| 1 | #include "Python.h"
|
|---|
| 2 |
|
|---|
| 3 | #ifdef X87_DOUBLE_ROUNDING
|
|---|
| 4 | /* On x86 platforms using an x87 FPU, this function is called from the
|
|---|
| 5 | Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point
|
|---|
| 6 | number out of an 80-bit x87 FPU register and into a 64-bit memory location,
|
|---|
| 7 | thus rounding from extended precision to double precision. */
|
|---|
| 8 | double _Py_force_double(double x)
|
|---|
| 9 | {
|
|---|
| 10 | volatile double y;
|
|---|
| 11 | y = x;
|
|---|
| 12 | return y;
|
|---|
| 13 | }
|
|---|
| 14 | #endif
|
|---|
| 15 |
|
|---|
| 16 | #ifndef HAVE_HYPOT
|
|---|
| 17 | double hypot(double x, double y)
|
|---|
| 18 | {
|
|---|
| 19 | double yx;
|
|---|
| 20 |
|
|---|
| 21 | x = fabs(x);
|
|---|
| 22 | y = fabs(y);
|
|---|
| 23 | if (x < y) {
|
|---|
| 24 | double temp = x;
|
|---|
| 25 | x = y;
|
|---|
| 26 | y = temp;
|
|---|
| 27 | }
|
|---|
| 28 | if (x == 0.)
|
|---|
| 29 | return 0.;
|
|---|
| 30 | else {
|
|---|
| 31 | yx = y/x;
|
|---|
| 32 | return x*sqrt(1.+yx*yx);
|
|---|
| 33 | }
|
|---|
| 34 | }
|
|---|
| 35 | #endif /* HAVE_HYPOT */
|
|---|
| 36 |
|
|---|
| 37 | #ifndef HAVE_COPYSIGN
|
|---|
| 38 | double
|
|---|
| 39 | copysign(double x, double y)
|
|---|
| 40 | {
|
|---|
| 41 | /* use atan2 to distinguish -0. from 0. */
|
|---|
| 42 | if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
|
|---|
| 43 | return fabs(x);
|
|---|
| 44 | } else {
|
|---|
| 45 | return -fabs(x);
|
|---|
| 46 | }
|
|---|
| 47 | }
|
|---|
| 48 | #endif /* HAVE_COPYSIGN */
|
|---|
| 49 |
|
|---|
| 50 | #ifndef HAVE_LOG1P
|
|---|
| 51 | #include <float.h>
|
|---|
| 52 |
|
|---|
| 53 | double
|
|---|
| 54 | log1p(double x)
|
|---|
| 55 | {
|
|---|
| 56 | /* For x small, we use the following approach. Let y be the nearest
|
|---|
| 57 | float to 1+x, then
|
|---|
| 58 |
|
|---|
| 59 | 1+x = y * (1 - (y-1-x)/y)
|
|---|
| 60 |
|
|---|
| 61 | so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
|
|---|
| 62 | the second term is well approximated by (y-1-x)/y. If abs(x) >=
|
|---|
| 63 | DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
|
|---|
| 64 | then y-1-x will be exactly representable, and is computed exactly
|
|---|
| 65 | by (y-1)-x.
|
|---|
| 66 |
|
|---|
| 67 | If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
|
|---|
| 68 | round-to-nearest then this method is slightly dangerous: 1+x could
|
|---|
| 69 | be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
|
|---|
| 70 | case y-1-x will not be exactly representable any more and the
|
|---|
| 71 | result can be off by many ulps. But this is easily fixed: for a
|
|---|
| 72 | floating-point number |x| < DBL_EPSILON/2., the closest
|
|---|
| 73 | floating-point number to log(1+x) is exactly x.
|
|---|
| 74 | */
|
|---|
| 75 |
|
|---|
| 76 | double y;
|
|---|
| 77 | if (fabs(x) < DBL_EPSILON/2.) {
|
|---|
| 78 | return x;
|
|---|
| 79 | } else if (-0.5 <= x && x <= 1.) {
|
|---|
| 80 | /* WARNING: it's possible than an overeager compiler
|
|---|
| 81 | will incorrectly optimize the following two lines
|
|---|
| 82 | to the equivalent of "return log(1.+x)". If this
|
|---|
| 83 | happens, then results from log1p will be inaccurate
|
|---|
| 84 | for small x. */
|
|---|
| 85 | y = 1.+x;
|
|---|
| 86 | return log(y)-((y-1.)-x)/y;
|
|---|
| 87 | } else {
|
|---|
| 88 | /* NaNs and infinities should end up here */
|
|---|
| 89 | return log(1.+x);
|
|---|
| 90 | }
|
|---|
| 91 | }
|
|---|
| 92 | #endif /* HAVE_LOG1P */
|
|---|
| 93 |
|
|---|
| 94 | /*
|
|---|
| 95 | * ====================================================
|
|---|
| 96 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|---|
| 97 | *
|
|---|
| 98 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|---|
| 99 | * Permission to use, copy, modify, and distribute this
|
|---|
| 100 | * software is freely granted, provided that this notice
|
|---|
| 101 | * is preserved.
|
|---|
| 102 | * ====================================================
|
|---|
| 103 | */
|
|---|
| 104 |
|
|---|
| 105 | static const double ln2 = 6.93147180559945286227E-01;
|
|---|
| 106 | static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
|
|---|
| 107 | static const double two_pow_p28 = 268435456.0; /* 2**28 */
|
|---|
| 108 | static const double zero = 0.0;
|
|---|
| 109 |
|
|---|
| 110 | /* asinh(x)
|
|---|
| 111 | * Method :
|
|---|
| 112 | * Based on
|
|---|
| 113 | * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
|---|
| 114 | * we have
|
|---|
| 115 | * asinh(x) := x if 1+x*x=1,
|
|---|
| 116 | * := sign(x)*(log(x)+ln2)) for large |x|, else
|
|---|
| 117 | * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
|---|
| 118 | * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
|---|
| 119 | */
|
|---|
| 120 |
|
|---|
| 121 | #ifndef HAVE_ASINH
|
|---|
| 122 | double
|
|---|
| 123 | asinh(double x)
|
|---|
| 124 | {
|
|---|
| 125 | double w;
|
|---|
| 126 | double absx = fabs(x);
|
|---|
| 127 |
|
|---|
| 128 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
|
|---|
| 129 | return x+x;
|
|---|
| 130 | }
|
|---|
| 131 | if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
|---|
| 132 | return x; /* return x inexact except 0 */
|
|---|
| 133 | }
|
|---|
| 134 | if (absx > two_pow_p28) { /* |x| > 2**28 */
|
|---|
| 135 | w = log(absx)+ln2;
|
|---|
| 136 | }
|
|---|
| 137 | else if (absx > 2.0) { /* 2 < |x| < 2**28 */
|
|---|
| 138 | w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
|
|---|
| 139 | }
|
|---|
| 140 | else { /* 2**-28 <= |x| < 2= */
|
|---|
| 141 | double t = x*x;
|
|---|
| 142 | w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
|
|---|
| 143 | }
|
|---|
| 144 | return copysign(w, x);
|
|---|
| 145 |
|
|---|
| 146 | }
|
|---|
| 147 | #endif /* HAVE_ASINH */
|
|---|
| 148 |
|
|---|
| 149 | /* acosh(x)
|
|---|
| 150 | * Method :
|
|---|
| 151 | * Based on
|
|---|
| 152 | * acosh(x) = log [ x + sqrt(x*x-1) ]
|
|---|
| 153 | * we have
|
|---|
| 154 | * acosh(x) := log(x)+ln2, if x is large; else
|
|---|
| 155 | * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
|---|
| 156 | * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
|---|
| 157 | *
|
|---|
| 158 | * Special cases:
|
|---|
| 159 | * acosh(x) is NaN with signal if x<1.
|
|---|
| 160 | * acosh(NaN) is NaN without signal.
|
|---|
| 161 | */
|
|---|
| 162 |
|
|---|
| 163 | #ifndef HAVE_ACOSH
|
|---|
| 164 | double
|
|---|
| 165 | acosh(double x)
|
|---|
| 166 | {
|
|---|
| 167 | if (Py_IS_NAN(x)) {
|
|---|
| 168 | return x+x;
|
|---|
| 169 | }
|
|---|
| 170 | if (x < 1.) { /* x < 1; return a signaling NaN */
|
|---|
| 171 | errno = EDOM;
|
|---|
| 172 | #ifdef Py_NAN
|
|---|
| 173 | return Py_NAN;
|
|---|
| 174 | #else
|
|---|
| 175 | return (x-x)/(x-x);
|
|---|
| 176 | #endif
|
|---|
| 177 | }
|
|---|
| 178 | else if (x >= two_pow_p28) { /* x > 2**28 */
|
|---|
| 179 | if (Py_IS_INFINITY(x)) {
|
|---|
| 180 | return x+x;
|
|---|
| 181 | } else {
|
|---|
| 182 | return log(x)+ln2; /* acosh(huge)=log(2x) */
|
|---|
| 183 | }
|
|---|
| 184 | }
|
|---|
| 185 | else if (x == 1.) {
|
|---|
| 186 | return 0.0; /* acosh(1) = 0 */
|
|---|
| 187 | }
|
|---|
| 188 | else if (x > 2.) { /* 2 < x < 2**28 */
|
|---|
| 189 | double t = x*x;
|
|---|
| 190 | return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
|
|---|
| 191 | }
|
|---|
| 192 | else { /* 1 < x <= 2 */
|
|---|
| 193 | double t = x - 1.0;
|
|---|
| 194 | return log1p(t + sqrt(2.0*t + t*t));
|
|---|
| 195 | }
|
|---|
| 196 | }
|
|---|
| 197 | #endif /* HAVE_ACOSH */
|
|---|
| 198 |
|
|---|
| 199 | /* atanh(x)
|
|---|
| 200 | * Method :
|
|---|
| 201 | * 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
|---|
| 202 | * 2.For x>=0.5
|
|---|
| 203 | * 1 2x x
|
|---|
| 204 | * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
|---|
| 205 | * 2 1 - x 1 - x
|
|---|
| 206 | *
|
|---|
| 207 | * For x<0.5
|
|---|
| 208 | * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
|---|
| 209 | *
|
|---|
| 210 | * Special cases:
|
|---|
| 211 | * atanh(x) is NaN if |x| >= 1 with signal;
|
|---|
| 212 | * atanh(NaN) is that NaN with no signal;
|
|---|
| 213 | *
|
|---|
| 214 | */
|
|---|
| 215 |
|
|---|
| 216 | #ifndef HAVE_ATANH
|
|---|
| 217 | double
|
|---|
| 218 | atanh(double x)
|
|---|
| 219 | {
|
|---|
| 220 | double absx;
|
|---|
| 221 | double t;
|
|---|
| 222 |
|
|---|
| 223 | if (Py_IS_NAN(x)) {
|
|---|
| 224 | return x+x;
|
|---|
| 225 | }
|
|---|
| 226 | absx = fabs(x);
|
|---|
| 227 | if (absx >= 1.) { /* |x| >= 1 */
|
|---|
| 228 | errno = EDOM;
|
|---|
| 229 | #ifdef Py_NAN
|
|---|
| 230 | return Py_NAN;
|
|---|
| 231 | #else
|
|---|
| 232 | return x/zero;
|
|---|
| 233 | #endif
|
|---|
| 234 | }
|
|---|
| 235 | if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
|---|
| 236 | return x;
|
|---|
| 237 | }
|
|---|
| 238 | if (absx < 0.5) { /* |x| < 0.5 */
|
|---|
| 239 | t = absx+absx;
|
|---|
| 240 | t = 0.5 * log1p(t + t*absx / (1.0 - absx));
|
|---|
| 241 | }
|
|---|
| 242 | else { /* 0.5 <= |x| <= 1.0 */
|
|---|
| 243 | t = 0.5 * log1p((absx + absx) / (1.0 - absx));
|
|---|
| 244 | }
|
|---|
| 245 | return copysign(t, x);
|
|---|
| 246 | }
|
|---|
| 247 | #endif /* HAVE_ATANH */
|
|---|