| 1 | #include "Python.h"
|
|---|
| 2 |
|
|---|
| 3 | #ifdef WITH_PYMALLOC
|
|---|
| 4 |
|
|---|
| 5 | /* An object allocator for Python.
|
|---|
| 6 |
|
|---|
| 7 | Here is an introduction to the layers of the Python memory architecture,
|
|---|
| 8 | showing where the object allocator is actually used (layer +2), It is
|
|---|
| 9 | called for every object allocation and deallocation (PyObject_New/Del),
|
|---|
| 10 | unless the object-specific allocators implement a proprietary allocation
|
|---|
| 11 | scheme (ex.: ints use a simple free list). This is also the place where
|
|---|
| 12 | the cyclic garbage collector operates selectively on container objects.
|
|---|
| 13 |
|
|---|
| 14 |
|
|---|
| 15 | Object-specific allocators
|
|---|
| 16 | _____ ______ ______ ________
|
|---|
| 17 | [ int ] [ dict ] [ list ] ... [ string ] Python core |
|
|---|
| 18 | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
|
|---|
| 19 | _______________________________ | |
|
|---|
| 20 | [ Python's object allocator ] | |
|
|---|
| 21 | +2 | ####### Object memory ####### | <------ Internal buffers ------> |
|
|---|
| 22 | ______________________________________________________________ |
|
|---|
| 23 | [ Python's raw memory allocator (PyMem_ API) ] |
|
|---|
| 24 | +1 | <----- Python memory (under PyMem manager's control) ------> | |
|
|---|
| 25 | __________________________________________________________________
|
|---|
| 26 | [ Underlying general-purpose allocator (ex: C library malloc) ]
|
|---|
| 27 | 0 | <------ Virtual memory allocated for the python process -------> |
|
|---|
| 28 |
|
|---|
| 29 | =========================================================================
|
|---|
| 30 | _______________________________________________________________________
|
|---|
| 31 | [ OS-specific Virtual Memory Manager (VMM) ]
|
|---|
| 32 | -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
|
|---|
| 33 | __________________________________ __________________________________
|
|---|
| 34 | [ ] [ ]
|
|---|
| 35 | -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
|
|---|
| 36 |
|
|---|
| 37 | */
|
|---|
| 38 | /*==========================================================================*/
|
|---|
| 39 |
|
|---|
| 40 | /* A fast, special-purpose memory allocator for small blocks, to be used
|
|---|
| 41 | on top of a general-purpose malloc -- heavily based on previous art. */
|
|---|
| 42 |
|
|---|
| 43 | /* Vladimir Marangozov -- August 2000 */
|
|---|
| 44 |
|
|---|
| 45 | /*
|
|---|
| 46 | * "Memory management is where the rubber meets the road -- if we do the wrong
|
|---|
| 47 | * thing at any level, the results will not be good. And if we don't make the
|
|---|
| 48 | * levels work well together, we are in serious trouble." (1)
|
|---|
| 49 | *
|
|---|
| 50 | * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
|
|---|
| 51 | * "Dynamic Storage Allocation: A Survey and Critical Review",
|
|---|
| 52 | * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
|
|---|
| 53 | */
|
|---|
| 54 |
|
|---|
| 55 | /* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
|
|---|
| 56 |
|
|---|
| 57 | /*==========================================================================*/
|
|---|
| 58 |
|
|---|
| 59 | /*
|
|---|
| 60 | * Allocation strategy abstract:
|
|---|
| 61 | *
|
|---|
| 62 | * For small requests, the allocator sub-allocates <Big> blocks of memory.
|
|---|
| 63 | * Requests greater than 256 bytes are routed to the system's allocator.
|
|---|
| 64 | *
|
|---|
| 65 | * Small requests are grouped in size classes spaced 8 bytes apart, due
|
|---|
| 66 | * to the required valid alignment of the returned address. Requests of
|
|---|
| 67 | * a particular size are serviced from memory pools of 4K (one VMM page).
|
|---|
| 68 | * Pools are fragmented on demand and contain free lists of blocks of one
|
|---|
| 69 | * particular size class. In other words, there is a fixed-size allocator
|
|---|
| 70 | * for each size class. Free pools are shared by the different allocators
|
|---|
| 71 | * thus minimizing the space reserved for a particular size class.
|
|---|
| 72 | *
|
|---|
| 73 | * This allocation strategy is a variant of what is known as "simple
|
|---|
| 74 | * segregated storage based on array of free lists". The main drawback of
|
|---|
| 75 | * simple segregated storage is that we might end up with lot of reserved
|
|---|
| 76 | * memory for the different free lists, which degenerate in time. To avoid
|
|---|
| 77 | * this, we partition each free list in pools and we share dynamically the
|
|---|
| 78 | * reserved space between all free lists. This technique is quite efficient
|
|---|
| 79 | * for memory intensive programs which allocate mainly small-sized blocks.
|
|---|
| 80 | *
|
|---|
| 81 | * For small requests we have the following table:
|
|---|
| 82 | *
|
|---|
| 83 | * Request in bytes Size of allocated block Size class idx
|
|---|
| 84 | * ----------------------------------------------------------------
|
|---|
| 85 | * 1-8 8 0
|
|---|
| 86 | * 9-16 16 1
|
|---|
| 87 | * 17-24 24 2
|
|---|
| 88 | * 25-32 32 3
|
|---|
| 89 | * 33-40 40 4
|
|---|
| 90 | * 41-48 48 5
|
|---|
| 91 | * 49-56 56 6
|
|---|
| 92 | * 57-64 64 7
|
|---|
| 93 | * 65-72 72 8
|
|---|
| 94 | * ... ... ...
|
|---|
| 95 | * 241-248 248 30
|
|---|
| 96 | * 249-256 256 31
|
|---|
| 97 | *
|
|---|
| 98 | * 0, 257 and up: routed to the underlying allocator.
|
|---|
| 99 | */
|
|---|
| 100 |
|
|---|
| 101 | /*==========================================================================*/
|
|---|
| 102 |
|
|---|
| 103 | /*
|
|---|
| 104 | * -- Main tunable settings section --
|
|---|
| 105 | */
|
|---|
| 106 |
|
|---|
| 107 | /*
|
|---|
| 108 | * Alignment of addresses returned to the user. 8-bytes alignment works
|
|---|
| 109 | * on most current architectures (with 32-bit or 64-bit address busses).
|
|---|
| 110 | * The alignment value is also used for grouping small requests in size
|
|---|
| 111 | * classes spaced ALIGNMENT bytes apart.
|
|---|
| 112 | *
|
|---|
| 113 | * You shouldn't change this unless you know what you are doing.
|
|---|
| 114 | */
|
|---|
| 115 | #define ALIGNMENT 8 /* must be 2^N */
|
|---|
| 116 | #define ALIGNMENT_SHIFT 3
|
|---|
| 117 | #define ALIGNMENT_MASK (ALIGNMENT - 1)
|
|---|
| 118 |
|
|---|
| 119 | /* Return the number of bytes in size class I, as a uint. */
|
|---|
| 120 | #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
|
|---|
| 121 |
|
|---|
| 122 | /*
|
|---|
| 123 | * Max size threshold below which malloc requests are considered to be
|
|---|
| 124 | * small enough in order to use preallocated memory pools. You can tune
|
|---|
| 125 | * this value according to your application behaviour and memory needs.
|
|---|
| 126 | *
|
|---|
| 127 | * The following invariants must hold:
|
|---|
| 128 | * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
|
|---|
| 129 | * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
|
|---|
| 130 | *
|
|---|
| 131 | * Although not required, for better performance and space efficiency,
|
|---|
| 132 | * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
|
|---|
| 133 | */
|
|---|
| 134 | #define SMALL_REQUEST_THRESHOLD 256
|
|---|
| 135 | #define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
|
|---|
| 136 |
|
|---|
| 137 | /*
|
|---|
| 138 | * The system's VMM page size can be obtained on most unices with a
|
|---|
| 139 | * getpagesize() call or deduced from various header files. To make
|
|---|
| 140 | * things simpler, we assume that it is 4K, which is OK for most systems.
|
|---|
| 141 | * It is probably better if this is the native page size, but it doesn't
|
|---|
| 142 | * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
|
|---|
| 143 | * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
|
|---|
| 144 | * violation fault. 4K is apparently OK for all the platforms that python
|
|---|
| 145 | * currently targets.
|
|---|
| 146 | */
|
|---|
| 147 | #define SYSTEM_PAGE_SIZE (4 * 1024)
|
|---|
| 148 | #define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
|
|---|
| 149 |
|
|---|
| 150 | /*
|
|---|
| 151 | * Maximum amount of memory managed by the allocator for small requests.
|
|---|
| 152 | */
|
|---|
| 153 | #ifdef WITH_MEMORY_LIMITS
|
|---|
| 154 | #ifndef SMALL_MEMORY_LIMIT
|
|---|
| 155 | #define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
|
|---|
| 156 | #endif
|
|---|
| 157 | #endif
|
|---|
| 158 |
|
|---|
| 159 | /*
|
|---|
| 160 | * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
|
|---|
| 161 | * on a page boundary. This is a reserved virtual address space for the
|
|---|
| 162 | * current process (obtained through a malloc call). In no way this means
|
|---|
| 163 | * that the memory arenas will be used entirely. A malloc(<Big>) is usually
|
|---|
| 164 | * an address range reservation for <Big> bytes, unless all pages within this
|
|---|
| 165 | * space are referenced subsequently. So malloc'ing big blocks and not using
|
|---|
| 166 | * them does not mean "wasting memory". It's an addressable range wastage...
|
|---|
| 167 | *
|
|---|
| 168 | * Therefore, allocating arenas with malloc is not optimal, because there is
|
|---|
| 169 | * some address space wastage, but this is the most portable way to request
|
|---|
| 170 | * memory from the system across various platforms.
|
|---|
| 171 | */
|
|---|
| 172 | #define ARENA_SIZE (256 << 10) /* 256KB */
|
|---|
| 173 |
|
|---|
| 174 | #ifdef WITH_MEMORY_LIMITS
|
|---|
| 175 | #define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
|
|---|
| 176 | #endif
|
|---|
| 177 |
|
|---|
| 178 | /*
|
|---|
| 179 | * Size of the pools used for small blocks. Should be a power of 2,
|
|---|
| 180 | * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
|
|---|
| 181 | */
|
|---|
| 182 | #define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
|
|---|
| 183 | #define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
|
|---|
| 184 |
|
|---|
| 185 | /*
|
|---|
| 186 | * -- End of tunable settings section --
|
|---|
| 187 | */
|
|---|
| 188 |
|
|---|
| 189 | /*==========================================================================*/
|
|---|
| 190 |
|
|---|
| 191 | /*
|
|---|
| 192 | * Locking
|
|---|
| 193 | *
|
|---|
| 194 | * To reduce lock contention, it would probably be better to refine the
|
|---|
| 195 | * crude function locking with per size class locking. I'm not positive
|
|---|
| 196 | * however, whether it's worth switching to such locking policy because
|
|---|
| 197 | * of the performance penalty it might introduce.
|
|---|
| 198 | *
|
|---|
| 199 | * The following macros describe the simplest (should also be the fastest)
|
|---|
| 200 | * lock object on a particular platform and the init/fini/lock/unlock
|
|---|
| 201 | * operations on it. The locks defined here are not expected to be recursive
|
|---|
| 202 | * because it is assumed that they will always be called in the order:
|
|---|
| 203 | * INIT, [LOCK, UNLOCK]*, FINI.
|
|---|
| 204 | */
|
|---|
| 205 |
|
|---|
| 206 | /*
|
|---|
| 207 | * Python's threads are serialized, so object malloc locking is disabled.
|
|---|
| 208 | */
|
|---|
| 209 | #define SIMPLELOCK_DECL(lock) /* simple lock declaration */
|
|---|
| 210 | #define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
|
|---|
| 211 | #define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
|
|---|
| 212 | #define SIMPLELOCK_LOCK(lock) /* acquire released lock */
|
|---|
| 213 | #define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
|
|---|
| 214 |
|
|---|
| 215 | /*
|
|---|
| 216 | * Basic types
|
|---|
| 217 | * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
|
|---|
| 218 | */
|
|---|
| 219 | #undef uchar
|
|---|
| 220 | #define uchar unsigned char /* assuming == 8 bits */
|
|---|
| 221 |
|
|---|
| 222 | #undef uint
|
|---|
| 223 | #define uint unsigned int /* assuming >= 16 bits */
|
|---|
| 224 |
|
|---|
| 225 | #undef ulong
|
|---|
| 226 | #define ulong unsigned long /* assuming >= 32 bits */
|
|---|
| 227 |
|
|---|
| 228 | #undef uptr
|
|---|
| 229 | #define uptr Py_uintptr_t
|
|---|
| 230 |
|
|---|
| 231 | /* When you say memory, my mind reasons in terms of (pointers to) blocks */
|
|---|
| 232 | typedef uchar block;
|
|---|
| 233 |
|
|---|
| 234 | /* Pool for small blocks. */
|
|---|
| 235 | struct pool_header {
|
|---|
| 236 | union { block *_padding;
|
|---|
| 237 | uint count; } ref; /* number of allocated blocks */
|
|---|
| 238 | block *freeblock; /* pool's free list head */
|
|---|
| 239 | struct pool_header *nextpool; /* next pool of this size class */
|
|---|
| 240 | struct pool_header *prevpool; /* previous pool "" */
|
|---|
| 241 | uint arenaindex; /* index into arenas of base adr */
|
|---|
| 242 | uint szidx; /* block size class index */
|
|---|
| 243 | uint nextoffset; /* bytes to virgin block */
|
|---|
| 244 | uint maxnextoffset; /* largest valid nextoffset */
|
|---|
| 245 | };
|
|---|
| 246 |
|
|---|
| 247 | typedef struct pool_header *poolp;
|
|---|
| 248 |
|
|---|
| 249 | /* Record keeping for arenas. */
|
|---|
| 250 | struct arena_object {
|
|---|
| 251 | /* The address of the arena, as returned by malloc. Note that 0
|
|---|
| 252 | * will never be returned by a successful malloc, and is used
|
|---|
| 253 | * here to mark an arena_object that doesn't correspond to an
|
|---|
| 254 | * allocated arena.
|
|---|
| 255 | */
|
|---|
| 256 | uptr address;
|
|---|
| 257 |
|
|---|
| 258 | /* Pool-aligned pointer to the next pool to be carved off. */
|
|---|
| 259 | block* pool_address;
|
|---|
| 260 |
|
|---|
| 261 | /* The number of available pools in the arena: free pools + never-
|
|---|
| 262 | * allocated pools.
|
|---|
| 263 | */
|
|---|
| 264 | uint nfreepools;
|
|---|
| 265 |
|
|---|
| 266 | /* The total number of pools in the arena, whether or not available. */
|
|---|
| 267 | uint ntotalpools;
|
|---|
| 268 |
|
|---|
| 269 | /* Singly-linked list of available pools. */
|
|---|
| 270 | struct pool_header* freepools;
|
|---|
| 271 |
|
|---|
| 272 | /* Whenever this arena_object is not associated with an allocated
|
|---|
| 273 | * arena, the nextarena member is used to link all unassociated
|
|---|
| 274 | * arena_objects in the singly-linked `unused_arena_objects` list.
|
|---|
| 275 | * The prevarena member is unused in this case.
|
|---|
| 276 | *
|
|---|
| 277 | * When this arena_object is associated with an allocated arena
|
|---|
| 278 | * with at least one available pool, both members are used in the
|
|---|
| 279 | * doubly-linked `usable_arenas` list, which is maintained in
|
|---|
| 280 | * increasing order of `nfreepools` values.
|
|---|
| 281 | *
|
|---|
| 282 | * Else this arena_object is associated with an allocated arena
|
|---|
| 283 | * all of whose pools are in use. `nextarena` and `prevarena`
|
|---|
| 284 | * are both meaningless in this case.
|
|---|
| 285 | */
|
|---|
| 286 | struct arena_object* nextarena;
|
|---|
| 287 | struct arena_object* prevarena;
|
|---|
| 288 | };
|
|---|
| 289 |
|
|---|
| 290 | #undef ROUNDUP
|
|---|
| 291 | #define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
|
|---|
| 292 | #define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
|
|---|
| 293 |
|
|---|
| 294 | #define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
|
|---|
| 295 |
|
|---|
| 296 | /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
|
|---|
| 297 | #define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
|
|---|
| 298 |
|
|---|
| 299 | /* Return total number of blocks in pool of size index I, as a uint. */
|
|---|
| 300 | #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
|
|---|
| 301 |
|
|---|
| 302 | /*==========================================================================*/
|
|---|
| 303 |
|
|---|
| 304 | /*
|
|---|
| 305 | * This malloc lock
|
|---|
| 306 | */
|
|---|
| 307 | SIMPLELOCK_DECL(_malloc_lock)
|
|---|
| 308 | #define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
|
|---|
| 309 | #define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
|
|---|
| 310 | #define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
|
|---|
| 311 | #define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
|
|---|
| 312 |
|
|---|
| 313 | /*
|
|---|
| 314 | * Pool table -- headed, circular, doubly-linked lists of partially used pools.
|
|---|
| 315 |
|
|---|
| 316 | This is involved. For an index i, usedpools[i+i] is the header for a list of
|
|---|
| 317 | all partially used pools holding small blocks with "size class idx" i. So
|
|---|
| 318 | usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
|
|---|
| 319 | 16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
|
|---|
| 320 |
|
|---|
| 321 | Pools are carved off an arena's highwater mark (an arena_object's pool_address
|
|---|
| 322 | member) as needed. Once carved off, a pool is in one of three states forever
|
|---|
| 323 | after:
|
|---|
| 324 |
|
|---|
| 325 | used == partially used, neither empty nor full
|
|---|
| 326 | At least one block in the pool is currently allocated, and at least one
|
|---|
| 327 | block in the pool is not currently allocated (note this implies a pool
|
|---|
| 328 | has room for at least two blocks).
|
|---|
| 329 | This is a pool's initial state, as a pool is created only when malloc
|
|---|
| 330 | needs space.
|
|---|
| 331 | The pool holds blocks of a fixed size, and is in the circular list headed
|
|---|
| 332 | at usedpools[i] (see above). It's linked to the other used pools of the
|
|---|
| 333 | same size class via the pool_header's nextpool and prevpool members.
|
|---|
| 334 | If all but one block is currently allocated, a malloc can cause a
|
|---|
| 335 | transition to the full state. If all but one block is not currently
|
|---|
| 336 | allocated, a free can cause a transition to the empty state.
|
|---|
| 337 |
|
|---|
| 338 | full == all the pool's blocks are currently allocated
|
|---|
| 339 | On transition to full, a pool is unlinked from its usedpools[] list.
|
|---|
| 340 | It's not linked to from anything then anymore, and its nextpool and
|
|---|
| 341 | prevpool members are meaningless until it transitions back to used.
|
|---|
| 342 | A free of a block in a full pool puts the pool back in the used state.
|
|---|
| 343 | Then it's linked in at the front of the appropriate usedpools[] list, so
|
|---|
| 344 | that the next allocation for its size class will reuse the freed block.
|
|---|
| 345 |
|
|---|
| 346 | empty == all the pool's blocks are currently available for allocation
|
|---|
| 347 | On transition to empty, a pool is unlinked from its usedpools[] list,
|
|---|
| 348 | and linked to the front of its arena_object's singly-linked freepools list,
|
|---|
| 349 | via its nextpool member. The prevpool member has no meaning in this case.
|
|---|
| 350 | Empty pools have no inherent size class: the next time a malloc finds
|
|---|
| 351 | an empty list in usedpools[], it takes the first pool off of freepools.
|
|---|
| 352 | If the size class needed happens to be the same as the size class the pool
|
|---|
| 353 | last had, some pool initialization can be skipped.
|
|---|
| 354 |
|
|---|
| 355 |
|
|---|
| 356 | Block Management
|
|---|
| 357 |
|
|---|
| 358 | Blocks within pools are again carved out as needed. pool->freeblock points to
|
|---|
| 359 | the start of a singly-linked list of free blocks within the pool. When a
|
|---|
| 360 | block is freed, it's inserted at the front of its pool's freeblock list. Note
|
|---|
| 361 | that the available blocks in a pool are *not* linked all together when a pool
|
|---|
| 362 | is initialized. Instead only "the first two" (lowest addresses) blocks are
|
|---|
| 363 | set up, returning the first such block, and setting pool->freeblock to a
|
|---|
| 364 | one-block list holding the second such block. This is consistent with that
|
|---|
| 365 | pymalloc strives at all levels (arena, pool, and block) never to touch a piece
|
|---|
| 366 | of memory until it's actually needed.
|
|---|
| 367 |
|
|---|
| 368 | So long as a pool is in the used state, we're certain there *is* a block
|
|---|
| 369 | available for allocating, and pool->freeblock is not NULL. If pool->freeblock
|
|---|
| 370 | points to the end of the free list before we've carved the entire pool into
|
|---|
| 371 | blocks, that means we simply haven't yet gotten to one of the higher-address
|
|---|
| 372 | blocks. The offset from the pool_header to the start of "the next" virgin
|
|---|
| 373 | block is stored in the pool_header nextoffset member, and the largest value
|
|---|
| 374 | of nextoffset that makes sense is stored in the maxnextoffset member when a
|
|---|
| 375 | pool is initialized. All the blocks in a pool have been passed out at least
|
|---|
| 376 | once when and only when nextoffset > maxnextoffset.
|
|---|
| 377 |
|
|---|
| 378 |
|
|---|
| 379 | Major obscurity: While the usedpools vector is declared to have poolp
|
|---|
| 380 | entries, it doesn't really. It really contains two pointers per (conceptual)
|
|---|
| 381 | poolp entry, the nextpool and prevpool members of a pool_header. The
|
|---|
| 382 | excruciating initialization code below fools C so that
|
|---|
| 383 |
|
|---|
| 384 | usedpool[i+i]
|
|---|
| 385 |
|
|---|
| 386 | "acts like" a genuine poolp, but only so long as you only reference its
|
|---|
| 387 | nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
|
|---|
| 388 | compensating for that a pool_header's nextpool and prevpool members
|
|---|
| 389 | immediately follow a pool_header's first two members:
|
|---|
| 390 |
|
|---|
| 391 | union { block *_padding;
|
|---|
| 392 | uint count; } ref;
|
|---|
| 393 | block *freeblock;
|
|---|
| 394 |
|
|---|
| 395 | each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
|
|---|
| 396 | contains is a fudged-up pointer p such that *if* C believes it's a poolp
|
|---|
| 397 | pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
|
|---|
| 398 | circular list is empty).
|
|---|
| 399 |
|
|---|
| 400 | It's unclear why the usedpools setup is so convoluted. It could be to
|
|---|
| 401 | minimize the amount of cache required to hold this heavily-referenced table
|
|---|
| 402 | (which only *needs* the two interpool pointer members of a pool_header). OTOH,
|
|---|
| 403 | referencing code has to remember to "double the index" and doing so isn't
|
|---|
| 404 | free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
|
|---|
| 405 | on that C doesn't insert any padding anywhere in a pool_header at or before
|
|---|
| 406 | the prevpool member.
|
|---|
| 407 | **************************************************************************** */
|
|---|
| 408 |
|
|---|
| 409 | #define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
|
|---|
| 410 | #define PT(x) PTA(x), PTA(x)
|
|---|
| 411 |
|
|---|
| 412 | static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
|
|---|
| 413 | PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
|
|---|
| 414 | #if NB_SMALL_SIZE_CLASSES > 8
|
|---|
| 415 | , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
|
|---|
| 416 | #if NB_SMALL_SIZE_CLASSES > 16
|
|---|
| 417 | , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
|
|---|
| 418 | #if NB_SMALL_SIZE_CLASSES > 24
|
|---|
| 419 | , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
|
|---|
| 420 | #if NB_SMALL_SIZE_CLASSES > 32
|
|---|
| 421 | , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
|
|---|
| 422 | #if NB_SMALL_SIZE_CLASSES > 40
|
|---|
| 423 | , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
|
|---|
| 424 | #if NB_SMALL_SIZE_CLASSES > 48
|
|---|
| 425 | , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
|
|---|
| 426 | #if NB_SMALL_SIZE_CLASSES > 56
|
|---|
| 427 | , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
|
|---|
| 428 | #endif /* NB_SMALL_SIZE_CLASSES > 56 */
|
|---|
| 429 | #endif /* NB_SMALL_SIZE_CLASSES > 48 */
|
|---|
| 430 | #endif /* NB_SMALL_SIZE_CLASSES > 40 */
|
|---|
| 431 | #endif /* NB_SMALL_SIZE_CLASSES > 32 */
|
|---|
| 432 | #endif /* NB_SMALL_SIZE_CLASSES > 24 */
|
|---|
| 433 | #endif /* NB_SMALL_SIZE_CLASSES > 16 */
|
|---|
| 434 | #endif /* NB_SMALL_SIZE_CLASSES > 8 */
|
|---|
| 435 | };
|
|---|
| 436 |
|
|---|
| 437 | /*==========================================================================
|
|---|
| 438 | Arena management.
|
|---|
| 439 |
|
|---|
| 440 | `arenas` is a vector of arena_objects. It contains maxarenas entries, some of
|
|---|
| 441 | which may not be currently used (== they're arena_objects that aren't
|
|---|
| 442 | currently associated with an allocated arena). Note that arenas proper are
|
|---|
| 443 | separately malloc'ed.
|
|---|
| 444 |
|
|---|
| 445 | Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
|
|---|
| 446 | we do try to free() arenas, and use some mild heuristic strategies to increase
|
|---|
| 447 | the likelihood that arenas eventually can be freed.
|
|---|
| 448 |
|
|---|
| 449 | unused_arena_objects
|
|---|
| 450 |
|
|---|
| 451 | This is a singly-linked list of the arena_objects that are currently not
|
|---|
| 452 | being used (no arena is associated with them). Objects are taken off the
|
|---|
| 453 | head of the list in new_arena(), and are pushed on the head of the list in
|
|---|
| 454 | PyObject_Free() when the arena is empty. Key invariant: an arena_object
|
|---|
| 455 | is on this list if and only if its .address member is 0.
|
|---|
| 456 |
|
|---|
| 457 | usable_arenas
|
|---|
| 458 |
|
|---|
| 459 | This is a doubly-linked list of the arena_objects associated with arenas
|
|---|
| 460 | that have pools available. These pools are either waiting to be reused,
|
|---|
| 461 | or have not been used before. The list is sorted to have the most-
|
|---|
| 462 | allocated arenas first (ascending order based on the nfreepools member).
|
|---|
| 463 | This means that the next allocation will come from a heavily used arena,
|
|---|
| 464 | which gives the nearly empty arenas a chance to be returned to the system.
|
|---|
| 465 | In my unscientific tests this dramatically improved the number of arenas
|
|---|
| 466 | that could be freed.
|
|---|
| 467 |
|
|---|
| 468 | Note that an arena_object associated with an arena all of whose pools are
|
|---|
| 469 | currently in use isn't on either list.
|
|---|
| 470 | */
|
|---|
| 471 |
|
|---|
| 472 | /* Array of objects used to track chunks of memory (arenas). */
|
|---|
| 473 | static struct arena_object* arenas = NULL;
|
|---|
| 474 | /* Number of slots currently allocated in the `arenas` vector. */
|
|---|
| 475 | static uint maxarenas = 0;
|
|---|
| 476 |
|
|---|
| 477 | /* The head of the singly-linked, NULL-terminated list of available
|
|---|
| 478 | * arena_objects.
|
|---|
| 479 | */
|
|---|
| 480 | static struct arena_object* unused_arena_objects = NULL;
|
|---|
| 481 |
|
|---|
| 482 | /* The head of the doubly-linked, NULL-terminated at each end, list of
|
|---|
| 483 | * arena_objects associated with arenas that have pools available.
|
|---|
| 484 | */
|
|---|
| 485 | static struct arena_object* usable_arenas = NULL;
|
|---|
| 486 |
|
|---|
| 487 | /* How many arena_objects do we initially allocate?
|
|---|
| 488 | * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
|
|---|
| 489 | * `arenas` vector.
|
|---|
| 490 | */
|
|---|
| 491 | #define INITIAL_ARENA_OBJECTS 16
|
|---|
| 492 |
|
|---|
| 493 | /* Number of arenas allocated that haven't been free()'d. */
|
|---|
| 494 | static size_t narenas_currently_allocated = 0;
|
|---|
| 495 |
|
|---|
| 496 | #ifdef PYMALLOC_DEBUG
|
|---|
| 497 | /* Total number of times malloc() called to allocate an arena. */
|
|---|
| 498 | static size_t ntimes_arena_allocated = 0;
|
|---|
| 499 | /* High water mark (max value ever seen) for narenas_currently_allocated. */
|
|---|
| 500 | static size_t narenas_highwater = 0;
|
|---|
| 501 | #endif
|
|---|
| 502 |
|
|---|
| 503 | /* Allocate a new arena. If we run out of memory, return NULL. Else
|
|---|
| 504 | * allocate a new arena, and return the address of an arena_object
|
|---|
| 505 | * describing the new arena. It's expected that the caller will set
|
|---|
| 506 | * `usable_arenas` to the return value.
|
|---|
| 507 | */
|
|---|
| 508 | static struct arena_object*
|
|---|
| 509 | new_arena(void)
|
|---|
| 510 | {
|
|---|
| 511 | struct arena_object* arenaobj;
|
|---|
| 512 | uint excess; /* number of bytes above pool alignment */
|
|---|
| 513 |
|
|---|
| 514 | #ifdef PYMALLOC_DEBUG
|
|---|
| 515 | if (Py_GETENV("PYTHONMALLOCSTATS"))
|
|---|
| 516 | _PyObject_DebugMallocStats();
|
|---|
| 517 | #endif
|
|---|
| 518 | if (unused_arena_objects == NULL) {
|
|---|
| 519 | uint i;
|
|---|
| 520 | uint numarenas;
|
|---|
| 521 | size_t nbytes;
|
|---|
| 522 |
|
|---|
| 523 | /* Double the number of arena objects on each allocation.
|
|---|
| 524 | * Note that it's possible for `numarenas` to overflow.
|
|---|
| 525 | */
|
|---|
| 526 | numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
|
|---|
| 527 | if (numarenas <= maxarenas)
|
|---|
| 528 | return NULL; /* overflow */
|
|---|
| 529 | #if SIZEOF_SIZE_T <= SIZEOF_INT
|
|---|
| 530 | if (numarenas > PY_SIZE_MAX / sizeof(*arenas))
|
|---|
| 531 | return NULL; /* overflow */
|
|---|
| 532 | #endif
|
|---|
| 533 | nbytes = numarenas * sizeof(*arenas);
|
|---|
| 534 | arenaobj = (struct arena_object *)realloc(arenas, nbytes);
|
|---|
| 535 | if (arenaobj == NULL)
|
|---|
| 536 | return NULL;
|
|---|
| 537 | arenas = arenaobj;
|
|---|
| 538 |
|
|---|
| 539 | /* We might need to fix pointers that were copied. However,
|
|---|
| 540 | * new_arena only gets called when all the pages in the
|
|---|
| 541 | * previous arenas are full. Thus, there are *no* pointers
|
|---|
| 542 | * into the old array. Thus, we don't have to worry about
|
|---|
| 543 | * invalid pointers. Just to be sure, some asserts:
|
|---|
| 544 | */
|
|---|
| 545 | assert(usable_arenas == NULL);
|
|---|
| 546 | assert(unused_arena_objects == NULL);
|
|---|
| 547 |
|
|---|
| 548 | /* Put the new arenas on the unused_arena_objects list. */
|
|---|
| 549 | for (i = maxarenas; i < numarenas; ++i) {
|
|---|
| 550 | arenas[i].address = 0; /* mark as unassociated */
|
|---|
| 551 | arenas[i].nextarena = i < numarenas - 1 ?
|
|---|
| 552 | &arenas[i+1] : NULL;
|
|---|
| 553 | }
|
|---|
| 554 |
|
|---|
| 555 | /* Update globals. */
|
|---|
| 556 | unused_arena_objects = &arenas[maxarenas];
|
|---|
| 557 | maxarenas = numarenas;
|
|---|
| 558 | }
|
|---|
| 559 |
|
|---|
| 560 | /* Take the next available arena object off the head of the list. */
|
|---|
| 561 | assert(unused_arena_objects != NULL);
|
|---|
| 562 | arenaobj = unused_arena_objects;
|
|---|
| 563 | unused_arena_objects = arenaobj->nextarena;
|
|---|
| 564 | assert(arenaobj->address == 0);
|
|---|
| 565 | arenaobj->address = (uptr)malloc(ARENA_SIZE);
|
|---|
| 566 | if (arenaobj->address == 0) {
|
|---|
| 567 | /* The allocation failed: return NULL after putting the
|
|---|
| 568 | * arenaobj back.
|
|---|
| 569 | */
|
|---|
| 570 | arenaobj->nextarena = unused_arena_objects;
|
|---|
| 571 | unused_arena_objects = arenaobj;
|
|---|
| 572 | return NULL;
|
|---|
| 573 | }
|
|---|
| 574 |
|
|---|
| 575 | ++narenas_currently_allocated;
|
|---|
| 576 | #ifdef PYMALLOC_DEBUG
|
|---|
| 577 | ++ntimes_arena_allocated;
|
|---|
| 578 | if (narenas_currently_allocated > narenas_highwater)
|
|---|
| 579 | narenas_highwater = narenas_currently_allocated;
|
|---|
| 580 | #endif
|
|---|
| 581 | arenaobj->freepools = NULL;
|
|---|
| 582 | /* pool_address <- first pool-aligned address in the arena
|
|---|
| 583 | nfreepools <- number of whole pools that fit after alignment */
|
|---|
| 584 | arenaobj->pool_address = (block*)arenaobj->address;
|
|---|
| 585 | arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
|
|---|
| 586 | assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
|
|---|
| 587 | excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
|
|---|
| 588 | if (excess != 0) {
|
|---|
| 589 | --arenaobj->nfreepools;
|
|---|
| 590 | arenaobj->pool_address += POOL_SIZE - excess;
|
|---|
| 591 | }
|
|---|
| 592 | arenaobj->ntotalpools = arenaobj->nfreepools;
|
|---|
| 593 |
|
|---|
| 594 | return arenaobj;
|
|---|
| 595 | }
|
|---|
| 596 |
|
|---|
| 597 | /*
|
|---|
| 598 | Py_ADDRESS_IN_RANGE(P, POOL)
|
|---|
| 599 |
|
|---|
| 600 | Return true if and only if P is an address that was allocated by pymalloc.
|
|---|
| 601 | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
|
|---|
| 602 | (the caller is asked to compute this because the macro expands POOL more than
|
|---|
| 603 | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
|
|---|
| 604 | variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is
|
|---|
| 605 | called on every alloc/realloc/free, micro-efficiency is important here).
|
|---|
| 606 |
|
|---|
| 607 | Tricky: Let B be the arena base address associated with the pool, B =
|
|---|
| 608 | arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
|
|---|
| 609 |
|
|---|
| 610 | B <= P < B + ARENA_SIZE
|
|---|
| 611 |
|
|---|
| 612 | Subtracting B throughout, this is true iff
|
|---|
| 613 |
|
|---|
| 614 | 0 <= P-B < ARENA_SIZE
|
|---|
| 615 |
|
|---|
| 616 | By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
|
|---|
| 617 |
|
|---|
| 618 | Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
|
|---|
| 619 | before the first arena has been allocated. `arenas` is still NULL in that
|
|---|
| 620 | case. We're relying on that maxarenas is also 0 in that case, so that
|
|---|
| 621 | (POOL)->arenaindex < maxarenas must be false, saving us from trying to index
|
|---|
| 622 | into a NULL arenas.
|
|---|
| 623 |
|
|---|
| 624 | Details: given P and POOL, the arena_object corresponding to P is AO =
|
|---|
| 625 | arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
|
|---|
| 626 | stores, etc), POOL is the correct address of P's pool, AO.address is the
|
|---|
| 627 | correct base address of the pool's arena, and P must be within ARENA_SIZE of
|
|---|
| 628 | AO.address. In addition, AO.address is not 0 (no arena can start at address 0
|
|---|
| 629 | (NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc
|
|---|
| 630 | controls P.
|
|---|
| 631 |
|
|---|
| 632 | Now suppose obmalloc does not control P (e.g., P was obtained via a direct
|
|---|
| 633 | call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
|
|---|
| 634 | in this case -- it may even be uninitialized trash. If the trash arenaindex
|
|---|
| 635 | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
|
|---|
| 636 | control P.
|
|---|
| 637 |
|
|---|
| 638 | Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
|
|---|
| 639 | allocated arena, obmalloc controls all the memory in slice AO.address :
|
|---|
| 640 | AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
|
|---|
| 641 | so P doesn't lie in that slice, so the macro correctly reports that P is not
|
|---|
| 642 | controlled by obmalloc.
|
|---|
| 643 |
|
|---|
| 644 | Finally, if P is not controlled by obmalloc and AO corresponds to an unused
|
|---|
| 645 | arena_object (one not currently associated with an allocated arena),
|
|---|
| 646 | AO.address is 0, and the second test in the macro reduces to:
|
|---|
| 647 |
|
|---|
| 648 | P < ARENA_SIZE
|
|---|
| 649 |
|
|---|
| 650 | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
|
|---|
| 651 | that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
|
|---|
| 652 | of the test still passes, and the third clause (AO.address != 0) is necessary
|
|---|
| 653 | to get the correct result: AO.address is 0 in this case, so the macro
|
|---|
| 654 | correctly reports that P is not controlled by obmalloc (despite that P lies in
|
|---|
| 655 | slice AO.address : AO.address + ARENA_SIZE).
|
|---|
| 656 |
|
|---|
| 657 | Note: The third (AO.address != 0) clause was added in Python 2.5. Before
|
|---|
| 658 | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always
|
|---|
| 659 | corresponded to a currently-allocated arena, so the "P is not controlled by
|
|---|
| 660 | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
|
|---|
| 661 | was impossible.
|
|---|
| 662 |
|
|---|
| 663 | Note that the logic is excruciating, and reading up possibly uninitialized
|
|---|
| 664 | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
|
|---|
| 665 | creates problems for some memory debuggers. The overwhelming advantage is
|
|---|
| 666 | that this test determines whether an arbitrary address is controlled by
|
|---|
| 667 | obmalloc in a small constant time, independent of the number of arenas
|
|---|
| 668 | obmalloc controls. Since this test is needed at every entry point, it's
|
|---|
| 669 | extremely desirable that it be this fast.
|
|---|
| 670 | */
|
|---|
| 671 | #define Py_ADDRESS_IN_RANGE(P, POOL) \
|
|---|
| 672 | ((POOL)->arenaindex < maxarenas && \
|
|---|
| 673 | (uptr)(P) - arenas[(POOL)->arenaindex].address < (uptr)ARENA_SIZE && \
|
|---|
| 674 | arenas[(POOL)->arenaindex].address != 0)
|
|---|
| 675 |
|
|---|
| 676 |
|
|---|
| 677 | /* This is only useful when running memory debuggers such as
|
|---|
| 678 | * Purify or Valgrind. Uncomment to use.
|
|---|
| 679 | *
|
|---|
| 680 | #define Py_USING_MEMORY_DEBUGGER
|
|---|
| 681 | */
|
|---|
| 682 |
|
|---|
| 683 | #ifdef Py_USING_MEMORY_DEBUGGER
|
|---|
| 684 |
|
|---|
| 685 | /* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
|
|---|
| 686 | * This leads to thousands of spurious warnings when using
|
|---|
| 687 | * Purify or Valgrind. By making a function, we can easily
|
|---|
| 688 | * suppress the uninitialized memory reads in this one function.
|
|---|
| 689 | * So we won't ignore real errors elsewhere.
|
|---|
| 690 | *
|
|---|
| 691 | * Disable the macro and use a function.
|
|---|
| 692 | */
|
|---|
| 693 |
|
|---|
| 694 | #undef Py_ADDRESS_IN_RANGE
|
|---|
| 695 |
|
|---|
| 696 | #if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \
|
|---|
| 697 | (__GNUC__ >= 4))
|
|---|
| 698 | #define Py_NO_INLINE __attribute__((__noinline__))
|
|---|
| 699 | #else
|
|---|
| 700 | #define Py_NO_INLINE
|
|---|
| 701 | #endif
|
|---|
| 702 |
|
|---|
| 703 | /* Don't make static, to try to ensure this isn't inlined. */
|
|---|
| 704 | int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE;
|
|---|
| 705 | #undef Py_NO_INLINE
|
|---|
| 706 | #endif
|
|---|
| 707 |
|
|---|
| 708 | /*==========================================================================*/
|
|---|
| 709 |
|
|---|
| 710 | /* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
|
|---|
| 711 | * from all other currently live pointers. This may not be possible.
|
|---|
| 712 | */
|
|---|
| 713 |
|
|---|
| 714 | /*
|
|---|
| 715 | * The basic blocks are ordered by decreasing execution frequency,
|
|---|
| 716 | * which minimizes the number of jumps in the most common cases,
|
|---|
| 717 | * improves branching prediction and instruction scheduling (small
|
|---|
| 718 | * block allocations typically result in a couple of instructions).
|
|---|
| 719 | * Unless the optimizer reorders everything, being too smart...
|
|---|
| 720 | */
|
|---|
| 721 |
|
|---|
| 722 | #undef PyObject_Malloc
|
|---|
| 723 | void *
|
|---|
| 724 | PyObject_Malloc(size_t nbytes)
|
|---|
| 725 | {
|
|---|
| 726 | block *bp;
|
|---|
| 727 | poolp pool;
|
|---|
| 728 | poolp next;
|
|---|
| 729 | uint size;
|
|---|
| 730 |
|
|---|
| 731 | /*
|
|---|
| 732 | * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
|
|---|
| 733 | * Most python internals blindly use a signed Py_ssize_t to track
|
|---|
| 734 | * things without checking for overflows or negatives.
|
|---|
| 735 | * As size_t is unsigned, checking for nbytes < 0 is not required.
|
|---|
| 736 | */
|
|---|
| 737 | if (nbytes > PY_SSIZE_T_MAX)
|
|---|
| 738 | return NULL;
|
|---|
| 739 |
|
|---|
| 740 | /*
|
|---|
| 741 | * This implicitly redirects malloc(0).
|
|---|
| 742 | */
|
|---|
| 743 | if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
|
|---|
| 744 | LOCK();
|
|---|
| 745 | /*
|
|---|
| 746 | * Most frequent paths first
|
|---|
| 747 | */
|
|---|
| 748 | size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
|
|---|
| 749 | pool = usedpools[size + size];
|
|---|
| 750 | if (pool != pool->nextpool) {
|
|---|
| 751 | /*
|
|---|
| 752 | * There is a used pool for this size class.
|
|---|
| 753 | * Pick up the head block of its free list.
|
|---|
| 754 | */
|
|---|
| 755 | ++pool->ref.count;
|
|---|
| 756 | bp = pool->freeblock;
|
|---|
| 757 | assert(bp != NULL);
|
|---|
| 758 | if ((pool->freeblock = *(block **)bp) != NULL) {
|
|---|
| 759 | UNLOCK();
|
|---|
| 760 | return (void *)bp;
|
|---|
| 761 | }
|
|---|
| 762 | /*
|
|---|
| 763 | * Reached the end of the free list, try to extend it.
|
|---|
| 764 | */
|
|---|
| 765 | if (pool->nextoffset <= pool->maxnextoffset) {
|
|---|
| 766 | /* There is room for another block. */
|
|---|
| 767 | pool->freeblock = (block*)pool +
|
|---|
| 768 | pool->nextoffset;
|
|---|
| 769 | pool->nextoffset += INDEX2SIZE(size);
|
|---|
| 770 | *(block **)(pool->freeblock) = NULL;
|
|---|
| 771 | UNLOCK();
|
|---|
| 772 | return (void *)bp;
|
|---|
| 773 | }
|
|---|
| 774 | /* Pool is full, unlink from used pools. */
|
|---|
| 775 | next = pool->nextpool;
|
|---|
| 776 | pool = pool->prevpool;
|
|---|
| 777 | next->prevpool = pool;
|
|---|
| 778 | pool->nextpool = next;
|
|---|
| 779 | UNLOCK();
|
|---|
| 780 | return (void *)bp;
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 | /* There isn't a pool of the right size class immediately
|
|---|
| 784 | * available: use a free pool.
|
|---|
| 785 | */
|
|---|
| 786 | if (usable_arenas == NULL) {
|
|---|
| 787 | /* No arena has a free pool: allocate a new arena. */
|
|---|
| 788 | #ifdef WITH_MEMORY_LIMITS
|
|---|
| 789 | if (narenas_currently_allocated >= MAX_ARENAS) {
|
|---|
| 790 | UNLOCK();
|
|---|
| 791 | goto redirect;
|
|---|
| 792 | }
|
|---|
| 793 | #endif
|
|---|
| 794 | usable_arenas = new_arena();
|
|---|
| 795 | if (usable_arenas == NULL) {
|
|---|
| 796 | UNLOCK();
|
|---|
| 797 | goto redirect;
|
|---|
| 798 | }
|
|---|
| 799 | usable_arenas->nextarena =
|
|---|
| 800 | usable_arenas->prevarena = NULL;
|
|---|
| 801 | }
|
|---|
| 802 | assert(usable_arenas->address != 0);
|
|---|
| 803 |
|
|---|
| 804 | /* Try to get a cached free pool. */
|
|---|
| 805 | pool = usable_arenas->freepools;
|
|---|
| 806 | if (pool != NULL) {
|
|---|
| 807 | /* Unlink from cached pools. */
|
|---|
| 808 | usable_arenas->freepools = pool->nextpool;
|
|---|
| 809 |
|
|---|
| 810 | /* This arena already had the smallest nfreepools
|
|---|
| 811 | * value, so decreasing nfreepools doesn't change
|
|---|
| 812 | * that, and we don't need to rearrange the
|
|---|
| 813 | * usable_arenas list. However, if the arena has
|
|---|
| 814 | * become wholly allocated, we need to remove its
|
|---|
| 815 | * arena_object from usable_arenas.
|
|---|
| 816 | */
|
|---|
| 817 | --usable_arenas->nfreepools;
|
|---|
| 818 | if (usable_arenas->nfreepools == 0) {
|
|---|
| 819 | /* Wholly allocated: remove. */
|
|---|
| 820 | assert(usable_arenas->freepools == NULL);
|
|---|
| 821 | assert(usable_arenas->nextarena == NULL ||
|
|---|
| 822 | usable_arenas->nextarena->prevarena ==
|
|---|
| 823 | usable_arenas);
|
|---|
| 824 |
|
|---|
| 825 | usable_arenas = usable_arenas->nextarena;
|
|---|
| 826 | if (usable_arenas != NULL) {
|
|---|
| 827 | usable_arenas->prevarena = NULL;
|
|---|
| 828 | assert(usable_arenas->address != 0);
|
|---|
| 829 | }
|
|---|
| 830 | }
|
|---|
| 831 | else {
|
|---|
| 832 | /* nfreepools > 0: it must be that freepools
|
|---|
| 833 | * isn't NULL, or that we haven't yet carved
|
|---|
| 834 | * off all the arena's pools for the first
|
|---|
| 835 | * time.
|
|---|
| 836 | */
|
|---|
| 837 | assert(usable_arenas->freepools != NULL ||
|
|---|
| 838 | usable_arenas->pool_address <=
|
|---|
| 839 | (block*)usable_arenas->address +
|
|---|
| 840 | ARENA_SIZE - POOL_SIZE);
|
|---|
| 841 | }
|
|---|
| 842 | init_pool:
|
|---|
| 843 | /* Frontlink to used pools. */
|
|---|
| 844 | next = usedpools[size + size]; /* == prev */
|
|---|
| 845 | pool->nextpool = next;
|
|---|
| 846 | pool->prevpool = next;
|
|---|
| 847 | next->nextpool = pool;
|
|---|
| 848 | next->prevpool = pool;
|
|---|
| 849 | pool->ref.count = 1;
|
|---|
| 850 | if (pool->szidx == size) {
|
|---|
| 851 | /* Luckily, this pool last contained blocks
|
|---|
| 852 | * of the same size class, so its header
|
|---|
| 853 | * and free list are already initialized.
|
|---|
| 854 | */
|
|---|
| 855 | bp = pool->freeblock;
|
|---|
| 856 | pool->freeblock = *(block **)bp;
|
|---|
| 857 | UNLOCK();
|
|---|
| 858 | return (void *)bp;
|
|---|
| 859 | }
|
|---|
| 860 | /*
|
|---|
| 861 | * Initialize the pool header, set up the free list to
|
|---|
| 862 | * contain just the second block, and return the first
|
|---|
| 863 | * block.
|
|---|
| 864 | */
|
|---|
| 865 | pool->szidx = size;
|
|---|
| 866 | size = INDEX2SIZE(size);
|
|---|
| 867 | bp = (block *)pool + POOL_OVERHEAD;
|
|---|
| 868 | pool->nextoffset = POOL_OVERHEAD + (size << 1);
|
|---|
| 869 | pool->maxnextoffset = POOL_SIZE - size;
|
|---|
| 870 | pool->freeblock = bp + size;
|
|---|
| 871 | *(block **)(pool->freeblock) = NULL;
|
|---|
| 872 | UNLOCK();
|
|---|
| 873 | return (void *)bp;
|
|---|
| 874 | }
|
|---|
| 875 |
|
|---|
| 876 | /* Carve off a new pool. */
|
|---|
| 877 | assert(usable_arenas->nfreepools > 0);
|
|---|
| 878 | assert(usable_arenas->freepools == NULL);
|
|---|
| 879 | pool = (poolp)usable_arenas->pool_address;
|
|---|
| 880 | assert((block*)pool <= (block*)usable_arenas->address +
|
|---|
| 881 | ARENA_SIZE - POOL_SIZE);
|
|---|
| 882 | pool->arenaindex = usable_arenas - arenas;
|
|---|
| 883 | assert(&arenas[pool->arenaindex] == usable_arenas);
|
|---|
| 884 | pool->szidx = DUMMY_SIZE_IDX;
|
|---|
| 885 | usable_arenas->pool_address += POOL_SIZE;
|
|---|
| 886 | --usable_arenas->nfreepools;
|
|---|
| 887 |
|
|---|
| 888 | if (usable_arenas->nfreepools == 0) {
|
|---|
| 889 | assert(usable_arenas->nextarena == NULL ||
|
|---|
| 890 | usable_arenas->nextarena->prevarena ==
|
|---|
| 891 | usable_arenas);
|
|---|
| 892 | /* Unlink the arena: it is completely allocated. */
|
|---|
| 893 | usable_arenas = usable_arenas->nextarena;
|
|---|
| 894 | if (usable_arenas != NULL) {
|
|---|
| 895 | usable_arenas->prevarena = NULL;
|
|---|
| 896 | assert(usable_arenas->address != 0);
|
|---|
| 897 | }
|
|---|
| 898 | }
|
|---|
| 899 |
|
|---|
| 900 | goto init_pool;
|
|---|
| 901 | }
|
|---|
| 902 |
|
|---|
| 903 | /* The small block allocator ends here. */
|
|---|
| 904 |
|
|---|
| 905 | redirect:
|
|---|
| 906 | /* Redirect the original request to the underlying (libc) allocator.
|
|---|
| 907 | * We jump here on bigger requests, on error in the code above (as a
|
|---|
| 908 | * last chance to serve the request) or when the max memory limit
|
|---|
| 909 | * has been reached.
|
|---|
| 910 | */
|
|---|
| 911 | if (nbytes == 0)
|
|---|
| 912 | nbytes = 1;
|
|---|
| 913 | return (void *)malloc(nbytes);
|
|---|
| 914 | }
|
|---|
| 915 |
|
|---|
| 916 | /* free */
|
|---|
| 917 |
|
|---|
| 918 | #undef PyObject_Free
|
|---|
| 919 | void
|
|---|
| 920 | PyObject_Free(void *p)
|
|---|
| 921 | {
|
|---|
| 922 | poolp pool;
|
|---|
| 923 | block *lastfree;
|
|---|
| 924 | poolp next, prev;
|
|---|
| 925 | uint size;
|
|---|
| 926 |
|
|---|
| 927 | if (p == NULL) /* free(NULL) has no effect */
|
|---|
| 928 | return;
|
|---|
| 929 |
|
|---|
| 930 | pool = POOL_ADDR(p);
|
|---|
| 931 | if (Py_ADDRESS_IN_RANGE(p, pool)) {
|
|---|
| 932 | /* We allocated this address. */
|
|---|
| 933 | LOCK();
|
|---|
| 934 | /* Link p to the start of the pool's freeblock list. Since
|
|---|
| 935 | * the pool had at least the p block outstanding, the pool
|
|---|
| 936 | * wasn't empty (so it's already in a usedpools[] list, or
|
|---|
| 937 | * was full and is in no list -- it's not in the freeblocks
|
|---|
| 938 | * list in any case).
|
|---|
| 939 | */
|
|---|
| 940 | assert(pool->ref.count > 0); /* else it was empty */
|
|---|
| 941 | *(block **)p = lastfree = pool->freeblock;
|
|---|
| 942 | pool->freeblock = (block *)p;
|
|---|
| 943 | if (lastfree) {
|
|---|
| 944 | struct arena_object* ao;
|
|---|
| 945 | uint nf; /* ao->nfreepools */
|
|---|
| 946 |
|
|---|
| 947 | /* freeblock wasn't NULL, so the pool wasn't full,
|
|---|
| 948 | * and the pool is in a usedpools[] list.
|
|---|
| 949 | */
|
|---|
| 950 | if (--pool->ref.count != 0) {
|
|---|
| 951 | /* pool isn't empty: leave it in usedpools */
|
|---|
| 952 | UNLOCK();
|
|---|
| 953 | return;
|
|---|
| 954 | }
|
|---|
| 955 | /* Pool is now empty: unlink from usedpools, and
|
|---|
| 956 | * link to the front of freepools. This ensures that
|
|---|
| 957 | * previously freed pools will be allocated later
|
|---|
| 958 | * (being not referenced, they are perhaps paged out).
|
|---|
| 959 | */
|
|---|
| 960 | next = pool->nextpool;
|
|---|
| 961 | prev = pool->prevpool;
|
|---|
| 962 | next->prevpool = prev;
|
|---|
| 963 | prev->nextpool = next;
|
|---|
| 964 |
|
|---|
| 965 | /* Link the pool to freepools. This is a singly-linked
|
|---|
| 966 | * list, and pool->prevpool isn't used there.
|
|---|
| 967 | */
|
|---|
| 968 | ao = &arenas[pool->arenaindex];
|
|---|
| 969 | pool->nextpool = ao->freepools;
|
|---|
| 970 | ao->freepools = pool;
|
|---|
| 971 | nf = ++ao->nfreepools;
|
|---|
| 972 |
|
|---|
| 973 | /* All the rest is arena management. We just freed
|
|---|
| 974 | * a pool, and there are 4 cases for arena mgmt:
|
|---|
| 975 | * 1. If all the pools are free, return the arena to
|
|---|
| 976 | * the system free().
|
|---|
| 977 | * 2. If this is the only free pool in the arena,
|
|---|
| 978 | * add the arena back to the `usable_arenas` list.
|
|---|
| 979 | * 3. If the "next" arena has a smaller count of free
|
|---|
| 980 | * pools, we have to "slide this arena right" to
|
|---|
| 981 | * restore that usable_arenas is sorted in order of
|
|---|
| 982 | * nfreepools.
|
|---|
| 983 | * 4. Else there's nothing more to do.
|
|---|
| 984 | */
|
|---|
| 985 | if (nf == ao->ntotalpools) {
|
|---|
| 986 | /* Case 1. First unlink ao from usable_arenas.
|
|---|
| 987 | */
|
|---|
| 988 | assert(ao->prevarena == NULL ||
|
|---|
| 989 | ao->prevarena->address != 0);
|
|---|
| 990 | assert(ao ->nextarena == NULL ||
|
|---|
| 991 | ao->nextarena->address != 0);
|
|---|
| 992 |
|
|---|
| 993 | /* Fix the pointer in the prevarena, or the
|
|---|
| 994 | * usable_arenas pointer.
|
|---|
| 995 | */
|
|---|
| 996 | if (ao->prevarena == NULL) {
|
|---|
| 997 | usable_arenas = ao->nextarena;
|
|---|
| 998 | assert(usable_arenas == NULL ||
|
|---|
| 999 | usable_arenas->address != 0);
|
|---|
| 1000 | }
|
|---|
| 1001 | else {
|
|---|
| 1002 | assert(ao->prevarena->nextarena == ao);
|
|---|
| 1003 | ao->prevarena->nextarena =
|
|---|
| 1004 | ao->nextarena;
|
|---|
| 1005 | }
|
|---|
| 1006 | /* Fix the pointer in the nextarena. */
|
|---|
| 1007 | if (ao->nextarena != NULL) {
|
|---|
| 1008 | assert(ao->nextarena->prevarena == ao);
|
|---|
| 1009 | ao->nextarena->prevarena =
|
|---|
| 1010 | ao->prevarena;
|
|---|
| 1011 | }
|
|---|
| 1012 | /* Record that this arena_object slot is
|
|---|
| 1013 | * available to be reused.
|
|---|
| 1014 | */
|
|---|
| 1015 | ao->nextarena = unused_arena_objects;
|
|---|
| 1016 | unused_arena_objects = ao;
|
|---|
| 1017 |
|
|---|
| 1018 | /* Free the entire arena. */
|
|---|
| 1019 | free((void *)ao->address);
|
|---|
| 1020 | ao->address = 0; /* mark unassociated */
|
|---|
| 1021 | --narenas_currently_allocated;
|
|---|
| 1022 |
|
|---|
| 1023 | UNLOCK();
|
|---|
| 1024 | return;
|
|---|
| 1025 | }
|
|---|
| 1026 | if (nf == 1) {
|
|---|
| 1027 | /* Case 2. Put ao at the head of
|
|---|
| 1028 | * usable_arenas. Note that because
|
|---|
| 1029 | * ao->nfreepools was 0 before, ao isn't
|
|---|
| 1030 | * currently on the usable_arenas list.
|
|---|
| 1031 | */
|
|---|
| 1032 | ao->nextarena = usable_arenas;
|
|---|
| 1033 | ao->prevarena = NULL;
|
|---|
| 1034 | if (usable_arenas)
|
|---|
| 1035 | usable_arenas->prevarena = ao;
|
|---|
| 1036 | usable_arenas = ao;
|
|---|
| 1037 | assert(usable_arenas->address != 0);
|
|---|
| 1038 |
|
|---|
| 1039 | UNLOCK();
|
|---|
| 1040 | return;
|
|---|
| 1041 | }
|
|---|
| 1042 | /* If this arena is now out of order, we need to keep
|
|---|
| 1043 | * the list sorted. The list is kept sorted so that
|
|---|
| 1044 | * the "most full" arenas are used first, which allows
|
|---|
| 1045 | * the nearly empty arenas to be completely freed. In
|
|---|
| 1046 | * a few un-scientific tests, it seems like this
|
|---|
| 1047 | * approach allowed a lot more memory to be freed.
|
|---|
| 1048 | */
|
|---|
| 1049 | if (ao->nextarena == NULL ||
|
|---|
| 1050 | nf <= ao->nextarena->nfreepools) {
|
|---|
| 1051 | /* Case 4. Nothing to do. */
|
|---|
| 1052 | UNLOCK();
|
|---|
| 1053 | return;
|
|---|
| 1054 | }
|
|---|
| 1055 | /* Case 3: We have to move the arena towards the end
|
|---|
| 1056 | * of the list, because it has more free pools than
|
|---|
| 1057 | * the arena to its right.
|
|---|
| 1058 | * First unlink ao from usable_arenas.
|
|---|
| 1059 | */
|
|---|
| 1060 | if (ao->prevarena != NULL) {
|
|---|
| 1061 | /* ao isn't at the head of the list */
|
|---|
| 1062 | assert(ao->prevarena->nextarena == ao);
|
|---|
| 1063 | ao->prevarena->nextarena = ao->nextarena;
|
|---|
| 1064 | }
|
|---|
| 1065 | else {
|
|---|
| 1066 | /* ao is at the head of the list */
|
|---|
| 1067 | assert(usable_arenas == ao);
|
|---|
| 1068 | usable_arenas = ao->nextarena;
|
|---|
| 1069 | }
|
|---|
| 1070 | ao->nextarena->prevarena = ao->prevarena;
|
|---|
| 1071 |
|
|---|
| 1072 | /* Locate the new insertion point by iterating over
|
|---|
| 1073 | * the list, using our nextarena pointer.
|
|---|
| 1074 | */
|
|---|
| 1075 | while (ao->nextarena != NULL &&
|
|---|
| 1076 | nf > ao->nextarena->nfreepools) {
|
|---|
| 1077 | ao->prevarena = ao->nextarena;
|
|---|
| 1078 | ao->nextarena = ao->nextarena->nextarena;
|
|---|
| 1079 | }
|
|---|
| 1080 |
|
|---|
| 1081 | /* Insert ao at this point. */
|
|---|
| 1082 | assert(ao->nextarena == NULL ||
|
|---|
| 1083 | ao->prevarena == ao->nextarena->prevarena);
|
|---|
| 1084 | assert(ao->prevarena->nextarena == ao->nextarena);
|
|---|
| 1085 |
|
|---|
| 1086 | ao->prevarena->nextarena = ao;
|
|---|
| 1087 | if (ao->nextarena != NULL)
|
|---|
| 1088 | ao->nextarena->prevarena = ao;
|
|---|
| 1089 |
|
|---|
| 1090 | /* Verify that the swaps worked. */
|
|---|
| 1091 | assert(ao->nextarena == NULL ||
|
|---|
| 1092 | nf <= ao->nextarena->nfreepools);
|
|---|
| 1093 | assert(ao->prevarena == NULL ||
|
|---|
| 1094 | nf > ao->prevarena->nfreepools);
|
|---|
| 1095 | assert(ao->nextarena == NULL ||
|
|---|
| 1096 | ao->nextarena->prevarena == ao);
|
|---|
| 1097 | assert((usable_arenas == ao &&
|
|---|
| 1098 | ao->prevarena == NULL) ||
|
|---|
| 1099 | ao->prevarena->nextarena == ao);
|
|---|
| 1100 |
|
|---|
| 1101 | UNLOCK();
|
|---|
| 1102 | return;
|
|---|
| 1103 | }
|
|---|
| 1104 | /* Pool was full, so doesn't currently live in any list:
|
|---|
| 1105 | * link it to the front of the appropriate usedpools[] list.
|
|---|
| 1106 | * This mimics LRU pool usage for new allocations and
|
|---|
| 1107 | * targets optimal filling when several pools contain
|
|---|
| 1108 | * blocks of the same size class.
|
|---|
| 1109 | */
|
|---|
| 1110 | --pool->ref.count;
|
|---|
| 1111 | assert(pool->ref.count > 0); /* else the pool is empty */
|
|---|
| 1112 | size = pool->szidx;
|
|---|
| 1113 | next = usedpools[size + size];
|
|---|
| 1114 | prev = next->prevpool;
|
|---|
| 1115 | /* insert pool before next: prev <-> pool <-> next */
|
|---|
| 1116 | pool->nextpool = next;
|
|---|
| 1117 | pool->prevpool = prev;
|
|---|
| 1118 | next->prevpool = pool;
|
|---|
| 1119 | prev->nextpool = pool;
|
|---|
| 1120 | UNLOCK();
|
|---|
| 1121 | return;
|
|---|
| 1122 | }
|
|---|
| 1123 |
|
|---|
| 1124 | /* We didn't allocate this address. */
|
|---|
| 1125 | free(p);
|
|---|
| 1126 | }
|
|---|
| 1127 |
|
|---|
| 1128 | /* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
|
|---|
| 1129 | * then as the Python docs promise, we do not treat this like free(p), and
|
|---|
| 1130 | * return a non-NULL result.
|
|---|
| 1131 | */
|
|---|
| 1132 |
|
|---|
| 1133 | #undef PyObject_Realloc
|
|---|
| 1134 | void *
|
|---|
| 1135 | PyObject_Realloc(void *p, size_t nbytes)
|
|---|
| 1136 | {
|
|---|
| 1137 | void *bp;
|
|---|
| 1138 | poolp pool;
|
|---|
| 1139 | size_t size;
|
|---|
| 1140 |
|
|---|
| 1141 | if (p == NULL)
|
|---|
| 1142 | return PyObject_Malloc(nbytes);
|
|---|
| 1143 |
|
|---|
| 1144 | /*
|
|---|
| 1145 | * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
|
|---|
| 1146 | * Most python internals blindly use a signed Py_ssize_t to track
|
|---|
| 1147 | * things without checking for overflows or negatives.
|
|---|
| 1148 | * As size_t is unsigned, checking for nbytes < 0 is not required.
|
|---|
| 1149 | */
|
|---|
| 1150 | if (nbytes > PY_SSIZE_T_MAX)
|
|---|
| 1151 | return NULL;
|
|---|
| 1152 |
|
|---|
| 1153 | pool = POOL_ADDR(p);
|
|---|
| 1154 | if (Py_ADDRESS_IN_RANGE(p, pool)) {
|
|---|
| 1155 | /* We're in charge of this block */
|
|---|
| 1156 | size = INDEX2SIZE(pool->szidx);
|
|---|
| 1157 | if (nbytes <= size) {
|
|---|
| 1158 | /* The block is staying the same or shrinking. If
|
|---|
| 1159 | * it's shrinking, there's a tradeoff: it costs
|
|---|
| 1160 | * cycles to copy the block to a smaller size class,
|
|---|
| 1161 | * but it wastes memory not to copy it. The
|
|---|
| 1162 | * compromise here is to copy on shrink only if at
|
|---|
| 1163 | * least 25% of size can be shaved off.
|
|---|
| 1164 | */
|
|---|
| 1165 | if (4 * nbytes > 3 * size) {
|
|---|
| 1166 | /* It's the same,
|
|---|
| 1167 | * or shrinking and new/old > 3/4.
|
|---|
| 1168 | */
|
|---|
| 1169 | return p;
|
|---|
| 1170 | }
|
|---|
| 1171 | size = nbytes;
|
|---|
| 1172 | }
|
|---|
| 1173 | bp = PyObject_Malloc(nbytes);
|
|---|
| 1174 | if (bp != NULL) {
|
|---|
| 1175 | memcpy(bp, p, size);
|
|---|
| 1176 | PyObject_Free(p);
|
|---|
| 1177 | }
|
|---|
| 1178 | return bp;
|
|---|
| 1179 | }
|
|---|
| 1180 | /* We're not managing this block. If nbytes <=
|
|---|
| 1181 | * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
|
|---|
| 1182 | * block. However, if we do, we need to copy the valid data from
|
|---|
| 1183 | * the C-managed block to one of our blocks, and there's no portable
|
|---|
| 1184 | * way to know how much of the memory space starting at p is valid.
|
|---|
| 1185 | * As bug 1185883 pointed out the hard way, it's possible that the
|
|---|
| 1186 | * C-managed block is "at the end" of allocated VM space, so that
|
|---|
| 1187 | * a memory fault can occur if we try to copy nbytes bytes starting
|
|---|
| 1188 | * at p. Instead we punt: let C continue to manage this block.
|
|---|
| 1189 | */
|
|---|
| 1190 | if (nbytes)
|
|---|
| 1191 | return realloc(p, nbytes);
|
|---|
| 1192 | /* C doesn't define the result of realloc(p, 0) (it may or may not
|
|---|
| 1193 | * return NULL then), but Python's docs promise that nbytes==0 never
|
|---|
| 1194 | * returns NULL. We don't pass 0 to realloc(), to avoid that endcase
|
|---|
| 1195 | * to begin with. Even then, we can't be sure that realloc() won't
|
|---|
| 1196 | * return NULL.
|
|---|
| 1197 | */
|
|---|
| 1198 | bp = realloc(p, 1);
|
|---|
| 1199 | return bp ? bp : p;
|
|---|
| 1200 | }
|
|---|
| 1201 |
|
|---|
| 1202 | #else /* ! WITH_PYMALLOC */
|
|---|
| 1203 |
|
|---|
| 1204 | /*==========================================================================*/
|
|---|
| 1205 | /* pymalloc not enabled: Redirect the entry points to malloc. These will
|
|---|
| 1206 | * only be used by extensions that are compiled with pymalloc enabled. */
|
|---|
| 1207 |
|
|---|
| 1208 | void *
|
|---|
| 1209 | PyObject_Malloc(size_t n)
|
|---|
| 1210 | {
|
|---|
| 1211 | return PyMem_MALLOC(n);
|
|---|
| 1212 | }
|
|---|
| 1213 |
|
|---|
| 1214 | void *
|
|---|
| 1215 | PyObject_Realloc(void *p, size_t n)
|
|---|
| 1216 | {
|
|---|
| 1217 | return PyMem_REALLOC(p, n);
|
|---|
| 1218 | }
|
|---|
| 1219 |
|
|---|
| 1220 | void
|
|---|
| 1221 | PyObject_Free(void *p)
|
|---|
| 1222 | {
|
|---|
| 1223 | PyMem_FREE(p);
|
|---|
| 1224 | }
|
|---|
| 1225 | #endif /* WITH_PYMALLOC */
|
|---|
| 1226 |
|
|---|
| 1227 | #ifdef PYMALLOC_DEBUG
|
|---|
| 1228 | /*==========================================================================*/
|
|---|
| 1229 | /* A x-platform debugging allocator. This doesn't manage memory directly,
|
|---|
| 1230 | * it wraps a real allocator, adding extra debugging info to the memory blocks.
|
|---|
| 1231 | */
|
|---|
| 1232 |
|
|---|
| 1233 | /* Special bytes broadcast into debug memory blocks at appropriate times.
|
|---|
| 1234 | * Strings of these are unlikely to be valid addresses, floats, ints or
|
|---|
| 1235 | * 7-bit ASCII.
|
|---|
| 1236 | */
|
|---|
| 1237 | #undef CLEANBYTE
|
|---|
| 1238 | #undef DEADBYTE
|
|---|
| 1239 | #undef FORBIDDENBYTE
|
|---|
| 1240 | #define CLEANBYTE 0xCB /* clean (newly allocated) memory */
|
|---|
| 1241 | #define DEADBYTE 0xDB /* dead (newly freed) memory */
|
|---|
| 1242 | #define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
|
|---|
| 1243 |
|
|---|
| 1244 | static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
|
|---|
| 1245 |
|
|---|
| 1246 | /* serialno is always incremented via calling this routine. The point is
|
|---|
| 1247 | * to supply a single place to set a breakpoint.
|
|---|
| 1248 | */
|
|---|
| 1249 | static void
|
|---|
| 1250 | bumpserialno(void)
|
|---|
| 1251 | {
|
|---|
| 1252 | ++serialno;
|
|---|
| 1253 | }
|
|---|
| 1254 |
|
|---|
| 1255 | #define SST SIZEOF_SIZE_T
|
|---|
| 1256 |
|
|---|
| 1257 | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */
|
|---|
| 1258 | static size_t
|
|---|
| 1259 | read_size_t(const void *p)
|
|---|
| 1260 | {
|
|---|
| 1261 | const uchar *q = (const uchar *)p;
|
|---|
| 1262 | size_t result = *q++;
|
|---|
| 1263 | int i;
|
|---|
| 1264 |
|
|---|
| 1265 | for (i = SST; --i > 0; ++q)
|
|---|
| 1266 | result = (result << 8) | *q;
|
|---|
| 1267 | return result;
|
|---|
| 1268 | }
|
|---|
| 1269 |
|
|---|
| 1270 | /* Write n as a big-endian size_t, MSB at address p, LSB at
|
|---|
| 1271 | * p + sizeof(size_t) - 1.
|
|---|
| 1272 | */
|
|---|
| 1273 | static void
|
|---|
| 1274 | write_size_t(void *p, size_t n)
|
|---|
| 1275 | {
|
|---|
| 1276 | uchar *q = (uchar *)p + SST - 1;
|
|---|
| 1277 | int i;
|
|---|
| 1278 |
|
|---|
| 1279 | for (i = SST; --i >= 0; --q) {
|
|---|
| 1280 | *q = (uchar)(n & 0xff);
|
|---|
| 1281 | n >>= 8;
|
|---|
| 1282 | }
|
|---|
| 1283 | }
|
|---|
| 1284 |
|
|---|
| 1285 | #ifdef Py_DEBUG
|
|---|
| 1286 | /* Is target in the list? The list is traversed via the nextpool pointers.
|
|---|
| 1287 | * The list may be NULL-terminated, or circular. Return 1 if target is in
|
|---|
| 1288 | * list, else 0.
|
|---|
| 1289 | */
|
|---|
| 1290 | static int
|
|---|
| 1291 | pool_is_in_list(const poolp target, poolp list)
|
|---|
| 1292 | {
|
|---|
| 1293 | poolp origlist = list;
|
|---|
| 1294 | assert(target != NULL);
|
|---|
| 1295 | if (list == NULL)
|
|---|
| 1296 | return 0;
|
|---|
| 1297 | do {
|
|---|
| 1298 | if (target == list)
|
|---|
| 1299 | return 1;
|
|---|
| 1300 | list = list->nextpool;
|
|---|
| 1301 | } while (list != NULL && list != origlist);
|
|---|
| 1302 | return 0;
|
|---|
| 1303 | }
|
|---|
| 1304 |
|
|---|
| 1305 | #else
|
|---|
| 1306 | #define pool_is_in_list(X, Y) 1
|
|---|
| 1307 |
|
|---|
| 1308 | #endif /* Py_DEBUG */
|
|---|
| 1309 |
|
|---|
| 1310 | /* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
|
|---|
| 1311 | fills them with useful stuff, here calling the underlying malloc's result p:
|
|---|
| 1312 |
|
|---|
| 1313 | p[0: S]
|
|---|
| 1314 | Number of bytes originally asked for. This is a size_t, big-endian (easier
|
|---|
| 1315 | to read in a memory dump).
|
|---|
| 1316 | p[S: 2*S]
|
|---|
| 1317 | Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
|
|---|
| 1318 | p[2*S: 2*S+n]
|
|---|
| 1319 | The requested memory, filled with copies of CLEANBYTE.
|
|---|
| 1320 | Used to catch reference to uninitialized memory.
|
|---|
| 1321 | &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
|
|---|
| 1322 | handled the request itself.
|
|---|
| 1323 | p[2*S+n: 2*S+n+S]
|
|---|
| 1324 | Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
|
|---|
| 1325 | p[2*S+n+S: 2*S+n+2*S]
|
|---|
| 1326 | A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
|
|---|
| 1327 | and _PyObject_DebugRealloc.
|
|---|
| 1328 | This is a big-endian size_t.
|
|---|
| 1329 | If "bad memory" is detected later, the serial number gives an
|
|---|
| 1330 | excellent way to set a breakpoint on the next run, to capture the
|
|---|
| 1331 | instant at which this block was passed out.
|
|---|
| 1332 | */
|
|---|
| 1333 |
|
|---|
| 1334 | void *
|
|---|
| 1335 | _PyObject_DebugMalloc(size_t nbytes)
|
|---|
| 1336 | {
|
|---|
| 1337 | uchar *p; /* base address of malloc'ed block */
|
|---|
| 1338 | uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */
|
|---|
| 1339 | size_t total; /* nbytes + 4*SST */
|
|---|
| 1340 |
|
|---|
| 1341 | bumpserialno();
|
|---|
| 1342 | total = nbytes + 4*SST;
|
|---|
| 1343 | if (total < nbytes)
|
|---|
| 1344 | /* overflow: can't represent total as a size_t */
|
|---|
| 1345 | return NULL;
|
|---|
| 1346 |
|
|---|
| 1347 | p = (uchar *)PyObject_Malloc(total);
|
|---|
| 1348 | if (p == NULL)
|
|---|
| 1349 | return NULL;
|
|---|
| 1350 |
|
|---|
| 1351 | write_size_t(p, nbytes);
|
|---|
| 1352 | memset(p + SST, FORBIDDENBYTE, SST);
|
|---|
| 1353 |
|
|---|
| 1354 | if (nbytes > 0)
|
|---|
| 1355 | memset(p + 2*SST, CLEANBYTE, nbytes);
|
|---|
| 1356 |
|
|---|
| 1357 | tail = p + 2*SST + nbytes;
|
|---|
| 1358 | memset(tail, FORBIDDENBYTE, SST);
|
|---|
| 1359 | write_size_t(tail + SST, serialno);
|
|---|
| 1360 |
|
|---|
| 1361 | return p + 2*SST;
|
|---|
| 1362 | }
|
|---|
| 1363 |
|
|---|
| 1364 | /* The debug free first checks the 2*SST bytes on each end for sanity (in
|
|---|
| 1365 | particular, that the FORBIDDENBYTEs are still intact).
|
|---|
| 1366 | Then fills the original bytes with DEADBYTE.
|
|---|
| 1367 | Then calls the underlying free.
|
|---|
| 1368 | */
|
|---|
| 1369 | void
|
|---|
| 1370 | _PyObject_DebugFree(void *p)
|
|---|
| 1371 | {
|
|---|
| 1372 | uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */
|
|---|
| 1373 | size_t nbytes;
|
|---|
| 1374 |
|
|---|
| 1375 | if (p == NULL)
|
|---|
| 1376 | return;
|
|---|
| 1377 | _PyObject_DebugCheckAddress(p);
|
|---|
| 1378 | nbytes = read_size_t(q);
|
|---|
| 1379 | if (nbytes > 0)
|
|---|
| 1380 | memset(q, DEADBYTE, nbytes);
|
|---|
| 1381 | PyObject_Free(q);
|
|---|
| 1382 | }
|
|---|
| 1383 |
|
|---|
| 1384 | void *
|
|---|
| 1385 | _PyObject_DebugRealloc(void *p, size_t nbytes)
|
|---|
| 1386 | {
|
|---|
| 1387 | uchar *q = (uchar *)p;
|
|---|
| 1388 | uchar *tail;
|
|---|
| 1389 | size_t total; /* nbytes + 4*SST */
|
|---|
| 1390 | size_t original_nbytes;
|
|---|
| 1391 | int i;
|
|---|
| 1392 |
|
|---|
| 1393 | if (p == NULL)
|
|---|
| 1394 | return _PyObject_DebugMalloc(nbytes);
|
|---|
| 1395 |
|
|---|
| 1396 | _PyObject_DebugCheckAddress(p);
|
|---|
| 1397 | bumpserialno();
|
|---|
| 1398 | original_nbytes = read_size_t(q - 2*SST);
|
|---|
| 1399 | total = nbytes + 4*SST;
|
|---|
| 1400 | if (total < nbytes)
|
|---|
| 1401 | /* overflow: can't represent total as a size_t */
|
|---|
| 1402 | return NULL;
|
|---|
| 1403 |
|
|---|
| 1404 | if (nbytes < original_nbytes) {
|
|---|
| 1405 | /* shrinking: mark old extra memory dead */
|
|---|
| 1406 | memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
|
|---|
| 1407 | }
|
|---|
| 1408 |
|
|---|
| 1409 | /* Resize and add decorations. */
|
|---|
| 1410 | q = (uchar *)PyObject_Realloc(q - 2*SST, total);
|
|---|
| 1411 | if (q == NULL)
|
|---|
| 1412 | return NULL;
|
|---|
| 1413 |
|
|---|
| 1414 | write_size_t(q, nbytes);
|
|---|
| 1415 | for (i = 0; i < SST; ++i)
|
|---|
| 1416 | assert(q[SST + i] == FORBIDDENBYTE);
|
|---|
| 1417 | q += 2*SST;
|
|---|
| 1418 | tail = q + nbytes;
|
|---|
| 1419 | memset(tail, FORBIDDENBYTE, SST);
|
|---|
| 1420 | write_size_t(tail + SST, serialno);
|
|---|
| 1421 |
|
|---|
| 1422 | if (nbytes > original_nbytes) {
|
|---|
| 1423 | /* growing: mark new extra memory clean */
|
|---|
| 1424 | memset(q + original_nbytes, CLEANBYTE,
|
|---|
| 1425 | nbytes - original_nbytes);
|
|---|
| 1426 | }
|
|---|
| 1427 |
|
|---|
| 1428 | return q;
|
|---|
| 1429 | }
|
|---|
| 1430 |
|
|---|
| 1431 | /* Check the forbidden bytes on both ends of the memory allocated for p.
|
|---|
| 1432 | * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
|
|---|
| 1433 | * and call Py_FatalError to kill the program.
|
|---|
| 1434 | */
|
|---|
| 1435 | void
|
|---|
| 1436 | _PyObject_DebugCheckAddress(const void *p)
|
|---|
| 1437 | {
|
|---|
| 1438 | const uchar *q = (const uchar *)p;
|
|---|
| 1439 | char *msg;
|
|---|
| 1440 | size_t nbytes;
|
|---|
| 1441 | const uchar *tail;
|
|---|
| 1442 | int i;
|
|---|
| 1443 |
|
|---|
| 1444 | if (p == NULL) {
|
|---|
| 1445 | msg = "didn't expect a NULL pointer";
|
|---|
| 1446 | goto error;
|
|---|
| 1447 | }
|
|---|
| 1448 |
|
|---|
| 1449 | /* Check the stuff at the start of p first: if there's underwrite
|
|---|
| 1450 | * corruption, the number-of-bytes field may be nuts, and checking
|
|---|
| 1451 | * the tail could lead to a segfault then.
|
|---|
| 1452 | */
|
|---|
| 1453 | for (i = SST; i >= 1; --i) {
|
|---|
| 1454 | if (*(q-i) != FORBIDDENBYTE) {
|
|---|
| 1455 | msg = "bad leading pad byte";
|
|---|
| 1456 | goto error;
|
|---|
| 1457 | }
|
|---|
| 1458 | }
|
|---|
| 1459 |
|
|---|
| 1460 | nbytes = read_size_t(q - 2*SST);
|
|---|
| 1461 | tail = q + nbytes;
|
|---|
| 1462 | for (i = 0; i < SST; ++i) {
|
|---|
| 1463 | if (tail[i] != FORBIDDENBYTE) {
|
|---|
| 1464 | msg = "bad trailing pad byte";
|
|---|
| 1465 | goto error;
|
|---|
| 1466 | }
|
|---|
| 1467 | }
|
|---|
| 1468 |
|
|---|
| 1469 | return;
|
|---|
| 1470 |
|
|---|
| 1471 | error:
|
|---|
| 1472 | _PyObject_DebugDumpAddress(p);
|
|---|
| 1473 | Py_FatalError(msg);
|
|---|
| 1474 | }
|
|---|
| 1475 |
|
|---|
| 1476 | /* Display info to stderr about the memory block at p. */
|
|---|
| 1477 | void
|
|---|
| 1478 | _PyObject_DebugDumpAddress(const void *p)
|
|---|
| 1479 | {
|
|---|
| 1480 | const uchar *q = (const uchar *)p;
|
|---|
| 1481 | const uchar *tail;
|
|---|
| 1482 | size_t nbytes, serial;
|
|---|
| 1483 | int i;
|
|---|
| 1484 | int ok;
|
|---|
| 1485 |
|
|---|
| 1486 | fprintf(stderr, "Debug memory block at address p=%p:\n", p);
|
|---|
| 1487 | if (p == NULL)
|
|---|
| 1488 | return;
|
|---|
| 1489 |
|
|---|
| 1490 | nbytes = read_size_t(q - 2*SST);
|
|---|
| 1491 | fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
|
|---|
| 1492 | "requested\n", nbytes);
|
|---|
| 1493 |
|
|---|
| 1494 | /* In case this is nuts, check the leading pad bytes first. */
|
|---|
| 1495 | fprintf(stderr, " The %d pad bytes at p-%d are ", SST, SST);
|
|---|
| 1496 | ok = 1;
|
|---|
| 1497 | for (i = 1; i <= SST; ++i) {
|
|---|
| 1498 | if (*(q-i) != FORBIDDENBYTE) {
|
|---|
| 1499 | ok = 0;
|
|---|
| 1500 | break;
|
|---|
| 1501 | }
|
|---|
| 1502 | }
|
|---|
| 1503 | if (ok)
|
|---|
| 1504 | fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
|---|
| 1505 | else {
|
|---|
| 1506 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
|---|
| 1507 | FORBIDDENBYTE);
|
|---|
| 1508 | for (i = SST; i >= 1; --i) {
|
|---|
| 1509 | const uchar byte = *(q-i);
|
|---|
| 1510 | fprintf(stderr, " at p-%d: 0x%02x", i, byte);
|
|---|
| 1511 | if (byte != FORBIDDENBYTE)
|
|---|
| 1512 | fputs(" *** OUCH", stderr);
|
|---|
| 1513 | fputc('\n', stderr);
|
|---|
| 1514 | }
|
|---|
| 1515 |
|
|---|
| 1516 | fputs(" Because memory is corrupted at the start, the "
|
|---|
| 1517 | "count of bytes requested\n"
|
|---|
| 1518 | " may be bogus, and checking the trailing pad "
|
|---|
| 1519 | "bytes may segfault.\n", stderr);
|
|---|
| 1520 | }
|
|---|
| 1521 |
|
|---|
| 1522 | tail = q + nbytes;
|
|---|
| 1523 | fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
|
|---|
| 1524 | ok = 1;
|
|---|
| 1525 | for (i = 0; i < SST; ++i) {
|
|---|
| 1526 | if (tail[i] != FORBIDDENBYTE) {
|
|---|
| 1527 | ok = 0;
|
|---|
| 1528 | break;
|
|---|
| 1529 | }
|
|---|
| 1530 | }
|
|---|
| 1531 | if (ok)
|
|---|
| 1532 | fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
|---|
| 1533 | else {
|
|---|
| 1534 | fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
|---|
| 1535 | FORBIDDENBYTE);
|
|---|
| 1536 | for (i = 0; i < SST; ++i) {
|
|---|
| 1537 | const uchar byte = tail[i];
|
|---|
| 1538 | fprintf(stderr, " at tail+%d: 0x%02x",
|
|---|
| 1539 | i, byte);
|
|---|
| 1540 | if (byte != FORBIDDENBYTE)
|
|---|
| 1541 | fputs(" *** OUCH", stderr);
|
|---|
| 1542 | fputc('\n', stderr);
|
|---|
| 1543 | }
|
|---|
| 1544 | }
|
|---|
| 1545 |
|
|---|
| 1546 | serial = read_size_t(tail + SST);
|
|---|
| 1547 | fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
|
|---|
| 1548 | "u to debug malloc/realloc.\n", serial);
|
|---|
| 1549 |
|
|---|
| 1550 | if (nbytes > 0) {
|
|---|
| 1551 | i = 0;
|
|---|
| 1552 | fputs(" Data at p:", stderr);
|
|---|
| 1553 | /* print up to 8 bytes at the start */
|
|---|
| 1554 | while (q < tail && i < 8) {
|
|---|
| 1555 | fprintf(stderr, " %02x", *q);
|
|---|
| 1556 | ++i;
|
|---|
| 1557 | ++q;
|
|---|
| 1558 | }
|
|---|
| 1559 | /* and up to 8 at the end */
|
|---|
| 1560 | if (q < tail) {
|
|---|
| 1561 | if (tail - q > 8) {
|
|---|
| 1562 | fputs(" ...", stderr);
|
|---|
| 1563 | q = tail - 8;
|
|---|
| 1564 | }
|
|---|
| 1565 | while (q < tail) {
|
|---|
| 1566 | fprintf(stderr, " %02x", *q);
|
|---|
| 1567 | ++q;
|
|---|
| 1568 | }
|
|---|
| 1569 | }
|
|---|
| 1570 | fputc('\n', stderr);
|
|---|
| 1571 | }
|
|---|
| 1572 | }
|
|---|
| 1573 |
|
|---|
| 1574 | static size_t
|
|---|
| 1575 | printone(const char* msg, size_t value)
|
|---|
| 1576 | {
|
|---|
| 1577 | int i, k;
|
|---|
| 1578 | char buf[100];
|
|---|
| 1579 | size_t origvalue = value;
|
|---|
| 1580 |
|
|---|
| 1581 | fputs(msg, stderr);
|
|---|
| 1582 | for (i = (int)strlen(msg); i < 35; ++i)
|
|---|
| 1583 | fputc(' ', stderr);
|
|---|
| 1584 | fputc('=', stderr);
|
|---|
| 1585 |
|
|---|
| 1586 | /* Write the value with commas. */
|
|---|
| 1587 | i = 22;
|
|---|
| 1588 | buf[i--] = '\0';
|
|---|
| 1589 | buf[i--] = '\n';
|
|---|
| 1590 | k = 3;
|
|---|
| 1591 | do {
|
|---|
| 1592 | size_t nextvalue = value / 10;
|
|---|
| 1593 | uint digit = (uint)(value - nextvalue * 10);
|
|---|
| 1594 | value = nextvalue;
|
|---|
| 1595 | buf[i--] = (char)(digit + '0');
|
|---|
| 1596 | --k;
|
|---|
| 1597 | if (k == 0 && value && i >= 0) {
|
|---|
| 1598 | k = 3;
|
|---|
| 1599 | buf[i--] = ',';
|
|---|
| 1600 | }
|
|---|
| 1601 | } while (value && i >= 0);
|
|---|
| 1602 |
|
|---|
| 1603 | while (i >= 0)
|
|---|
| 1604 | buf[i--] = ' ';
|
|---|
| 1605 | fputs(buf, stderr);
|
|---|
| 1606 |
|
|---|
| 1607 | return origvalue;
|
|---|
| 1608 | }
|
|---|
| 1609 |
|
|---|
| 1610 | /* Print summary info to stderr about the state of pymalloc's structures.
|
|---|
| 1611 | * In Py_DEBUG mode, also perform some expensive internal consistency
|
|---|
| 1612 | * checks.
|
|---|
| 1613 | */
|
|---|
| 1614 | void
|
|---|
| 1615 | _PyObject_DebugMallocStats(void)
|
|---|
| 1616 | {
|
|---|
| 1617 | uint i;
|
|---|
| 1618 | const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
|
|---|
| 1619 | /* # of pools, allocated blocks, and free blocks per class index */
|
|---|
| 1620 | size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|---|
| 1621 | size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|---|
| 1622 | size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|---|
| 1623 | /* total # of allocated bytes in used and full pools */
|
|---|
| 1624 | size_t allocated_bytes = 0;
|
|---|
| 1625 | /* total # of available bytes in used pools */
|
|---|
| 1626 | size_t available_bytes = 0;
|
|---|
| 1627 | /* # of free pools + pools not yet carved out of current arena */
|
|---|
| 1628 | uint numfreepools = 0;
|
|---|
| 1629 | /* # of bytes for arena alignment padding */
|
|---|
| 1630 | size_t arena_alignment = 0;
|
|---|
| 1631 | /* # of bytes in used and full pools used for pool_headers */
|
|---|
| 1632 | size_t pool_header_bytes = 0;
|
|---|
| 1633 | /* # of bytes in used and full pools wasted due to quantization,
|
|---|
| 1634 | * i.e. the necessarily leftover space at the ends of used and
|
|---|
| 1635 | * full pools.
|
|---|
| 1636 | */
|
|---|
| 1637 | size_t quantization = 0;
|
|---|
| 1638 | /* # of arenas actually allocated. */
|
|---|
| 1639 | size_t narenas = 0;
|
|---|
| 1640 | /* running total -- should equal narenas * ARENA_SIZE */
|
|---|
| 1641 | size_t total;
|
|---|
| 1642 | char buf[128];
|
|---|
| 1643 |
|
|---|
| 1644 | fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
|
|---|
| 1645 | SMALL_REQUEST_THRESHOLD, numclasses);
|
|---|
| 1646 |
|
|---|
| 1647 | for (i = 0; i < numclasses; ++i)
|
|---|
| 1648 | numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
|
|---|
| 1649 |
|
|---|
| 1650 | /* Because full pools aren't linked to from anything, it's easiest
|
|---|
| 1651 | * to march over all the arenas. If we're lucky, most of the memory
|
|---|
| 1652 | * will be living in full pools -- would be a shame to miss them.
|
|---|
| 1653 | */
|
|---|
| 1654 | for (i = 0; i < maxarenas; ++i) {
|
|---|
| 1655 | uint poolsinarena;
|
|---|
| 1656 | uint j;
|
|---|
| 1657 | uptr base = arenas[i].address;
|
|---|
| 1658 |
|
|---|
| 1659 | /* Skip arenas which are not allocated. */
|
|---|
| 1660 | if (arenas[i].address == (uptr)NULL)
|
|---|
| 1661 | continue;
|
|---|
| 1662 | narenas += 1;
|
|---|
| 1663 |
|
|---|
| 1664 | poolsinarena = arenas[i].ntotalpools;
|
|---|
| 1665 | numfreepools += arenas[i].nfreepools;
|
|---|
| 1666 |
|
|---|
| 1667 | /* round up to pool alignment */
|
|---|
| 1668 | if (base & (uptr)POOL_SIZE_MASK) {
|
|---|
| 1669 | arena_alignment += POOL_SIZE;
|
|---|
| 1670 | base &= ~(uptr)POOL_SIZE_MASK;
|
|---|
| 1671 | base += POOL_SIZE;
|
|---|
| 1672 | }
|
|---|
| 1673 |
|
|---|
| 1674 | /* visit every pool in the arena */
|
|---|
| 1675 | assert(base <= (uptr) arenas[i].pool_address);
|
|---|
| 1676 | for (j = 0;
|
|---|
| 1677 | base < (uptr) arenas[i].pool_address;
|
|---|
| 1678 | ++j, base += POOL_SIZE) {
|
|---|
| 1679 | poolp p = (poolp)base;
|
|---|
| 1680 | const uint sz = p->szidx;
|
|---|
| 1681 | uint freeblocks;
|
|---|
| 1682 |
|
|---|
| 1683 | if (p->ref.count == 0) {
|
|---|
| 1684 | /* currently unused */
|
|---|
| 1685 | assert(pool_is_in_list(p, arenas[i].freepools));
|
|---|
| 1686 | continue;
|
|---|
| 1687 | }
|
|---|
| 1688 | ++numpools[sz];
|
|---|
| 1689 | numblocks[sz] += p->ref.count;
|
|---|
| 1690 | freeblocks = NUMBLOCKS(sz) - p->ref.count;
|
|---|
| 1691 | numfreeblocks[sz] += freeblocks;
|
|---|
| 1692 | #ifdef Py_DEBUG
|
|---|
| 1693 | if (freeblocks > 0)
|
|---|
| 1694 | assert(pool_is_in_list(p, usedpools[sz + sz]));
|
|---|
| 1695 | #endif
|
|---|
| 1696 | }
|
|---|
| 1697 | }
|
|---|
| 1698 | assert(narenas == narenas_currently_allocated);
|
|---|
| 1699 |
|
|---|
| 1700 | fputc('\n', stderr);
|
|---|
| 1701 | fputs("class size num pools blocks in use avail blocks\n"
|
|---|
| 1702 | "----- ---- --------- ------------- ------------\n",
|
|---|
| 1703 | stderr);
|
|---|
| 1704 |
|
|---|
| 1705 | for (i = 0; i < numclasses; ++i) {
|
|---|
| 1706 | size_t p = numpools[i];
|
|---|
| 1707 | size_t b = numblocks[i];
|
|---|
| 1708 | size_t f = numfreeblocks[i];
|
|---|
| 1709 | uint size = INDEX2SIZE(i);
|
|---|
| 1710 | if (p == 0) {
|
|---|
| 1711 | assert(b == 0 && f == 0);
|
|---|
| 1712 | continue;
|
|---|
| 1713 | }
|
|---|
| 1714 | fprintf(stderr, "%5u %6u "
|
|---|
| 1715 | "%11" PY_FORMAT_SIZE_T "u "
|
|---|
| 1716 | "%15" PY_FORMAT_SIZE_T "u "
|
|---|
| 1717 | "%13" PY_FORMAT_SIZE_T "u\n",
|
|---|
| 1718 | i, size, p, b, f);
|
|---|
| 1719 | allocated_bytes += b * size;
|
|---|
| 1720 | available_bytes += f * size;
|
|---|
| 1721 | pool_header_bytes += p * POOL_OVERHEAD;
|
|---|
| 1722 | quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
|
|---|
| 1723 | }
|
|---|
| 1724 | fputc('\n', stderr);
|
|---|
| 1725 | (void)printone("# times object malloc called", serialno);
|
|---|
| 1726 |
|
|---|
| 1727 | (void)printone("# arenas allocated total", ntimes_arena_allocated);
|
|---|
| 1728 | (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas);
|
|---|
| 1729 | (void)printone("# arenas highwater mark", narenas_highwater);
|
|---|
| 1730 | (void)printone("# arenas allocated current", narenas);
|
|---|
| 1731 |
|
|---|
| 1732 | PyOS_snprintf(buf, sizeof(buf),
|
|---|
| 1733 | "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
|
|---|
| 1734 | narenas, ARENA_SIZE);
|
|---|
| 1735 | (void)printone(buf, narenas * ARENA_SIZE);
|
|---|
| 1736 |
|
|---|
| 1737 | fputc('\n', stderr);
|
|---|
| 1738 |
|
|---|
| 1739 | total = printone("# bytes in allocated blocks", allocated_bytes);
|
|---|
| 1740 | total += printone("# bytes in available blocks", available_bytes);
|
|---|
| 1741 |
|
|---|
| 1742 | PyOS_snprintf(buf, sizeof(buf),
|
|---|
| 1743 | "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
|
|---|
| 1744 | total += printone(buf, (size_t)numfreepools * POOL_SIZE);
|
|---|
| 1745 |
|
|---|
| 1746 | total += printone("# bytes lost to pool headers", pool_header_bytes);
|
|---|
| 1747 | total += printone("# bytes lost to quantization", quantization);
|
|---|
| 1748 | total += printone("# bytes lost to arena alignment", arena_alignment);
|
|---|
| 1749 | (void)printone("Total", total);
|
|---|
| 1750 | }
|
|---|
| 1751 |
|
|---|
| 1752 | #endif /* PYMALLOC_DEBUG */
|
|---|
| 1753 |
|
|---|
| 1754 | #ifdef Py_USING_MEMORY_DEBUGGER
|
|---|
| 1755 | /* Make this function last so gcc won't inline it since the definition is
|
|---|
| 1756 | * after the reference.
|
|---|
| 1757 | */
|
|---|
| 1758 | int
|
|---|
| 1759 | Py_ADDRESS_IN_RANGE(void *P, poolp pool)
|
|---|
| 1760 | {
|
|---|
| 1761 | return pool->arenaindex < maxarenas &&
|
|---|
| 1762 | (uptr)P - arenas[pool->arenaindex].address < (uptr)ARENA_SIZE &&
|
|---|
| 1763 | arenas[pool->arenaindex].address != 0;
|
|---|
| 1764 | }
|
|---|
| 1765 | #endif
|
|---|