS_GC(op) (op)
|
---|
322 | #define PyObject_FROM_GC(op) (op)
|
---|
323 |
|
---|
324 |
|
---|
325 | /* Test if a type supports weak references */
|
---|
326 | #define PyType_SUPPORTS_WEAKREFS(t) \
|
---|
327 | (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
|
---|
328 | && ((t)->tp_weaklistoffset > 0))
|
---|
329 |
|
---|
330 | #define PyObject_GET_WEAKREFS_LISTPTR(o) \
|
---|
331 | ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
|
---|
332 |
|
---|
333 | #ifdef __cplusplus
|
---|
334 | }
|
---|
335 | #endif
|
---|
336 | #endif /* !Py_OBJIMPL_H */
|
---|