[2] | 1 | /* -*- Mode: C; c-file-style: "python" -*- */
|
---|
| 2 |
|
---|
| 3 | #include <Python.h>
|
---|
| 4 | #include <locale.h>
|
---|
[10] | 5 | #ifdef __EMX__
|
---|
| 6 | #include <float.h>
|
---|
| 7 | #endif
|
---|
[2] | 8 |
|
---|
[391] | 9 | /* Case-insensitive string match used for nan and inf detection; t should be
|
---|
| 10 | lower-case. Returns 1 for a successful match, 0 otherwise. */
|
---|
[10] | 11 |
|
---|
[391] | 12 | static int
|
---|
| 13 | case_insensitive_match(const char *s, const char *t)
|
---|
| 14 | {
|
---|
| 15 | while(*t && Py_TOLOWER(*s) == *t) {
|
---|
| 16 | s++;
|
---|
| 17 | t++;
|
---|
| 18 | }
|
---|
| 19 | return *t ? 0 : 1;
|
---|
| 20 | }
|
---|
[2] | 21 |
|
---|
[391] | 22 | /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or
|
---|
| 23 | "infinity", with an optional leading sign of "+" or "-". On success,
|
---|
| 24 | return the NaN or Infinity as a double and set *endptr to point just beyond
|
---|
| 25 | the successfully parsed portion of the string. On failure, return -1.0 and
|
---|
| 26 | set *endptr to point to the start of the string. */
|
---|
[2] | 27 |
|
---|
[391] | 28 | double
|
---|
| 29 | _Py_parse_inf_or_nan(const char *p, char **endptr)
|
---|
| 30 | {
|
---|
| 31 | double retval;
|
---|
| 32 | const char *s;
|
---|
| 33 | int negate = 0;
|
---|
| 34 |
|
---|
| 35 | s = p;
|
---|
| 36 | if (*s == '-') {
|
---|
| 37 | negate = 1;
|
---|
| 38 | s++;
|
---|
| 39 | }
|
---|
| 40 | else if (*s == '+') {
|
---|
| 41 | s++;
|
---|
| 42 | }
|
---|
| 43 | if (case_insensitive_match(s, "inf")) {
|
---|
| 44 | s += 3;
|
---|
| 45 | if (case_insensitive_match(s, "inity"))
|
---|
| 46 | s += 5;
|
---|
| 47 | retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;
|
---|
| 48 | }
|
---|
| 49 | #ifdef Py_NAN
|
---|
| 50 | else if (case_insensitive_match(s, "nan")) {
|
---|
| 51 | s += 3;
|
---|
| 52 | retval = negate ? -Py_NAN : Py_NAN;
|
---|
| 53 | }
|
---|
| 54 | #endif
|
---|
| 55 | else {
|
---|
| 56 | s = p;
|
---|
| 57 | retval = -1.0;
|
---|
| 58 | }
|
---|
| 59 | *endptr = (char *)s;
|
---|
| 60 | return retval;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
[2] | 63 | /**
|
---|
| 64 | * PyOS_ascii_strtod:
|
---|
| 65 | * @nptr: the string to convert to a numeric value.
|
---|
| 66 | * @endptr: if non-%NULL, it returns the character after
|
---|
| 67 | * the last character used in the conversion.
|
---|
[391] | 68 | *
|
---|
[2] | 69 | * Converts a string to a #gdouble value.
|
---|
| 70 | * This function behaves like the standard strtod() function
|
---|
| 71 | * does in the C locale. It does this without actually
|
---|
| 72 | * changing the current locale, since that would not be
|
---|
| 73 | * thread-safe.
|
---|
| 74 | *
|
---|
| 75 | * This function is typically used when reading configuration
|
---|
| 76 | * files or other non-user input that should be locale independent.
|
---|
| 77 | * To handle input from the user you should normally use the
|
---|
| 78 | * locale-sensitive system strtod() function.
|
---|
| 79 | *
|
---|
| 80 | * If the correct value would cause overflow, plus or minus %HUGE_VAL
|
---|
| 81 | * is returned (according to the sign of the value), and %ERANGE is
|
---|
| 82 | * stored in %errno. If the correct value would cause underflow,
|
---|
| 83 | * zero is returned and %ERANGE is stored in %errno.
|
---|
| 84 | * If memory allocation fails, %ENOMEM is stored in %errno.
|
---|
[391] | 85 | *
|
---|
[2] | 86 | * This function resets %errno before calling strtod() so that
|
---|
| 87 | * you can reliably detect overflow and underflow.
|
---|
| 88 | *
|
---|
| 89 | * Return value: the #gdouble value.
|
---|
| 90 | **/
|
---|
[391] | 91 |
|
---|
| 92 | #ifndef PY_NO_SHORT_FLOAT_REPR
|
---|
| 93 |
|
---|
[2] | 94 | double
|
---|
[391] | 95 | _PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
[2] | 96 | {
|
---|
[391] | 97 | double result;
|
---|
| 98 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
| 99 |
|
---|
| 100 | #ifdef __OS2__
|
---|
| 101 | /* @todo: Quick hack: disable FPU exceptions to avoid unexpected
|
---|
| 102 | SIGFPE. The proper way is to fix compiler runtime so that its
|
---|
| 103 | exception handler undoes FPU CW reset caused by bogus OS/2 DLLs. */
|
---|
| 104 | _control87(MCW_EM, MCW_EM);
|
---|
[10] | 105 | #endif
|
---|
[2] | 106 |
|
---|
[391] | 107 | assert(nptr != NULL);
|
---|
| 108 | /* Set errno to zero, so that we can distinguish zero results
|
---|
| 109 | and underflows */
|
---|
| 110 | errno = 0;
|
---|
[2] | 111 |
|
---|
[391] | 112 | _Py_SET_53BIT_PRECISION_START;
|
---|
| 113 | result = _Py_dg_strtod(nptr, endptr);
|
---|
| 114 | _Py_SET_53BIT_PRECISION_END;
|
---|
[2] | 115 |
|
---|
[391] | 116 | if (*endptr == nptr)
|
---|
| 117 | /* string might represent an inf or nan */
|
---|
| 118 | result = _Py_parse_inf_or_nan(nptr, endptr);
|
---|
[2] | 119 |
|
---|
[391] | 120 | return result;
|
---|
[2] | 121 |
|
---|
[391] | 122 | }
|
---|
[2] | 123 |
|
---|
[391] | 124 | #else
|
---|
[2] | 125 |
|
---|
[391] | 126 | /*
|
---|
| 127 | Use system strtod; since strtod is locale aware, we may
|
---|
| 128 | have to first fix the decimal separator.
|
---|
[2] | 129 |
|
---|
[391] | 130 | Note that unlike _Py_dg_strtod, the system strtod may not always give
|
---|
| 131 | correctly rounded results.
|
---|
| 132 | */
|
---|
[2] | 133 |
|
---|
[391] | 134 | double
|
---|
| 135 | _PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
| 136 | {
|
---|
| 137 | char *fail_pos;
|
---|
| 138 | double val = -1.0;
|
---|
| 139 | struct lconv *locale_data;
|
---|
| 140 | const char *decimal_point;
|
---|
| 141 | size_t decimal_point_len;
|
---|
| 142 | const char *p, *decimal_point_pos;
|
---|
| 143 | const char *end = NULL; /* Silence gcc */
|
---|
| 144 | const char *digits_pos = NULL;
|
---|
| 145 | int negate = 0;
|
---|
[2] | 146 |
|
---|
[391] | 147 | #ifdef __OS2__
|
---|
| 148 | /* @todo: Quick hack: disable FPU exceptions to avoid unexpected
|
---|
| 149 | SIGFPE. The proper way is to fix compiler runtime so that its
|
---|
| 150 | exception handler undoes FPU CW reset caused by bogus OS/2 DLLs. */
|
---|
| 151 | _control87(MCW_EM, MCW_EM);
|
---|
| 152 | #endif
|
---|
[2] | 153 |
|
---|
[391] | 154 | assert(nptr != NULL);
|
---|
[2] | 155 |
|
---|
[391] | 156 | fail_pos = NULL;
|
---|
[2] | 157 |
|
---|
[391] | 158 | locale_data = localeconv();
|
---|
| 159 | decimal_point = locale_data->decimal_point;
|
---|
| 160 | decimal_point_len = strlen(decimal_point);
|
---|
[2] | 161 |
|
---|
[391] | 162 | assert(decimal_point_len != 0);
|
---|
[2] | 163 |
|
---|
[391] | 164 | decimal_point_pos = NULL;
|
---|
[2] | 165 |
|
---|
[391] | 166 | /* Parse infinities and nans */
|
---|
| 167 | val = _Py_parse_inf_or_nan(nptr, endptr);
|
---|
| 168 | if (*endptr != nptr)
|
---|
| 169 | return val;
|
---|
[2] | 170 |
|
---|
[391] | 171 | /* Set errno to zero, so that we can distinguish zero results
|
---|
| 172 | and underflows */
|
---|
| 173 | errno = 0;
|
---|
[2] | 174 |
|
---|
[391] | 175 | /* We process the optional sign manually, then pass the remainder to
|
---|
| 176 | the system strtod. This ensures that the result of an underflow
|
---|
| 177 | has the correct sign. (bug #1725) */
|
---|
| 178 | p = nptr;
|
---|
| 179 | /* Process leading sign, if present */
|
---|
| 180 | if (*p == '-') {
|
---|
| 181 | negate = 1;
|
---|
| 182 | p++;
|
---|
| 183 | }
|
---|
| 184 | else if (*p == '+') {
|
---|
| 185 | p++;
|
---|
| 186 | }
|
---|
[2] | 187 |
|
---|
[391] | 188 | /* Some platform strtods accept hex floats; Python shouldn't (at the
|
---|
| 189 | moment), so we check explicitly for strings starting with '0x'. */
|
---|
| 190 | if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))
|
---|
| 191 | goto invalid_string;
|
---|
[2] | 192 |
|
---|
[391] | 193 | /* Check that what's left begins with a digit or decimal point */
|
---|
| 194 | if (!Py_ISDIGIT(*p) && *p != '.')
|
---|
| 195 | goto invalid_string;
|
---|
[2] | 196 |
|
---|
[391] | 197 | digits_pos = p;
|
---|
| 198 | if (decimal_point[0] != '.' ||
|
---|
| 199 | decimal_point[1] != 0)
|
---|
| 200 | {
|
---|
| 201 | /* Look for a '.' in the input; if present, it'll need to be
|
---|
| 202 | swapped for the current locale's decimal point before we
|
---|
| 203 | call strtod. On the other hand, if we find the current
|
---|
| 204 | locale's decimal point then the input is invalid. */
|
---|
| 205 | while (Py_ISDIGIT(*p))
|
---|
| 206 | p++;
|
---|
[2] | 207 |
|
---|
[391] | 208 | if (*p == '.')
|
---|
| 209 | {
|
---|
| 210 | decimal_point_pos = p++;
|
---|
[2] | 211 |
|
---|
[391] | 212 | /* locate end of number */
|
---|
| 213 | while (Py_ISDIGIT(*p))
|
---|
| 214 | p++;
|
---|
[2] | 215 |
|
---|
[391] | 216 | if (*p == 'e' || *p == 'E')
|
---|
| 217 | p++;
|
---|
| 218 | if (*p == '+' || *p == '-')
|
---|
| 219 | p++;
|
---|
| 220 | while (Py_ISDIGIT(*p))
|
---|
| 221 | p++;
|
---|
| 222 | end = p;
|
---|
| 223 | }
|
---|
| 224 | else if (strncmp(p, decimal_point, decimal_point_len) == 0)
|
---|
| 225 | /* Python bug #1417699 */
|
---|
| 226 | goto invalid_string;
|
---|
| 227 | /* For the other cases, we need not convert the decimal
|
---|
| 228 | point */
|
---|
| 229 | }
|
---|
[2] | 230 |
|
---|
[391] | 231 | if (decimal_point_pos) {
|
---|
| 232 | char *copy, *c;
|
---|
| 233 | /* Create a copy of the input, with the '.' converted to the
|
---|
| 234 | locale-specific decimal point */
|
---|
| 235 | copy = (char *)PyMem_MALLOC(end - digits_pos +
|
---|
| 236 | 1 + decimal_point_len);
|
---|
| 237 | if (copy == NULL) {
|
---|
| 238 | *endptr = (char *)nptr;
|
---|
| 239 | errno = ENOMEM;
|
---|
| 240 | return val;
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | c = copy;
|
---|
| 244 | memcpy(c, digits_pos, decimal_point_pos - digits_pos);
|
---|
| 245 | c += decimal_point_pos - digits_pos;
|
---|
| 246 | memcpy(c, decimal_point, decimal_point_len);
|
---|
| 247 | c += decimal_point_len;
|
---|
| 248 | memcpy(c, decimal_point_pos + 1,
|
---|
| 249 | end - (decimal_point_pos + 1));
|
---|
| 250 | c += end - (decimal_point_pos + 1);
|
---|
| 251 | *c = 0;
|
---|
| 252 |
|
---|
| 253 | val = strtod(copy, &fail_pos);
|
---|
| 254 |
|
---|
| 255 | if (fail_pos)
|
---|
| 256 | {
|
---|
| 257 | if (fail_pos > decimal_point_pos)
|
---|
| 258 | fail_pos = (char *)digits_pos +
|
---|
| 259 | (fail_pos - copy) -
|
---|
| 260 | (decimal_point_len - 1);
|
---|
| 261 | else
|
---|
| 262 | fail_pos = (char *)digits_pos +
|
---|
| 263 | (fail_pos - copy);
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | PyMem_FREE(copy);
|
---|
| 267 |
|
---|
| 268 | }
|
---|
| 269 | else {
|
---|
| 270 | val = strtod(digits_pos, &fail_pos);
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | if (fail_pos == digits_pos)
|
---|
| 274 | goto invalid_string;
|
---|
| 275 |
|
---|
| 276 | if (negate && fail_pos != nptr)
|
---|
| 277 | val = -val;
|
---|
| 278 | *endptr = fail_pos;
|
---|
| 279 |
|
---|
| 280 | return val;
|
---|
| 281 |
|
---|
| 282 | invalid_string:
|
---|
| 283 | *endptr = (char*)nptr;
|
---|
| 284 | errno = EINVAL;
|
---|
| 285 | return -1.0;
|
---|
[2] | 286 | }
|
---|
| 287 |
|
---|
[391] | 288 | #endif
|
---|
| 289 |
|
---|
| 290 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */
|
---|
| 291 |
|
---|
| 292 | double
|
---|
| 293 | PyOS_ascii_strtod(const char *nptr, char **endptr)
|
---|
| 294 | {
|
---|
| 295 | char *fail_pos;
|
---|
| 296 | const char *p;
|
---|
| 297 | double x;
|
---|
| 298 |
|
---|
| 299 | if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
---|
| 300 | "PyOS_ascii_strtod and PyOS_ascii_atof are "
|
---|
| 301 | "deprecated. Use PyOS_string_to_double "
|
---|
| 302 | "instead.", 1) < 0)
|
---|
| 303 | return -1.0;
|
---|
| 304 |
|
---|
| 305 | /* _PyOS_ascii_strtod already does everything that we want,
|
---|
| 306 | except that it doesn't parse leading whitespace */
|
---|
| 307 | p = nptr;
|
---|
| 308 | while (Py_ISSPACE(*p))
|
---|
| 309 | p++;
|
---|
| 310 | x = _PyOS_ascii_strtod(p, &fail_pos);
|
---|
| 311 | if (fail_pos == p)
|
---|
| 312 | fail_pos = (char *)nptr;
|
---|
| 313 | if (endptr)
|
---|
| 314 | *endptr = (char *)fail_pos;
|
---|
| 315 | return x;
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | /* PyOS_ascii_strtod is DEPRECATED in Python 2.7 and 3.1 */
|
---|
| 319 |
|
---|
| 320 | double
|
---|
| 321 | PyOS_ascii_atof(const char *nptr)
|
---|
| 322 | {
|
---|
| 323 | return PyOS_ascii_strtod(nptr, NULL);
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | /* PyOS_string_to_double is the recommended replacement for the deprecated
|
---|
| 327 | PyOS_ascii_strtod and PyOS_ascii_atof functions. It converts a
|
---|
| 328 | null-terminated byte string s (interpreted as a string of ASCII characters)
|
---|
| 329 | to a float. The string should not have leading or trailing whitespace (in
|
---|
| 330 | contrast, PyOS_ascii_strtod allows leading whitespace but not trailing
|
---|
| 331 | whitespace). The conversion is independent of the current locale.
|
---|
| 332 |
|
---|
| 333 | If endptr is NULL, try to convert the whole string. Raise ValueError and
|
---|
| 334 | return -1.0 if the string is not a valid representation of a floating-point
|
---|
| 335 | number.
|
---|
| 336 |
|
---|
| 337 | If endptr is non-NULL, try to convert as much of the string as possible.
|
---|
| 338 | If no initial segment of the string is the valid representation of a
|
---|
| 339 | floating-point number then *endptr is set to point to the beginning of the
|
---|
| 340 | string, -1.0 is returned and again ValueError is raised.
|
---|
| 341 |
|
---|
| 342 | On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),
|
---|
| 343 | if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python
|
---|
| 344 | exception is raised. Otherwise, overflow_exception should point to a
|
---|
| 345 | a Python exception, this exception will be raised, -1.0 will be returned,
|
---|
| 346 | and *endptr will point just past the end of the converted value.
|
---|
| 347 |
|
---|
| 348 | If any other failure occurs (for example lack of memory), -1.0 is returned
|
---|
| 349 | and the appropriate Python exception will have been set.
|
---|
| 350 | */
|
---|
| 351 |
|
---|
| 352 | double
|
---|
| 353 | PyOS_string_to_double(const char *s,
|
---|
| 354 | char **endptr,
|
---|
| 355 | PyObject *overflow_exception)
|
---|
| 356 | {
|
---|
| 357 | double x, result=-1.0;
|
---|
| 358 | char *fail_pos;
|
---|
| 359 |
|
---|
| 360 | errno = 0;
|
---|
| 361 | PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0)
|
---|
| 362 | x = _PyOS_ascii_strtod(s, &fail_pos);
|
---|
| 363 | PyFPE_END_PROTECT(x)
|
---|
| 364 |
|
---|
| 365 | if (errno == ENOMEM) {
|
---|
| 366 | PyErr_NoMemory();
|
---|
| 367 | fail_pos = (char *)s;
|
---|
| 368 | }
|
---|
| 369 | else if (!endptr && (fail_pos == s || *fail_pos != '\0'))
|
---|
| 370 | PyErr_Format(PyExc_ValueError,
|
---|
| 371 | "could not convert string to float: "
|
---|
| 372 | "%.200s", s);
|
---|
| 373 | else if (fail_pos == s)
|
---|
| 374 | PyErr_Format(PyExc_ValueError,
|
---|
| 375 | "could not convert string to float: "
|
---|
| 376 | "%.200s", s);
|
---|
| 377 | else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)
|
---|
| 378 | PyErr_Format(overflow_exception,
|
---|
| 379 | "value too large to convert to float: "
|
---|
| 380 | "%.200s", s);
|
---|
| 381 | else
|
---|
| 382 | result = x;
|
---|
| 383 |
|
---|
| 384 | if (endptr != NULL)
|
---|
| 385 | *endptr = fail_pos;
|
---|
| 386 | return result;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
[2] | 389 | /* Given a string that may have a decimal point in the current
|
---|
| 390 | locale, change it back to a dot. Since the string cannot get
|
---|
| 391 | longer, no need for a maximum buffer size parameter. */
|
---|
| 392 | Py_LOCAL_INLINE(void)
|
---|
| 393 | change_decimal_from_locale_to_dot(char* buffer)
|
---|
| 394 | {
|
---|
[391] | 395 | struct lconv *locale_data = localeconv();
|
---|
| 396 | const char *decimal_point = locale_data->decimal_point;
|
---|
[2] | 397 |
|
---|
[391] | 398 | if (decimal_point[0] != '.' || decimal_point[1] != 0) {
|
---|
| 399 | size_t decimal_point_len = strlen(decimal_point);
|
---|
[2] | 400 |
|
---|
[391] | 401 | if (*buffer == '+' || *buffer == '-')
|
---|
| 402 | buffer++;
|
---|
| 403 | while (Py_ISDIGIT(*buffer))
|
---|
| 404 | buffer++;
|
---|
| 405 | if (strncmp(buffer, decimal_point, decimal_point_len) == 0) {
|
---|
| 406 | *buffer = '.';
|
---|
| 407 | buffer++;
|
---|
| 408 | if (decimal_point_len > 1) {
|
---|
| 409 | /* buffer needs to get smaller */
|
---|
| 410 | size_t rest_len = strlen(buffer +
|
---|
| 411 | (decimal_point_len - 1));
|
---|
| 412 | memmove(buffer,
|
---|
| 413 | buffer + (decimal_point_len - 1),
|
---|
| 414 | rest_len);
|
---|
| 415 | buffer[rest_len] = 0;
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 | }
|
---|
[2] | 419 | }
|
---|
| 420 |
|
---|
| 421 |
|
---|
| 422 | /* From the C99 standard, section 7.19.6:
|
---|
| 423 | The exponent always contains at least two digits, and only as many more digits
|
---|
| 424 | as necessary to represent the exponent.
|
---|
| 425 | */
|
---|
| 426 | #define MIN_EXPONENT_DIGITS 2
|
---|
| 427 |
|
---|
| 428 | /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS
|
---|
| 429 | in length. */
|
---|
| 430 | Py_LOCAL_INLINE(void)
|
---|
| 431 | ensure_minimum_exponent_length(char* buffer, size_t buf_size)
|
---|
| 432 | {
|
---|
[391] | 433 | char *p = strpbrk(buffer, "eE");
|
---|
| 434 | if (p && (*(p + 1) == '-' || *(p + 1) == '+')) {
|
---|
| 435 | char *start = p + 2;
|
---|
| 436 | int exponent_digit_cnt = 0;
|
---|
| 437 | int leading_zero_cnt = 0;
|
---|
| 438 | int in_leading_zeros = 1;
|
---|
| 439 | int significant_digit_cnt;
|
---|
[2] | 440 |
|
---|
[391] | 441 | /* Skip over the exponent and the sign. */
|
---|
| 442 | p += 2;
|
---|
[2] | 443 |
|
---|
[391] | 444 | /* Find the end of the exponent, keeping track of leading
|
---|
| 445 | zeros. */
|
---|
| 446 | while (*p && Py_ISDIGIT(*p)) {
|
---|
| 447 | if (in_leading_zeros && *p == '0')
|
---|
| 448 | ++leading_zero_cnt;
|
---|
| 449 | if (*p != '0')
|
---|
| 450 | in_leading_zeros = 0;
|
---|
| 451 | ++p;
|
---|
| 452 | ++exponent_digit_cnt;
|
---|
| 453 | }
|
---|
[2] | 454 |
|
---|
[391] | 455 | significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;
|
---|
| 456 | if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) {
|
---|
| 457 | /* If there are 2 exactly digits, we're done,
|
---|
| 458 | regardless of what they contain */
|
---|
| 459 | }
|
---|
| 460 | else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) {
|
---|
| 461 | int extra_zeros_cnt;
|
---|
[2] | 462 |
|
---|
[391] | 463 | /* There are more than 2 digits in the exponent. See
|
---|
| 464 | if we can delete some of the leading zeros */
|
---|
| 465 | if (significant_digit_cnt < MIN_EXPONENT_DIGITS)
|
---|
| 466 | significant_digit_cnt = MIN_EXPONENT_DIGITS;
|
---|
| 467 | extra_zeros_cnt = exponent_digit_cnt -
|
---|
| 468 | significant_digit_cnt;
|
---|
[2] | 469 |
|
---|
[391] | 470 | /* Delete extra_zeros_cnt worth of characters from the
|
---|
| 471 | front of the exponent */
|
---|
| 472 | assert(extra_zeros_cnt >= 0);
|
---|
[2] | 473 |
|
---|
[391] | 474 | /* Add one to significant_digit_cnt to copy the
|
---|
| 475 | trailing 0 byte, thus setting the length */
|
---|
| 476 | memmove(start,
|
---|
| 477 | start + extra_zeros_cnt,
|
---|
| 478 | significant_digit_cnt + 1);
|
---|
| 479 | }
|
---|
| 480 | else {
|
---|
| 481 | /* If there are fewer than 2 digits, add zeros
|
---|
| 482 | until there are 2, if there's enough room */
|
---|
| 483 | int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;
|
---|
| 484 | if (start + zeros + exponent_digit_cnt + 1
|
---|
| 485 | < buffer + buf_size) {
|
---|
| 486 | memmove(start + zeros, start,
|
---|
| 487 | exponent_digit_cnt + 1);
|
---|
| 488 | memset(start, '0', zeros);
|
---|
| 489 | }
|
---|
| 490 | }
|
---|
| 491 | }
|
---|
[2] | 492 | }
|
---|
| 493 |
|
---|
[391] | 494 | /* Remove trailing zeros after the decimal point from a numeric string; also
|
---|
| 495 | remove the decimal point if all digits following it are zero. The numeric
|
---|
| 496 | string must end in '\0', and should not have any leading or trailing
|
---|
| 497 | whitespace. Assumes that the decimal point is '.'. */
|
---|
[2] | 498 | Py_LOCAL_INLINE(void)
|
---|
[391] | 499 | remove_trailing_zeros(char *buffer)
|
---|
[2] | 500 | {
|
---|
[391] | 501 | char *old_fraction_end, *new_fraction_end, *end, *p;
|
---|
[2] | 502 |
|
---|
[391] | 503 | p = buffer;
|
---|
| 504 | if (*p == '-' || *p == '+')
|
---|
| 505 | /* Skip leading sign, if present */
|
---|
| 506 | ++p;
|
---|
| 507 | while (Py_ISDIGIT(*p))
|
---|
| 508 | ++p;
|
---|
[2] | 509 |
|
---|
[391] | 510 | /* if there's no decimal point there's nothing to do */
|
---|
| 511 | if (*p++ != '.')
|
---|
| 512 | return;
|
---|
| 513 |
|
---|
| 514 | /* scan any digits after the point */
|
---|
| 515 | while (Py_ISDIGIT(*p))
|
---|
| 516 | ++p;
|
---|
| 517 | old_fraction_end = p;
|
---|
| 518 |
|
---|
| 519 | /* scan up to ending '\0' */
|
---|
| 520 | while (*p != '\0')
|
---|
| 521 | p++;
|
---|
| 522 | /* +1 to make sure that we move the null byte as well */
|
---|
| 523 | end = p+1;
|
---|
| 524 |
|
---|
| 525 | /* scan back from fraction_end, looking for removable zeros */
|
---|
| 526 | p = old_fraction_end;
|
---|
| 527 | while (*(p-1) == '0')
|
---|
| 528 | --p;
|
---|
| 529 | /* and remove point if we've got that far */
|
---|
| 530 | if (*(p-1) == '.')
|
---|
| 531 | --p;
|
---|
| 532 | new_fraction_end = p;
|
---|
| 533 |
|
---|
| 534 | memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);
|
---|
[2] | 535 | }
|
---|
| 536 |
|
---|
[391] | 537 | /* Ensure that buffer has a decimal point in it. The decimal point will not
|
---|
| 538 | be in the current locale, it will always be '.'. Don't add a decimal point
|
---|
| 539 | if an exponent is present. Also, convert to exponential notation where
|
---|
| 540 | adding a '.0' would produce too many significant digits (see issue 5864).
|
---|
| 541 |
|
---|
| 542 | Returns a pointer to the fixed buffer, or NULL on failure.
|
---|
| 543 | */
|
---|
| 544 | Py_LOCAL_INLINE(char *)
|
---|
| 545 | ensure_decimal_point(char* buffer, size_t buf_size, int precision)
|
---|
[2] | 546 | {
|
---|
[391] | 547 | int digit_count, insert_count = 0, convert_to_exp = 0;
|
---|
| 548 | char *chars_to_insert, *digits_start;
|
---|
[2] | 549 |
|
---|
[391] | 550 | /* search for the first non-digit character */
|
---|
| 551 | char *p = buffer;
|
---|
| 552 | if (*p == '-' || *p == '+')
|
---|
| 553 | /* Skip leading sign, if present. I think this could only
|
---|
| 554 | ever be '-', but it can't hurt to check for both. */
|
---|
| 555 | ++p;
|
---|
| 556 | digits_start = p;
|
---|
| 557 | while (*p && Py_ISDIGIT(*p))
|
---|
| 558 | ++p;
|
---|
| 559 | digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);
|
---|
[2] | 560 |
|
---|
[391] | 561 | if (*p == '.') {
|
---|
| 562 | if (Py_ISDIGIT(*(p+1))) {
|
---|
| 563 | /* Nothing to do, we already have a decimal
|
---|
| 564 | point and a digit after it */
|
---|
| 565 | }
|
---|
| 566 | else {
|
---|
| 567 | /* We have a decimal point, but no following
|
---|
| 568 | digit. Insert a zero after the decimal. */
|
---|
| 569 | /* can't ever get here via PyOS_double_to_string */
|
---|
| 570 | assert(precision == -1);
|
---|
| 571 | ++p;
|
---|
| 572 | chars_to_insert = "0";
|
---|
| 573 | insert_count = 1;
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | else if (!(*p == 'e' || *p == 'E')) {
|
---|
| 577 | /* Don't add ".0" if we have an exponent. */
|
---|
| 578 | if (digit_count == precision) {
|
---|
| 579 | /* issue 5864: don't add a trailing .0 in the case
|
---|
| 580 | where the '%g'-formatted result already has as many
|
---|
| 581 | significant digits as were requested. Switch to
|
---|
| 582 | exponential notation instead. */
|
---|
| 583 | convert_to_exp = 1;
|
---|
| 584 | /* no exponent, no point, and we shouldn't land here
|
---|
| 585 | for infs and nans, so we must be at the end of the
|
---|
| 586 | string. */
|
---|
| 587 | assert(*p == '\0');
|
---|
| 588 | }
|
---|
| 589 | else {
|
---|
| 590 | assert(precision == -1 || digit_count < precision);
|
---|
| 591 | chars_to_insert = ".0";
|
---|
| 592 | insert_count = 2;
|
---|
| 593 | }
|
---|
| 594 | }
|
---|
| 595 | if (insert_count) {
|
---|
| 596 | size_t buf_len = strlen(buffer);
|
---|
| 597 | if (buf_len + insert_count + 1 >= buf_size) {
|
---|
| 598 | /* If there is not enough room in the buffer
|
---|
| 599 | for the additional text, just skip it. It's
|
---|
| 600 | not worth generating an error over. */
|
---|
| 601 | }
|
---|
| 602 | else {
|
---|
| 603 | memmove(p + insert_count, p,
|
---|
| 604 | buffer + strlen(buffer) - p + 1);
|
---|
| 605 | memcpy(p, chars_to_insert, insert_count);
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 | if (convert_to_exp) {
|
---|
| 609 | int written;
|
---|
| 610 | size_t buf_avail;
|
---|
| 611 | p = digits_start;
|
---|
| 612 | /* insert decimal point */
|
---|
| 613 | assert(digit_count >= 1);
|
---|
| 614 | memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */
|
---|
| 615 | p[1] = '.';
|
---|
| 616 | p += digit_count+1;
|
---|
| 617 | assert(p <= buf_size+buffer);
|
---|
| 618 | buf_avail = buf_size+buffer-p;
|
---|
| 619 | if (buf_avail == 0)
|
---|
| 620 | return NULL;
|
---|
| 621 | /* Add exponent. It's okay to use lower case 'e': we only
|
---|
| 622 | arrive here as a result of using the empty format code or
|
---|
| 623 | repr/str builtins and those never want an upper case 'E' */
|
---|
| 624 | written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);
|
---|
| 625 | if (!(0 <= written &&
|
---|
| 626 | written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))
|
---|
| 627 | /* output truncated, or something else bad happened */
|
---|
| 628 | return NULL;
|
---|
| 629 | remove_trailing_zeros(buffer);
|
---|
| 630 | }
|
---|
| 631 | return buffer;
|
---|
[2] | 632 | }
|
---|
| 633 |
|
---|
| 634 | /* see FORMATBUFLEN in unicodeobject.c */
|
---|
| 635 | #define FLOAT_FORMATBUFLEN 120
|
---|
| 636 |
|
---|
| 637 | /**
|
---|
| 638 | * PyOS_ascii_formatd:
|
---|
| 639 | * @buffer: A buffer to place the resulting string in
|
---|
| 640 | * @buf_size: The length of the buffer.
|
---|
| 641 | * @format: The printf()-style format to use for the
|
---|
[391] | 642 | * code to use for converting.
|
---|
[2] | 643 | * @d: The #gdouble to convert
|
---|
| 644 | *
|
---|
| 645 | * Converts a #gdouble to a string, using the '.' as
|
---|
| 646 | * decimal point. To format the number you pass in
|
---|
| 647 | * a printf()-style format string. Allowed conversion
|
---|
[391] | 648 | * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.
|
---|
| 649 | *
|
---|
[2] | 650 | * 'Z' is the same as 'g', except it always has a decimal and
|
---|
| 651 | * at least one digit after the decimal.
|
---|
| 652 | *
|
---|
| 653 | * Return value: The pointer to the buffer with the converted string.
|
---|
[391] | 654 | * On failure returns NULL but does not set any Python exception.
|
---|
[2] | 655 | **/
|
---|
| 656 | char *
|
---|
[391] | 657 | _PyOS_ascii_formatd(char *buffer,
|
---|
| 658 | size_t buf_size,
|
---|
| 659 | const char *format,
|
---|
| 660 | double d,
|
---|
| 661 | int precision)
|
---|
[2] | 662 | {
|
---|
[391] | 663 | char format_char;
|
---|
| 664 | size_t format_len = strlen(format);
|
---|
[2] | 665 |
|
---|
[391] | 666 | /* Issue 2264: code 'Z' requires copying the format. 'Z' is 'g', but
|
---|
| 667 | also with at least one character past the decimal. */
|
---|
| 668 | char tmp_format[FLOAT_FORMATBUFLEN];
|
---|
[2] | 669 |
|
---|
[391] | 670 | /* The last character in the format string must be the format char */
|
---|
| 671 | format_char = format[format_len - 1];
|
---|
[2] | 672 |
|
---|
[391] | 673 | if (format[0] != '%')
|
---|
| 674 | return NULL;
|
---|
[2] | 675 |
|
---|
[391] | 676 | /* I'm not sure why this test is here. It's ensuring that the format
|
---|
| 677 | string after the first character doesn't have a single quote, a
|
---|
| 678 | lowercase l, or a percent. This is the reverse of the commented-out
|
---|
| 679 | test about 10 lines ago. */
|
---|
| 680 | if (strpbrk(format + 1, "'l%"))
|
---|
| 681 | return NULL;
|
---|
[2] | 682 |
|
---|
[391] | 683 | /* Also curious about this function is that it accepts format strings
|
---|
| 684 | like "%xg", which are invalid for floats. In general, the
|
---|
| 685 | interface to this function is not very good, but changing it is
|
---|
| 686 | difficult because it's a public API. */
|
---|
[2] | 687 |
|
---|
[391] | 688 | if (!(format_char == 'e' || format_char == 'E' ||
|
---|
| 689 | format_char == 'f' || format_char == 'F' ||
|
---|
| 690 | format_char == 'g' || format_char == 'G' ||
|
---|
| 691 | format_char == 'Z'))
|
---|
| 692 | return NULL;
|
---|
[2] | 693 |
|
---|
[391] | 694 | /* Map 'Z' format_char to 'g', by copying the format string and
|
---|
| 695 | replacing the final char with a 'g' */
|
---|
| 696 | if (format_char == 'Z') {
|
---|
| 697 | if (format_len + 1 >= sizeof(tmp_format)) {
|
---|
| 698 | /* The format won't fit in our copy. Error out. In
|
---|
| 699 | practice, this will never happen and will be
|
---|
| 700 | detected by returning NULL */
|
---|
| 701 | return NULL;
|
---|
| 702 | }
|
---|
| 703 | strcpy(tmp_format, format);
|
---|
| 704 | tmp_format[format_len - 1] = 'g';
|
---|
| 705 | format = tmp_format;
|
---|
| 706 | }
|
---|
[2] | 707 |
|
---|
| 708 |
|
---|
[391] | 709 | /* Have PyOS_snprintf do the hard work */
|
---|
| 710 | PyOS_snprintf(buffer, buf_size, format, d);
|
---|
[2] | 711 |
|
---|
[391] | 712 | /* Do various fixups on the return string */
|
---|
[2] | 713 |
|
---|
[391] | 714 | /* Get the current locale, and find the decimal point string.
|
---|
| 715 | Convert that string back to a dot. */
|
---|
| 716 | change_decimal_from_locale_to_dot(buffer);
|
---|
[2] | 717 |
|
---|
[391] | 718 | /* If an exponent exists, ensure that the exponent is at least
|
---|
| 719 | MIN_EXPONENT_DIGITS digits, providing the buffer is large enough
|
---|
| 720 | for the extra zeros. Also, if there are more than
|
---|
| 721 | MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get
|
---|
| 722 | back to MIN_EXPONENT_DIGITS */
|
---|
| 723 | ensure_minimum_exponent_length(buffer, buf_size);
|
---|
[2] | 724 |
|
---|
[391] | 725 | /* If format_char is 'Z', make sure we have at least one character
|
---|
| 726 | after the decimal point (and make sure we have a decimal point);
|
---|
| 727 | also switch to exponential notation in some edge cases where the
|
---|
| 728 | extra character would produce more significant digits that we
|
---|
| 729 | really want. */
|
---|
| 730 | if (format_char == 'Z')
|
---|
| 731 | buffer = ensure_decimal_point(buffer, buf_size, precision);
|
---|
[2] | 732 |
|
---|
[391] | 733 | return buffer;
|
---|
| 734 | }
|
---|
[2] | 735 |
|
---|
[391] | 736 | char *
|
---|
| 737 | PyOS_ascii_formatd(char *buffer,
|
---|
| 738 | size_t buf_size,
|
---|
| 739 | const char *format,
|
---|
| 740 | double d)
|
---|
| 741 | {
|
---|
| 742 | if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
---|
| 743 | "PyOS_ascii_formatd is deprecated, "
|
---|
| 744 | "use PyOS_double_to_string instead", 1) < 0)
|
---|
| 745 | return NULL;
|
---|
| 746 |
|
---|
| 747 | return _PyOS_ascii_formatd(buffer, buf_size, format, d, -1);
|
---|
[2] | 748 | }
|
---|
| 749 |
|
---|
[391] | 750 | #ifdef PY_NO_SHORT_FLOAT_REPR
|
---|
| 751 |
|
---|
| 752 | /* The fallback code to use if _Py_dg_dtoa is not available. */
|
---|
| 753 |
|
---|
| 754 | PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
---|
| 755 | char format_code,
|
---|
| 756 | int precision,
|
---|
| 757 | int flags,
|
---|
| 758 | int *type)
|
---|
[2] | 759 | {
|
---|
[391] | 760 | char format[32];
|
---|
| 761 | Py_ssize_t bufsize;
|
---|
| 762 | char *buf;
|
---|
| 763 | int t, exp;
|
---|
| 764 | int upper = 0;
|
---|
| 765 |
|
---|
| 766 | /* Validate format_code, and map upper and lower case */
|
---|
| 767 | switch (format_code) {
|
---|
| 768 | case 'e': /* exponent */
|
---|
| 769 | case 'f': /* fixed */
|
---|
| 770 | case 'g': /* general */
|
---|
| 771 | break;
|
---|
| 772 | case 'E':
|
---|
| 773 | upper = 1;
|
---|
| 774 | format_code = 'e';
|
---|
| 775 | break;
|
---|
| 776 | case 'F':
|
---|
| 777 | upper = 1;
|
---|
| 778 | format_code = 'f';
|
---|
| 779 | break;
|
---|
| 780 | case 'G':
|
---|
| 781 | upper = 1;
|
---|
| 782 | format_code = 'g';
|
---|
| 783 | break;
|
---|
| 784 | case 'r': /* repr format */
|
---|
| 785 | /* Supplied precision is unused, must be 0. */
|
---|
| 786 | if (precision != 0) {
|
---|
| 787 | PyErr_BadInternalCall();
|
---|
| 788 | return NULL;
|
---|
| 789 | }
|
---|
| 790 | /* The repr() precision (17 significant decimal digits) is the
|
---|
| 791 | minimal number that is guaranteed to have enough precision
|
---|
| 792 | so that if the number is read back in the exact same binary
|
---|
| 793 | value is recreated. This is true for IEEE floating point
|
---|
| 794 | by design, and also happens to work for all other modern
|
---|
| 795 | hardware. */
|
---|
| 796 | precision = 17;
|
---|
| 797 | format_code = 'g';
|
---|
| 798 | break;
|
---|
| 799 | default:
|
---|
| 800 | PyErr_BadInternalCall();
|
---|
| 801 | return NULL;
|
---|
| 802 | }
|
---|
| 803 |
|
---|
| 804 | /* Here's a quick-and-dirty calculation to figure out how big a buffer
|
---|
| 805 | we need. In general, for a finite float we need:
|
---|
| 806 |
|
---|
| 807 | 1 byte for each digit of the decimal significand, and
|
---|
| 808 |
|
---|
| 809 | 1 for a possible sign
|
---|
| 810 | 1 for a possible decimal point
|
---|
| 811 | 2 for a possible [eE][+-]
|
---|
| 812 | 1 for each digit of the exponent; if we allow 19 digits
|
---|
| 813 | total then we're safe up to exponents of 2**63.
|
---|
| 814 | 1 for the trailing nul byte
|
---|
| 815 |
|
---|
| 816 | This gives a total of 24 + the number of digits in the significand,
|
---|
| 817 | and the number of digits in the significand is:
|
---|
| 818 |
|
---|
| 819 | for 'g' format: at most precision, except possibly
|
---|
| 820 | when precision == 0, when it's 1.
|
---|
| 821 | for 'e' format: precision+1
|
---|
| 822 | for 'f' format: precision digits after the point, at least 1
|
---|
| 823 | before. To figure out how many digits appear before the point
|
---|
| 824 | we have to examine the size of the number. If fabs(val) < 1.0
|
---|
| 825 | then there will be only one digit before the point. If
|
---|
| 826 | fabs(val) >= 1.0, then there are at most
|
---|
| 827 |
|
---|
| 828 | 1+floor(log10(ceiling(fabs(val))))
|
---|
| 829 |
|
---|
| 830 | digits before the point (where the 'ceiling' allows for the
|
---|
| 831 | possibility that the rounding rounds the integer part of val
|
---|
| 832 | up). A safe upper bound for the above quantity is
|
---|
| 833 | 1+floor(exp/3), where exp is the unique integer such that 0.5
|
---|
| 834 | <= fabs(val)/2**exp < 1.0. This exp can be obtained from
|
---|
| 835 | frexp.
|
---|
| 836 |
|
---|
| 837 | So we allow room for precision+1 digits for all formats, plus an
|
---|
| 838 | extra floor(exp/3) digits for 'f' format.
|
---|
| 839 |
|
---|
| 840 | */
|
---|
| 841 |
|
---|
| 842 | if (Py_IS_NAN(val) || Py_IS_INFINITY(val))
|
---|
| 843 | /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */
|
---|
| 844 | bufsize = 5;
|
---|
| 845 | else {
|
---|
| 846 | bufsize = 25 + precision;
|
---|
| 847 | if (format_code == 'f' && fabs(val) >= 1.0) {
|
---|
| 848 | frexp(val, &exp);
|
---|
| 849 | bufsize += exp/3;
|
---|
| 850 | }
|
---|
| 851 | }
|
---|
| 852 |
|
---|
| 853 | buf = PyMem_Malloc(bufsize);
|
---|
| 854 | if (buf == NULL) {
|
---|
| 855 | PyErr_NoMemory();
|
---|
| 856 | return NULL;
|
---|
| 857 | }
|
---|
| 858 |
|
---|
| 859 | /* Handle nan and inf. */
|
---|
| 860 | if (Py_IS_NAN(val)) {
|
---|
| 861 | strcpy(buf, "nan");
|
---|
| 862 | t = Py_DTST_NAN;
|
---|
| 863 | } else if (Py_IS_INFINITY(val)) {
|
---|
| 864 | if (copysign(1., val) == 1.)
|
---|
| 865 | strcpy(buf, "inf");
|
---|
| 866 | else
|
---|
| 867 | strcpy(buf, "-inf");
|
---|
| 868 | t = Py_DTST_INFINITE;
|
---|
| 869 | } else {
|
---|
| 870 | t = Py_DTST_FINITE;
|
---|
| 871 | if (flags & Py_DTSF_ADD_DOT_0)
|
---|
| 872 | format_code = 'Z';
|
---|
| 873 |
|
---|
| 874 | PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",
|
---|
| 875 | (flags & Py_DTSF_ALT ? "#" : ""), precision,
|
---|
| 876 | format_code);
|
---|
| 877 | _PyOS_ascii_formatd(buf, bufsize, format, val, precision);
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | /* Add sign when requested. It's convenient (esp. when formatting
|
---|
| 881 | complex numbers) to include a sign even for inf and nan. */
|
---|
| 882 | if (flags & Py_DTSF_SIGN && buf[0] != '-') {
|
---|
| 883 | size_t len = strlen(buf);
|
---|
| 884 | /* the bufsize calculations above should ensure that we've got
|
---|
| 885 | space to add a sign */
|
---|
| 886 | assert((size_t)bufsize >= len+2);
|
---|
| 887 | memmove(buf+1, buf, len+1);
|
---|
| 888 | buf[0] = '+';
|
---|
| 889 | }
|
---|
| 890 | if (upper) {
|
---|
| 891 | /* Convert to upper case. */
|
---|
| 892 | char *p1;
|
---|
| 893 | for (p1 = buf; *p1; p1++)
|
---|
| 894 | *p1 = Py_TOUPPER(*p1);
|
---|
| 895 | }
|
---|
| 896 |
|
---|
| 897 | if (type)
|
---|
| 898 | *type = t;
|
---|
| 899 | return buf;
|
---|
[2] | 900 | }
|
---|
[391] | 901 |
|
---|
| 902 | #else
|
---|
| 903 |
|
---|
| 904 | /* _Py_dg_dtoa is available. */
|
---|
| 905 |
|
---|
| 906 | /* I'm using a lookup table here so that I don't have to invent a non-locale
|
---|
| 907 | specific way to convert to uppercase */
|
---|
| 908 | #define OFS_INF 0
|
---|
| 909 | #define OFS_NAN 1
|
---|
| 910 | #define OFS_E 2
|
---|
| 911 |
|
---|
| 912 | /* The lengths of these are known to the code below, so don't change them */
|
---|
| 913 | static char *lc_float_strings[] = {
|
---|
| 914 | "inf",
|
---|
| 915 | "nan",
|
---|
| 916 | "e",
|
---|
| 917 | };
|
---|
| 918 | static char *uc_float_strings[] = {
|
---|
| 919 | "INF",
|
---|
| 920 | "NAN",
|
---|
| 921 | "E",
|
---|
| 922 | };
|
---|
| 923 |
|
---|
| 924 |
|
---|
| 925 | /* Convert a double d to a string, and return a PyMem_Malloc'd block of
|
---|
| 926 | memory contain the resulting string.
|
---|
| 927 |
|
---|
| 928 | Arguments:
|
---|
| 929 | d is the double to be converted
|
---|
| 930 | format_code is one of 'e', 'f', 'g', 'r'. 'e', 'f' and 'g'
|
---|
| 931 | correspond to '%e', '%f' and '%g'; 'r' corresponds to repr.
|
---|
| 932 | mode is one of '0', '2' or '3', and is completely determined by
|
---|
| 933 | format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.
|
---|
| 934 | precision is the desired precision
|
---|
| 935 | always_add_sign is nonzero if a '+' sign should be included for positive
|
---|
| 936 | numbers
|
---|
| 937 | add_dot_0_if_integer is nonzero if integers in non-exponential form
|
---|
| 938 | should have ".0" added. Only applies to format codes 'r' and 'g'.
|
---|
| 939 | use_alt_formatting is nonzero if alternative formatting should be
|
---|
| 940 | used. Only applies to format codes 'e', 'f' and 'g'. For code 'g',
|
---|
| 941 | at most one of use_alt_formatting and add_dot_0_if_integer should
|
---|
| 942 | be nonzero.
|
---|
| 943 | type, if non-NULL, will be set to one of these constants to identify
|
---|
| 944 | the type of the 'd' argument:
|
---|
| 945 | Py_DTST_FINITE
|
---|
| 946 | Py_DTST_INFINITE
|
---|
| 947 | Py_DTST_NAN
|
---|
| 948 |
|
---|
| 949 | Returns a PyMem_Malloc'd block of memory containing the resulting string,
|
---|
| 950 | or NULL on error. If NULL is returned, the Python error has been set.
|
---|
| 951 | */
|
---|
| 952 |
|
---|
| 953 | static char *
|
---|
| 954 | format_float_short(double d, char format_code,
|
---|
| 955 | int mode, Py_ssize_t precision,
|
---|
| 956 | int always_add_sign, int add_dot_0_if_integer,
|
---|
| 957 | int use_alt_formatting, char **float_strings, int *type)
|
---|
| 958 | {
|
---|
| 959 | char *buf = NULL;
|
---|
| 960 | char *p = NULL;
|
---|
| 961 | Py_ssize_t bufsize = 0;
|
---|
| 962 | char *digits, *digits_end;
|
---|
| 963 | int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;
|
---|
| 964 | Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;
|
---|
| 965 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
| 966 |
|
---|
| 967 | /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).
|
---|
| 968 | Must be matched by a call to _Py_dg_freedtoa. */
|
---|
| 969 | _Py_SET_53BIT_PRECISION_START;
|
---|
| 970 | digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,
|
---|
| 971 | &digits_end);
|
---|
| 972 | _Py_SET_53BIT_PRECISION_END;
|
---|
| 973 |
|
---|
| 974 | decpt = (Py_ssize_t)decpt_as_int;
|
---|
| 975 | if (digits == NULL) {
|
---|
| 976 | /* The only failure mode is no memory. */
|
---|
| 977 | PyErr_NoMemory();
|
---|
| 978 | goto exit;
|
---|
| 979 | }
|
---|
| 980 | assert(digits_end != NULL && digits_end >= digits);
|
---|
| 981 | digits_len = digits_end - digits;
|
---|
| 982 |
|
---|
| 983 | if (digits_len && !Py_ISDIGIT(digits[0])) {
|
---|
| 984 | /* Infinities and nans here; adapt Gay's output,
|
---|
| 985 | so convert Infinity to inf and NaN to nan, and
|
---|
| 986 | ignore sign of nan. Then return. */
|
---|
| 987 |
|
---|
| 988 | /* ignore the actual sign of a nan */
|
---|
| 989 | if (digits[0] == 'n' || digits[0] == 'N')
|
---|
| 990 | sign = 0;
|
---|
| 991 |
|
---|
| 992 | /* We only need 5 bytes to hold the result "+inf\0" . */
|
---|
| 993 | bufsize = 5; /* Used later in an assert. */
|
---|
| 994 | buf = (char *)PyMem_Malloc(bufsize);
|
---|
| 995 | if (buf == NULL) {
|
---|
| 996 | PyErr_NoMemory();
|
---|
| 997 | goto exit;
|
---|
| 998 | }
|
---|
| 999 | p = buf;
|
---|
| 1000 |
|
---|
| 1001 | if (sign == 1) {
|
---|
| 1002 | *p++ = '-';
|
---|
| 1003 | }
|
---|
| 1004 | else if (always_add_sign) {
|
---|
| 1005 | *p++ = '+';
|
---|
| 1006 | }
|
---|
| 1007 | if (digits[0] == 'i' || digits[0] == 'I') {
|
---|
| 1008 | strncpy(p, float_strings[OFS_INF], 3);
|
---|
| 1009 | p += 3;
|
---|
| 1010 |
|
---|
| 1011 | if (type)
|
---|
| 1012 | *type = Py_DTST_INFINITE;
|
---|
| 1013 | }
|
---|
| 1014 | else if (digits[0] == 'n' || digits[0] == 'N') {
|
---|
| 1015 | strncpy(p, float_strings[OFS_NAN], 3);
|
---|
| 1016 | p += 3;
|
---|
| 1017 |
|
---|
| 1018 | if (type)
|
---|
| 1019 | *type = Py_DTST_NAN;
|
---|
| 1020 | }
|
---|
| 1021 | else {
|
---|
| 1022 | /* shouldn't get here: Gay's code should always return
|
---|
| 1023 | something starting with a digit, an 'I', or 'N' */
|
---|
| 1024 | strncpy(p, "ERR", 3);
|
---|
| 1025 | p += 3;
|
---|
| 1026 | assert(0);
|
---|
| 1027 | }
|
---|
| 1028 | goto exit;
|
---|
| 1029 | }
|
---|
| 1030 |
|
---|
| 1031 | /* The result must be finite (not inf or nan). */
|
---|
| 1032 | if (type)
|
---|
| 1033 | *type = Py_DTST_FINITE;
|
---|
| 1034 |
|
---|
| 1035 |
|
---|
| 1036 | /* We got digits back, format them. We may need to pad 'digits'
|
---|
| 1037 | either on the left or right (or both) with extra zeros, so in
|
---|
| 1038 | general the resulting string has the form
|
---|
| 1039 |
|
---|
| 1040 | [<sign>]<zeros><digits><zeros>[<exponent>]
|
---|
| 1041 |
|
---|
| 1042 | where either of the <zeros> pieces could be empty, and there's a
|
---|
| 1043 | decimal point that could appear either in <digits> or in the
|
---|
| 1044 | leading or trailing <zeros>.
|
---|
| 1045 |
|
---|
| 1046 | Imagine an infinite 'virtual' string vdigits, consisting of the
|
---|
| 1047 | string 'digits' (starting at index 0) padded on both the left and
|
---|
| 1048 | right with infinite strings of zeros. We want to output a slice
|
---|
| 1049 |
|
---|
| 1050 | vdigits[vdigits_start : vdigits_end]
|
---|
| 1051 |
|
---|
| 1052 | of this virtual string. Thus if vdigits_start < 0 then we'll end
|
---|
| 1053 | up producing some leading zeros; if vdigits_end > digits_len there
|
---|
| 1054 | will be trailing zeros in the output. The next section of code
|
---|
| 1055 | determines whether to use an exponent or not, figures out the
|
---|
| 1056 | position 'decpt' of the decimal point, and computes 'vdigits_start'
|
---|
| 1057 | and 'vdigits_end'. */
|
---|
| 1058 | vdigits_end = digits_len;
|
---|
| 1059 | switch (format_code) {
|
---|
| 1060 | case 'e':
|
---|
| 1061 | use_exp = 1;
|
---|
| 1062 | vdigits_end = precision;
|
---|
| 1063 | break;
|
---|
| 1064 | case 'f':
|
---|
| 1065 | vdigits_end = decpt + precision;
|
---|
| 1066 | break;
|
---|
| 1067 | case 'g':
|
---|
| 1068 | if (decpt <= -4 || decpt >
|
---|
| 1069 | (add_dot_0_if_integer ? precision-1 : precision))
|
---|
| 1070 | use_exp = 1;
|
---|
| 1071 | if (use_alt_formatting)
|
---|
| 1072 | vdigits_end = precision;
|
---|
| 1073 | break;
|
---|
| 1074 | case 'r':
|
---|
| 1075 | /* convert to exponential format at 1e16. We used to convert
|
---|
| 1076 | at 1e17, but that gives odd-looking results for some values
|
---|
| 1077 | when a 16-digit 'shortest' repr is padded with bogus zeros.
|
---|
| 1078 | For example, repr(2e16+8) would give 20000000000000010.0;
|
---|
| 1079 | the true value is 20000000000000008.0. */
|
---|
| 1080 | if (decpt <= -4 || decpt > 16)
|
---|
| 1081 | use_exp = 1;
|
---|
| 1082 | break;
|
---|
| 1083 | default:
|
---|
| 1084 | PyErr_BadInternalCall();
|
---|
| 1085 | goto exit;
|
---|
| 1086 | }
|
---|
| 1087 |
|
---|
| 1088 | /* if using an exponent, reset decimal point position to 1 and adjust
|
---|
| 1089 | exponent accordingly.*/
|
---|
| 1090 | if (use_exp) {
|
---|
| 1091 | exp = decpt - 1;
|
---|
| 1092 | decpt = 1;
|
---|
| 1093 | }
|
---|
| 1094 | /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <
|
---|
| 1095 | decpt < vdigits_end if add_dot_0_if_integer and no exponent */
|
---|
| 1096 | vdigits_start = decpt <= 0 ? decpt-1 : 0;
|
---|
| 1097 | if (!use_exp && add_dot_0_if_integer)
|
---|
| 1098 | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;
|
---|
| 1099 | else
|
---|
| 1100 | vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;
|
---|
| 1101 |
|
---|
| 1102 | /* double check inequalities */
|
---|
| 1103 | assert(vdigits_start <= 0 &&
|
---|
| 1104 | 0 <= digits_len &&
|
---|
| 1105 | digits_len <= vdigits_end);
|
---|
| 1106 | /* decimal point should be in (vdigits_start, vdigits_end] */
|
---|
| 1107 | assert(vdigits_start < decpt && decpt <= vdigits_end);
|
---|
| 1108 |
|
---|
| 1109 | /* Compute an upper bound how much memory we need. This might be a few
|
---|
| 1110 | chars too long, but no big deal. */
|
---|
| 1111 | bufsize =
|
---|
| 1112 | /* sign, decimal point and trailing 0 byte */
|
---|
| 1113 | 3 +
|
---|
| 1114 |
|
---|
| 1115 | /* total digit count (including zero padding on both sides) */
|
---|
| 1116 | (vdigits_end - vdigits_start) +
|
---|
| 1117 |
|
---|
| 1118 | /* exponent "e+100", max 3 numerical digits */
|
---|
| 1119 | (use_exp ? 5 : 0);
|
---|
| 1120 |
|
---|
| 1121 | /* Now allocate the memory and initialize p to point to the start of
|
---|
| 1122 | it. */
|
---|
| 1123 | buf = (char *)PyMem_Malloc(bufsize);
|
---|
| 1124 | if (buf == NULL) {
|
---|
| 1125 | PyErr_NoMemory();
|
---|
| 1126 | goto exit;
|
---|
| 1127 | }
|
---|
| 1128 | p = buf;
|
---|
| 1129 |
|
---|
| 1130 | /* Add a negative sign if negative, and a plus sign if non-negative
|
---|
| 1131 | and always_add_sign is true. */
|
---|
| 1132 | if (sign == 1)
|
---|
| 1133 | *p++ = '-';
|
---|
| 1134 | else if (always_add_sign)
|
---|
| 1135 | *p++ = '+';
|
---|
| 1136 |
|
---|
| 1137 | /* note that exactly one of the three 'if' conditions is true,
|
---|
| 1138 | so we include exactly one decimal point */
|
---|
| 1139 | /* Zero padding on left of digit string */
|
---|
| 1140 | if (decpt <= 0) {
|
---|
| 1141 | memset(p, '0', decpt-vdigits_start);
|
---|
| 1142 | p += decpt - vdigits_start;
|
---|
| 1143 | *p++ = '.';
|
---|
| 1144 | memset(p, '0', 0-decpt);
|
---|
| 1145 | p += 0-decpt;
|
---|
| 1146 | }
|
---|
| 1147 | else {
|
---|
| 1148 | memset(p, '0', 0-vdigits_start);
|
---|
| 1149 | p += 0 - vdigits_start;
|
---|
| 1150 | }
|
---|
| 1151 |
|
---|
| 1152 | /* Digits, with included decimal point */
|
---|
| 1153 | if (0 < decpt && decpt <= digits_len) {
|
---|
| 1154 | strncpy(p, digits, decpt-0);
|
---|
| 1155 | p += decpt-0;
|
---|
| 1156 | *p++ = '.';
|
---|
| 1157 | strncpy(p, digits+decpt, digits_len-decpt);
|
---|
| 1158 | p += digits_len-decpt;
|
---|
| 1159 | }
|
---|
| 1160 | else {
|
---|
| 1161 | strncpy(p, digits, digits_len);
|
---|
| 1162 | p += digits_len;
|
---|
| 1163 | }
|
---|
| 1164 |
|
---|
| 1165 | /* And zeros on the right */
|
---|
| 1166 | if (digits_len < decpt) {
|
---|
| 1167 | memset(p, '0', decpt-digits_len);
|
---|
| 1168 | p += decpt-digits_len;
|
---|
| 1169 | *p++ = '.';
|
---|
| 1170 | memset(p, '0', vdigits_end-decpt);
|
---|
| 1171 | p += vdigits_end-decpt;
|
---|
| 1172 | }
|
---|
| 1173 | else {
|
---|
| 1174 | memset(p, '0', vdigits_end-digits_len);
|
---|
| 1175 | p += vdigits_end-digits_len;
|
---|
| 1176 | }
|
---|
| 1177 |
|
---|
| 1178 | /* Delete a trailing decimal pt unless using alternative formatting. */
|
---|
| 1179 | if (p[-1] == '.' && !use_alt_formatting)
|
---|
| 1180 | p--;
|
---|
| 1181 |
|
---|
| 1182 | /* Now that we've done zero padding, add an exponent if needed. */
|
---|
| 1183 | if (use_exp) {
|
---|
| 1184 | *p++ = float_strings[OFS_E][0];
|
---|
| 1185 | exp_len = sprintf(p, "%+.02d", exp);
|
---|
| 1186 | p += exp_len;
|
---|
| 1187 | }
|
---|
| 1188 | exit:
|
---|
| 1189 | if (buf) {
|
---|
| 1190 | *p = '\0';
|
---|
| 1191 | /* It's too late if this fails, as we've already stepped on
|
---|
| 1192 | memory that isn't ours. But it's an okay debugging test. */
|
---|
| 1193 | assert(p-buf < bufsize);
|
---|
| 1194 | }
|
---|
| 1195 | if (digits)
|
---|
| 1196 | _Py_dg_freedtoa(digits);
|
---|
| 1197 |
|
---|
| 1198 | return buf;
|
---|
| 1199 | }
|
---|
| 1200 |
|
---|
| 1201 |
|
---|
| 1202 | PyAPI_FUNC(char *) PyOS_double_to_string(double val,
|
---|
| 1203 | char format_code,
|
---|
| 1204 | int precision,
|
---|
| 1205 | int flags,
|
---|
| 1206 | int *type)
|
---|
| 1207 | {
|
---|
| 1208 | char **float_strings = lc_float_strings;
|
---|
| 1209 | int mode;
|
---|
| 1210 |
|
---|
| 1211 | /* Validate format_code, and map upper and lower case. Compute the
|
---|
| 1212 | mode and make any adjustments as needed. */
|
---|
| 1213 | switch (format_code) {
|
---|
| 1214 | /* exponent */
|
---|
| 1215 | case 'E':
|
---|
| 1216 | float_strings = uc_float_strings;
|
---|
| 1217 | format_code = 'e';
|
---|
| 1218 | /* Fall through. */
|
---|
| 1219 | case 'e':
|
---|
| 1220 | mode = 2;
|
---|
| 1221 | precision++;
|
---|
| 1222 | break;
|
---|
| 1223 |
|
---|
| 1224 | /* fixed */
|
---|
| 1225 | case 'F':
|
---|
| 1226 | float_strings = uc_float_strings;
|
---|
| 1227 | format_code = 'f';
|
---|
| 1228 | /* Fall through. */
|
---|
| 1229 | case 'f':
|
---|
| 1230 | mode = 3;
|
---|
| 1231 | break;
|
---|
| 1232 |
|
---|
| 1233 | /* general */
|
---|
| 1234 | case 'G':
|
---|
| 1235 | float_strings = uc_float_strings;
|
---|
| 1236 | format_code = 'g';
|
---|
| 1237 | /* Fall through. */
|
---|
| 1238 | case 'g':
|
---|
| 1239 | mode = 2;
|
---|
| 1240 | /* precision 0 makes no sense for 'g' format; interpret as 1 */
|
---|
| 1241 | if (precision == 0)
|
---|
| 1242 | precision = 1;
|
---|
| 1243 | break;
|
---|
| 1244 |
|
---|
| 1245 | /* repr format */
|
---|
| 1246 | case 'r':
|
---|
| 1247 | mode = 0;
|
---|
| 1248 | /* Supplied precision is unused, must be 0. */
|
---|
| 1249 | if (precision != 0) {
|
---|
| 1250 | PyErr_BadInternalCall();
|
---|
| 1251 | return NULL;
|
---|
| 1252 | }
|
---|
| 1253 | break;
|
---|
| 1254 |
|
---|
| 1255 | default:
|
---|
| 1256 | PyErr_BadInternalCall();
|
---|
| 1257 | return NULL;
|
---|
| 1258 | }
|
---|
| 1259 |
|
---|
| 1260 | return format_float_short(val, format_code, mode, precision,
|
---|
| 1261 | flags & Py_DTSF_SIGN,
|
---|
| 1262 | flags & Py_DTSF_ADD_DOT_0,
|
---|
| 1263 | flags & Py_DTSF_ALT,
|
---|
| 1264 | float_strings, type);
|
---|
| 1265 | }
|
---|
| 1266 | #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */
|
---|