source: python/trunk/Objects/object.c@ 384

Last change on this file since 384 was 2, checked in by Yuri Dario, 15 years ago

Initial import for vendor code.

  • Property svn:eol-style set to native
File size: 56.7 KB
Line 
1
2/* Generic object operations; and implementation of None (NoObject) */
3
4#include "Python.h"
5#include "frameobject.h"
6
7#ifdef __cplusplus
8extern "C" {
9#endif
10
11#ifdef Py_REF_DEBUG
12Py_ssize_t _Py_RefTotal;
13
14Py_ssize_t
15_Py_GetRefTotal(void)
16{
17 PyObject *o;
18 Py_ssize_t total = _Py_RefTotal;
19 /* ignore the references to the dummy object of the dicts and sets
20 because they are not reliable and not useful (now that the
21 hash table code is well-tested) */
22 o = _PyDict_Dummy();
23 if (o != NULL)
24 total -= o->ob_refcnt;
25 o = _PySet_Dummy();
26 if (o != NULL)
27 total -= o->ob_refcnt;
28 return total;
29}
30#endif /* Py_REF_DEBUG */
31
32int Py_DivisionWarningFlag;
33int Py_Py3kWarningFlag;
34
35/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
36 These are used by the individual routines for object creation.
37 Do not call them otherwise, they do not initialize the object! */
38
39#ifdef Py_TRACE_REFS
40/* Head of circular doubly-linked list of all objects. These are linked
41 * together via the _ob_prev and _ob_next members of a PyObject, which
42 * exist only in a Py_TRACE_REFS build.
43 */
44static PyObject refchain = {&refchain, &refchain};
45
46/* Insert op at the front of the list of all objects. If force is true,
47 * op is added even if _ob_prev and _ob_next are non-NULL already. If
48 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
49 * force should be true if and only if op points to freshly allocated,
50 * uninitialized memory, or you've unlinked op from the list and are
51 * relinking it into the front.
52 * Note that objects are normally added to the list via _Py_NewReference,
53 * which is called by PyObject_Init. Not all objects are initialized that
54 * way, though; exceptions include statically allocated type objects, and
55 * statically allocated singletons (like Py_True and Py_None).
56 */
57void
58_Py_AddToAllObjects(PyObject *op, int force)
59{
60#ifdef Py_DEBUG
61 if (!force) {
62 /* If it's initialized memory, op must be in or out of
63 * the list unambiguously.
64 */
65 assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
66 }
67#endif
68 if (force || op->_ob_prev == NULL) {
69 op->_ob_next = refchain._ob_next;
70 op->_ob_prev = &refchain;
71 refchain._ob_next->_ob_prev = op;
72 refchain._ob_next = op;
73 }
74}
75#endif /* Py_TRACE_REFS */
76
77#ifdef COUNT_ALLOCS
78static PyTypeObject *type_list;
79/* All types are added to type_list, at least when
80 they get one object created. That makes them
81 immortal, which unfortunately contributes to
82 garbage itself. If unlist_types_without_objects
83 is set, they will be removed from the type_list
84 once the last object is deallocated. */
85int unlist_types_without_objects;
86extern int tuple_zero_allocs, fast_tuple_allocs;
87extern int quick_int_allocs, quick_neg_int_allocs;
88extern int null_strings, one_strings;
89void
90dump_counts(FILE* f)
91{
92 PyTypeObject *tp;
93
94 for (tp = type_list; tp; tp = tp->tp_next)
95 fprintf(f, "%s alloc'd: %d, freed: %d, max in use: %d\n",
96 tp->tp_name, tp->tp_allocs, tp->tp_frees,
97 tp->tp_maxalloc);
98 fprintf(f, "fast tuple allocs: %d, empty: %d\n",
99 fast_tuple_allocs, tuple_zero_allocs);
100 fprintf(f, "fast int allocs: pos: %d, neg: %d\n",
101 quick_int_allocs, quick_neg_int_allocs);
102 fprintf(f, "null strings: %d, 1-strings: %d\n",
103 null_strings, one_strings);
104}
105
106PyObject *
107get_counts(void)
108{
109 PyTypeObject *tp;
110 PyObject *result;
111 PyObject *v;
112
113 result = PyList_New(0);
114 if (result == NULL)
115 return NULL;
116 for (tp = type_list; tp; tp = tp->tp_next) {
117 v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
118 tp->tp_frees, tp->tp_maxalloc);
119 if (v == NULL) {
120 Py_DECREF(result);
121 return NULL;
122 }
123 if (PyList_Append(result, v) < 0) {
124 Py_DECREF(v);
125 Py_DECREF(result);
126 return NULL;
127 }
128 Py_DECREF(v);
129 }
130 return result;
131}
132
133void
134inc_count(PyTypeObject *tp)
135{
136 if (tp->tp_next == NULL && tp->tp_prev == NULL) {
137 /* first time; insert in linked list */
138 if (tp->tp_next != NULL) /* sanity check */
139 Py_FatalError("XXX inc_count sanity check");
140 if (type_list)
141 type_list->tp_prev = tp;
142 tp->tp_next = type_list;
143 /* Note that as of Python 2.2, heap-allocated type objects
144 * can go away, but this code requires that they stay alive
145 * until program exit. That's why we're careful with
146 * refcounts here. type_list gets a new reference to tp,
147 * while ownership of the reference type_list used to hold
148 * (if any) was transferred to tp->tp_next in the line above.
149 * tp is thus effectively immortal after this.
150 */
151 Py_INCREF(tp);
152 type_list = tp;
153#ifdef Py_TRACE_REFS
154 /* Also insert in the doubly-linked list of all objects,
155 * if not already there.
156 */
157 _Py_AddToAllObjects((PyObject *)tp, 0);
158#endif
159 }
160 tp->tp_allocs++;
161 if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
162 tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
163}
164
165void dec_count(PyTypeObject *tp)
166{
167 tp->tp_frees++;
168 if (unlist_types_without_objects &&
169 tp->tp_allocs == tp->tp_frees) {
170 /* unlink the type from type_list */
171 if (tp->tp_prev)
172 tp->tp_prev->tp_next = tp->tp_next;
173 else
174 type_list = tp->tp_next;
175 if (tp->tp_next)
176 tp->tp_next->tp_prev = tp->tp_prev;
177 tp->tp_next = tp->tp_prev = NULL;
178 Py_DECREF(tp);
179 }
180}
181
182#endif
183
184#ifdef Py_REF_DEBUG
185/* Log a fatal error; doesn't return. */
186void
187_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
188{
189 char buf[300];
190
191 PyOS_snprintf(buf, sizeof(buf),
192 "%s:%i object at %p has negative ref count "
193 "%" PY_FORMAT_SIZE_T "d",
194 fname, lineno, op, op->ob_refcnt);
195 Py_FatalError(buf);
196}
197
198#endif /* Py_REF_DEBUG */
199
200void
201Py_IncRef(PyObject *o)
202{
203 Py_XINCREF(o);
204}
205
206void
207Py_DecRef(PyObject *o)
208{
209 Py_XDECREF(o);
210}
211
212PyObject *
213PyObject_Init(PyObject *op, PyTypeObject *tp)
214{
215 if (op == NULL)
216 return PyErr_NoMemory();
217 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
218 Py_TYPE(op) = tp;
219 _Py_NewReference(op);
220 return op;
221}
222
223PyVarObject *
224PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
225{
226 if (op == NULL)
227 return (PyVarObject *) PyErr_NoMemory();
228 /* Any changes should be reflected in PyObject_INIT_VAR */
229 op->ob_size = size;
230 Py_TYPE(op) = tp;
231 _Py_NewReference((PyObject *)op);
232 return op;
233}
234
235PyObject *
236_PyObject_New(PyTypeObject *tp)
237{
238 PyObject *op;
239 op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
240 if (op == NULL)
241 return PyErr_NoMemory();
242 return PyObject_INIT(op, tp);
243}
244
245PyVarObject *
246_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
247{
248 PyVarObject *op;
249 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
250 op = (PyVarObject *) PyObject_MALLOC(size);
251 if (op == NULL)
252 return (PyVarObject *)PyErr_NoMemory();
253 return PyObject_INIT_VAR(op, tp, nitems);
254}
255
256/* for binary compatibility with 2.2 */
257#undef _PyObject_Del
258void
259_PyObject_Del(PyObject *op)
260{
261 PyObject_FREE(op);
262}
263
264/* Implementation of PyObject_Print with recursion checking */
265static int
266internal_print(PyObject *op, FILE *fp, int flags, int nesting)
267{
268 int ret = 0;
269 if (nesting > 10) {
270 PyErr_SetString(PyExc_RuntimeError, "print recursion");
271 return -1;
272 }
273 if (PyErr_CheckSignals())
274 return -1;
275#ifdef USE_STACKCHECK
276 if (PyOS_CheckStack()) {
277 PyErr_SetString(PyExc_MemoryError, "stack overflow");
278 return -1;
279 }
280#endif
281 clearerr(fp); /* Clear any previous error condition */
282 if (op == NULL) {
283 Py_BEGIN_ALLOW_THREADS
284 fprintf(fp, "<nil>");
285 Py_END_ALLOW_THREADS
286 }
287 else {
288 if (op->ob_refcnt <= 0)
289 /* XXX(twouters) cast refcount to long until %zd is
290 universally available */
291 Py_BEGIN_ALLOW_THREADS
292 fprintf(fp, "<refcnt %ld at %p>",
293 (long)op->ob_refcnt, op);
294 Py_END_ALLOW_THREADS
295 else if (Py_TYPE(op)->tp_print == NULL) {
296 PyObject *s;
297 if (flags & Py_PRINT_RAW)
298 s = PyObject_Str(op);
299 else
300 s = PyObject_Repr(op);
301 if (s == NULL)
302 ret = -1;
303 else {
304 ret = internal_print(s, fp, Py_PRINT_RAW,
305 nesting+1);
306 }
307 Py_XDECREF(s);
308 }
309 else
310 ret = (*Py_TYPE(op)->tp_print)(op, fp, flags);
311 }
312 if (ret == 0) {
313 if (ferror(fp)) {
314 PyErr_SetFromErrno(PyExc_IOError);
315 clearerr(fp);
316 ret = -1;
317 }
318 }
319 return ret;
320}
321
322int
323PyObject_Print(PyObject *op, FILE *fp, int flags)
324{
325 return internal_print(op, fp, flags, 0);
326}
327
328
329/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
330void _PyObject_Dump(PyObject* op)
331{
332 if (op == NULL)
333 fprintf(stderr, "NULL\n");
334 else {
335#ifdef WITH_THREAD
336 PyGILState_STATE gil;
337#endif
338 fprintf(stderr, "object : ");
339#ifdef WITH_THREAD
340 gil = PyGILState_Ensure();
341#endif
342 (void)PyObject_Print(op, stderr, 0);
343#ifdef WITH_THREAD
344 PyGILState_Release(gil);
345#endif
346 /* XXX(twouters) cast refcount to long until %zd is
347 universally available */
348 fprintf(stderr, "\n"
349 "type : %s\n"
350 "refcount: %ld\n"
351 "address : %p\n",
352 Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name,
353 (long)op->ob_refcnt,
354 op);
355 }
356}
357
358PyObject *
359PyObject_Repr(PyObject *v)
360{
361 if (PyErr_CheckSignals())
362 return NULL;
363#ifdef USE_STACKCHECK
364 if (PyOS_CheckStack()) {
365 PyErr_SetString(PyExc_MemoryError, "stack overflow");
366 return NULL;
367 }
368#endif
369 if (v == NULL)
370 return PyString_FromString("<NULL>");
371 else if (Py_TYPE(v)->tp_repr == NULL)
372 return PyString_FromFormat("<%s object at %p>",
373 Py_TYPE(v)->tp_name, v);
374 else {
375 PyObject *res;
376 res = (*Py_TYPE(v)->tp_repr)(v);
377 if (res == NULL)
378 return NULL;
379#ifdef Py_USING_UNICODE
380 if (PyUnicode_Check(res)) {
381 PyObject* str;
382 str = PyUnicode_AsEncodedString(res, NULL, NULL);
383 Py_DECREF(res);
384 if (str)
385 res = str;
386 else
387 return NULL;
388 }
389#endif
390 if (!PyString_Check(res)) {
391 PyErr_Format(PyExc_TypeError,
392 "__repr__ returned non-string (type %.200s)",
393 Py_TYPE(res)->tp_name);
394 Py_DECREF(res);
395 return NULL;
396 }
397 return res;
398 }
399}
400
401PyObject *
402_PyObject_Str(PyObject *v)
403{
404 PyObject *res;
405 int type_ok;
406 if (v == NULL)
407 return PyString_FromString("<NULL>");
408 if (PyString_CheckExact(v)) {
409 Py_INCREF(v);
410 return v;
411 }
412#ifdef Py_USING_UNICODE
413 if (PyUnicode_CheckExact(v)) {
414 Py_INCREF(v);
415 return v;
416 }
417#endif
418 if (Py_TYPE(v)->tp_str == NULL)
419 return PyObject_Repr(v);
420
421 /* It is possible for a type to have a tp_str representation that loops
422 infinitely. */
423 if (Py_EnterRecursiveCall(" while getting the str of an object"))
424 return NULL;
425 res = (*Py_TYPE(v)->tp_str)(v);
426 Py_LeaveRecursiveCall();
427 if (res == NULL)
428 return NULL;
429 type_ok = PyString_Check(res);
430#ifdef Py_USING_UNICODE
431 type_ok = type_ok || PyUnicode_Check(res);
432#endif
433 if (!type_ok) {
434 PyErr_Format(PyExc_TypeError,
435 "__str__ returned non-string (type %.200s)",
436 Py_TYPE(res)->tp_name);
437 Py_DECREF(res);
438 return NULL;
439 }
440 return res;
441}
442
443PyObject *
444PyObject_Str(PyObject *v)
445{
446 PyObject *res = _PyObject_Str(v);
447 if (res == NULL)
448 return NULL;
449#ifdef Py_USING_UNICODE
450 if (PyUnicode_Check(res)) {
451 PyObject* str;
452 str = PyUnicode_AsEncodedString(res, NULL, NULL);
453 Py_DECREF(res);
454 if (str)
455 res = str;
456 else
457 return NULL;
458 }
459#endif
460 assert(PyString_Check(res));
461 return res;
462}
463
464#ifdef Py_USING_UNICODE
465PyObject *
466PyObject_Unicode(PyObject *v)
467{
468 PyObject *res;
469 PyObject *func;
470 PyObject *str;
471 int unicode_method_found = 0;
472 static PyObject *unicodestr;
473
474 if (v == NULL) {
475 res = PyString_FromString("<NULL>");
476 if (res == NULL)
477 return NULL;
478 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
479 Py_DECREF(res);
480 return str;
481 } else if (PyUnicode_CheckExact(v)) {
482 Py_INCREF(v);
483 return v;
484 }
485
486 /* Try the __unicode__ method */
487 if (unicodestr == NULL) {
488 unicodestr= PyString_InternFromString("__unicode__");
489 if (unicodestr == NULL)
490 return NULL;
491 }
492 if (PyInstance_Check(v)) {
493 /* We're an instance of a classic class */
494 /* Try __unicode__ from the instance -- alas we have no type */
495 func = PyObject_GetAttr(v, unicodestr);
496 if (func != NULL) {
497 unicode_method_found = 1;
498 res = PyObject_CallFunctionObjArgs(func, NULL);
499 Py_DECREF(func);
500 }
501 else {
502 PyErr_Clear();
503 }
504 }
505 else {
506 /* Not a classic class instance, try __unicode__ from type */
507 /* _PyType_Lookup doesn't create a reference */
508 func = _PyType_Lookup(Py_TYPE(v), unicodestr);
509 if (func != NULL) {
510 unicode_method_found = 1;
511 res = PyObject_CallFunctionObjArgs(func, v, NULL);
512 }
513 else {
514 PyErr_Clear();
515 }
516 }
517
518 /* Didn't find __unicode__ */
519 if (!unicode_method_found) {
520 if (PyUnicode_Check(v)) {
521 /* For a Unicode subtype that's didn't overwrite __unicode__,
522 return a true Unicode object with the same data. */
523 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
524 PyUnicode_GET_SIZE(v));
525 }
526 if (PyString_CheckExact(v)) {
527 Py_INCREF(v);
528 res = v;
529 }
530 else {
531 if (Py_TYPE(v)->tp_str != NULL)
532 res = (*Py_TYPE(v)->tp_str)(v);
533 else
534 res = PyObject_Repr(v);
535 }
536 }
537
538 if (res == NULL)
539 return NULL;
540 if (!PyUnicode_Check(res)) {
541 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
542 Py_DECREF(res);
543 res = str;
544 }
545 return res;
546}
547#endif
548
549
550/* Helper to warn about deprecated tp_compare return values. Return:
551 -2 for an exception;
552 -1 if v < w;
553 0 if v == w;
554 1 if v > w.
555 (This function cannot return 2.)
556*/
557static int
558adjust_tp_compare(int c)
559{
560 if (PyErr_Occurred()) {
561 if (c != -1 && c != -2) {
562 PyObject *t, *v, *tb;
563 PyErr_Fetch(&t, &v, &tb);
564 if (PyErr_Warn(PyExc_RuntimeWarning,
565 "tp_compare didn't return -1 or -2 "
566 "for exception") < 0) {
567 Py_XDECREF(t);
568 Py_XDECREF(v);
569 Py_XDECREF(tb);
570 }
571 else
572 PyErr_Restore(t, v, tb);
573 }
574 return -2;
575 }
576 else if (c < -1 || c > 1) {
577 if (PyErr_Warn(PyExc_RuntimeWarning,
578 "tp_compare didn't return -1, 0 or 1") < 0)
579 return -2;
580 else
581 return c < -1 ? -1 : 1;
582 }
583 else {
584 assert(c >= -1 && c <= 1);
585 return c;
586 }
587}
588
589
590/* Macro to get the tp_richcompare field of a type if defined */
591#define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
592 ? (t)->tp_richcompare : NULL)
593
594/* Map rich comparison operators to their swapped version, e.g. LT --> GT */
595int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
596
597/* Try a genuine rich comparison, returning an object. Return:
598 NULL for exception;
599 NotImplemented if this particular rich comparison is not implemented or
600 undefined;
601 some object not equal to NotImplemented if it is implemented
602 (this latter object may not be a Boolean).
603*/
604static PyObject *
605try_rich_compare(PyObject *v, PyObject *w, int op)
606{
607 richcmpfunc f;
608 PyObject *res;
609
610 if (v->ob_type != w->ob_type &&
611 PyType_IsSubtype(w->ob_type, v->ob_type) &&
612 (f = RICHCOMPARE(w->ob_type)) != NULL) {
613 res = (*f)(w, v, _Py_SwappedOp[op]);
614 if (res != Py_NotImplemented)
615 return res;
616 Py_DECREF(res);
617 }
618 if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
619 res = (*f)(v, w, op);
620 if (res != Py_NotImplemented)
621 return res;
622 Py_DECREF(res);
623 }
624 if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
625 return (*f)(w, v, _Py_SwappedOp[op]);
626 }
627 res = Py_NotImplemented;
628 Py_INCREF(res);
629 return res;
630}
631
632/* Try a genuine rich comparison, returning an int. Return:
633 -1 for exception (including the case where try_rich_compare() returns an
634 object that's not a Boolean);
635 0 if the outcome is false;
636 1 if the outcome is true;
637 2 if this particular rich comparison is not implemented or undefined.
638*/
639static int
640try_rich_compare_bool(PyObject *v, PyObject *w, int op)
641{
642 PyObject *res;
643 int ok;
644
645 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
646 return 2; /* Shortcut, avoid INCREF+DECREF */
647 res = try_rich_compare(v, w, op);
648 if (res == NULL)
649 return -1;
650 if (res == Py_NotImplemented) {
651 Py_DECREF(res);
652 return 2;
653 }
654 ok = PyObject_IsTrue(res);
655 Py_DECREF(res);
656 return ok;
657}
658
659/* Try rich comparisons to determine a 3-way comparison. Return:
660 -2 for an exception;
661 -1 if v < w;
662 0 if v == w;
663 1 if v > w;
664 2 if this particular rich comparison is not implemented or undefined.
665*/
666static int
667try_rich_to_3way_compare(PyObject *v, PyObject *w)
668{
669 static struct { int op; int outcome; } tries[3] = {
670 /* Try this operator, and if it is true, use this outcome: */
671 {Py_EQ, 0},
672 {Py_LT, -1},
673 {Py_GT, 1},
674 };
675 int i;
676
677 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
678 return 2; /* Shortcut */
679
680 for (i = 0; i < 3; i++) {
681 switch (try_rich_compare_bool(v, w, tries[i].op)) {
682 case -1:
683 return -2;
684 case 1:
685 return tries[i].outcome;
686 }
687 }
688
689 return 2;
690}
691
692/* Try a 3-way comparison, returning an int. Return:
693 -2 for an exception;
694 -1 if v < w;
695 0 if v == w;
696 1 if v > w;
697 2 if this particular 3-way comparison is not implemented or undefined.
698*/
699static int
700try_3way_compare(PyObject *v, PyObject *w)
701{
702 int c;
703 cmpfunc f;
704
705 /* Comparisons involving instances are given to instance_compare,
706 which has the same return conventions as this function. */
707
708 f = v->ob_type->tp_compare;
709 if (PyInstance_Check(v))
710 return (*f)(v, w);
711 if (PyInstance_Check(w))
712 return (*w->ob_type->tp_compare)(v, w);
713
714 /* If both have the same (non-NULL) tp_compare, use it. */
715 if (f != NULL && f == w->ob_type->tp_compare) {
716 c = (*f)(v, w);
717 return adjust_tp_compare(c);
718 }
719
720 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
721 if (f == _PyObject_SlotCompare ||
722 w->ob_type->tp_compare == _PyObject_SlotCompare)
723 return _PyObject_SlotCompare(v, w);
724
725 /* If we're here, v and w,
726 a) are not instances;
727 b) have different types or a type without tp_compare; and
728 c) don't have a user-defined tp_compare.
729 tp_compare implementations in C assume that both arguments
730 have their type, so we give up if the coercion fails or if
731 it yields types which are still incompatible (which can
732 happen with a user-defined nb_coerce).
733 */
734 c = PyNumber_CoerceEx(&v, &w);
735 if (c < 0)
736 return -2;
737 if (c > 0)
738 return 2;
739 f = v->ob_type->tp_compare;
740 if (f != NULL && f == w->ob_type->tp_compare) {
741 c = (*f)(v, w);
742 Py_DECREF(v);
743 Py_DECREF(w);
744 return adjust_tp_compare(c);
745 }
746
747 /* No comparison defined */
748 Py_DECREF(v);
749 Py_DECREF(w);
750 return 2;
751}
752
753/* Final fallback 3-way comparison, returning an int. Return:
754 -2 if an error occurred;
755 -1 if v < w;
756 0 if v == w;
757 1 if v > w.
758*/
759static int
760default_3way_compare(PyObject *v, PyObject *w)
761{
762 int c;
763 const char *vname, *wname;
764
765 if (v->ob_type == w->ob_type) {
766 /* When comparing these pointers, they must be cast to
767 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
768 * uintptr_t). ANSI specifies that pointer compares other
769 * than == and != to non-related structures are undefined.
770 */
771 Py_uintptr_t vv = (Py_uintptr_t)v;
772 Py_uintptr_t ww = (Py_uintptr_t)w;
773 return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
774 }
775
776 /* None is smaller than anything */
777 if (v == Py_None)
778 return -1;
779 if (w == Py_None)
780 return 1;
781
782 /* different type: compare type names; numbers are smaller */
783 if (PyNumber_Check(v))
784 vname = "";
785 else
786 vname = v->ob_type->tp_name;
787 if (PyNumber_Check(w))
788 wname = "";
789 else
790 wname = w->ob_type->tp_name;
791 c = strcmp(vname, wname);
792 if (c < 0)
793 return -1;
794 if (c > 0)
795 return 1;
796 /* Same type name, or (more likely) incomparable numeric types */
797 return ((Py_uintptr_t)(v->ob_type) < (
798 Py_uintptr_t)(w->ob_type)) ? -1 : 1;
799}
800
801/* Do a 3-way comparison, by hook or by crook. Return:
802 -2 for an exception (but see below);
803 -1 if v < w;
804 0 if v == w;
805 1 if v > w;
806 BUT: if the object implements a tp_compare function, it returns
807 whatever this function returns (whether with an exception or not).
808*/
809static int
810do_cmp(PyObject *v, PyObject *w)
811{
812 int c;
813 cmpfunc f;
814
815 if (v->ob_type == w->ob_type
816 && (f = v->ob_type->tp_compare) != NULL) {
817 c = (*f)(v, w);
818 if (PyInstance_Check(v)) {
819 /* Instance tp_compare has a different signature.
820 But if it returns undefined we fall through. */
821 if (c != 2)
822 return c;
823 /* Else fall through to try_rich_to_3way_compare() */
824 }
825 else
826 return adjust_tp_compare(c);
827 }
828 /* We only get here if one of the following is true:
829 a) v and w have different types
830 b) v and w have the same type, which doesn't have tp_compare
831 c) v and w are instances, and either __cmp__ is not defined or
832 __cmp__ returns NotImplemented
833 */
834 c = try_rich_to_3way_compare(v, w);
835 if (c < 2)
836 return c;
837 c = try_3way_compare(v, w);
838 if (c < 2)
839 return c;
840 return default_3way_compare(v, w);
841}
842
843/* Compare v to w. Return
844 -1 if v < w or exception (PyErr_Occurred() true in latter case).
845 0 if v == w.
846 1 if v > w.
847 XXX The docs (C API manual) say the return value is undefined in case
848 XXX of error.
849*/
850int
851PyObject_Compare(PyObject *v, PyObject *w)
852{
853 int result;
854
855 if (v == NULL || w == NULL) {
856 PyErr_BadInternalCall();
857 return -1;
858 }
859 if (v == w)
860 return 0;
861 if (Py_EnterRecursiveCall(" in cmp"))
862 return -1;
863 result = do_cmp(v, w);
864 Py_LeaveRecursiveCall();
865 return result < 0 ? -1 : result;
866}
867
868/* Return (new reference to) Py_True or Py_False. */
869static PyObject *
870convert_3way_to_object(int op, int c)
871{
872 PyObject *result;
873 switch (op) {
874 case Py_LT: c = c < 0; break;
875 case Py_LE: c = c <= 0; break;
876 case Py_EQ: c = c == 0; break;
877 case Py_NE: c = c != 0; break;
878 case Py_GT: c = c > 0; break;
879 case Py_GE: c = c >= 0; break;
880 }
881 result = c ? Py_True : Py_False;
882 Py_INCREF(result);
883 return result;
884}
885
886/* We want a rich comparison but don't have one. Try a 3-way cmp instead.
887 Return
888 NULL if error
889 Py_True if v op w
890 Py_False if not (v op w)
891*/
892static PyObject *
893try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
894{
895 int c;
896
897 c = try_3way_compare(v, w);
898 if (c >= 2) {
899
900 /* Py3K warning if types are not equal and comparison isn't == or != */
901 if (Py_Py3kWarningFlag &&
902 v->ob_type != w->ob_type && op != Py_EQ && op != Py_NE &&
903 PyErr_WarnEx(PyExc_DeprecationWarning,
904 "comparing unequal types not supported "
905 "in 3.x", 1) < 0) {
906 return NULL;
907 }
908
909 c = default_3way_compare(v, w);
910 }
911 if (c <= -2)
912 return NULL;
913 return convert_3way_to_object(op, c);
914}
915
916/* Do rich comparison on v and w. Return
917 NULL if error
918 Else a new reference to an object other than Py_NotImplemented, usually(?):
919 Py_True if v op w
920 Py_False if not (v op w)
921*/
922static PyObject *
923do_richcmp(PyObject *v, PyObject *w, int op)
924{
925 PyObject *res;
926
927 res = try_rich_compare(v, w, op);
928 if (res != Py_NotImplemented)
929 return res;
930 Py_DECREF(res);
931
932 return try_3way_to_rich_compare(v, w, op);
933}
934
935/* Return:
936 NULL for exception;
937 some object not equal to NotImplemented if it is implemented
938 (this latter object may not be a Boolean).
939*/
940PyObject *
941PyObject_RichCompare(PyObject *v, PyObject *w, int op)
942{
943 PyObject *res;
944
945 assert(Py_LT <= op && op <= Py_GE);
946 if (Py_EnterRecursiveCall(" in cmp"))
947 return NULL;
948
949 /* If the types are equal, and not old-style instances, try to
950 get out cheap (don't bother with coercions etc.). */
951 if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
952 cmpfunc fcmp;
953 richcmpfunc frich = RICHCOMPARE(v->ob_type);
954 /* If the type has richcmp, try it first. try_rich_compare
955 tries it two-sided, which is not needed since we've a
956 single type only. */
957 if (frich != NULL) {
958 res = (*frich)(v, w, op);
959 if (res != Py_NotImplemented)
960 goto Done;
961 Py_DECREF(res);
962 }
963 /* No richcmp, or this particular richmp not implemented.
964 Try 3-way cmp. */
965 fcmp = v->ob_type->tp_compare;
966 if (fcmp != NULL) {
967 int c = (*fcmp)(v, w);
968 c = adjust_tp_compare(c);
969 if (c == -2) {
970 res = NULL;
971 goto Done;
972 }
973 res = convert_3way_to_object(op, c);
974 goto Done;
975 }
976 }
977
978 /* Fast path not taken, or couldn't deliver a useful result. */
979 res = do_richcmp(v, w, op);
980Done:
981 Py_LeaveRecursiveCall();
982 return res;
983}
984
985/* Return -1 if error; 1 if v op w; 0 if not (v op w). */
986int
987PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
988{
989 PyObject *res;
990 int ok;
991
992 /* Quick result when objects are the same.
993 Guarantees that identity implies equality. */
994 if (v == w) {
995 if (op == Py_EQ)
996 return 1;
997 else if (op == Py_NE)
998 return 0;
999 }
1000
1001 res = PyObject_RichCompare(v, w, op);
1002 if (res == NULL)
1003 return -1;
1004 if (PyBool_Check(res))
1005 ok = (res == Py_True);
1006 else
1007 ok = PyObject_IsTrue(res);
1008 Py_DECREF(res);
1009 return ok;
1010}
1011
1012/* Set of hash utility functions to help maintaining the invariant that
1013 if a==b then hash(a)==hash(b)
1014
1015 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
1016*/
1017
1018long
1019_Py_HashDouble(double v)
1020{
1021 double intpart, fractpart;
1022 int expo;
1023 long hipart;
1024 long x; /* the final hash value */
1025 /* This is designed so that Python numbers of different types
1026 * that compare equal hash to the same value; otherwise comparisons
1027 * of mapping keys will turn out weird.
1028 */
1029
1030 fractpart = modf(v, &intpart);
1031 if (fractpart == 0.0) {
1032 /* This must return the same hash as an equal int or long. */
1033 if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) {
1034 /* Convert to long and use its hash. */
1035 PyObject *plong; /* converted to Python long */
1036 if (Py_IS_INFINITY(intpart))
1037 /* can't convert to long int -- arbitrary */
1038 v = v < 0 ? -271828.0 : 314159.0;
1039 plong = PyLong_FromDouble(v);
1040 if (plong == NULL)
1041 return -1;
1042 x = PyObject_Hash(plong);
1043 Py_DECREF(plong);
1044 return x;
1045 }
1046 /* Fits in a C long == a Python int, so is its own hash. */
1047 x = (long)intpart;
1048 if (x == -1)
1049 x = -2;
1050 return x;
1051 }
1052 /* The fractional part is non-zero, so we don't have to worry about
1053 * making this match the hash of some other type.
1054 * Use frexp to get at the bits in the double.
1055 * Since the VAX D double format has 56 mantissa bits, which is the
1056 * most of any double format in use, each of these parts may have as
1057 * many as (but no more than) 56 significant bits.
1058 * So, assuming sizeof(long) >= 4, each part can be broken into two
1059 * longs; frexp and multiplication are used to do that.
1060 * Also, since the Cray double format has 15 exponent bits, which is
1061 * the most of any double format in use, shifting the exponent field
1062 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
1063 */
1064 v = frexp(v, &expo);
1065 v *= 2147483648.0; /* 2**31 */
1066 hipart = (long)v; /* take the top 32 bits */
1067 v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
1068 x = hipart + (long)v + (expo << 15);
1069 if (x == -1)
1070 x = -2;
1071 return x;
1072}
1073
1074long
1075_Py_HashPointer(void *p)
1076{
1077#if SIZEOF_LONG >= SIZEOF_VOID_P
1078 return (long)p;
1079#else
1080 /* convert to a Python long and hash that */
1081 PyObject* longobj;
1082 long x;
1083
1084 if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
1085 x = -1;
1086 goto finally;
1087 }
1088 x = PyObject_Hash(longobj);
1089
1090finally:
1091 Py_XDECREF(longobj);
1092 return x;
1093#endif
1094}
1095
1096long
1097PyObject_HashNotImplemented(PyObject *self)
1098{
1099 PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
1100 self->ob_type->tp_name);
1101 return -1;
1102}
1103
1104long
1105PyObject_Hash(PyObject *v)
1106{
1107 PyTypeObject *tp = v->ob_type;
1108 if (tp->tp_hash != NULL)
1109 return (*tp->tp_hash)(v);
1110 /* To keep to the general practice that inheriting
1111 * solely from object in C code should work without
1112 * an explicit call to PyType_Ready, we implicitly call
1113 * PyType_Ready here and then check the tp_hash slot again
1114 */
1115 if (tp->tp_dict == NULL) {
1116 if (PyType_Ready(tp) < 0)
1117 return -1;
1118 if (tp->tp_hash != NULL)
1119 return (*tp->tp_hash)(v);
1120 }
1121 if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
1122 return _Py_HashPointer(v); /* Use address as hash value */
1123 }
1124 /* If there's a cmp but no hash defined, the object can't be hashed */
1125 return PyObject_HashNotImplemented(v);
1126}
1127
1128PyObject *
1129PyObject_GetAttrString(PyObject *v, const char *name)
1130{
1131 PyObject *w, *res;
1132
1133 if (Py_TYPE(v)->tp_getattr != NULL)
1134 return (*Py_TYPE(v)->tp_getattr)(v, (char*)name);
1135 w = PyString_InternFromString(name);
1136 if (w == NULL)
1137 return NULL;
1138 res = PyObject_GetAttr(v, w);
1139 Py_XDECREF(w);
1140 return res;
1141}
1142
1143int
1144PyObject_HasAttrString(PyObject *v, const char *name)
1145{
1146 PyObject *res = PyObject_GetAttrString(v, name);
1147 if (res != NULL) {
1148 Py_DECREF(res);
1149 return 1;
1150 }
1151 PyErr_Clear();
1152 return 0;
1153}
1154
1155int
1156PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
1157{
1158 PyObject *s;
1159 int res;
1160
1161 if (Py_TYPE(v)->tp_setattr != NULL)
1162 return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w);
1163 s = PyString_InternFromString(name);
1164 if (s == NULL)
1165 return -1;
1166 res = PyObject_SetAttr(v, s, w);
1167 Py_XDECREF(s);
1168 return res;
1169}
1170
1171PyObject *
1172PyObject_GetAttr(PyObject *v, PyObject *name)
1173{
1174 PyTypeObject *tp = Py_TYPE(v);
1175
1176 if (!PyString_Check(name)) {
1177#ifdef Py_USING_UNICODE
1178 /* The Unicode to string conversion is done here because the
1179 existing tp_getattro slots expect a string object as name
1180 and we wouldn't want to break those. */
1181 if (PyUnicode_Check(name)) {
1182 name = _PyUnicode_AsDefaultEncodedString(name, NULL);
1183 if (name == NULL)
1184 return NULL;
1185 }
1186 else
1187#endif
1188 {
1189 PyErr_Format(PyExc_TypeError,
1190 "attribute name must be string, not '%.200s'",
1191 Py_TYPE(name)->tp_name);
1192 return NULL;
1193 }
1194 }
1195 if (tp->tp_getattro != NULL)
1196 return (*tp->tp_getattro)(v, name);
1197 if (tp->tp_getattr != NULL)
1198 return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
1199 PyErr_Format(PyExc_AttributeError,
1200 "'%.50s' object has no attribute '%.400s'",
1201 tp->tp_name, PyString_AS_STRING(name));
1202 return NULL;
1203}
1204
1205int
1206PyObject_HasAttr(PyObject *v, PyObject *name)
1207{
1208 PyObject *res = PyObject_GetAttr(v, name);
1209 if (res != NULL) {
1210 Py_DECREF(res);
1211 return 1;
1212 }
1213 PyErr_Clear();
1214 return 0;
1215}
1216
1217int
1218PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
1219{
1220 PyTypeObject *tp = Py_TYPE(v);
1221 int err;
1222
1223 if (!PyString_Check(name)){
1224#ifdef Py_USING_UNICODE
1225 /* The Unicode to string conversion is done here because the
1226 existing tp_setattro slots expect a string object as name
1227 and we wouldn't want to break those. */
1228 if (PyUnicode_Check(name)) {
1229 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1230 if (name == NULL)
1231 return -1;
1232 }
1233 else
1234#endif
1235 {
1236 PyErr_Format(PyExc_TypeError,
1237 "attribute name must be string, not '%.200s'",
1238 Py_TYPE(name)->tp_name);
1239 return -1;
1240 }
1241 }
1242 else
1243 Py_INCREF(name);
1244
1245 PyString_InternInPlace(&name);
1246 if (tp->tp_setattro != NULL) {
1247 err = (*tp->tp_setattro)(v, name, value);
1248 Py_DECREF(name);
1249 return err;
1250 }
1251 if (tp->tp_setattr != NULL) {
1252 err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
1253 Py_DECREF(name);
1254 return err;
1255 }
1256 Py_DECREF(name);
1257 if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
1258 PyErr_Format(PyExc_TypeError,
1259 "'%.100s' object has no attributes "
1260 "(%s .%.100s)",
1261 tp->tp_name,
1262 value==NULL ? "del" : "assign to",
1263 PyString_AS_STRING(name));
1264 else
1265 PyErr_Format(PyExc_TypeError,
1266 "'%.100s' object has only read-only attributes "
1267 "(%s .%.100s)",
1268 tp->tp_name,
1269 value==NULL ? "del" : "assign to",
1270 PyString_AS_STRING(name));
1271 return -1;
1272}
1273
1274/* Helper to get a pointer to an object's __dict__ slot, if any */
1275
1276PyObject **
1277_PyObject_GetDictPtr(PyObject *obj)
1278{
1279 Py_ssize_t dictoffset;
1280 PyTypeObject *tp = Py_TYPE(obj);
1281
1282 if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
1283 return NULL;
1284 dictoffset = tp->tp_dictoffset;
1285 if (dictoffset == 0)
1286 return NULL;
1287 if (dictoffset < 0) {
1288 Py_ssize_t tsize;
1289 size_t size;
1290
1291 tsize = ((PyVarObject *)obj)->ob_size;
1292 if (tsize < 0)
1293 tsize = -tsize;
1294 size = _PyObject_VAR_SIZE(tp, tsize);
1295
1296 dictoffset += (long)size;
1297 assert(dictoffset > 0);
1298 assert(dictoffset % SIZEOF_VOID_P == 0);
1299 }
1300 return (PyObject **) ((char *)obj + dictoffset);
1301}
1302
1303PyObject *
1304PyObject_SelfIter(PyObject *obj)
1305{
1306 Py_INCREF(obj);
1307 return obj;
1308}
1309
1310/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1311
1312PyObject *
1313PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
1314{
1315 PyTypeObject *tp = Py_TYPE(obj);
1316 PyObject *descr = NULL;
1317 PyObject *res = NULL;
1318 descrgetfunc f;
1319 Py_ssize_t dictoffset;
1320 PyObject **dictptr;
1321
1322 if (!PyString_Check(name)){
1323#ifdef Py_USING_UNICODE
1324 /* The Unicode to string conversion is done here because the
1325 existing tp_setattro slots expect a string object as name
1326 and we wouldn't want to break those. */
1327 if (PyUnicode_Check(name)) {
1328 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1329 if (name == NULL)
1330 return NULL;
1331 }
1332 else
1333#endif
1334 {
1335 PyErr_Format(PyExc_TypeError,
1336 "attribute name must be string, not '%.200s'",
1337 Py_TYPE(name)->tp_name);
1338 return NULL;
1339 }
1340 }
1341 else
1342 Py_INCREF(name);
1343
1344 if (tp->tp_dict == NULL) {
1345 if (PyType_Ready(tp) < 0)
1346 goto done;
1347 }
1348
1349#if 0 /* XXX this is not quite _PyType_Lookup anymore */
1350 /* Inline _PyType_Lookup */
1351 {
1352 Py_ssize_t i, n;
1353 PyObject *mro, *base, *dict;
1354
1355 /* Look in tp_dict of types in MRO */
1356 mro = tp->tp_mro;
1357 assert(mro != NULL);
1358 assert(PyTuple_Check(mro));
1359 n = PyTuple_GET_SIZE(mro);
1360 for (i = 0; i < n; i++) {
1361 base = PyTuple_GET_ITEM(mro, i);
1362 if (PyClass_Check(base))
1363 dict = ((PyClassObject *)base)->cl_dict;
1364 else {
1365 assert(PyType_Check(base));
1366 dict = ((PyTypeObject *)base)->tp_dict;
1367 }
1368 assert(dict && PyDict_Check(dict));
1369 descr = PyDict_GetItem(dict, name);
1370 if (descr != NULL)
1371 break;
1372 }
1373 }
1374#else
1375 descr = _PyType_Lookup(tp, name);
1376#endif
1377
1378 Py_XINCREF(descr);
1379
1380 f = NULL;
1381 if (descr != NULL &&
1382 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1383 f = descr->ob_type->tp_descr_get;
1384 if (f != NULL && PyDescr_IsData(descr)) {
1385 res = f(descr, obj, (PyObject *)obj->ob_type);
1386 Py_DECREF(descr);
1387 goto done;
1388 }
1389 }
1390
1391 /* Inline _PyObject_GetDictPtr */
1392 dictoffset = tp->tp_dictoffset;
1393 if (dictoffset != 0) {
1394 PyObject *dict;
1395 if (dictoffset < 0) {
1396 Py_ssize_t tsize;
1397 size_t size;
1398
1399 tsize = ((PyVarObject *)obj)->ob_size;
1400 if (tsize < 0)
1401 tsize = -tsize;
1402 size = _PyObject_VAR_SIZE(tp, tsize);
1403
1404 dictoffset += (long)size;
1405 assert(dictoffset > 0);
1406 assert(dictoffset % SIZEOF_VOID_P == 0);
1407 }
1408 dictptr = (PyObject **) ((char *)obj + dictoffset);
1409 dict = *dictptr;
1410 if (dict != NULL) {
1411 Py_INCREF(dict);
1412 res = PyDict_GetItem(dict, name);
1413 if (res != NULL) {
1414 Py_INCREF(res);
1415 Py_XDECREF(descr);
1416 Py_DECREF(dict);
1417 goto done;
1418 }
1419 Py_DECREF(dict);
1420 }
1421 }
1422
1423 if (f != NULL) {
1424 res = f(descr, obj, (PyObject *)Py_TYPE(obj));
1425 Py_DECREF(descr);
1426 goto done;
1427 }
1428
1429 if (descr != NULL) {
1430 res = descr;
1431 /* descr was already increfed above */
1432 goto done;
1433 }
1434
1435 PyErr_Format(PyExc_AttributeError,
1436 "'%.50s' object has no attribute '%.400s'",
1437 tp->tp_name, PyString_AS_STRING(name));
1438 done:
1439 Py_DECREF(name);
1440 return res;
1441}
1442
1443int
1444PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
1445{
1446 PyTypeObject *tp = Py_TYPE(obj);
1447 PyObject *descr;
1448 descrsetfunc f;
1449 PyObject **dictptr;
1450 int res = -1;
1451
1452 if (!PyString_Check(name)){
1453#ifdef Py_USING_UNICODE
1454 /* The Unicode to string conversion is done here because the
1455 existing tp_setattro slots expect a string object as name
1456 and we wouldn't want to break those. */
1457 if (PyUnicode_Check(name)) {
1458 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1459 if (name == NULL)
1460 return -1;
1461 }
1462 else
1463#endif
1464 {
1465 PyErr_Format(PyExc_TypeError,
1466 "attribute name must be string, not '%.200s'",
1467 Py_TYPE(name)->tp_name);
1468 return -1;
1469 }
1470 }
1471 else
1472 Py_INCREF(name);
1473
1474 if (tp->tp_dict == NULL) {
1475 if (PyType_Ready(tp) < 0)
1476 goto done;
1477 }
1478
1479 descr = _PyType_Lookup(tp, name);
1480 f = NULL;
1481 if (descr != NULL &&
1482 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1483 f = descr->ob_type->tp_descr_set;
1484 if (f != NULL && PyDescr_IsData(descr)) {
1485 res = f(descr, obj, value);
1486 goto done;
1487 }
1488 }
1489
1490 dictptr = _PyObject_GetDictPtr(obj);
1491 if (dictptr != NULL) {
1492 PyObject *dict = *dictptr;
1493 if (dict == NULL && value != NULL) {
1494 dict = PyDict_New();
1495 if (dict == NULL)
1496 goto done;
1497 *dictptr = dict;
1498 }
1499 if (dict != NULL) {
1500 Py_INCREF(dict);
1501 if (value == NULL)
1502 res = PyDict_DelItem(dict, name);
1503 else
1504 res = PyDict_SetItem(dict, name, value);
1505 if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
1506 PyErr_SetObject(PyExc_AttributeError, name);
1507 Py_DECREF(dict);
1508 goto done;
1509 }
1510 }
1511
1512 if (f != NULL) {
1513 res = f(descr, obj, value);
1514 goto done;
1515 }
1516
1517 if (descr == NULL) {
1518 PyErr_Format(PyExc_AttributeError,
1519 "'%.100s' object has no attribute '%.200s'",
1520 tp->tp_name, PyString_AS_STRING(name));
1521 goto done;
1522 }
1523
1524 PyErr_Format(PyExc_AttributeError,
1525 "'%.50s' object attribute '%.400s' is read-only",
1526 tp->tp_name, PyString_AS_STRING(name));
1527 done:
1528 Py_DECREF(name);
1529 return res;
1530}
1531
1532/* Test a value used as condition, e.g., in a for or if statement.
1533 Return -1 if an error occurred */
1534
1535int
1536PyObject_IsTrue(PyObject *v)
1537{
1538 Py_ssize_t res;
1539 if (v == Py_True)
1540 return 1;
1541 if (v == Py_False)
1542 return 0;
1543 if (v == Py_None)
1544 return 0;
1545 else if (v->ob_type->tp_as_number != NULL &&
1546 v->ob_type->tp_as_number->nb_nonzero != NULL)
1547 res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
1548 else if (v->ob_type->tp_as_mapping != NULL &&
1549 v->ob_type->tp_as_mapping->mp_length != NULL)
1550 res = (*v->ob_type->tp_as_mapping->mp_length)(v);
1551 else if (v->ob_type->tp_as_sequence != NULL &&
1552 v->ob_type->tp_as_sequence->sq_length != NULL)
1553 res = (*v->ob_type->tp_as_sequence->sq_length)(v);
1554 else
1555 return 1;
1556 /* if it is negative, it should be either -1 or -2 */
1557 return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
1558}
1559
1560/* equivalent of 'not v'
1561 Return -1 if an error occurred */
1562
1563int
1564PyObject_Not(PyObject *v)
1565{
1566 int res;
1567 res = PyObject_IsTrue(v);
1568 if (res < 0)
1569 return res;
1570 return res == 0;
1571}
1572
1573/* Coerce two numeric types to the "larger" one.
1574 Increment the reference count on each argument.
1575 Return value:
1576 -1 if an error occurred;
1577 0 if the coercion succeeded (and then the reference counts are increased);
1578 1 if no coercion is possible (and no error is raised).
1579*/
1580int
1581PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
1582{
1583 register PyObject *v = *pv;
1584 register PyObject *w = *pw;
1585 int res;
1586
1587 /* Shortcut only for old-style types */
1588 if (v->ob_type == w->ob_type &&
1589 !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES))
1590 {
1591 Py_INCREF(v);
1592 Py_INCREF(w);
1593 return 0;
1594 }
1595 if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
1596 res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
1597 if (res <= 0)
1598 return res;
1599 }
1600 if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
1601 res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
1602 if (res <= 0)
1603 return res;
1604 }
1605 return 1;
1606}
1607
1608/* Coerce two numeric types to the "larger" one.
1609 Increment the reference count on each argument.
1610 Return -1 and raise an exception if no coercion is possible
1611 (and then no reference count is incremented).
1612*/
1613int
1614PyNumber_Coerce(PyObject **pv, PyObject **pw)
1615{
1616 int err = PyNumber_CoerceEx(pv, pw);
1617 if (err <= 0)
1618 return err;
1619 PyErr_SetString(PyExc_TypeError, "number coercion failed");
1620 return -1;
1621}
1622
1623
1624/* Test whether an object can be called */
1625
1626int
1627PyCallable_Check(PyObject *x)
1628{
1629 if (x == NULL)
1630 return 0;
1631 if (PyInstance_Check(x)) {
1632 PyObject *call = PyObject_GetAttrString(x, "__call__");
1633 if (call == NULL) {
1634 PyErr_Clear();
1635 return 0;
1636 }
1637 /* Could test recursively but don't, for fear of endless
1638 recursion if some joker sets self.__call__ = self */
1639 Py_DECREF(call);
1640 return 1;
1641 }
1642 else {
1643 return x->ob_type->tp_call != NULL;
1644 }
1645}
1646
1647/* ------------------------- PyObject_Dir() helpers ------------------------- */
1648
1649/* Helper for PyObject_Dir.
1650 Merge the __dict__ of aclass into dict, and recursively also all
1651 the __dict__s of aclass's base classes. The order of merging isn't
1652 defined, as it's expected that only the final set of dict keys is
1653 interesting.
1654 Return 0 on success, -1 on error.
1655*/
1656
1657static int
1658merge_class_dict(PyObject* dict, PyObject* aclass)
1659{
1660 PyObject *classdict;
1661 PyObject *bases;
1662
1663 assert(PyDict_Check(dict));
1664 assert(aclass);
1665
1666 /* Merge in the type's dict (if any). */
1667 classdict = PyObject_GetAttrString(aclass, "__dict__");
1668 if (classdict == NULL)
1669 PyErr_Clear();
1670 else {
1671 int status = PyDict_Update(dict, classdict);
1672 Py_DECREF(classdict);
1673 if (status < 0)
1674 return -1;
1675 }
1676
1677 /* Recursively merge in the base types' (if any) dicts. */
1678 bases = PyObject_GetAttrString(aclass, "__bases__");
1679 if (bases == NULL)
1680 PyErr_Clear();
1681 else {
1682 /* We have no guarantee that bases is a real tuple */
1683 Py_ssize_t i, n;
1684 n = PySequence_Size(bases); /* This better be right */
1685 if (n < 0)
1686 PyErr_Clear();
1687 else {
1688 for (i = 0; i < n; i++) {
1689 int status;
1690 PyObject *base = PySequence_GetItem(bases, i);
1691 if (base == NULL) {
1692 Py_DECREF(bases);
1693 return -1;
1694 }
1695 status = merge_class_dict(dict, base);
1696 Py_DECREF(base);
1697 if (status < 0) {
1698 Py_DECREF(bases);
1699 return -1;
1700 }
1701 }
1702 }
1703 Py_DECREF(bases);
1704 }
1705 return 0;
1706}
1707
1708/* Helper for PyObject_Dir.
1709 If obj has an attr named attrname that's a list, merge its string
1710 elements into keys of dict.
1711 Return 0 on success, -1 on error. Errors due to not finding the attr,
1712 or the attr not being a list, are suppressed.
1713*/
1714
1715static int
1716merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname)
1717{
1718 PyObject *list;
1719 int result = 0;
1720
1721 assert(PyDict_Check(dict));
1722 assert(obj);
1723 assert(attrname);
1724
1725 list = PyObject_GetAttrString(obj, attrname);
1726 if (list == NULL)
1727 PyErr_Clear();
1728
1729 else if (PyList_Check(list)) {
1730 int i;
1731 for (i = 0; i < PyList_GET_SIZE(list); ++i) {
1732 PyObject *item = PyList_GET_ITEM(list, i);
1733 if (PyString_Check(item)) {
1734 result = PyDict_SetItem(dict, item, Py_None);
1735 if (result < 0)
1736 break;
1737 }
1738 }
1739 if (Py_Py3kWarningFlag &&
1740 (strcmp(attrname, "__members__") == 0 ||
1741 strcmp(attrname, "__methods__") == 0)) {
1742 if (PyErr_WarnEx(PyExc_DeprecationWarning,
1743 "__members__ and __methods__ not "
1744 "supported in 3.x", 1) < 0) {
1745 Py_XDECREF(list);
1746 return -1;
1747 }
1748 }
1749 }
1750
1751 Py_XDECREF(list);
1752 return result;
1753}
1754
1755/* Helper for PyObject_Dir without arguments: returns the local scope. */
1756static PyObject *
1757_dir_locals(void)
1758{
1759 PyObject *names;
1760 PyObject *locals = PyEval_GetLocals();
1761
1762 if (locals == NULL) {
1763 PyErr_SetString(PyExc_SystemError, "frame does not exist");
1764 return NULL;
1765 }
1766
1767 names = PyMapping_Keys(locals);
1768 if (!names)
1769 return NULL;
1770 if (!PyList_Check(names)) {
1771 PyErr_Format(PyExc_TypeError,
1772 "dir(): expected keys() of locals to be a list, "
1773 "not '%.200s'", Py_TYPE(names)->tp_name);
1774 Py_DECREF(names);
1775 return NULL;
1776 }
1777 /* the locals don't need to be DECREF'd */
1778 return names;
1779}
1780
1781/* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1782 We deliberately don't suck up its __class__, as methods belonging to the
1783 metaclass would probably be more confusing than helpful.
1784*/
1785static PyObject *
1786_specialized_dir_type(PyObject *obj)
1787{
1788 PyObject *result = NULL;
1789 PyObject *dict = PyDict_New();
1790
1791 if (dict != NULL && merge_class_dict(dict, obj) == 0)
1792 result = PyDict_Keys(dict);
1793
1794 Py_XDECREF(dict);
1795 return result;
1796}
1797
1798/* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1799static PyObject *
1800_specialized_dir_module(PyObject *obj)
1801{
1802 PyObject *result = NULL;
1803 PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
1804
1805 if (dict != NULL) {
1806 if (PyDict_Check(dict))
1807 result = PyDict_Keys(dict);
1808 else {
1809 char *name = PyModule_GetName(obj);
1810 if (name)
1811 PyErr_Format(PyExc_TypeError,
1812 "%.200s.__dict__ is not a dictionary",
1813 name);
1814 }
1815 }
1816
1817 Py_XDECREF(dict);
1818 return result;
1819}
1820
1821/* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1822 and recursively up the __class__.__bases__ chain.
1823*/
1824static PyObject *
1825_generic_dir(PyObject *obj)
1826{
1827 PyObject *result = NULL;
1828 PyObject *dict = NULL;
1829 PyObject *itsclass = NULL;
1830
1831 /* Get __dict__ (which may or may not be a real dict...) */
1832 dict = PyObject_GetAttrString(obj, "__dict__");
1833 if (dict == NULL) {
1834 PyErr_Clear();
1835 dict = PyDict_New();
1836 }
1837 else if (!PyDict_Check(dict)) {
1838 Py_DECREF(dict);
1839 dict = PyDict_New();
1840 }
1841 else {
1842 /* Copy __dict__ to avoid mutating it. */
1843 PyObject *temp = PyDict_Copy(dict);
1844 Py_DECREF(dict);
1845 dict = temp;
1846 }
1847
1848 if (dict == NULL)
1849 goto error;
1850
1851 /* Merge in __members__ and __methods__ (if any).
1852 * This is removed in Python 3000. */
1853 if (merge_list_attr(dict, obj, "__members__") < 0)
1854 goto error;
1855 if (merge_list_attr(dict, obj, "__methods__") < 0)
1856 goto error;
1857
1858 /* Merge in attrs reachable from its class. */
1859 itsclass = PyObject_GetAttrString(obj, "__class__");
1860 if (itsclass == NULL)
1861 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1862 __class__ exists? */
1863 PyErr_Clear();
1864 else {
1865 if (merge_class_dict(dict, itsclass) != 0)
1866 goto error;
1867 }
1868
1869 result = PyDict_Keys(dict);
1870 /* fall through */
1871error:
1872 Py_XDECREF(itsclass);
1873 Py_XDECREF(dict);
1874 return result;
1875}
1876
1877/* Helper for PyObject_Dir: object introspection.
1878 This calls one of the above specialized versions if no __dir__ method
1879 exists. */
1880static PyObject *
1881_dir_object(PyObject *obj)
1882{
1883 PyObject *result = NULL;
1884 PyObject *dirfunc = PyObject_GetAttrString((PyObject *)obj->ob_type,
1885 "__dir__");
1886
1887 assert(obj);
1888 if (dirfunc == NULL) {
1889 /* use default implementation */
1890 PyErr_Clear();
1891 if (PyModule_Check(obj))
1892 result = _specialized_dir_module(obj);
1893 else if (PyType_Check(obj) || PyClass_Check(obj))
1894 result = _specialized_dir_type(obj);
1895 else
1896 result = _generic_dir(obj);
1897 }
1898 else {
1899 /* use __dir__ */
1900 result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL);
1901 Py_DECREF(dirfunc);
1902 if (result == NULL)
1903 return NULL;
1904
1905 /* result must be a list */
1906 /* XXX(gbrandl): could also check if all items are strings */
1907 if (!PyList_Check(result)) {
1908 PyErr_Format(PyExc_TypeError,
1909 "__dir__() must return a list, not %.200s",
1910 Py_TYPE(result)->tp_name);
1911 Py_DECREF(result);
1912 result = NULL;
1913 }
1914 }
1915
1916 return result;
1917}
1918
1919/* Implementation of dir() -- if obj is NULL, returns the names in the current
1920 (local) scope. Otherwise, performs introspection of the object: returns a
1921 sorted list of attribute names (supposedly) accessible from the object
1922*/
1923PyObject *
1924PyObject_Dir(PyObject *obj)
1925{
1926 PyObject * result;
1927
1928 if (obj == NULL)
1929 /* no object -- introspect the locals */
1930 result = _dir_locals();
1931 else
1932 /* object -- introspect the object */
1933 result = _dir_object(obj);
1934
1935 assert(result == NULL || PyList_Check(result));
1936
1937 if (result != NULL && PyList_Sort(result) != 0) {
1938 /* sorting the list failed */
1939 Py_DECREF(result);
1940 result = NULL;
1941 }
1942
1943 return result;
1944}
1945
1946/*
1947NoObject is usable as a non-NULL undefined value, used by the macro None.
1948There is (and should be!) no way to create other objects of this type,
1949so there is exactly one (which is indestructible, by the way).
1950(XXX This type and the type of NotImplemented below should be unified.)
1951*/
1952
1953/* ARGSUSED */
1954static PyObject *
1955none_repr(PyObject *op)
1956{
1957 return PyString_FromString("None");
1958}
1959
1960/* ARGUSED */
1961static void
1962none_dealloc(PyObject* ignore)
1963{
1964 /* This should never get called, but we also don't want to SEGV if
1965 * we accidentally decref None out of existence.
1966 */
1967 Py_FatalError("deallocating None");
1968}
1969
1970
1971static PyTypeObject PyNone_Type = {
1972 PyVarObject_HEAD_INIT(&PyType_Type, 0)
1973 "NoneType",
1974 0,
1975 0,
1976 none_dealloc, /*tp_dealloc*/ /*never called*/
1977 0, /*tp_print*/
1978 0, /*tp_getattr*/
1979 0, /*tp_setattr*/
1980 0, /*tp_compare*/
1981 none_repr, /*tp_repr*/
1982 0, /*tp_as_number*/
1983 0, /*tp_as_sequence*/
1984 0, /*tp_as_mapping*/
1985 (hashfunc)_Py_HashPointer, /*tp_hash */
1986};
1987
1988PyObject _Py_NoneStruct = {
1989 _PyObject_EXTRA_INIT
1990 1, &PyNone_Type
1991};
1992
1993/* NotImplemented is an object that can be used to signal that an
1994 operation is not implemented for the given type combination. */
1995
1996static PyObject *
1997NotImplemented_repr(PyObject *op)
1998{
1999 return PyString_FromString("NotImplemented");
2000}
2001
2002static PyTypeObject PyNotImplemented_Type = {
2003 PyVarObject_HEAD_INIT(&PyType_Type, 0)
2004 "NotImplementedType",
2005 0,
2006 0,
2007 none_dealloc, /*tp_dealloc*/ /*never called*/
2008 0, /*tp_print*/
2009 0, /*tp_getattr*/
2010 0, /*tp_setattr*/
2011 0, /*tp_compare*/
2012 NotImplemented_repr, /*tp_repr*/
2013 0, /*tp_as_number*/
2014 0, /*tp_as_sequence*/
2015 0, /*tp_as_mapping*/
2016 0, /*tp_hash */
2017};
2018
2019PyObject _Py_NotImplementedStruct = {
2020 _PyObject_EXTRA_INIT
2021 1, &PyNotImplemented_Type
2022};
2023
2024void
2025_Py_ReadyTypes(void)
2026{
2027 if (PyType_Ready(&PyType_Type) < 0)
2028 Py_FatalError("Can't initialize type type");
2029
2030 if (PyType_Ready(&_PyWeakref_RefType) < 0)
2031 Py_FatalError("Can't initialize weakref type");
2032
2033 if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0)
2034 Py_FatalError("Can't initialize callable weakref proxy type");
2035
2036 if (PyType_Ready(&_PyWeakref_ProxyType) < 0)
2037 Py_FatalError("Can't initialize weakref proxy type");
2038
2039 if (PyType_Ready(&PyBool_Type) < 0)
2040 Py_FatalError("Can't initialize bool type");
2041
2042 if (PyType_Ready(&PyString_Type) < 0)
2043 Py_FatalError("Can't initialize str type");
2044
2045 if (PyType_Ready(&PyByteArray_Type) < 0)
2046 Py_FatalError("Can't initialize bytearray type");
2047
2048 if (PyType_Ready(&PyList_Type) < 0)
2049 Py_FatalError("Can't initialize list type");
2050
2051 if (PyType_Ready(&PyNone_Type) < 0)
2052 Py_FatalError("Can't initialize None type");
2053
2054 if (PyType_Ready(&PyNotImplemented_Type) < 0)
2055 Py_FatalError("Can't initialize NotImplemented type");
2056
2057 if (PyType_Ready(&PyTraceBack_Type) < 0)
2058 Py_FatalError("Can't initialize traceback type");
2059
2060 if (PyType_Ready(&PySuper_Type) < 0)
2061 Py_FatalError("Can't initialize super type");
2062
2063 if (PyType_Ready(&PyBaseObject_Type) < 0)
2064 Py_FatalError("Can't initialize object type");
2065
2066 if (PyType_Ready(&PyRange_Type) < 0)
2067 Py_FatalError("Can't initialize xrange type");
2068
2069 if (PyType_Ready(&PyDict_Type) < 0)
2070 Py_FatalError("Can't initialize dict type");
2071
2072 if (PyType_Ready(&PySet_Type) < 0)
2073 Py_FatalError("Can't initialize set type");
2074
2075 if (PyType_Ready(&PyUnicode_Type) < 0)
2076 Py_FatalError("Can't initialize unicode type");
2077
2078 if (PyType_Ready(&PySlice_Type) < 0)
2079 Py_FatalError("Can't initialize slice type");
2080
2081 if (PyType_Ready(&PyStaticMethod_Type) < 0)
2082 Py_FatalError("Can't initialize static method type");
2083
2084#ifndef WITHOUT_COMPLEX
2085 if (PyType_Ready(&PyComplex_Type) < 0)
2086 Py_FatalError("Can't initialize complex type");
2087#endif
2088
2089 if (PyType_Ready(&PyFloat_Type) < 0)
2090 Py_FatalError("Can't initialize float type");
2091
2092 if (PyType_Ready(&PyBuffer_Type) < 0)
2093 Py_FatalError("Can't initialize buffer type");
2094
2095 if (PyType_Ready(&PyLong_Type) < 0)
2096 Py_FatalError("Can't initialize long type");
2097
2098 if (PyType_Ready(&PyInt_Type) < 0)
2099 Py_FatalError("Can't initialize int type");
2100
2101 if (PyType_Ready(&PyFrozenSet_Type) < 0)
2102 Py_FatalError("Can't initialize frozenset type");
2103
2104 if (PyType_Ready(&PyProperty_Type) < 0)
2105 Py_FatalError("Can't initialize property type");
2106
2107 if (PyType_Ready(&PyTuple_Type) < 0)
2108 Py_FatalError("Can't initialize tuple type");
2109
2110 if (PyType_Ready(&PyEnum_Type) < 0)
2111 Py_FatalError("Can't initialize enumerate type");
2112
2113 if (PyType_Ready(&PyReversed_Type) < 0)
2114 Py_FatalError("Can't initialize reversed type");
2115
2116 if (PyType_Ready(&PyCode_Type) < 0)
2117 Py_FatalError("Can't initialize code type");
2118
2119 if (PyType_Ready(&PyFrame_Type) < 0)
2120 Py_FatalError("Can't initialize frame type");
2121
2122 if (PyType_Ready(&PyCFunction_Type) < 0)
2123 Py_FatalError("Can't initialize builtin function type");
2124
2125 if (PyType_Ready(&PyMethod_Type) < 0)
2126 Py_FatalError("Can't initialize method type");
2127
2128 if (PyType_Ready(&PyFunction_Type) < 0)
2129 Py_FatalError("Can't initialize function type");
2130
2131 if (PyType_Ready(&PyClass_Type) < 0)
2132 Py_FatalError("Can't initialize class type");
2133
2134 if (PyType_Ready(&PyDictProxy_Type) < 0)
2135 Py_FatalError("Can't initialize dict proxy type");
2136
2137 if (PyType_Ready(&PyGen_Type) < 0)
2138 Py_FatalError("Can't initialize generator type");
2139
2140 if (PyType_Ready(&PyGetSetDescr_Type) < 0)
2141 Py_FatalError("Can't initialize get-set descriptor type");
2142
2143 if (PyType_Ready(&PyWrapperDescr_Type) < 0)
2144 Py_FatalError("Can't initialize wrapper type");
2145
2146 if (PyType_Ready(&PyInstance_Type) < 0)
2147 Py_FatalError("Can't initialize instance type");
2148
2149 if (PyType_Ready(&PyEllipsis_Type) < 0)
2150 Py_FatalError("Can't initialize ellipsis type");
2151
2152 if (PyType_Ready(&PyMemberDescr_Type) < 0)
2153 Py_FatalError("Can't initialize member descriptor type");
2154}
2155
2156
2157#ifdef Py_TRACE_REFS
2158
2159void
2160_Py_NewReference(PyObject *op)
2161{
2162 _Py_INC_REFTOTAL;
2163 op->ob_refcnt = 1;
2164 _Py_AddToAllObjects(op, 1);
2165 _Py_INC_TPALLOCS(op);
2166}
2167
2168void
2169_Py_ForgetReference(register PyObject *op)
2170{
2171#ifdef SLOW_UNREF_CHECK
2172 register PyObject *p;
2173#endif
2174 if (op->ob_refcnt < 0)
2175 Py_FatalError("UNREF negative refcnt");
2176 if (op == &refchain ||
2177 op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
2178 Py_FatalError("UNREF invalid object");
2179#ifdef SLOW_UNREF_CHECK
2180 for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
2181 if (p == op)
2182 break;
2183 }
2184 if (p == &refchain) /* Not found */
2185 Py_FatalError("UNREF unknown object");
2186#endif
2187 op->_ob_next->_ob_prev = op->_ob_prev;
2188 op->_ob_prev->_ob_next = op->_ob_next;
2189 op->_ob_next = op->_ob_prev = NULL;
2190 _Py_INC_TPFREES(op);
2191}
2192
2193void
2194_Py_Dealloc(PyObject *op)
2195{
2196 destructor dealloc = Py_TYPE(op)->tp_dealloc;
2197 _Py_ForgetReference(op);
2198 (*dealloc)(op);
2199}
2200
2201/* Print all live objects. Because PyObject_Print is called, the
2202 * interpreter must be in a healthy state.
2203 */
2204void
2205_Py_PrintReferences(FILE *fp)
2206{
2207 PyObject *op;
2208 fprintf(fp, "Remaining objects:\n");
2209 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
2210 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
2211 if (PyObject_Print(op, fp, 0) != 0)
2212 PyErr_Clear();
2213 putc('\n', fp);
2214 }
2215}
2216
2217/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
2218 * doesn't make any calls to the Python C API, so is always safe to call.
2219 */
2220void
2221_Py_PrintReferenceAddresses(FILE *fp)
2222{
2223 PyObject *op;
2224 fprintf(fp, "Remaining object addresses:\n");
2225 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
2226 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
2227 op->ob_refcnt, Py_TYPE(op)->tp_name);
2228}
2229
2230PyObject *
2231_Py_GetObjects(PyObject *self, PyObject *args)
2232{
2233 int i, n;
2234 PyObject *t = NULL;
2235 PyObject *res, *op;
2236
2237 if (!PyArg_ParseTuple(args, "i|O", &n, &t))
2238 return NULL;
2239 op = refchain._ob_next;
2240 res = PyList_New(0);
2241 if (res == NULL)
2242 return NULL;
2243 for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
2244 while (op == self || op == args || op == res || op == t ||
2245 (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) {
2246 op = op->_ob_next;
2247 if (op == &refchain)
2248 return res;
2249 }
2250 if (PyList_Append(res, op) < 0) {
2251 Py_DECREF(res);
2252 return NULL;
2253 }
2254 op = op->_ob_next;
2255 }
2256 return res;
2257}
2258
2259#endif
2260
2261
2262/* Hack to force loading of cobject.o */
2263PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
2264
2265
2266/* Hack to force loading of abstract.o */
2267Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
2268
2269
2270/* Python's malloc wrappers (see pymem.h) */
2271
2272void *
2273PyMem_Malloc(size_t nbytes)
2274{
2275 return PyMem_MALLOC(nbytes);
2276}
2277
2278void *
2279PyMem_Realloc(void *p, size_t nbytes)
2280{
2281 return PyMem_REALLOC(p, nbytes);
2282}
2283
2284void
2285PyMem_Free(void *p)
2286{
2287 PyMem_FREE(p);
2288}
2289
2290
2291/* These methods are used to control infinite recursion in repr, str, print,
2292 etc. Container objects that may recursively contain themselves,
2293 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
2294 Py_ReprLeave() to avoid infinite recursion.
2295
2296 Py_ReprEnter() returns 0 the first time it is called for a particular
2297 object and 1 every time thereafter. It returns -1 if an exception
2298 occurred. Py_ReprLeave() has no return value.
2299
2300 See dictobject.c and listobject.c for examples of use.
2301*/
2302
2303#define KEY "Py_Repr"
2304
2305int
2306Py_ReprEnter(PyObject *obj)
2307{
2308 PyObject *dict;
2309 PyObject *list;
2310 Py_ssize_t i;
2311
2312 dict = PyThreadState_GetDict();
2313 if (dict == NULL)
2314 return 0;
2315 list = PyDict_GetItemString(dict, KEY);
2316 if (list == NULL) {
2317 list = PyList_New(0);
2318 if (list == NULL)
2319 return -1;
2320 if (PyDict_SetItemString(dict, KEY, list) < 0)
2321 return -1;
2322 Py_DECREF(list);
2323 }
2324 i = PyList_GET_SIZE(list);
2325 while (--i >= 0) {
2326 if (PyList_GET_ITEM(list, i) == obj)
2327 return 1;
2328 }
2329 PyList_Append(list, obj);
2330 return 0;
2331}
2332
2333void
2334Py_ReprLeave(PyObject *obj)
2335{
2336 PyObject *dict;
2337 PyObject *list;
2338 Py_ssize_t i;
2339
2340 dict = PyThreadState_GetDict();
2341 if (dict == NULL)
2342 return;
2343 list = PyDict_GetItemString(dict, KEY);
2344 if (list == NULL || !PyList_Check(list))
2345 return;
2346 i = PyList_GET_SIZE(list);
2347 /* Count backwards because we always expect obj to be list[-1] */
2348 while (--i >= 0) {
2349 if (PyList_GET_ITEM(list, i) == obj) {
2350 PyList_SetSlice(list, i, i + 1, NULL);
2351 break;
2352 }
2353 }
2354}
2355
2356/* Trashcan support. */
2357
2358/* Current call-stack depth of tp_dealloc calls. */
2359int _PyTrash_delete_nesting = 0;
2360
2361/* List of objects that still need to be cleaned up, singly linked via their
2362 * gc headers' gc_prev pointers.
2363 */
2364PyObject *_PyTrash_delete_later = NULL;
2365
2366/* Add op to the _PyTrash_delete_later list. Called when the current
2367 * call-stack depth gets large. op must be a currently untracked gc'ed
2368 * object, with refcount 0. Py_DECREF must already have been called on it.
2369 */
2370void
2371_PyTrash_deposit_object(PyObject *op)
2372{
2373 assert(PyObject_IS_GC(op));
2374 assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
2375 assert(op->ob_refcnt == 0);
2376 _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
2377 _PyTrash_delete_later = op;
2378}
2379
2380/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
2381 * the call-stack unwinds again.
2382 */
2383void
2384_PyTrash_destroy_chain(void)
2385{
2386 while (_PyTrash_delete_later) {
2387 PyObject *op = _PyTrash_delete_later;
2388 destructor dealloc = Py_TYPE(op)->tp_dealloc;
2389
2390 _PyTrash_delete_later =
2391 (PyObject*) _Py_AS_GC(op)->gc.gc_prev;
2392
2393 /* Call the deallocator directly. This used to try to
2394 * fool Py_DECREF into calling it indirectly, but
2395 * Py_DECREF was already called on this object, and in
2396 * assorted non-release builds calling Py_DECREF again ends
2397 * up distorting allocation statistics.
2398 */
2399 assert(op->ob_refcnt == 0);
2400 ++_PyTrash_delete_nesting;
2401 (*dealloc)(op);
2402 --_PyTrash_delete_nesting;
2403 }
2404}
2405
2406#ifdef __cplusplus
2407}
2408#endif
Note: See TracBrowser for help on using the repository browser.