1 | #include "Python.h"
|
---|
2 |
|
---|
3 | #ifdef X87_DOUBLE_ROUNDING
|
---|
4 | /* On x86 platforms using an x87 FPU, this function is called from the
|
---|
5 | Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point
|
---|
6 | number out of an 80-bit x87 FPU register and into a 64-bit memory location,
|
---|
7 | thus rounding from extended precision to double precision. */
|
---|
8 | double _Py_force_double(double x)
|
---|
9 | {
|
---|
10 | volatile double y;
|
---|
11 | y = x;
|
---|
12 | return y;
|
---|
13 | }
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #ifndef HAVE_HYPOT
|
---|
17 | double hypot(double x, double y)
|
---|
18 | {
|
---|
19 | double yx;
|
---|
20 |
|
---|
21 | x = fabs(x);
|
---|
22 | y = fabs(y);
|
---|
23 | if (x < y) {
|
---|
24 | double temp = x;
|
---|
25 | x = y;
|
---|
26 | y = temp;
|
---|
27 | }
|
---|
28 | if (x == 0.)
|
---|
29 | return 0.;
|
---|
30 | else {
|
---|
31 | yx = y/x;
|
---|
32 | return x*sqrt(1.+yx*yx);
|
---|
33 | }
|
---|
34 | }
|
---|
35 | #endif /* HAVE_HYPOT */
|
---|
36 |
|
---|
37 | #ifndef HAVE_COPYSIGN
|
---|
38 | double
|
---|
39 | copysign(double x, double y)
|
---|
40 | {
|
---|
41 | /* use atan2 to distinguish -0. from 0. */
|
---|
42 | if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
|
---|
43 | return fabs(x);
|
---|
44 | } else {
|
---|
45 | return -fabs(x);
|
---|
46 | }
|
---|
47 | }
|
---|
48 | #endif /* HAVE_COPYSIGN */
|
---|
49 |
|
---|
50 | #ifndef HAVE_LOG1P
|
---|
51 | #include <float.h>
|
---|
52 |
|
---|
53 | double
|
---|
54 | log1p(double x)
|
---|
55 | {
|
---|
56 | /* For x small, we use the following approach. Let y be the nearest
|
---|
57 | float to 1+x, then
|
---|
58 |
|
---|
59 | 1+x = y * (1 - (y-1-x)/y)
|
---|
60 |
|
---|
61 | so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
|
---|
62 | the second term is well approximated by (y-1-x)/y. If abs(x) >=
|
---|
63 | DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
|
---|
64 | then y-1-x will be exactly representable, and is computed exactly
|
---|
65 | by (y-1)-x.
|
---|
66 |
|
---|
67 | If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
|
---|
68 | round-to-nearest then this method is slightly dangerous: 1+x could
|
---|
69 | be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
|
---|
70 | case y-1-x will not be exactly representable any more and the
|
---|
71 | result can be off by many ulps. But this is easily fixed: for a
|
---|
72 | floating-point number |x| < DBL_EPSILON/2., the closest
|
---|
73 | floating-point number to log(1+x) is exactly x.
|
---|
74 | */
|
---|
75 |
|
---|
76 | double y;
|
---|
77 | if (fabs(x) < DBL_EPSILON/2.) {
|
---|
78 | return x;
|
---|
79 | } else if (-0.5 <= x && x <= 1.) {
|
---|
80 | /* WARNING: it's possible than an overeager compiler
|
---|
81 | will incorrectly optimize the following two lines
|
---|
82 | to the equivalent of "return log(1.+x)". If this
|
---|
83 | happens, then results from log1p will be inaccurate
|
---|
84 | for small x. */
|
---|
85 | y = 1.+x;
|
---|
86 | return log(y)-((y-1.)-x)/y;
|
---|
87 | } else {
|
---|
88 | /* NaNs and infinities should end up here */
|
---|
89 | return log(1.+x);
|
---|
90 | }
|
---|
91 | }
|
---|
92 | #endif /* HAVE_LOG1P */
|
---|
93 |
|
---|
94 | /*
|
---|
95 | * ====================================================
|
---|
96 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
---|
97 | *
|
---|
98 | * Developed at SunPro, a Sun Microsystems, Inc. business.
|
---|
99 | * Permission to use, copy, modify, and distribute this
|
---|
100 | * software is freely granted, provided that this notice
|
---|
101 | * is preserved.
|
---|
102 | * ====================================================
|
---|
103 | */
|
---|
104 |
|
---|
105 | static const double ln2 = 6.93147180559945286227E-01;
|
---|
106 | static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
|
---|
107 | static const double two_pow_p28 = 268435456.0; /* 2**28 */
|
---|
108 | static const double zero = 0.0;
|
---|
109 |
|
---|
110 | /* asinh(x)
|
---|
111 | * Method :
|
---|
112 | * Based on
|
---|
113 | * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
---|
114 | * we have
|
---|
115 | * asinh(x) := x if 1+x*x=1,
|
---|
116 | * := sign(x)*(log(x)+ln2)) for large |x|, else
|
---|
117 | * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
---|
118 | * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
---|
119 | */
|
---|
120 |
|
---|
121 | #ifndef HAVE_ASINH
|
---|
122 | double
|
---|
123 | asinh(double x)
|
---|
124 | {
|
---|
125 | double w;
|
---|
126 | double absx = fabs(x);
|
---|
127 |
|
---|
128 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
|
---|
129 | return x+x;
|
---|
130 | }
|
---|
131 | if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
---|
132 | return x; /* return x inexact except 0 */
|
---|
133 | }
|
---|
134 | if (absx > two_pow_p28) { /* |x| > 2**28 */
|
---|
135 | w = log(absx)+ln2;
|
---|
136 | }
|
---|
137 | else if (absx > 2.0) { /* 2 < |x| < 2**28 */
|
---|
138 | w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
|
---|
139 | }
|
---|
140 | else { /* 2**-28 <= |x| < 2= */
|
---|
141 | double t = x*x;
|
---|
142 | w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
|
---|
143 | }
|
---|
144 | return copysign(w, x);
|
---|
145 |
|
---|
146 | }
|
---|
147 | #endif /* HAVE_ASINH */
|
---|
148 |
|
---|
149 | /* acosh(x)
|
---|
150 | * Method :
|
---|
151 | * Based on
|
---|
152 | * acosh(x) = log [ x + sqrt(x*x-1) ]
|
---|
153 | * we have
|
---|
154 | * acosh(x) := log(x)+ln2, if x is large; else
|
---|
155 | * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
---|
156 | * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
---|
157 | *
|
---|
158 | * Special cases:
|
---|
159 | * acosh(x) is NaN with signal if x<1.
|
---|
160 | * acosh(NaN) is NaN without signal.
|
---|
161 | */
|
---|
162 |
|
---|
163 | #ifndef HAVE_ACOSH
|
---|
164 | double
|
---|
165 | acosh(double x)
|
---|
166 | {
|
---|
167 | if (Py_IS_NAN(x)) {
|
---|
168 | return x+x;
|
---|
169 | }
|
---|
170 | if (x < 1.) { /* x < 1; return a signaling NaN */
|
---|
171 | errno = EDOM;
|
---|
172 | #ifdef Py_NAN
|
---|
173 | return Py_NAN;
|
---|
174 | #else
|
---|
175 | return (x-x)/(x-x);
|
---|
176 | #endif
|
---|
177 | }
|
---|
178 | else if (x >= two_pow_p28) { /* x > 2**28 */
|
---|
179 | if (Py_IS_INFINITY(x)) {
|
---|
180 | return x+x;
|
---|
181 | } else {
|
---|
182 | return log(x)+ln2; /* acosh(huge)=log(2x) */
|
---|
183 | }
|
---|
184 | }
|
---|
185 | else if (x == 1.) {
|
---|
186 | return 0.0; /* acosh(1) = 0 */
|
---|
187 | }
|
---|
188 | else if (x > 2.) { /* 2 < x < 2**28 */
|
---|
189 | double t = x*x;
|
---|
190 | return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
|
---|
191 | }
|
---|
192 | else { /* 1 < x <= 2 */
|
---|
193 | double t = x - 1.0;
|
---|
194 | return log1p(t + sqrt(2.0*t + t*t));
|
---|
195 | }
|
---|
196 | }
|
---|
197 | #endif /* HAVE_ACOSH */
|
---|
198 |
|
---|
199 | /* atanh(x)
|
---|
200 | * Method :
|
---|
201 | * 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
---|
202 | * 2.For x>=0.5
|
---|
203 | * 1 2x x
|
---|
204 | * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
---|
205 | * 2 1 - x 1 - x
|
---|
206 | *
|
---|
207 | * For x<0.5
|
---|
208 | * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
---|
209 | *
|
---|
210 | * Special cases:
|
---|
211 | * atanh(x) is NaN if |x| >= 1 with signal;
|
---|
212 | * atanh(NaN) is that NaN with no signal;
|
---|
213 | *
|
---|
214 | */
|
---|
215 |
|
---|
216 | #ifndef HAVE_ATANH
|
---|
217 | double
|
---|
218 | atanh(double x)
|
---|
219 | {
|
---|
220 | double absx;
|
---|
221 | double t;
|
---|
222 |
|
---|
223 | if (Py_IS_NAN(x)) {
|
---|
224 | return x+x;
|
---|
225 | }
|
---|
226 | absx = fabs(x);
|
---|
227 | if (absx >= 1.) { /* |x| >= 1 */
|
---|
228 | errno = EDOM;
|
---|
229 | #ifdef Py_NAN
|
---|
230 | return Py_NAN;
|
---|
231 | #else
|
---|
232 | return x/zero;
|
---|
233 | #endif
|
---|
234 | }
|
---|
235 | if (absx < two_pow_m28) { /* |x| < 2**-28 */
|
---|
236 | return x;
|
---|
237 | }
|
---|
238 | if (absx < 0.5) { /* |x| < 0.5 */
|
---|
239 | t = absx+absx;
|
---|
240 | t = 0.5 * log1p(t + t*absx / (1.0 - absx));
|
---|
241 | }
|
---|
242 | else { /* 0.5 <= |x| <= 1.0 */
|
---|
243 | t = 0.5 * log1p((absx + absx) / (1.0 - absx));
|
---|
244 | }
|
---|
245 | return copysign(t, x);
|
---|
246 | }
|
---|
247 | #endif /* HAVE_ATANH */
|
---|