[2] | 1 |
|
---|
| 2 | /* Float object implementation */
|
---|
| 3 |
|
---|
| 4 | /* XXX There should be overflow checks here, but it's hard to check
|
---|
| 5 | for any kind of float exception without losing portability. */
|
---|
| 6 |
|
---|
| 7 | #include "Python.h"
|
---|
| 8 | #include "structseq.h"
|
---|
| 9 |
|
---|
| 10 | #include <ctype.h>
|
---|
| 11 | #include <float.h>
|
---|
| 12 |
|
---|
| 13 | #undef MAX
|
---|
| 14 | #undef MIN
|
---|
| 15 | #define MAX(x, y) ((x) < (y) ? (y) : (x))
|
---|
| 16 | #define MIN(x, y) ((x) < (y) ? (x) : (y))
|
---|
| 17 |
|
---|
| 18 | #ifdef _OSF_SOURCE
|
---|
| 19 | /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
---|
| 20 | extern int finite(double);
|
---|
| 21 | #endif
|
---|
| 22 |
|
---|
| 23 | /* Special free list -- see comments for same code in intobject.c. */
|
---|
[391] | 24 | #define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
|
---|
| 25 | #define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
|
---|
| 26 | #define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
|
---|
[2] | 27 |
|
---|
| 28 | struct _floatblock {
|
---|
[391] | 29 | struct _floatblock *next;
|
---|
| 30 | PyFloatObject objects[N_FLOATOBJECTS];
|
---|
[2] | 31 | };
|
---|
| 32 |
|
---|
| 33 | typedef struct _floatblock PyFloatBlock;
|
---|
| 34 |
|
---|
| 35 | static PyFloatBlock *block_list = NULL;
|
---|
| 36 | static PyFloatObject *free_list = NULL;
|
---|
| 37 |
|
---|
| 38 | static PyFloatObject *
|
---|
| 39 | fill_free_list(void)
|
---|
| 40 | {
|
---|
[391] | 41 | PyFloatObject *p, *q;
|
---|
| 42 | /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
|
---|
| 43 | p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
|
---|
| 44 | if (p == NULL)
|
---|
| 45 | return (PyFloatObject *) PyErr_NoMemory();
|
---|
| 46 | ((PyFloatBlock *)p)->next = block_list;
|
---|
| 47 | block_list = (PyFloatBlock *)p;
|
---|
| 48 | p = &((PyFloatBlock *)p)->objects[0];
|
---|
| 49 | q = p + N_FLOATOBJECTS;
|
---|
| 50 | while (--q > p)
|
---|
| 51 | Py_TYPE(q) = (struct _typeobject *)(q-1);
|
---|
| 52 | Py_TYPE(q) = NULL;
|
---|
| 53 | return p + N_FLOATOBJECTS - 1;
|
---|
[2] | 54 | }
|
---|
| 55 |
|
---|
| 56 | double
|
---|
| 57 | PyFloat_GetMax(void)
|
---|
| 58 | {
|
---|
[391] | 59 | return DBL_MAX;
|
---|
[2] | 60 | }
|
---|
| 61 |
|
---|
| 62 | double
|
---|
| 63 | PyFloat_GetMin(void)
|
---|
| 64 | {
|
---|
[391] | 65 | return DBL_MIN;
|
---|
[2] | 66 | }
|
---|
| 67 |
|
---|
| 68 | static PyTypeObject FloatInfoType = {0, 0, 0, 0, 0, 0};
|
---|
| 69 |
|
---|
| 70 | PyDoc_STRVAR(floatinfo__doc__,
|
---|
[391] | 71 | "sys.float_info\n\
|
---|
[2] | 72 | \n\
|
---|
| 73 | A structseq holding information about the float type. It contains low level\n\
|
---|
| 74 | information about the precision and internal representation. Please study\n\
|
---|
| 75 | your system's :file:`float.h` for more information.");
|
---|
| 76 |
|
---|
| 77 | static PyStructSequence_Field floatinfo_fields[] = {
|
---|
[391] | 78 | {"max", "DBL_MAX -- maximum representable finite float"},
|
---|
| 79 | {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
|
---|
| 80 | "is representable"},
|
---|
| 81 | {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
|
---|
| 82 | "is representable"},
|
---|
| 83 | {"min", "DBL_MIN -- Minimum positive normalizer float"},
|
---|
| 84 | {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
|
---|
| 85 | "is a normalized float"},
|
---|
| 86 | {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
|
---|
| 87 | "a normalized"},
|
---|
| 88 | {"dig", "DBL_DIG -- digits"},
|
---|
| 89 | {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
|
---|
| 90 | {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
|
---|
| 91 | "representable float"},
|
---|
| 92 | {"radix", "FLT_RADIX -- radix of exponent"},
|
---|
| 93 | {"rounds", "FLT_ROUNDS -- addition rounds"},
|
---|
| 94 | {0}
|
---|
[2] | 95 | };
|
---|
| 96 |
|
---|
| 97 | static PyStructSequence_Desc floatinfo_desc = {
|
---|
[391] | 98 | "sys.float_info", /* name */
|
---|
| 99 | floatinfo__doc__, /* doc */
|
---|
| 100 | floatinfo_fields, /* fields */
|
---|
| 101 | 11
|
---|
[2] | 102 | };
|
---|
| 103 |
|
---|
| 104 | PyObject *
|
---|
| 105 | PyFloat_GetInfo(void)
|
---|
| 106 | {
|
---|
[391] | 107 | PyObject* floatinfo;
|
---|
| 108 | int pos = 0;
|
---|
[2] | 109 |
|
---|
[391] | 110 | floatinfo = PyStructSequence_New(&FloatInfoType);
|
---|
| 111 | if (floatinfo == NULL) {
|
---|
| 112 | return NULL;
|
---|
| 113 | }
|
---|
[2] | 114 |
|
---|
| 115 | #define SetIntFlag(flag) \
|
---|
[391] | 116 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
|
---|
[2] | 117 | #define SetDblFlag(flag) \
|
---|
[391] | 118 | PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
|
---|
[2] | 119 |
|
---|
[391] | 120 | SetDblFlag(DBL_MAX);
|
---|
| 121 | SetIntFlag(DBL_MAX_EXP);
|
---|
| 122 | SetIntFlag(DBL_MAX_10_EXP);
|
---|
| 123 | SetDblFlag(DBL_MIN);
|
---|
| 124 | SetIntFlag(DBL_MIN_EXP);
|
---|
| 125 | SetIntFlag(DBL_MIN_10_EXP);
|
---|
| 126 | SetIntFlag(DBL_DIG);
|
---|
| 127 | SetIntFlag(DBL_MANT_DIG);
|
---|
| 128 | SetDblFlag(DBL_EPSILON);
|
---|
| 129 | SetIntFlag(FLT_RADIX);
|
---|
| 130 | SetIntFlag(FLT_ROUNDS);
|
---|
[2] | 131 | #undef SetIntFlag
|
---|
| 132 | #undef SetDblFlag
|
---|
[391] | 133 |
|
---|
| 134 | if (PyErr_Occurred()) {
|
---|
| 135 | Py_CLEAR(floatinfo);
|
---|
| 136 | return NULL;
|
---|
| 137 | }
|
---|
| 138 | return floatinfo;
|
---|
[2] | 139 | }
|
---|
| 140 |
|
---|
| 141 | PyObject *
|
---|
| 142 | PyFloat_FromDouble(double fval)
|
---|
| 143 | {
|
---|
[391] | 144 | register PyFloatObject *op;
|
---|
| 145 | if (free_list == NULL) {
|
---|
| 146 | if ((free_list = fill_free_list()) == NULL)
|
---|
| 147 | return NULL;
|
---|
| 148 | }
|
---|
| 149 | /* Inline PyObject_New */
|
---|
| 150 | op = free_list;
|
---|
| 151 | free_list = (PyFloatObject *)Py_TYPE(op);
|
---|
| 152 | PyObject_INIT(op, &PyFloat_Type);
|
---|
| 153 | op->ob_fval = fval;
|
---|
| 154 | return (PyObject *) op;
|
---|
[2] | 155 | }
|
---|
| 156 |
|
---|
| 157 | /**************************************************************************
|
---|
| 158 | RED_FLAG 22-Sep-2000 tim
|
---|
| 159 | PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
|
---|
| 160 |
|
---|
| 161 | 1. If v was a regular string, *pend was set to point to its terminating
|
---|
| 162 | null byte. That's useless (the caller can find that without any
|
---|
| 163 | help from this function!).
|
---|
| 164 |
|
---|
| 165 | 2. If v was a Unicode string, or an object convertible to a character
|
---|
| 166 | buffer, *pend was set to point into stack trash (the auto temp
|
---|
| 167 | vector holding the character buffer). That was downright dangerous.
|
---|
| 168 |
|
---|
| 169 | Since we can't change the interface of a public API function, pend is
|
---|
| 170 | still supported but now *officially* useless: if pend is not NULL,
|
---|
| 171 | *pend is set to NULL.
|
---|
| 172 | **************************************************************************/
|
---|
| 173 | PyObject *
|
---|
| 174 | PyFloat_FromString(PyObject *v, char **pend)
|
---|
| 175 | {
|
---|
[391] | 176 | const char *s, *last, *end;
|
---|
| 177 | double x;
|
---|
| 178 | char buffer[256]; /* for errors */
|
---|
[2] | 179 | #ifdef Py_USING_UNICODE
|
---|
[391] | 180 | char *s_buffer = NULL;
|
---|
[2] | 181 | #endif
|
---|
[391] | 182 | Py_ssize_t len;
|
---|
| 183 | PyObject *result = NULL;
|
---|
[2] | 184 |
|
---|
[391] | 185 | if (pend)
|
---|
| 186 | *pend = NULL;
|
---|
| 187 | if (PyString_Check(v)) {
|
---|
| 188 | s = PyString_AS_STRING(v);
|
---|
| 189 | len = PyString_GET_SIZE(v);
|
---|
| 190 | }
|
---|
[2] | 191 | #ifdef Py_USING_UNICODE
|
---|
[391] | 192 | else if (PyUnicode_Check(v)) {
|
---|
| 193 | s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
|
---|
| 194 | if (s_buffer == NULL)
|
---|
| 195 | return PyErr_NoMemory();
|
---|
| 196 | if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
---|
| 197 | PyUnicode_GET_SIZE(v),
|
---|
| 198 | s_buffer,
|
---|
| 199 | NULL))
|
---|
| 200 | goto error;
|
---|
| 201 | s = s_buffer;
|
---|
| 202 | len = strlen(s);
|
---|
| 203 | }
|
---|
[2] | 204 | #endif
|
---|
[391] | 205 | else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
---|
| 206 | PyErr_SetString(PyExc_TypeError,
|
---|
| 207 | "float() argument must be a string or a number");
|
---|
| 208 | return NULL;
|
---|
| 209 | }
|
---|
| 210 | last = s + len;
|
---|
[2] | 211 |
|
---|
[391] | 212 | while (Py_ISSPACE(*s))
|
---|
| 213 | s++;
|
---|
| 214 | /* We don't care about overflow or underflow. If the platform
|
---|
| 215 | * supports them, infinities and signed zeroes (on underflow) are
|
---|
| 216 | * fine. */
|
---|
| 217 | x = PyOS_string_to_double(s, (char **)&end, NULL);
|
---|
| 218 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 219 | goto error;
|
---|
| 220 | while (Py_ISSPACE(*end))
|
---|
| 221 | end++;
|
---|
| 222 | if (end == last)
|
---|
| 223 | result = PyFloat_FromDouble(x);
|
---|
| 224 | else {
|
---|
| 225 | PyOS_snprintf(buffer, sizeof(buffer),
|
---|
| 226 | "invalid literal for float(): %.200s", s);
|
---|
| 227 | PyErr_SetString(PyExc_ValueError, buffer);
|
---|
| 228 | result = NULL;
|
---|
| 229 | }
|
---|
[2] | 230 |
|
---|
[391] | 231 | error:
|
---|
| 232 | #ifdef Py_USING_UNICODE
|
---|
| 233 | if (s_buffer)
|
---|
| 234 | PyMem_FREE(s_buffer);
|
---|
[2] | 235 | #endif
|
---|
[391] | 236 | return result;
|
---|
[2] | 237 | }
|
---|
| 238 |
|
---|
| 239 | static void
|
---|
| 240 | float_dealloc(PyFloatObject *op)
|
---|
| 241 | {
|
---|
[391] | 242 | if (PyFloat_CheckExact(op)) {
|
---|
| 243 | Py_TYPE(op) = (struct _typeobject *)free_list;
|
---|
| 244 | free_list = op;
|
---|
| 245 | }
|
---|
| 246 | else
|
---|
| 247 | Py_TYPE(op)->tp_free((PyObject *)op);
|
---|
[2] | 248 | }
|
---|
| 249 |
|
---|
| 250 | double
|
---|
| 251 | PyFloat_AsDouble(PyObject *op)
|
---|
| 252 | {
|
---|
[391] | 253 | PyNumberMethods *nb;
|
---|
| 254 | PyFloatObject *fo;
|
---|
| 255 | double val;
|
---|
[2] | 256 |
|
---|
[391] | 257 | if (op && PyFloat_Check(op))
|
---|
| 258 | return PyFloat_AS_DOUBLE((PyFloatObject*) op);
|
---|
[2] | 259 |
|
---|
[391] | 260 | if (op == NULL) {
|
---|
| 261 | PyErr_BadArgument();
|
---|
| 262 | return -1;
|
---|
| 263 | }
|
---|
[2] | 264 |
|
---|
[391] | 265 | if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
|
---|
| 266 | PyErr_SetString(PyExc_TypeError, "a float is required");
|
---|
| 267 | return -1;
|
---|
| 268 | }
|
---|
[2] | 269 |
|
---|
[391] | 270 | fo = (PyFloatObject*) (*nb->nb_float) (op);
|
---|
| 271 | if (fo == NULL)
|
---|
| 272 | return -1;
|
---|
| 273 | if (!PyFloat_Check(fo)) {
|
---|
| 274 | PyErr_SetString(PyExc_TypeError,
|
---|
| 275 | "nb_float should return float object");
|
---|
| 276 | return -1;
|
---|
| 277 | }
|
---|
[2] | 278 |
|
---|
[391] | 279 | val = PyFloat_AS_DOUBLE(fo);
|
---|
| 280 | Py_DECREF(fo);
|
---|
[2] | 281 |
|
---|
[391] | 282 | return val;
|
---|
[2] | 283 | }
|
---|
| 284 |
|
---|
| 285 | /* Methods */
|
---|
| 286 |
|
---|
| 287 | /* Macro and helper that convert PyObject obj to a C double and store
|
---|
| 288 | the value in dbl; this replaces the functionality of the coercion
|
---|
| 289 | slot function. If conversion to double raises an exception, obj is
|
---|
| 290 | set to NULL, and the function invoking this macro returns NULL. If
|
---|
| 291 | obj is not of float, int or long type, Py_NotImplemented is incref'ed,
|
---|
| 292 | stored in obj, and returned from the function invoking this macro.
|
---|
| 293 | */
|
---|
[391] | 294 | #define CONVERT_TO_DOUBLE(obj, dbl) \
|
---|
| 295 | if (PyFloat_Check(obj)) \
|
---|
| 296 | dbl = PyFloat_AS_DOUBLE(obj); \
|
---|
| 297 | else if (convert_to_double(&(obj), &(dbl)) < 0) \
|
---|
| 298 | return obj;
|
---|
[2] | 299 |
|
---|
| 300 | static int
|
---|
| 301 | convert_to_double(PyObject **v, double *dbl)
|
---|
| 302 | {
|
---|
[391] | 303 | register PyObject *obj = *v;
|
---|
[2] | 304 |
|
---|
[391] | 305 | if (PyInt_Check(obj)) {
|
---|
| 306 | *dbl = (double)PyInt_AS_LONG(obj);
|
---|
| 307 | }
|
---|
| 308 | else if (PyLong_Check(obj)) {
|
---|
| 309 | *dbl = PyLong_AsDouble(obj);
|
---|
| 310 | if (*dbl == -1.0 && PyErr_Occurred()) {
|
---|
| 311 | *v = NULL;
|
---|
| 312 | return -1;
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | else {
|
---|
| 316 | Py_INCREF(Py_NotImplemented);
|
---|
| 317 | *v = Py_NotImplemented;
|
---|
| 318 | return -1;
|
---|
| 319 | }
|
---|
| 320 | return 0;
|
---|
[2] | 321 | }
|
---|
| 322 |
|
---|
[391] | 323 | /* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
|
---|
[2] | 324 | XXX they pass a char buffer without passing a length.
|
---|
| 325 | */
|
---|
| 326 | void
|
---|
| 327 | PyFloat_AsString(char *buf, PyFloatObject *v)
|
---|
| 328 | {
|
---|
[391] | 329 | char *tmp = PyOS_double_to_string(v->ob_fval, 'g',
|
---|
| 330 | PyFloat_STR_PRECISION,
|
---|
| 331 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
| 332 | strcpy(buf, tmp);
|
---|
| 333 | PyMem_Free(tmp);
|
---|
[2] | 334 | }
|
---|
| 335 |
|
---|
| 336 | void
|
---|
| 337 | PyFloat_AsReprString(char *buf, PyFloatObject *v)
|
---|
| 338 | {
|
---|
[391] | 339 | char * tmp = PyOS_double_to_string(v->ob_fval, 'r', 0,
|
---|
| 340 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
| 341 | strcpy(buf, tmp);
|
---|
| 342 | PyMem_Free(tmp);
|
---|
[2] | 343 | }
|
---|
| 344 |
|
---|
| 345 | /* ARGSUSED */
|
---|
| 346 | static int
|
---|
| 347 | float_print(PyFloatObject *v, FILE *fp, int flags)
|
---|
| 348 | {
|
---|
[391] | 349 | char *buf;
|
---|
| 350 | if (flags & Py_PRINT_RAW)
|
---|
| 351 | buf = PyOS_double_to_string(v->ob_fval,
|
---|
| 352 | 'g', PyFloat_STR_PRECISION,
|
---|
| 353 | Py_DTSF_ADD_DOT_0, NULL);
|
---|
| 354 | else
|
---|
| 355 | buf = PyOS_double_to_string(v->ob_fval,
|
---|
| 356 | 'r', 0, Py_DTSF_ADD_DOT_0, NULL);
|
---|
| 357 | Py_BEGIN_ALLOW_THREADS
|
---|
| 358 | fputs(buf, fp);
|
---|
| 359 | Py_END_ALLOW_THREADS
|
---|
| 360 | PyMem_Free(buf);
|
---|
| 361 | return 0;
|
---|
[2] | 362 | }
|
---|
| 363 |
|
---|
| 364 | static PyObject *
|
---|
[391] | 365 | float_str_or_repr(PyFloatObject *v, int precision, char format_code)
|
---|
| 366 | {
|
---|
| 367 | PyObject *result;
|
---|
| 368 | char *buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
|
---|
| 369 | format_code, precision,
|
---|
| 370 | Py_DTSF_ADD_DOT_0,
|
---|
| 371 | NULL);
|
---|
| 372 | if (!buf)
|
---|
| 373 | return PyErr_NoMemory();
|
---|
| 374 | result = PyString_FromString(buf);
|
---|
| 375 | PyMem_Free(buf);
|
---|
| 376 | return result;
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | static PyObject *
|
---|
[2] | 380 | float_repr(PyFloatObject *v)
|
---|
| 381 | {
|
---|
[391] | 382 | return float_str_or_repr(v, 0, 'r');
|
---|
[2] | 383 | }
|
---|
| 384 |
|
---|
| 385 | static PyObject *
|
---|
| 386 | float_str(PyFloatObject *v)
|
---|
| 387 | {
|
---|
[391] | 388 | return float_str_or_repr(v, PyFloat_STR_PRECISION, 'g');
|
---|
[2] | 389 | }
|
---|
| 390 |
|
---|
| 391 | /* Comparison is pretty much a nightmare. When comparing float to float,
|
---|
| 392 | * we do it as straightforwardly (and long-windedly) as conceivable, so
|
---|
| 393 | * that, e.g., Python x == y delivers the same result as the platform
|
---|
| 394 | * C x == y when x and/or y is a NaN.
|
---|
| 395 | * When mixing float with an integer type, there's no good *uniform* approach.
|
---|
| 396 | * Converting the double to an integer obviously doesn't work, since we
|
---|
| 397 | * may lose info from fractional bits. Converting the integer to a double
|
---|
| 398 | * also has two failure modes: (1) a long int may trigger overflow (too
|
---|
| 399 | * large to fit in the dynamic range of a C double); (2) even a C long may have
|
---|
| 400 | * more bits than fit in a C double (e.g., on a a 64-bit box long may have
|
---|
| 401 | * 63 bits of precision, but a C double probably has only 53), and then
|
---|
| 402 | * we can falsely claim equality when low-order integer bits are lost by
|
---|
| 403 | * coercion to double. So this part is painful too.
|
---|
| 404 | */
|
---|
| 405 |
|
---|
| 406 | static PyObject*
|
---|
| 407 | float_richcompare(PyObject *v, PyObject *w, int op)
|
---|
| 408 | {
|
---|
[391] | 409 | double i, j;
|
---|
| 410 | int r = 0;
|
---|
[2] | 411 |
|
---|
[391] | 412 | assert(PyFloat_Check(v));
|
---|
| 413 | i = PyFloat_AS_DOUBLE(v);
|
---|
[2] | 414 |
|
---|
[391] | 415 | /* Switch on the type of w. Set i and j to doubles to be compared,
|
---|
| 416 | * and op to the richcomp to use.
|
---|
| 417 | */
|
---|
| 418 | if (PyFloat_Check(w))
|
---|
| 419 | j = PyFloat_AS_DOUBLE(w);
|
---|
[2] | 420 |
|
---|
[391] | 421 | else if (!Py_IS_FINITE(i)) {
|
---|
| 422 | if (PyInt_Check(w) || PyLong_Check(w))
|
---|
| 423 | /* If i is an infinity, its magnitude exceeds any
|
---|
| 424 | * finite integer, so it doesn't matter which int we
|
---|
| 425 | * compare i with. If i is a NaN, similarly.
|
---|
| 426 | */
|
---|
| 427 | j = 0.0;
|
---|
| 428 | else
|
---|
| 429 | goto Unimplemented;
|
---|
| 430 | }
|
---|
[2] | 431 |
|
---|
[391] | 432 | else if (PyInt_Check(w)) {
|
---|
| 433 | long jj = PyInt_AS_LONG(w);
|
---|
| 434 | /* In the worst realistic case I can imagine, C double is a
|
---|
| 435 | * Cray single with 48 bits of precision, and long has 64
|
---|
| 436 | * bits.
|
---|
| 437 | */
|
---|
[2] | 438 | #if SIZEOF_LONG > 6
|
---|
[391] | 439 | unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
|
---|
| 440 | if (abs >> 48) {
|
---|
| 441 | /* Needs more than 48 bits. Make it take the
|
---|
| 442 | * PyLong path.
|
---|
| 443 | */
|
---|
| 444 | PyObject *result;
|
---|
| 445 | PyObject *ww = PyLong_FromLong(jj);
|
---|
[2] | 446 |
|
---|
[391] | 447 | if (ww == NULL)
|
---|
| 448 | return NULL;
|
---|
| 449 | result = float_richcompare(v, ww, op);
|
---|
| 450 | Py_DECREF(ww);
|
---|
| 451 | return result;
|
---|
| 452 | }
|
---|
[2] | 453 | #endif
|
---|
[391] | 454 | j = (double)jj;
|
---|
| 455 | assert((long)j == jj);
|
---|
| 456 | }
|
---|
[2] | 457 |
|
---|
[391] | 458 | else if (PyLong_Check(w)) {
|
---|
| 459 | int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
|
---|
| 460 | int wsign = _PyLong_Sign(w);
|
---|
| 461 | size_t nbits;
|
---|
| 462 | int exponent;
|
---|
[2] | 463 |
|
---|
[391] | 464 | if (vsign != wsign) {
|
---|
| 465 | /* Magnitudes are irrelevant -- the signs alone
|
---|
| 466 | * determine the outcome.
|
---|
| 467 | */
|
---|
| 468 | i = (double)vsign;
|
---|
| 469 | j = (double)wsign;
|
---|
| 470 | goto Compare;
|
---|
| 471 | }
|
---|
| 472 | /* The signs are the same. */
|
---|
| 473 | /* Convert w to a double if it fits. In particular, 0 fits. */
|
---|
| 474 | nbits = _PyLong_NumBits(w);
|
---|
| 475 | if (nbits == (size_t)-1 && PyErr_Occurred()) {
|
---|
| 476 | /* This long is so large that size_t isn't big enough
|
---|
| 477 | * to hold the # of bits. Replace with little doubles
|
---|
| 478 | * that give the same outcome -- w is so large that
|
---|
| 479 | * its magnitude must exceed the magnitude of any
|
---|
| 480 | * finite float.
|
---|
| 481 | */
|
---|
| 482 | PyErr_Clear();
|
---|
| 483 | i = (double)vsign;
|
---|
| 484 | assert(wsign != 0);
|
---|
| 485 | j = wsign * 2.0;
|
---|
| 486 | goto Compare;
|
---|
| 487 | }
|
---|
| 488 | if (nbits <= 48) {
|
---|
| 489 | j = PyLong_AsDouble(w);
|
---|
| 490 | /* It's impossible that <= 48 bits overflowed. */
|
---|
| 491 | assert(j != -1.0 || ! PyErr_Occurred());
|
---|
| 492 | goto Compare;
|
---|
| 493 | }
|
---|
| 494 | assert(wsign != 0); /* else nbits was 0 */
|
---|
| 495 | assert(vsign != 0); /* if vsign were 0, then since wsign is
|
---|
| 496 | * not 0, we would have taken the
|
---|
| 497 | * vsign != wsign branch at the start */
|
---|
| 498 | /* We want to work with non-negative numbers. */
|
---|
| 499 | if (vsign < 0) {
|
---|
| 500 | /* "Multiply both sides" by -1; this also swaps the
|
---|
| 501 | * comparator.
|
---|
| 502 | */
|
---|
| 503 | i = -i;
|
---|
| 504 | op = _Py_SwappedOp[op];
|
---|
| 505 | }
|
---|
| 506 | assert(i > 0.0);
|
---|
| 507 | (void) frexp(i, &exponent);
|
---|
| 508 | /* exponent is the # of bits in v before the radix point;
|
---|
| 509 | * we know that nbits (the # of bits in w) > 48 at this point
|
---|
| 510 | */
|
---|
| 511 | if (exponent < 0 || (size_t)exponent < nbits) {
|
---|
| 512 | i = 1.0;
|
---|
| 513 | j = 2.0;
|
---|
| 514 | goto Compare;
|
---|
| 515 | }
|
---|
| 516 | if ((size_t)exponent > nbits) {
|
---|
| 517 | i = 2.0;
|
---|
| 518 | j = 1.0;
|
---|
| 519 | goto Compare;
|
---|
| 520 | }
|
---|
| 521 | /* v and w have the same number of bits before the radix
|
---|
| 522 | * point. Construct two longs that have the same comparison
|
---|
| 523 | * outcome.
|
---|
| 524 | */
|
---|
| 525 | {
|
---|
| 526 | double fracpart;
|
---|
| 527 | double intpart;
|
---|
| 528 | PyObject *result = NULL;
|
---|
| 529 | PyObject *one = NULL;
|
---|
| 530 | PyObject *vv = NULL;
|
---|
| 531 | PyObject *ww = w;
|
---|
[2] | 532 |
|
---|
[391] | 533 | if (wsign < 0) {
|
---|
| 534 | ww = PyNumber_Negative(w);
|
---|
| 535 | if (ww == NULL)
|
---|
| 536 | goto Error;
|
---|
| 537 | }
|
---|
| 538 | else
|
---|
| 539 | Py_INCREF(ww);
|
---|
[2] | 540 |
|
---|
[391] | 541 | fracpart = modf(i, &intpart);
|
---|
| 542 | vv = PyLong_FromDouble(intpart);
|
---|
| 543 | if (vv == NULL)
|
---|
| 544 | goto Error;
|
---|
[2] | 545 |
|
---|
[391] | 546 | if (fracpart != 0.0) {
|
---|
| 547 | /* Shift left, and or a 1 bit into vv
|
---|
| 548 | * to represent the lost fraction.
|
---|
| 549 | */
|
---|
| 550 | PyObject *temp;
|
---|
[2] | 551 |
|
---|
[391] | 552 | one = PyInt_FromLong(1);
|
---|
| 553 | if (one == NULL)
|
---|
| 554 | goto Error;
|
---|
[2] | 555 |
|
---|
[391] | 556 | temp = PyNumber_Lshift(ww, one);
|
---|
| 557 | if (temp == NULL)
|
---|
| 558 | goto Error;
|
---|
| 559 | Py_DECREF(ww);
|
---|
| 560 | ww = temp;
|
---|
[2] | 561 |
|
---|
[391] | 562 | temp = PyNumber_Lshift(vv, one);
|
---|
| 563 | if (temp == NULL)
|
---|
| 564 | goto Error;
|
---|
| 565 | Py_DECREF(vv);
|
---|
| 566 | vv = temp;
|
---|
[2] | 567 |
|
---|
[391] | 568 | temp = PyNumber_Or(vv, one);
|
---|
| 569 | if (temp == NULL)
|
---|
| 570 | goto Error;
|
---|
| 571 | Py_DECREF(vv);
|
---|
| 572 | vv = temp;
|
---|
| 573 | }
|
---|
[2] | 574 |
|
---|
[391] | 575 | r = PyObject_RichCompareBool(vv, ww, op);
|
---|
| 576 | if (r < 0)
|
---|
| 577 | goto Error;
|
---|
| 578 | result = PyBool_FromLong(r);
|
---|
| 579 | Error:
|
---|
| 580 | Py_XDECREF(vv);
|
---|
| 581 | Py_XDECREF(ww);
|
---|
| 582 | Py_XDECREF(one);
|
---|
| 583 | return result;
|
---|
| 584 | }
|
---|
| 585 | } /* else if (PyLong_Check(w)) */
|
---|
[2] | 586 |
|
---|
[391] | 587 | else /* w isn't float, int, or long */
|
---|
| 588 | goto Unimplemented;
|
---|
[2] | 589 |
|
---|
| 590 | Compare:
|
---|
[391] | 591 | PyFPE_START_PROTECT("richcompare", return NULL)
|
---|
| 592 | switch (op) {
|
---|
| 593 | case Py_EQ:
|
---|
| 594 | r = i == j;
|
---|
| 595 | break;
|
---|
| 596 | case Py_NE:
|
---|
| 597 | r = i != j;
|
---|
| 598 | break;
|
---|
| 599 | case Py_LE:
|
---|
| 600 | r = i <= j;
|
---|
| 601 | break;
|
---|
| 602 | case Py_GE:
|
---|
| 603 | r = i >= j;
|
---|
| 604 | break;
|
---|
| 605 | case Py_LT:
|
---|
| 606 | r = i < j;
|
---|
| 607 | break;
|
---|
| 608 | case Py_GT:
|
---|
| 609 | r = i > j;
|
---|
| 610 | break;
|
---|
| 611 | }
|
---|
| 612 | PyFPE_END_PROTECT(r)
|
---|
| 613 | return PyBool_FromLong(r);
|
---|
[2] | 614 |
|
---|
| 615 | Unimplemented:
|
---|
[391] | 616 | Py_INCREF(Py_NotImplemented);
|
---|
| 617 | return Py_NotImplemented;
|
---|
[2] | 618 | }
|
---|
| 619 |
|
---|
| 620 | static long
|
---|
| 621 | float_hash(PyFloatObject *v)
|
---|
| 622 | {
|
---|
[391] | 623 | return _Py_HashDouble(v->ob_fval);
|
---|
[2] | 624 | }
|
---|
| 625 |
|
---|
| 626 | static PyObject *
|
---|
| 627 | float_add(PyObject *v, PyObject *w)
|
---|
| 628 | {
|
---|
[391] | 629 | double a,b;
|
---|
| 630 | CONVERT_TO_DOUBLE(v, a);
|
---|
| 631 | CONVERT_TO_DOUBLE(w, b);
|
---|
| 632 | PyFPE_START_PROTECT("add", return 0)
|
---|
| 633 | a = a + b;
|
---|
| 634 | PyFPE_END_PROTECT(a)
|
---|
| 635 | return PyFloat_FromDouble(a);
|
---|
[2] | 636 | }
|
---|
| 637 |
|
---|
| 638 | static PyObject *
|
---|
| 639 | float_sub(PyObject *v, PyObject *w)
|
---|
| 640 | {
|
---|
[391] | 641 | double a,b;
|
---|
| 642 | CONVERT_TO_DOUBLE(v, a);
|
---|
| 643 | CONVERT_TO_DOUBLE(w, b);
|
---|
| 644 | PyFPE_START_PROTECT("subtract", return 0)
|
---|
| 645 | a = a - b;
|
---|
| 646 | PyFPE_END_PROTECT(a)
|
---|
| 647 | return PyFloat_FromDouble(a);
|
---|
[2] | 648 | }
|
---|
| 649 |
|
---|
| 650 | static PyObject *
|
---|
| 651 | float_mul(PyObject *v, PyObject *w)
|
---|
| 652 | {
|
---|
[391] | 653 | double a,b;
|
---|
| 654 | CONVERT_TO_DOUBLE(v, a);
|
---|
| 655 | CONVERT_TO_DOUBLE(w, b);
|
---|
| 656 | PyFPE_START_PROTECT("multiply", return 0)
|
---|
| 657 | a = a * b;
|
---|
| 658 | PyFPE_END_PROTECT(a)
|
---|
| 659 | return PyFloat_FromDouble(a);
|
---|
[2] | 660 | }
|
---|
| 661 |
|
---|
| 662 | static PyObject *
|
---|
| 663 | float_div(PyObject *v, PyObject *w)
|
---|
| 664 | {
|
---|
[391] | 665 | double a,b;
|
---|
| 666 | CONVERT_TO_DOUBLE(v, a);
|
---|
| 667 | CONVERT_TO_DOUBLE(w, b);
|
---|
[2] | 668 | #ifdef Py_NAN
|
---|
[391] | 669 | if (b == 0.0) {
|
---|
| 670 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
| 671 | "float division by zero");
|
---|
| 672 | return NULL;
|
---|
| 673 | }
|
---|
[2] | 674 | #endif
|
---|
[391] | 675 | PyFPE_START_PROTECT("divide", return 0)
|
---|
| 676 | a = a / b;
|
---|
| 677 | PyFPE_END_PROTECT(a)
|
---|
| 678 | return PyFloat_FromDouble(a);
|
---|
[2] | 679 | }
|
---|
| 680 |
|
---|
| 681 | static PyObject *
|
---|
| 682 | float_classic_div(PyObject *v, PyObject *w)
|
---|
| 683 | {
|
---|
[391] | 684 | double a,b;
|
---|
| 685 | CONVERT_TO_DOUBLE(v, a);
|
---|
| 686 | CONVERT_TO_DOUBLE(w, b);
|
---|
| 687 | if (Py_DivisionWarningFlag >= 2 &&
|
---|
| 688 | PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
|
---|
| 689 | return NULL;
|
---|
[2] | 690 | #ifdef Py_NAN
|
---|
[391] | 691 | if (b == 0.0) {
|
---|
| 692 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
| 693 | "float division by zero");
|
---|
| 694 | return NULL;
|
---|
| 695 | }
|
---|
[2] | 696 | #endif
|
---|
[391] | 697 | PyFPE_START_PROTECT("divide", return 0)
|
---|
| 698 | a = a / b;
|
---|
| 699 | PyFPE_END_PROTECT(a)
|
---|
| 700 | return PyFloat_FromDouble(a);
|
---|
[2] | 701 | }
|
---|
| 702 |
|
---|
| 703 | static PyObject *
|
---|
| 704 | float_rem(PyObject *v, PyObject *w)
|
---|
| 705 | {
|
---|
[391] | 706 | double vx, wx;
|
---|
| 707 | double mod;
|
---|
| 708 | CONVERT_TO_DOUBLE(v, vx);
|
---|
| 709 | CONVERT_TO_DOUBLE(w, wx);
|
---|
[2] | 710 | #ifdef Py_NAN
|
---|
[391] | 711 | if (wx == 0.0) {
|
---|
| 712 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
| 713 | "float modulo");
|
---|
| 714 | return NULL;
|
---|
| 715 | }
|
---|
[2] | 716 | #endif
|
---|
[391] | 717 | PyFPE_START_PROTECT("modulo", return 0)
|
---|
| 718 | mod = fmod(vx, wx);
|
---|
| 719 | if (mod) {
|
---|
| 720 | /* ensure the remainder has the same sign as the denominator */
|
---|
| 721 | if ((wx < 0) != (mod < 0)) {
|
---|
| 722 | mod += wx;
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
| 725 | else {
|
---|
| 726 | /* the remainder is zero, and in the presence of signed zeroes
|
---|
| 727 | fmod returns different results across platforms; ensure
|
---|
| 728 | it has the same sign as the denominator; we'd like to do
|
---|
| 729 | "mod = wx * 0.0", but that may get optimized away */
|
---|
| 730 | mod *= mod; /* hide "mod = +0" from optimizer */
|
---|
| 731 | if (wx < 0.0)
|
---|
| 732 | mod = -mod;
|
---|
| 733 | }
|
---|
| 734 | PyFPE_END_PROTECT(mod)
|
---|
| 735 | return PyFloat_FromDouble(mod);
|
---|
[2] | 736 | }
|
---|
| 737 |
|
---|
| 738 | static PyObject *
|
---|
| 739 | float_divmod(PyObject *v, PyObject *w)
|
---|
| 740 | {
|
---|
[391] | 741 | double vx, wx;
|
---|
| 742 | double div, mod, floordiv;
|
---|
| 743 | CONVERT_TO_DOUBLE(v, vx);
|
---|
| 744 | CONVERT_TO_DOUBLE(w, wx);
|
---|
| 745 | if (wx == 0.0) {
|
---|
| 746 | PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
|
---|
| 747 | return NULL;
|
---|
| 748 | }
|
---|
| 749 | PyFPE_START_PROTECT("divmod", return 0)
|
---|
| 750 | mod = fmod(vx, wx);
|
---|
| 751 | /* fmod is typically exact, so vx-mod is *mathematically* an
|
---|
| 752 | exact multiple of wx. But this is fp arithmetic, and fp
|
---|
| 753 | vx - mod is an approximation; the result is that div may
|
---|
| 754 | not be an exact integral value after the division, although
|
---|
| 755 | it will always be very close to one.
|
---|
| 756 | */
|
---|
| 757 | div = (vx - mod) / wx;
|
---|
| 758 | if (mod) {
|
---|
| 759 | /* ensure the remainder has the same sign as the denominator */
|
---|
| 760 | if ((wx < 0) != (mod < 0)) {
|
---|
| 761 | mod += wx;
|
---|
| 762 | div -= 1.0;
|
---|
| 763 | }
|
---|
| 764 | }
|
---|
| 765 | else {
|
---|
| 766 | /* the remainder is zero, and in the presence of signed zeroes
|
---|
| 767 | fmod returns different results across platforms; ensure
|
---|
| 768 | it has the same sign as the denominator; we'd like to do
|
---|
| 769 | "mod = wx * 0.0", but that may get optimized away */
|
---|
| 770 | mod *= mod; /* hide "mod = +0" from optimizer */
|
---|
| 771 | if (wx < 0.0)
|
---|
| 772 | mod = -mod;
|
---|
| 773 | }
|
---|
| 774 | /* snap quotient to nearest integral value */
|
---|
| 775 | if (div) {
|
---|
| 776 | floordiv = floor(div);
|
---|
| 777 | if (div - floordiv > 0.5)
|
---|
| 778 | floordiv += 1.0;
|
---|
| 779 | }
|
---|
| 780 | else {
|
---|
| 781 | /* div is zero - get the same sign as the true quotient */
|
---|
| 782 | div *= div; /* hide "div = +0" from optimizers */
|
---|
| 783 | floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
|
---|
| 784 | }
|
---|
| 785 | PyFPE_END_PROTECT(floordiv)
|
---|
| 786 | return Py_BuildValue("(dd)", floordiv, mod);
|
---|
[2] | 787 | }
|
---|
| 788 |
|
---|
| 789 | static PyObject *
|
---|
| 790 | float_floor_div(PyObject *v, PyObject *w)
|
---|
| 791 | {
|
---|
[391] | 792 | PyObject *t, *r;
|
---|
[2] | 793 |
|
---|
[391] | 794 | t = float_divmod(v, w);
|
---|
| 795 | if (t == NULL || t == Py_NotImplemented)
|
---|
| 796 | return t;
|
---|
| 797 | assert(PyTuple_CheckExact(t));
|
---|
| 798 | r = PyTuple_GET_ITEM(t, 0);
|
---|
| 799 | Py_INCREF(r);
|
---|
| 800 | Py_DECREF(t);
|
---|
| 801 | return r;
|
---|
[2] | 802 | }
|
---|
| 803 |
|
---|
[391] | 804 | /* determine whether x is an odd integer or not; assumes that
|
---|
| 805 | x is not an infinity or nan. */
|
---|
| 806 | #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
|
---|
| 807 |
|
---|
[2] | 808 | static PyObject *
|
---|
| 809 | float_pow(PyObject *v, PyObject *w, PyObject *z)
|
---|
| 810 | {
|
---|
[391] | 811 | double iv, iw, ix;
|
---|
| 812 | int negate_result = 0;
|
---|
[2] | 813 |
|
---|
[391] | 814 | if ((PyObject *)z != Py_None) {
|
---|
| 815 | PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
|
---|
| 816 | "allowed unless all arguments are integers");
|
---|
| 817 | return NULL;
|
---|
| 818 | }
|
---|
[2] | 819 |
|
---|
[391] | 820 | CONVERT_TO_DOUBLE(v, iv);
|
---|
| 821 | CONVERT_TO_DOUBLE(w, iw);
|
---|
[2] | 822 |
|
---|
[391] | 823 | /* Sort out special cases here instead of relying on pow() */
|
---|
| 824 | if (iw == 0) { /* v**0 is 1, even 0**0 */
|
---|
| 825 | return PyFloat_FromDouble(1.0);
|
---|
| 826 | }
|
---|
| 827 | if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
|
---|
| 828 | return PyFloat_FromDouble(iv);
|
---|
| 829 | }
|
---|
| 830 | if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
|
---|
| 831 | return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
|
---|
| 832 | }
|
---|
| 833 | if (Py_IS_INFINITY(iw)) {
|
---|
| 834 | /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
|
---|
| 835 | * abs(v) > 1 (including case where v infinite)
|
---|
| 836 | *
|
---|
| 837 | * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
|
---|
| 838 | * abs(v) > 1 (including case where v infinite)
|
---|
| 839 | */
|
---|
| 840 | iv = fabs(iv);
|
---|
| 841 | if (iv == 1.0)
|
---|
| 842 | return PyFloat_FromDouble(1.0);
|
---|
| 843 | else if ((iw > 0.0) == (iv > 1.0))
|
---|
| 844 | return PyFloat_FromDouble(fabs(iw)); /* return inf */
|
---|
| 845 | else
|
---|
| 846 | return PyFloat_FromDouble(0.0);
|
---|
| 847 | }
|
---|
| 848 | if (Py_IS_INFINITY(iv)) {
|
---|
| 849 | /* (+-inf)**w is: inf for w positive, 0 for w negative; in
|
---|
| 850 | * both cases, we need to add the appropriate sign if w is
|
---|
| 851 | * an odd integer.
|
---|
| 852 | */
|
---|
| 853 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
| 854 | if (iw > 0.0)
|
---|
| 855 | return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
|
---|
| 856 | else
|
---|
| 857 | return PyFloat_FromDouble(iw_is_odd ?
|
---|
| 858 | copysign(0.0, iv) : 0.0);
|
---|
| 859 | }
|
---|
| 860 | if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
|
---|
| 861 | (already dealt with above), and an error
|
---|
| 862 | if w is negative. */
|
---|
| 863 | int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
| 864 | if (iw < 0.0) {
|
---|
| 865 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
| 866 | "0.0 cannot be raised to a "
|
---|
| 867 | "negative power");
|
---|
| 868 | return NULL;
|
---|
| 869 | }
|
---|
| 870 | /* use correct sign if iw is odd */
|
---|
| 871 | return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
|
---|
| 872 | }
|
---|
| 873 |
|
---|
| 874 | if (iv < 0.0) {
|
---|
| 875 | /* Whether this is an error is a mess, and bumps into libm
|
---|
| 876 | * bugs so we have to figure it out ourselves.
|
---|
| 877 | */
|
---|
| 878 | if (iw != floor(iw)) {
|
---|
| 879 | PyErr_SetString(PyExc_ValueError, "negative number "
|
---|
| 880 | "cannot be raised to a fractional power");
|
---|
| 881 | return NULL;
|
---|
| 882 | }
|
---|
| 883 | /* iw is an exact integer, albeit perhaps a very large
|
---|
| 884 | * one. Replace iv by its absolute value and remember
|
---|
| 885 | * to negate the pow result if iw is odd.
|
---|
| 886 | */
|
---|
| 887 | iv = -iv;
|
---|
| 888 | negate_result = DOUBLE_IS_ODD_INTEGER(iw);
|
---|
| 889 | }
|
---|
| 890 |
|
---|
| 891 | if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
|
---|
| 892 | /* (-1) ** large_integer also ends up here. Here's an
|
---|
| 893 | * extract from the comments for the previous
|
---|
| 894 | * implementation explaining why this special case is
|
---|
| 895 | * necessary:
|
---|
| 896 | *
|
---|
| 897 | * -1 raised to an exact integer should never be exceptional.
|
---|
| 898 | * Alas, some libms (chiefly glibc as of early 2003) return
|
---|
| 899 | * NaN and set EDOM on pow(-1, large_int) if the int doesn't
|
---|
| 900 | * happen to be representable in a *C* integer. That's a
|
---|
| 901 | * bug.
|
---|
| 902 | */
|
---|
| 903 | return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | /* Now iv and iw are finite, iw is nonzero, and iv is
|
---|
| 907 | * positive and not equal to 1.0. We finally allow
|
---|
| 908 | * the platform pow to step in and do the rest.
|
---|
| 909 | */
|
---|
| 910 | errno = 0;
|
---|
| 911 | PyFPE_START_PROTECT("pow", return NULL)
|
---|
| 912 | ix = pow(iv, iw);
|
---|
| 913 | PyFPE_END_PROTECT(ix)
|
---|
| 914 | Py_ADJUST_ERANGE1(ix);
|
---|
| 915 | if (negate_result)
|
---|
| 916 | ix = -ix;
|
---|
| 917 |
|
---|
| 918 | if (errno != 0) {
|
---|
| 919 | /* We don't expect any errno value other than ERANGE, but
|
---|
| 920 | * the range of libm bugs appears unbounded.
|
---|
| 921 | */
|
---|
| 922 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
|
---|
| 923 | PyExc_ValueError);
|
---|
| 924 | return NULL;
|
---|
| 925 | }
|
---|
| 926 | return PyFloat_FromDouble(ix);
|
---|
[2] | 927 | }
|
---|
| 928 |
|
---|
[391] | 929 | #undef DOUBLE_IS_ODD_INTEGER
|
---|
| 930 |
|
---|
[2] | 931 | static PyObject *
|
---|
| 932 | float_neg(PyFloatObject *v)
|
---|
| 933 | {
|
---|
[391] | 934 | return PyFloat_FromDouble(-v->ob_fval);
|
---|
[2] | 935 | }
|
---|
| 936 |
|
---|
| 937 | static PyObject *
|
---|
| 938 | float_abs(PyFloatObject *v)
|
---|
| 939 | {
|
---|
[391] | 940 | return PyFloat_FromDouble(fabs(v->ob_fval));
|
---|
[2] | 941 | }
|
---|
| 942 |
|
---|
| 943 | static int
|
---|
| 944 | float_nonzero(PyFloatObject *v)
|
---|
| 945 | {
|
---|
[391] | 946 | return v->ob_fval != 0.0;
|
---|
[2] | 947 | }
|
---|
| 948 |
|
---|
| 949 | static int
|
---|
| 950 | float_coerce(PyObject **pv, PyObject **pw)
|
---|
| 951 | {
|
---|
[391] | 952 | if (PyInt_Check(*pw)) {
|
---|
| 953 | long x = PyInt_AsLong(*pw);
|
---|
| 954 | *pw = PyFloat_FromDouble((double)x);
|
---|
| 955 | Py_INCREF(*pv);
|
---|
| 956 | return 0;
|
---|
| 957 | }
|
---|
| 958 | else if (PyLong_Check(*pw)) {
|
---|
| 959 | double x = PyLong_AsDouble(*pw);
|
---|
| 960 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 961 | return -1;
|
---|
| 962 | *pw = PyFloat_FromDouble(x);
|
---|
| 963 | Py_INCREF(*pv);
|
---|
| 964 | return 0;
|
---|
| 965 | }
|
---|
| 966 | else if (PyFloat_Check(*pw)) {
|
---|
| 967 | Py_INCREF(*pv);
|
---|
| 968 | Py_INCREF(*pw);
|
---|
| 969 | return 0;
|
---|
| 970 | }
|
---|
| 971 | return 1; /* Can't do it */
|
---|
[2] | 972 | }
|
---|
| 973 |
|
---|
| 974 | static PyObject *
|
---|
| 975 | float_is_integer(PyObject *v)
|
---|
| 976 | {
|
---|
[391] | 977 | double x = PyFloat_AsDouble(v);
|
---|
| 978 | PyObject *o;
|
---|
| 979 |
|
---|
| 980 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 981 | return NULL;
|
---|
| 982 | if (!Py_IS_FINITE(x))
|
---|
| 983 | Py_RETURN_FALSE;
|
---|
| 984 | errno = 0;
|
---|
| 985 | PyFPE_START_PROTECT("is_integer", return NULL)
|
---|
| 986 | o = (floor(x) == x) ? Py_True : Py_False;
|
---|
| 987 | PyFPE_END_PROTECT(x)
|
---|
| 988 | if (errno != 0) {
|
---|
| 989 | PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
|
---|
| 990 | PyExc_ValueError);
|
---|
| 991 | return NULL;
|
---|
| 992 | }
|
---|
| 993 | Py_INCREF(o);
|
---|
| 994 | return o;
|
---|
[2] | 995 | }
|
---|
| 996 |
|
---|
| 997 | #if 0
|
---|
| 998 | static PyObject *
|
---|
| 999 | float_is_inf(PyObject *v)
|
---|
| 1000 | {
|
---|
[391] | 1001 | double x = PyFloat_AsDouble(v);
|
---|
| 1002 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 1003 | return NULL;
|
---|
| 1004 | return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
---|
[2] | 1005 | }
|
---|
| 1006 |
|
---|
| 1007 | static PyObject *
|
---|
| 1008 | float_is_nan(PyObject *v)
|
---|
| 1009 | {
|
---|
[391] | 1010 | double x = PyFloat_AsDouble(v);
|
---|
| 1011 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 1012 | return NULL;
|
---|
| 1013 | return PyBool_FromLong((long)Py_IS_NAN(x));
|
---|
[2] | 1014 | }
|
---|
| 1015 |
|
---|
| 1016 | static PyObject *
|
---|
| 1017 | float_is_finite(PyObject *v)
|
---|
| 1018 | {
|
---|
[391] | 1019 | double x = PyFloat_AsDouble(v);
|
---|
| 1020 | if (x == -1.0 && PyErr_Occurred())
|
---|
| 1021 | return NULL;
|
---|
| 1022 | return PyBool_FromLong((long)Py_IS_FINITE(x));
|
---|
[2] | 1023 | }
|
---|
| 1024 | #endif
|
---|
| 1025 |
|
---|
| 1026 | static PyObject *
|
---|
| 1027 | float_trunc(PyObject *v)
|
---|
| 1028 | {
|
---|
[391] | 1029 | double x = PyFloat_AsDouble(v);
|
---|
| 1030 | double wholepart; /* integral portion of x, rounded toward 0 */
|
---|
[2] | 1031 |
|
---|
[391] | 1032 | (void)modf(x, &wholepart);
|
---|
| 1033 | /* Try to get out cheap if this fits in a Python int. The attempt
|
---|
| 1034 | * to cast to long must be protected, as C doesn't define what
|
---|
| 1035 | * happens if the double is too big to fit in a long. Some rare
|
---|
| 1036 | * systems raise an exception then (RISCOS was mentioned as one,
|
---|
| 1037 | * and someone using a non-default option on Sun also bumped into
|
---|
| 1038 | * that). Note that checking for <= LONG_MAX is unsafe: if a long
|
---|
| 1039 | * has more bits of precision than a double, casting LONG_MAX to
|
---|
| 1040 | * double may yield an approximation, and if that's rounded up,
|
---|
| 1041 | * then, e.g., wholepart=LONG_MAX+1 would yield true from the C
|
---|
| 1042 | * expression wholepart<=LONG_MAX, despite that wholepart is
|
---|
| 1043 | * actually greater than LONG_MAX. However, assuming a two's complement
|
---|
| 1044 | * machine with no trap representation, LONG_MIN will be a power of 2 (and
|
---|
| 1045 | * hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
|
---|
| 1046 | * the comparisons with (double)LONG_MIN below should be safe.
|
---|
| 1047 | */
|
---|
| 1048 | if ((double)LONG_MIN <= wholepart && wholepart < -(double)LONG_MIN) {
|
---|
| 1049 | const long aslong = (long)wholepart;
|
---|
| 1050 | return PyInt_FromLong(aslong);
|
---|
| 1051 | }
|
---|
| 1052 | return PyLong_FromDouble(wholepart);
|
---|
[2] | 1053 | }
|
---|
| 1054 |
|
---|
| 1055 | static PyObject *
|
---|
| 1056 | float_long(PyObject *v)
|
---|
| 1057 | {
|
---|
[391] | 1058 | double x = PyFloat_AsDouble(v);
|
---|
| 1059 | return PyLong_FromDouble(x);
|
---|
[2] | 1060 | }
|
---|
| 1061 |
|
---|
[391] | 1062 | /* _Py_double_round: rounds a finite nonzero double to the closest multiple of
|
---|
| 1063 | 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
|
---|
| 1064 | ndigits <= 323). Returns a Python float, or sets a Python error and
|
---|
| 1065 | returns NULL on failure (OverflowError and memory errors are possible). */
|
---|
| 1066 |
|
---|
| 1067 | #ifndef PY_NO_SHORT_FLOAT_REPR
|
---|
| 1068 | /* version of _Py_double_round that uses the correctly-rounded string<->double
|
---|
| 1069 | conversions from Python/dtoa.c */
|
---|
| 1070 |
|
---|
| 1071 | /* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
|
---|
| 1072 | a double. Since we're using the code in Python/dtoa.c, it should be safe
|
---|
| 1073 | to assume that C doubles are IEEE 754 binary64 format. To be on the safe
|
---|
| 1074 | side, we check this. */
|
---|
| 1075 | #if DBL_MANT_DIG == 53
|
---|
| 1076 | #define FIVE_POW_LIMIT 22
|
---|
| 1077 | #else
|
---|
| 1078 | #error "C doubles do not appear to be IEEE 754 binary64 format"
|
---|
| 1079 | #endif
|
---|
| 1080 |
|
---|
| 1081 | PyObject *
|
---|
| 1082 | _Py_double_round(double x, int ndigits) {
|
---|
| 1083 |
|
---|
| 1084 | double rounded, m;
|
---|
| 1085 | Py_ssize_t buflen, mybuflen=100;
|
---|
| 1086 | char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
|
---|
| 1087 | int decpt, sign, val, halfway_case;
|
---|
| 1088 | PyObject *result = NULL;
|
---|
| 1089 | _Py_SET_53BIT_PRECISION_HEADER;
|
---|
| 1090 |
|
---|
| 1091 | /* Easy path for the common case ndigits == 0. */
|
---|
| 1092 | if (ndigits == 0) {
|
---|
| 1093 | rounded = round(x);
|
---|
| 1094 | if (fabs(rounded - x) == 0.5)
|
---|
| 1095 | /* halfway between two integers; use round-away-from-zero */
|
---|
| 1096 | rounded = x + (x > 0.0 ? 0.5 : -0.5);
|
---|
| 1097 | return PyFloat_FromDouble(rounded);
|
---|
| 1098 | }
|
---|
| 1099 |
|
---|
| 1100 | /* The basic idea is very simple: convert and round the double to a
|
---|
| 1101 | decimal string using _Py_dg_dtoa, then convert that decimal string
|
---|
| 1102 | back to a double with _Py_dg_strtod. There's one minor difficulty:
|
---|
| 1103 | Python 2.x expects round to do round-half-away-from-zero, while
|
---|
| 1104 | _Py_dg_dtoa does round-half-to-even. So we need some way to detect
|
---|
| 1105 | and correct the halfway cases.
|
---|
| 1106 |
|
---|
| 1107 | Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
|
---|
| 1108 | some odd integer k. Or in other words, a rational number x is
|
---|
| 1109 | exactly halfway between two multiples of 10**-ndigits if its
|
---|
| 1110 | 2-valuation is exactly -ndigits-1 and its 5-valuation is at least
|
---|
| 1111 | -ndigits. For ndigits >= 0 the latter condition is automatically
|
---|
| 1112 | satisfied for a binary float x, since any such float has
|
---|
| 1113 | nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
|
---|
| 1114 | integral multiple of 5**-ndigits; we can check this using fmod.
|
---|
| 1115 | For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
|
---|
| 1116 | to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
|
---|
| 1117 | 23 takes at least 54 bits of precision to represent exactly.
|
---|
| 1118 |
|
---|
| 1119 | Correction: a simple strategy for dealing with halfway cases is to
|
---|
| 1120 | (for the halfway cases only) call _Py_dg_dtoa with an argument of
|
---|
| 1121 | ndigits+1 instead of ndigits (thus doing an exact conversion to
|
---|
| 1122 | decimal), round the resulting string manually, and then convert
|
---|
| 1123 | back using _Py_dg_strtod.
|
---|
| 1124 | */
|
---|
| 1125 |
|
---|
| 1126 | /* nans, infinities and zeros should have already been dealt
|
---|
| 1127 | with by the caller (in this case, builtin_round) */
|
---|
| 1128 | assert(Py_IS_FINITE(x) && x != 0.0);
|
---|
| 1129 |
|
---|
| 1130 | /* find 2-valuation val of x */
|
---|
| 1131 | m = frexp(x, &val);
|
---|
| 1132 | while (m != floor(m)) {
|
---|
| 1133 | m *= 2.0;
|
---|
| 1134 | val--;
|
---|
| 1135 | }
|
---|
| 1136 |
|
---|
| 1137 | /* determine whether this is a halfway case */
|
---|
| 1138 | if (val == -ndigits-1) {
|
---|
| 1139 | if (ndigits >= 0)
|
---|
| 1140 | halfway_case = 1;
|
---|
| 1141 | else if (ndigits >= -FIVE_POW_LIMIT) {
|
---|
| 1142 | double five_pow = 1.0;
|
---|
| 1143 | int i;
|
---|
| 1144 | for (i=0; i < -ndigits; i++)
|
---|
| 1145 | five_pow *= 5.0;
|
---|
| 1146 | halfway_case = fmod(x, five_pow) == 0.0;
|
---|
| 1147 | }
|
---|
| 1148 | else
|
---|
| 1149 | halfway_case = 0;
|
---|
| 1150 | }
|
---|
| 1151 | else
|
---|
| 1152 | halfway_case = 0;
|
---|
| 1153 |
|
---|
| 1154 | /* round to a decimal string; use an extra place for halfway case */
|
---|
| 1155 | _Py_SET_53BIT_PRECISION_START;
|
---|
| 1156 | buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
|
---|
| 1157 | _Py_SET_53BIT_PRECISION_END;
|
---|
| 1158 | if (buf == NULL) {
|
---|
| 1159 | PyErr_NoMemory();
|
---|
| 1160 | return NULL;
|
---|
| 1161 | }
|
---|
| 1162 | buflen = buf_end - buf;
|
---|
| 1163 |
|
---|
| 1164 | /* in halfway case, do the round-half-away-from-zero manually */
|
---|
| 1165 | if (halfway_case) {
|
---|
| 1166 | int i, carry;
|
---|
| 1167 | /* sanity check: _Py_dg_dtoa should not have stripped
|
---|
| 1168 | any zeros from the result: there should be exactly
|
---|
| 1169 | ndigits+1 places following the decimal point, and
|
---|
| 1170 | the last digit in the buffer should be a '5'.*/
|
---|
| 1171 | assert(buflen - decpt == ndigits+1);
|
---|
| 1172 | assert(buf[buflen-1] == '5');
|
---|
| 1173 |
|
---|
| 1174 | /* increment and shift right at the same time. */
|
---|
| 1175 | decpt += 1;
|
---|
| 1176 | carry = 1;
|
---|
| 1177 | for (i=buflen-1; i-- > 0;) {
|
---|
| 1178 | carry += buf[i] - '0';
|
---|
| 1179 | buf[i+1] = carry % 10 + '0';
|
---|
| 1180 | carry /= 10;
|
---|
| 1181 | }
|
---|
| 1182 | buf[0] = carry + '0';
|
---|
| 1183 | }
|
---|
| 1184 |
|
---|
| 1185 | /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
|
---|
| 1186 | buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
|
---|
| 1187 | if (buflen + 8 > mybuflen) {
|
---|
| 1188 | mybuflen = buflen+8;
|
---|
| 1189 | mybuf = (char *)PyMem_Malloc(mybuflen);
|
---|
| 1190 | if (mybuf == NULL) {
|
---|
| 1191 | PyErr_NoMemory();
|
---|
| 1192 | goto exit;
|
---|
| 1193 | }
|
---|
| 1194 | }
|
---|
| 1195 | /* copy buf to mybuf, adding exponent, sign and leading 0 */
|
---|
| 1196 | PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
|
---|
| 1197 | buf, decpt - (int)buflen);
|
---|
| 1198 |
|
---|
| 1199 | /* and convert the resulting string back to a double */
|
---|
| 1200 | errno = 0;
|
---|
| 1201 | _Py_SET_53BIT_PRECISION_START;
|
---|
| 1202 | rounded = _Py_dg_strtod(mybuf, NULL);
|
---|
| 1203 | _Py_SET_53BIT_PRECISION_END;
|
---|
| 1204 | if (errno == ERANGE && fabs(rounded) >= 1.)
|
---|
| 1205 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 1206 | "rounded value too large to represent");
|
---|
| 1207 | else
|
---|
| 1208 | result = PyFloat_FromDouble(rounded);
|
---|
| 1209 |
|
---|
| 1210 | /* done computing value; now clean up */
|
---|
| 1211 | if (mybuf != shortbuf)
|
---|
| 1212 | PyMem_Free(mybuf);
|
---|
| 1213 | exit:
|
---|
| 1214 | _Py_dg_freedtoa(buf);
|
---|
| 1215 | return result;
|
---|
| 1216 | }
|
---|
| 1217 |
|
---|
| 1218 | #undef FIVE_POW_LIMIT
|
---|
| 1219 |
|
---|
| 1220 | #else /* PY_NO_SHORT_FLOAT_REPR */
|
---|
| 1221 |
|
---|
| 1222 | /* fallback version, to be used when correctly rounded binary<->decimal
|
---|
| 1223 | conversions aren't available */
|
---|
| 1224 |
|
---|
| 1225 | PyObject *
|
---|
| 1226 | _Py_double_round(double x, int ndigits) {
|
---|
| 1227 | double pow1, pow2, y, z;
|
---|
| 1228 | if (ndigits >= 0) {
|
---|
| 1229 | if (ndigits > 22) {
|
---|
| 1230 | /* pow1 and pow2 are each safe from overflow, but
|
---|
| 1231 | pow1*pow2 ~= pow(10.0, ndigits) might overflow */
|
---|
| 1232 | pow1 = pow(10.0, (double)(ndigits-22));
|
---|
| 1233 | pow2 = 1e22;
|
---|
| 1234 | }
|
---|
| 1235 | else {
|
---|
| 1236 | pow1 = pow(10.0, (double)ndigits);
|
---|
| 1237 | pow2 = 1.0;
|
---|
| 1238 | }
|
---|
| 1239 | y = (x*pow1)*pow2;
|
---|
| 1240 | /* if y overflows, then rounded value is exactly x */
|
---|
| 1241 | if (!Py_IS_FINITE(y))
|
---|
| 1242 | return PyFloat_FromDouble(x);
|
---|
| 1243 | }
|
---|
| 1244 | else {
|
---|
| 1245 | pow1 = pow(10.0, (double)-ndigits);
|
---|
| 1246 | pow2 = 1.0; /* unused; silences a gcc compiler warning */
|
---|
| 1247 | y = x / pow1;
|
---|
| 1248 | }
|
---|
| 1249 |
|
---|
| 1250 | z = round(y);
|
---|
| 1251 | if (fabs(y-z) == 0.5)
|
---|
| 1252 | /* halfway between two integers; use round-away-from-zero */
|
---|
| 1253 | z = y + copysign(0.5, y);
|
---|
| 1254 |
|
---|
| 1255 | if (ndigits >= 0)
|
---|
| 1256 | z = (z / pow2) / pow1;
|
---|
| 1257 | else
|
---|
| 1258 | z *= pow1;
|
---|
| 1259 |
|
---|
| 1260 | /* if computation resulted in overflow, raise OverflowError */
|
---|
| 1261 | if (!Py_IS_FINITE(z)) {
|
---|
| 1262 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 1263 | "overflow occurred during round");
|
---|
| 1264 | return NULL;
|
---|
| 1265 | }
|
---|
| 1266 |
|
---|
| 1267 | return PyFloat_FromDouble(z);
|
---|
| 1268 | }
|
---|
| 1269 |
|
---|
| 1270 | #endif /* PY_NO_SHORT_FLOAT_REPR */
|
---|
| 1271 |
|
---|
[2] | 1272 | static PyObject *
|
---|
| 1273 | float_float(PyObject *v)
|
---|
| 1274 | {
|
---|
[391] | 1275 | if (PyFloat_CheckExact(v))
|
---|
| 1276 | Py_INCREF(v);
|
---|
| 1277 | else
|
---|
| 1278 | v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
|
---|
| 1279 | return v;
|
---|
[2] | 1280 | }
|
---|
| 1281 |
|
---|
| 1282 | /* turn ASCII hex characters into integer values and vice versa */
|
---|
| 1283 |
|
---|
| 1284 | static char
|
---|
| 1285 | char_from_hex(int x)
|
---|
| 1286 | {
|
---|
[391] | 1287 | assert(0 <= x && x < 16);
|
---|
| 1288 | return "0123456789abcdef"[x];
|
---|
[2] | 1289 | }
|
---|
| 1290 |
|
---|
| 1291 | static int
|
---|
| 1292 | hex_from_char(char c) {
|
---|
[391] | 1293 | int x;
|
---|
| 1294 | switch(c) {
|
---|
| 1295 | case '0':
|
---|
| 1296 | x = 0;
|
---|
| 1297 | break;
|
---|
| 1298 | case '1':
|
---|
| 1299 | x = 1;
|
---|
| 1300 | break;
|
---|
| 1301 | case '2':
|
---|
| 1302 | x = 2;
|
---|
| 1303 | break;
|
---|
| 1304 | case '3':
|
---|
| 1305 | x = 3;
|
---|
| 1306 | break;
|
---|
| 1307 | case '4':
|
---|
| 1308 | x = 4;
|
---|
| 1309 | break;
|
---|
| 1310 | case '5':
|
---|
| 1311 | x = 5;
|
---|
| 1312 | break;
|
---|
| 1313 | case '6':
|
---|
| 1314 | x = 6;
|
---|
| 1315 | break;
|
---|
| 1316 | case '7':
|
---|
| 1317 | x = 7;
|
---|
| 1318 | break;
|
---|
| 1319 | case '8':
|
---|
| 1320 | x = 8;
|
---|
| 1321 | break;
|
---|
| 1322 | case '9':
|
---|
| 1323 | x = 9;
|
---|
| 1324 | break;
|
---|
| 1325 | case 'a':
|
---|
| 1326 | case 'A':
|
---|
| 1327 | x = 10;
|
---|
| 1328 | break;
|
---|
| 1329 | case 'b':
|
---|
| 1330 | case 'B':
|
---|
| 1331 | x = 11;
|
---|
| 1332 | break;
|
---|
| 1333 | case 'c':
|
---|
| 1334 | case 'C':
|
---|
| 1335 | x = 12;
|
---|
| 1336 | break;
|
---|
| 1337 | case 'd':
|
---|
| 1338 | case 'D':
|
---|
| 1339 | x = 13;
|
---|
| 1340 | break;
|
---|
| 1341 | case 'e':
|
---|
| 1342 | case 'E':
|
---|
| 1343 | x = 14;
|
---|
| 1344 | break;
|
---|
| 1345 | case 'f':
|
---|
| 1346 | case 'F':
|
---|
| 1347 | x = 15;
|
---|
| 1348 | break;
|
---|
| 1349 | default:
|
---|
| 1350 | x = -1;
|
---|
| 1351 | break;
|
---|
| 1352 | }
|
---|
| 1353 | return x;
|
---|
[2] | 1354 | }
|
---|
| 1355 |
|
---|
| 1356 | /* convert a float to a hexadecimal string */
|
---|
| 1357 |
|
---|
| 1358 | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
|
---|
| 1359 | of the form 4k+1. */
|
---|
| 1360 | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
|
---|
| 1361 |
|
---|
| 1362 | static PyObject *
|
---|
| 1363 | float_hex(PyObject *v)
|
---|
| 1364 | {
|
---|
[391] | 1365 | double x, m;
|
---|
| 1366 | int e, shift, i, si, esign;
|
---|
| 1367 | /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
|
---|
| 1368 | trailing NUL byte. */
|
---|
| 1369 | char s[(TOHEX_NBITS-1)/4+3];
|
---|
[2] | 1370 |
|
---|
[391] | 1371 | CONVERT_TO_DOUBLE(v, x);
|
---|
[2] | 1372 |
|
---|
[391] | 1373 | if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
|
---|
| 1374 | return float_str((PyFloatObject *)v);
|
---|
[2] | 1375 |
|
---|
[391] | 1376 | if (x == 0.0) {
|
---|
| 1377 | if (copysign(1.0, x) == -1.0)
|
---|
| 1378 | return PyString_FromString("-0x0.0p+0");
|
---|
| 1379 | else
|
---|
| 1380 | return PyString_FromString("0x0.0p+0");
|
---|
| 1381 | }
|
---|
[2] | 1382 |
|
---|
[391] | 1383 | m = frexp(fabs(x), &e);
|
---|
| 1384 | shift = 1 - MAX(DBL_MIN_EXP - e, 0);
|
---|
| 1385 | m = ldexp(m, shift);
|
---|
| 1386 | e -= shift;
|
---|
[2] | 1387 |
|
---|
[391] | 1388 | si = 0;
|
---|
| 1389 | s[si] = char_from_hex((int)m);
|
---|
| 1390 | si++;
|
---|
| 1391 | m -= (int)m;
|
---|
| 1392 | s[si] = '.';
|
---|
| 1393 | si++;
|
---|
| 1394 | for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
|
---|
| 1395 | m *= 16.0;
|
---|
| 1396 | s[si] = char_from_hex((int)m);
|
---|
| 1397 | si++;
|
---|
| 1398 | m -= (int)m;
|
---|
| 1399 | }
|
---|
| 1400 | s[si] = '\0';
|
---|
[2] | 1401 |
|
---|
[391] | 1402 | if (e < 0) {
|
---|
| 1403 | esign = (int)'-';
|
---|
| 1404 | e = -e;
|
---|
| 1405 | }
|
---|
| 1406 | else
|
---|
| 1407 | esign = (int)'+';
|
---|
[2] | 1408 |
|
---|
[391] | 1409 | if (x < 0.0)
|
---|
| 1410 | return PyString_FromFormat("-0x%sp%c%d", s, esign, e);
|
---|
| 1411 | else
|
---|
| 1412 | return PyString_FromFormat("0x%sp%c%d", s, esign, e);
|
---|
[2] | 1413 | }
|
---|
| 1414 |
|
---|
| 1415 | PyDoc_STRVAR(float_hex_doc,
|
---|
| 1416 | "float.hex() -> string\n\
|
---|
| 1417 | \n\
|
---|
| 1418 | Return a hexadecimal representation of a floating-point number.\n\
|
---|
| 1419 | >>> (-0.1).hex()\n\
|
---|
| 1420 | '-0x1.999999999999ap-4'\n\
|
---|
| 1421 | >>> 3.14159.hex()\n\
|
---|
| 1422 | '0x1.921f9f01b866ep+1'");
|
---|
| 1423 |
|
---|
[391] | 1424 | /* Case-insensitive locale-independent string match used for nan and inf
|
---|
| 1425 | detection. t should be lower-case and null-terminated. Return a nonzero
|
---|
| 1426 | result if the first strlen(t) characters of s match t and 0 otherwise. */
|
---|
[2] | 1427 |
|
---|
| 1428 | static int
|
---|
| 1429 | case_insensitive_match(const char *s, const char *t)
|
---|
| 1430 | {
|
---|
[391] | 1431 | while(*t && Py_TOLOWER(*s) == *t) {
|
---|
| 1432 | s++;
|
---|
| 1433 | t++;
|
---|
| 1434 | }
|
---|
| 1435 | return *t ? 0 : 1;
|
---|
[2] | 1436 | }
|
---|
| 1437 |
|
---|
| 1438 | /* Convert a hexadecimal string to a float. */
|
---|
| 1439 |
|
---|
| 1440 | static PyObject *
|
---|
| 1441 | float_fromhex(PyObject *cls, PyObject *arg)
|
---|
| 1442 | {
|
---|
[391] | 1443 | PyObject *result_as_float, *result;
|
---|
| 1444 | double x;
|
---|
| 1445 | long exp, top_exp, lsb, key_digit;
|
---|
| 1446 | char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
|
---|
| 1447 | int half_eps, digit, round_up, sign=1;
|
---|
| 1448 | Py_ssize_t length, ndigits, fdigits, i;
|
---|
[2] | 1449 |
|
---|
[391] | 1450 | /*
|
---|
| 1451 | * For the sake of simplicity and correctness, we impose an artificial
|
---|
| 1452 | * limit on ndigits, the total number of hex digits in the coefficient
|
---|
| 1453 | * The limit is chosen to ensure that, writing exp for the exponent,
|
---|
| 1454 | *
|
---|
| 1455 | * (1) if exp > LONG_MAX/2 then the value of the hex string is
|
---|
| 1456 | * guaranteed to overflow (provided it's nonzero)
|
---|
| 1457 | *
|
---|
| 1458 | * (2) if exp < LONG_MIN/2 then the value of the hex string is
|
---|
| 1459 | * guaranteed to underflow to 0.
|
---|
| 1460 | *
|
---|
| 1461 | * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
|
---|
| 1462 | * overflow in the calculation of exp and top_exp below.
|
---|
| 1463 | *
|
---|
| 1464 | * More specifically, ndigits is assumed to satisfy the following
|
---|
| 1465 | * inequalities:
|
---|
| 1466 | *
|
---|
| 1467 | * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
|
---|
| 1468 | * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
|
---|
| 1469 | *
|
---|
| 1470 | * If either of these inequalities is not satisfied, a ValueError is
|
---|
| 1471 | * raised. Otherwise, write x for the value of the hex string, and
|
---|
| 1472 | * assume x is nonzero. Then
|
---|
| 1473 | *
|
---|
| 1474 | * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
|
---|
| 1475 | *
|
---|
| 1476 | * Now if exp > LONG_MAX/2 then:
|
---|
| 1477 | *
|
---|
| 1478 | * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
|
---|
| 1479 | * = DBL_MAX_EXP
|
---|
| 1480 | *
|
---|
| 1481 | * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
|
---|
| 1482 | * double, so overflows. If exp < LONG_MIN/2, then
|
---|
| 1483 | *
|
---|
| 1484 | * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
|
---|
| 1485 | * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
|
---|
| 1486 | * = DBL_MIN_EXP - DBL_MANT_DIG - 1
|
---|
| 1487 | *
|
---|
| 1488 | * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
|
---|
| 1489 | * when converted to a C double.
|
---|
| 1490 | *
|
---|
| 1491 | * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
|
---|
| 1492 | * exp+4*ndigits and exp-4*ndigits are within the range of a long.
|
---|
| 1493 | */
|
---|
[2] | 1494 |
|
---|
[391] | 1495 | if (PyString_AsStringAndSize(arg, &s, &length))
|
---|
| 1496 | return NULL;
|
---|
| 1497 | s_end = s + length;
|
---|
[2] | 1498 |
|
---|
[391] | 1499 | /********************
|
---|
| 1500 | * Parse the string *
|
---|
| 1501 | ********************/
|
---|
[2] | 1502 |
|
---|
[391] | 1503 | /* leading whitespace and optional sign */
|
---|
| 1504 | while (Py_ISSPACE(*s))
|
---|
| 1505 | s++;
|
---|
| 1506 | if (*s == '-') {
|
---|
| 1507 | s++;
|
---|
| 1508 | sign = -1;
|
---|
| 1509 | }
|
---|
| 1510 | else if (*s == '+')
|
---|
| 1511 | s++;
|
---|
[2] | 1512 |
|
---|
[391] | 1513 | /* infinities and nans */
|
---|
| 1514 | if (*s == 'i' || *s == 'I') {
|
---|
| 1515 | if (!case_insensitive_match(s+1, "nf"))
|
---|
| 1516 | goto parse_error;
|
---|
| 1517 | s += 3;
|
---|
| 1518 | x = Py_HUGE_VAL;
|
---|
| 1519 | if (case_insensitive_match(s, "inity"))
|
---|
| 1520 | s += 5;
|
---|
| 1521 | goto finished;
|
---|
| 1522 | }
|
---|
| 1523 | if (*s == 'n' || *s == 'N') {
|
---|
| 1524 | if (!case_insensitive_match(s+1, "an"))
|
---|
| 1525 | goto parse_error;
|
---|
| 1526 | s += 3;
|
---|
| 1527 | x = Py_NAN;
|
---|
| 1528 | goto finished;
|
---|
| 1529 | }
|
---|
[2] | 1530 |
|
---|
[391] | 1531 | /* [0x] */
|
---|
| 1532 | s_store = s;
|
---|
| 1533 | if (*s == '0') {
|
---|
| 1534 | s++;
|
---|
| 1535 | if (*s == 'x' || *s == 'X')
|
---|
| 1536 | s++;
|
---|
| 1537 | else
|
---|
| 1538 | s = s_store;
|
---|
| 1539 | }
|
---|
[2] | 1540 |
|
---|
[391] | 1541 | /* coefficient: <integer> [. <fraction>] */
|
---|
| 1542 | coeff_start = s;
|
---|
| 1543 | while (hex_from_char(*s) >= 0)
|
---|
| 1544 | s++;
|
---|
| 1545 | s_store = s;
|
---|
| 1546 | if (*s == '.') {
|
---|
| 1547 | s++;
|
---|
| 1548 | while (hex_from_char(*s) >= 0)
|
---|
| 1549 | s++;
|
---|
| 1550 | coeff_end = s-1;
|
---|
| 1551 | }
|
---|
| 1552 | else
|
---|
| 1553 | coeff_end = s;
|
---|
[2] | 1554 |
|
---|
[391] | 1555 | /* ndigits = total # of hex digits; fdigits = # after point */
|
---|
| 1556 | ndigits = coeff_end - coeff_start;
|
---|
| 1557 | fdigits = coeff_end - s_store;
|
---|
| 1558 | if (ndigits == 0)
|
---|
| 1559 | goto parse_error;
|
---|
| 1560 | if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
|
---|
| 1561 | LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
|
---|
| 1562 | goto insane_length_error;
|
---|
[2] | 1563 |
|
---|
[391] | 1564 | /* [p <exponent>] */
|
---|
| 1565 | if (*s == 'p' || *s == 'P') {
|
---|
| 1566 | s++;
|
---|
| 1567 | exp_start = s;
|
---|
| 1568 | if (*s == '-' || *s == '+')
|
---|
| 1569 | s++;
|
---|
| 1570 | if (!('0' <= *s && *s <= '9'))
|
---|
| 1571 | goto parse_error;
|
---|
| 1572 | s++;
|
---|
| 1573 | while ('0' <= *s && *s <= '9')
|
---|
| 1574 | s++;
|
---|
| 1575 | exp = strtol(exp_start, NULL, 10);
|
---|
| 1576 | }
|
---|
| 1577 | else
|
---|
| 1578 | exp = 0;
|
---|
[2] | 1579 |
|
---|
| 1580 | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
|
---|
[391] | 1581 | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
|
---|
| 1582 | coeff_end-(j) : \
|
---|
| 1583 | coeff_end-1-(j)))
|
---|
[2] | 1584 |
|
---|
[391] | 1585 | /*******************************************
|
---|
| 1586 | * Compute rounded value of the hex string *
|
---|
| 1587 | *******************************************/
|
---|
[2] | 1588 |
|
---|
[391] | 1589 | /* Discard leading zeros, and catch extreme overflow and underflow */
|
---|
| 1590 | while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
|
---|
| 1591 | ndigits--;
|
---|
| 1592 | if (ndigits == 0 || exp < LONG_MIN/2) {
|
---|
| 1593 | x = 0.0;
|
---|
| 1594 | goto finished;
|
---|
| 1595 | }
|
---|
| 1596 | if (exp > LONG_MAX/2)
|
---|
| 1597 | goto overflow_error;
|
---|
[2] | 1598 |
|
---|
[391] | 1599 | /* Adjust exponent for fractional part. */
|
---|
| 1600 | exp = exp - 4*((long)fdigits);
|
---|
[2] | 1601 |
|
---|
[391] | 1602 | /* top_exp = 1 more than exponent of most sig. bit of coefficient */
|
---|
| 1603 | top_exp = exp + 4*((long)ndigits - 1);
|
---|
| 1604 | for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
|
---|
| 1605 | top_exp++;
|
---|
[2] | 1606 |
|
---|
[391] | 1607 | /* catch almost all nonextreme cases of overflow and underflow here */
|
---|
| 1608 | if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
|
---|
| 1609 | x = 0.0;
|
---|
| 1610 | goto finished;
|
---|
| 1611 | }
|
---|
| 1612 | if (top_exp > DBL_MAX_EXP)
|
---|
| 1613 | goto overflow_error;
|
---|
[2] | 1614 |
|
---|
[391] | 1615 | /* lsb = exponent of least significant bit of the *rounded* value.
|
---|
| 1616 | This is top_exp - DBL_MANT_DIG unless result is subnormal. */
|
---|
| 1617 | lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
|
---|
[2] | 1618 |
|
---|
[391] | 1619 | x = 0.0;
|
---|
| 1620 | if (exp >= lsb) {
|
---|
| 1621 | /* no rounding required */
|
---|
| 1622 | for (i = ndigits-1; i >= 0; i--)
|
---|
| 1623 | x = 16.0*x + HEX_DIGIT(i);
|
---|
| 1624 | x = ldexp(x, (int)(exp));
|
---|
| 1625 | goto finished;
|
---|
| 1626 | }
|
---|
| 1627 | /* rounding required. key_digit is the index of the hex digit
|
---|
| 1628 | containing the first bit to be rounded away. */
|
---|
| 1629 | half_eps = 1 << (int)((lsb - exp - 1) % 4);
|
---|
| 1630 | key_digit = (lsb - exp - 1) / 4;
|
---|
| 1631 | for (i = ndigits-1; i > key_digit; i--)
|
---|
| 1632 | x = 16.0*x + HEX_DIGIT(i);
|
---|
| 1633 | digit = HEX_DIGIT(key_digit);
|
---|
| 1634 | x = 16.0*x + (double)(digit & (16-2*half_eps));
|
---|
[2] | 1635 |
|
---|
[391] | 1636 | /* round-half-even: round up if bit lsb-1 is 1 and at least one of
|
---|
| 1637 | bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
|
---|
| 1638 | if ((digit & half_eps) != 0) {
|
---|
| 1639 | round_up = 0;
|
---|
| 1640 | if ((digit & (3*half_eps-1)) != 0 ||
|
---|
| 1641 | (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
|
---|
| 1642 | round_up = 1;
|
---|
| 1643 | else
|
---|
| 1644 | for (i = key_digit-1; i >= 0; i--)
|
---|
| 1645 | if (HEX_DIGIT(i) != 0) {
|
---|
| 1646 | round_up = 1;
|
---|
| 1647 | break;
|
---|
| 1648 | }
|
---|
| 1649 | if (round_up == 1) {
|
---|
| 1650 | x += 2*half_eps;
|
---|
| 1651 | if (top_exp == DBL_MAX_EXP &&
|
---|
| 1652 | x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
|
---|
| 1653 | /* overflow corner case: pre-rounded value <
|
---|
| 1654 | 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
|
---|
| 1655 | goto overflow_error;
|
---|
| 1656 | }
|
---|
| 1657 | }
|
---|
| 1658 | x = ldexp(x, (int)(exp+4*key_digit));
|
---|
[2] | 1659 |
|
---|
| 1660 | finished:
|
---|
[391] | 1661 | /* optional trailing whitespace leading to the end of the string */
|
---|
| 1662 | while (Py_ISSPACE(*s))
|
---|
| 1663 | s++;
|
---|
| 1664 | if (s != s_end)
|
---|
| 1665 | goto parse_error;
|
---|
| 1666 | result_as_float = Py_BuildValue("(d)", sign * x);
|
---|
| 1667 | if (result_as_float == NULL)
|
---|
| 1668 | return NULL;
|
---|
| 1669 | result = PyObject_CallObject(cls, result_as_float);
|
---|
| 1670 | Py_DECREF(result_as_float);
|
---|
| 1671 | return result;
|
---|
[2] | 1672 |
|
---|
| 1673 | overflow_error:
|
---|
[391] | 1674 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 1675 | "hexadecimal value too large to represent as a float");
|
---|
| 1676 | return NULL;
|
---|
[2] | 1677 |
|
---|
| 1678 | parse_error:
|
---|
[391] | 1679 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1680 | "invalid hexadecimal floating-point string");
|
---|
| 1681 | return NULL;
|
---|
[2] | 1682 |
|
---|
| 1683 | insane_length_error:
|
---|
[391] | 1684 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1685 | "hexadecimal string too long to convert");
|
---|
| 1686 | return NULL;
|
---|
[2] | 1687 | }
|
---|
| 1688 |
|
---|
| 1689 | PyDoc_STRVAR(float_fromhex_doc,
|
---|
| 1690 | "float.fromhex(string) -> float\n\
|
---|
| 1691 | \n\
|
---|
| 1692 | Create a floating-point number from a hexadecimal string.\n\
|
---|
| 1693 | >>> float.fromhex('0x1.ffffp10')\n\
|
---|
| 1694 | 2047.984375\n\
|
---|
| 1695 | >>> float.fromhex('-0x1p-1074')\n\
|
---|
| 1696 | -4.9406564584124654e-324");
|
---|
| 1697 |
|
---|
| 1698 |
|
---|
| 1699 | static PyObject *
|
---|
| 1700 | float_as_integer_ratio(PyObject *v, PyObject *unused)
|
---|
| 1701 | {
|
---|
[391] | 1702 | double self;
|
---|
| 1703 | double float_part;
|
---|
| 1704 | int exponent;
|
---|
| 1705 | int i;
|
---|
[2] | 1706 |
|
---|
[391] | 1707 | PyObject *prev;
|
---|
| 1708 | PyObject *py_exponent = NULL;
|
---|
| 1709 | PyObject *numerator = NULL;
|
---|
| 1710 | PyObject *denominator = NULL;
|
---|
| 1711 | PyObject *result_pair = NULL;
|
---|
| 1712 | PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
|
---|
[2] | 1713 |
|
---|
| 1714 | #define INPLACE_UPDATE(obj, call) \
|
---|
[391] | 1715 | prev = obj; \
|
---|
| 1716 | obj = call; \
|
---|
| 1717 | Py_DECREF(prev); \
|
---|
[2] | 1718 |
|
---|
[391] | 1719 | CONVERT_TO_DOUBLE(v, self);
|
---|
[2] | 1720 |
|
---|
[391] | 1721 | if (Py_IS_INFINITY(self)) {
|
---|
| 1722 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 1723 | "Cannot pass infinity to float.as_integer_ratio.");
|
---|
| 1724 | return NULL;
|
---|
| 1725 | }
|
---|
[2] | 1726 | #ifdef Py_NAN
|
---|
[391] | 1727 | if (Py_IS_NAN(self)) {
|
---|
| 1728 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1729 | "Cannot pass NaN to float.as_integer_ratio.");
|
---|
| 1730 | return NULL;
|
---|
| 1731 | }
|
---|
[2] | 1732 | #endif
|
---|
| 1733 |
|
---|
[391] | 1734 | PyFPE_START_PROTECT("as_integer_ratio", goto error);
|
---|
| 1735 | float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
|
---|
| 1736 | PyFPE_END_PROTECT(float_part);
|
---|
[2] | 1737 |
|
---|
[391] | 1738 | for (i=0; i<300 && float_part != floor(float_part) ; i++) {
|
---|
| 1739 | float_part *= 2.0;
|
---|
| 1740 | exponent--;
|
---|
| 1741 | }
|
---|
| 1742 | /* self == float_part * 2**exponent exactly and float_part is integral.
|
---|
| 1743 | If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
|
---|
| 1744 | to be truncated by PyLong_FromDouble(). */
|
---|
[2] | 1745 |
|
---|
[391] | 1746 | numerator = PyLong_FromDouble(float_part);
|
---|
| 1747 | if (numerator == NULL) goto error;
|
---|
[2] | 1748 |
|
---|
[391] | 1749 | /* fold in 2**exponent */
|
---|
| 1750 | denominator = PyLong_FromLong(1);
|
---|
| 1751 | py_exponent = PyLong_FromLong(labs((long)exponent));
|
---|
| 1752 | if (py_exponent == NULL) goto error;
|
---|
| 1753 | INPLACE_UPDATE(py_exponent,
|
---|
| 1754 | long_methods->nb_lshift(denominator, py_exponent));
|
---|
| 1755 | if (py_exponent == NULL) goto error;
|
---|
| 1756 | if (exponent > 0) {
|
---|
| 1757 | INPLACE_UPDATE(numerator,
|
---|
| 1758 | long_methods->nb_multiply(numerator, py_exponent));
|
---|
| 1759 | if (numerator == NULL) goto error;
|
---|
| 1760 | }
|
---|
| 1761 | else {
|
---|
| 1762 | Py_DECREF(denominator);
|
---|
| 1763 | denominator = py_exponent;
|
---|
| 1764 | py_exponent = NULL;
|
---|
| 1765 | }
|
---|
[2] | 1766 |
|
---|
[391] | 1767 | /* Returns ints instead of longs where possible */
|
---|
| 1768 | INPLACE_UPDATE(numerator, PyNumber_Int(numerator));
|
---|
| 1769 | if (numerator == NULL) goto error;
|
---|
| 1770 | INPLACE_UPDATE(denominator, PyNumber_Int(denominator));
|
---|
| 1771 | if (denominator == NULL) goto error;
|
---|
[2] | 1772 |
|
---|
[391] | 1773 | result_pair = PyTuple_Pack(2, numerator, denominator);
|
---|
| 1774 |
|
---|
[2] | 1775 | #undef INPLACE_UPDATE
|
---|
| 1776 | error:
|
---|
[391] | 1777 | Py_XDECREF(py_exponent);
|
---|
| 1778 | Py_XDECREF(denominator);
|
---|
| 1779 | Py_XDECREF(numerator);
|
---|
| 1780 | return result_pair;
|
---|
[2] | 1781 | }
|
---|
| 1782 |
|
---|
| 1783 | PyDoc_STRVAR(float_as_integer_ratio_doc,
|
---|
| 1784 | "float.as_integer_ratio() -> (int, int)\n"
|
---|
| 1785 | "\n"
|
---|
[391] | 1786 | "Return a pair of integers, whose ratio is exactly equal to the original\n"
|
---|
[2] | 1787 | "float and with a positive denominator.\n"
|
---|
[391] | 1788 | "Raise OverflowError on infinities and a ValueError on NaNs.\n"
|
---|
[2] | 1789 | "\n"
|
---|
| 1790 | ">>> (10.0).as_integer_ratio()\n"
|
---|
| 1791 | "(10, 1)\n"
|
---|
| 1792 | ">>> (0.0).as_integer_ratio()\n"
|
---|
| 1793 | "(0, 1)\n"
|
---|
| 1794 | ">>> (-.25).as_integer_ratio()\n"
|
---|
| 1795 | "(-1, 4)");
|
---|
| 1796 |
|
---|
| 1797 |
|
---|
| 1798 | static PyObject *
|
---|
| 1799 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
|
---|
| 1800 |
|
---|
| 1801 | static PyObject *
|
---|
| 1802 | float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
| 1803 | {
|
---|
[391] | 1804 | PyObject *x = Py_False; /* Integer zero */
|
---|
| 1805 | static char *kwlist[] = {"x", 0};
|
---|
[2] | 1806 |
|
---|
[391] | 1807 | if (type != &PyFloat_Type)
|
---|
| 1808 | return float_subtype_new(type, args, kwds); /* Wimp out */
|
---|
| 1809 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
|
---|
| 1810 | return NULL;
|
---|
| 1811 | /* If it's a string, but not a string subclass, use
|
---|
| 1812 | PyFloat_FromString. */
|
---|
| 1813 | if (PyString_CheckExact(x))
|
---|
| 1814 | return PyFloat_FromString(x, NULL);
|
---|
| 1815 | return PyNumber_Float(x);
|
---|
[2] | 1816 | }
|
---|
| 1817 |
|
---|
| 1818 | /* Wimpy, slow approach to tp_new calls for subtypes of float:
|
---|
| 1819 | first create a regular float from whatever arguments we got,
|
---|
| 1820 | then allocate a subtype instance and initialize its ob_fval
|
---|
| 1821 | from the regular float. The regular float is then thrown away.
|
---|
| 1822 | */
|
---|
| 1823 | static PyObject *
|
---|
| 1824 | float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
| 1825 | {
|
---|
[391] | 1826 | PyObject *tmp, *newobj;
|
---|
[2] | 1827 |
|
---|
[391] | 1828 | assert(PyType_IsSubtype(type, &PyFloat_Type));
|
---|
| 1829 | tmp = float_new(&PyFloat_Type, args, kwds);
|
---|
| 1830 | if (tmp == NULL)
|
---|
| 1831 | return NULL;
|
---|
| 1832 | assert(PyFloat_CheckExact(tmp));
|
---|
| 1833 | newobj = type->tp_alloc(type, 0);
|
---|
| 1834 | if (newobj == NULL) {
|
---|
| 1835 | Py_DECREF(tmp);
|
---|
| 1836 | return NULL;
|
---|
| 1837 | }
|
---|
| 1838 | ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
|
---|
| 1839 | Py_DECREF(tmp);
|
---|
| 1840 | return newobj;
|
---|
[2] | 1841 | }
|
---|
| 1842 |
|
---|
| 1843 | static PyObject *
|
---|
| 1844 | float_getnewargs(PyFloatObject *v)
|
---|
| 1845 | {
|
---|
[391] | 1846 | return Py_BuildValue("(d)", v->ob_fval);
|
---|
[2] | 1847 | }
|
---|
| 1848 |
|
---|
| 1849 | /* this is for the benefit of the pack/unpack routines below */
|
---|
| 1850 |
|
---|
| 1851 | typedef enum {
|
---|
[391] | 1852 | unknown_format, ieee_big_endian_format, ieee_little_endian_format
|
---|
[2] | 1853 | } float_format_type;
|
---|
| 1854 |
|
---|
| 1855 | static float_format_type double_format, float_format;
|
---|
| 1856 | static float_format_type detected_double_format, detected_float_format;
|
---|
| 1857 |
|
---|
| 1858 | static PyObject *
|
---|
| 1859 | float_getformat(PyTypeObject *v, PyObject* arg)
|
---|
| 1860 | {
|
---|
[391] | 1861 | char* s;
|
---|
| 1862 | float_format_type r;
|
---|
[2] | 1863 |
|
---|
[391] | 1864 | if (!PyString_Check(arg)) {
|
---|
| 1865 | PyErr_Format(PyExc_TypeError,
|
---|
| 1866 | "__getformat__() argument must be string, not %.500s",
|
---|
| 1867 | Py_TYPE(arg)->tp_name);
|
---|
| 1868 | return NULL;
|
---|
| 1869 | }
|
---|
| 1870 | s = PyString_AS_STRING(arg);
|
---|
| 1871 | if (strcmp(s, "double") == 0) {
|
---|
| 1872 | r = double_format;
|
---|
| 1873 | }
|
---|
| 1874 | else if (strcmp(s, "float") == 0) {
|
---|
| 1875 | r = float_format;
|
---|
| 1876 | }
|
---|
| 1877 | else {
|
---|
| 1878 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1879 | "__getformat__() argument 1 must be "
|
---|
| 1880 | "'double' or 'float'");
|
---|
| 1881 | return NULL;
|
---|
| 1882 | }
|
---|
| 1883 |
|
---|
| 1884 | switch (r) {
|
---|
| 1885 | case unknown_format:
|
---|
| 1886 | return PyString_FromString("unknown");
|
---|
| 1887 | case ieee_little_endian_format:
|
---|
| 1888 | return PyString_FromString("IEEE, little-endian");
|
---|
| 1889 | case ieee_big_endian_format:
|
---|
| 1890 | return PyString_FromString("IEEE, big-endian");
|
---|
| 1891 | default:
|
---|
| 1892 | Py_FatalError("insane float_format or double_format");
|
---|
| 1893 | return NULL;
|
---|
| 1894 | }
|
---|
[2] | 1895 | }
|
---|
| 1896 |
|
---|
| 1897 | PyDoc_STRVAR(float_getformat_doc,
|
---|
| 1898 | "float.__getformat__(typestr) -> string\n"
|
---|
| 1899 | "\n"
|
---|
| 1900 | "You probably don't want to use this function. It exists mainly to be\n"
|
---|
| 1901 | "used in Python's test suite.\n"
|
---|
| 1902 | "\n"
|
---|
| 1903 | "typestr must be 'double' or 'float'. This function returns whichever of\n"
|
---|
| 1904 | "'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
|
---|
| 1905 | "format of floating point numbers used by the C type named by typestr.");
|
---|
| 1906 |
|
---|
| 1907 | static PyObject *
|
---|
| 1908 | float_setformat(PyTypeObject *v, PyObject* args)
|
---|
| 1909 | {
|
---|
[391] | 1910 | char* typestr;
|
---|
| 1911 | char* format;
|
---|
| 1912 | float_format_type f;
|
---|
| 1913 | float_format_type detected;
|
---|
| 1914 | float_format_type *p;
|
---|
[2] | 1915 |
|
---|
[391] | 1916 | if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
|
---|
| 1917 | return NULL;
|
---|
[2] | 1918 |
|
---|
[391] | 1919 | if (strcmp(typestr, "double") == 0) {
|
---|
| 1920 | p = &double_format;
|
---|
| 1921 | detected = detected_double_format;
|
---|
| 1922 | }
|
---|
| 1923 | else if (strcmp(typestr, "float") == 0) {
|
---|
| 1924 | p = &float_format;
|
---|
| 1925 | detected = detected_float_format;
|
---|
| 1926 | }
|
---|
| 1927 | else {
|
---|
| 1928 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1929 | "__setformat__() argument 1 must "
|
---|
| 1930 | "be 'double' or 'float'");
|
---|
| 1931 | return NULL;
|
---|
| 1932 | }
|
---|
[2] | 1933 |
|
---|
[391] | 1934 | if (strcmp(format, "unknown") == 0) {
|
---|
| 1935 | f = unknown_format;
|
---|
| 1936 | }
|
---|
| 1937 | else if (strcmp(format, "IEEE, little-endian") == 0) {
|
---|
| 1938 | f = ieee_little_endian_format;
|
---|
| 1939 | }
|
---|
| 1940 | else if (strcmp(format, "IEEE, big-endian") == 0) {
|
---|
| 1941 | f = ieee_big_endian_format;
|
---|
| 1942 | }
|
---|
| 1943 | else {
|
---|
| 1944 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1945 | "__setformat__() argument 2 must be "
|
---|
| 1946 | "'unknown', 'IEEE, little-endian' or "
|
---|
| 1947 | "'IEEE, big-endian'");
|
---|
| 1948 | return NULL;
|
---|
[2] | 1949 |
|
---|
[391] | 1950 | }
|
---|
[2] | 1951 |
|
---|
[391] | 1952 | if (f != unknown_format && f != detected) {
|
---|
| 1953 | PyErr_Format(PyExc_ValueError,
|
---|
| 1954 | "can only set %s format to 'unknown' or the "
|
---|
| 1955 | "detected platform value", typestr);
|
---|
| 1956 | return NULL;
|
---|
| 1957 | }
|
---|
| 1958 |
|
---|
| 1959 | *p = f;
|
---|
| 1960 | Py_RETURN_NONE;
|
---|
[2] | 1961 | }
|
---|
| 1962 |
|
---|
| 1963 | PyDoc_STRVAR(float_setformat_doc,
|
---|
| 1964 | "float.__setformat__(typestr, fmt) -> None\n"
|
---|
| 1965 | "\n"
|
---|
| 1966 | "You probably don't want to use this function. It exists mainly to be\n"
|
---|
| 1967 | "used in Python's test suite.\n"
|
---|
| 1968 | "\n"
|
---|
| 1969 | "typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
|
---|
| 1970 | "'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
|
---|
| 1971 | "one of the latter two if it appears to match the underlying C reality.\n"
|
---|
| 1972 | "\n"
|
---|
[391] | 1973 | "Override the automatic determination of C-level floating point type.\n"
|
---|
[2] | 1974 | "This affects how floats are converted to and from binary strings.");
|
---|
| 1975 |
|
---|
| 1976 | static PyObject *
|
---|
| 1977 | float_getzero(PyObject *v, void *closure)
|
---|
| 1978 | {
|
---|
[391] | 1979 | return PyFloat_FromDouble(0.0);
|
---|
[2] | 1980 | }
|
---|
| 1981 |
|
---|
| 1982 | static PyObject *
|
---|
| 1983 | float__format__(PyObject *self, PyObject *args)
|
---|
| 1984 | {
|
---|
[391] | 1985 | PyObject *format_spec;
|
---|
[2] | 1986 |
|
---|
[391] | 1987 | if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
|
---|
| 1988 | return NULL;
|
---|
| 1989 | if (PyBytes_Check(format_spec))
|
---|
| 1990 | return _PyFloat_FormatAdvanced(self,
|
---|
| 1991 | PyBytes_AS_STRING(format_spec),
|
---|
| 1992 | PyBytes_GET_SIZE(format_spec));
|
---|
| 1993 | if (PyUnicode_Check(format_spec)) {
|
---|
| 1994 | /* Convert format_spec to a str */
|
---|
| 1995 | PyObject *result;
|
---|
| 1996 | PyObject *str_spec = PyObject_Str(format_spec);
|
---|
[2] | 1997 |
|
---|
[391] | 1998 | if (str_spec == NULL)
|
---|
| 1999 | return NULL;
|
---|
[2] | 2000 |
|
---|
[391] | 2001 | result = _PyFloat_FormatAdvanced(self,
|
---|
| 2002 | PyBytes_AS_STRING(str_spec),
|
---|
| 2003 | PyBytes_GET_SIZE(str_spec));
|
---|
[2] | 2004 |
|
---|
[391] | 2005 | Py_DECREF(str_spec);
|
---|
| 2006 | return result;
|
---|
| 2007 | }
|
---|
| 2008 | PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
|
---|
| 2009 | return NULL;
|
---|
[2] | 2010 | }
|
---|
| 2011 |
|
---|
| 2012 | PyDoc_STRVAR(float__format__doc,
|
---|
| 2013 | "float.__format__(format_spec) -> string\n"
|
---|
| 2014 | "\n"
|
---|
| 2015 | "Formats the float according to format_spec.");
|
---|
| 2016 |
|
---|
| 2017 |
|
---|
| 2018 | static PyMethodDef float_methods[] = {
|
---|
[391] | 2019 | {"conjugate", (PyCFunction)float_float, METH_NOARGS,
|
---|
| 2020 | "Return self, the complex conjugate of any float."},
|
---|
| 2021 | {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
|
---|
| 2022 | "Return the Integral closest to x between 0 and x."},
|
---|
| 2023 | {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
|
---|
| 2024 | float_as_integer_ratio_doc},
|
---|
| 2025 | {"fromhex", (PyCFunction)float_fromhex,
|
---|
| 2026 | METH_O|METH_CLASS, float_fromhex_doc},
|
---|
| 2027 | {"hex", (PyCFunction)float_hex,
|
---|
| 2028 | METH_NOARGS, float_hex_doc},
|
---|
| 2029 | {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
|
---|
| 2030 | "Return True if the float is an integer."},
|
---|
[2] | 2031 | #if 0
|
---|
[391] | 2032 | {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
|
---|
| 2033 | "Return True if the float is positive or negative infinite."},
|
---|
| 2034 | {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
|
---|
| 2035 | "Return True if the float is finite, neither infinite nor NaN."},
|
---|
| 2036 | {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
|
---|
| 2037 | "Return True if the float is not a number (NaN)."},
|
---|
[2] | 2038 | #endif
|
---|
[391] | 2039 | {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
|
---|
| 2040 | {"__getformat__", (PyCFunction)float_getformat,
|
---|
| 2041 | METH_O|METH_CLASS, float_getformat_doc},
|
---|
| 2042 | {"__setformat__", (PyCFunction)float_setformat,
|
---|
| 2043 | METH_VARARGS|METH_CLASS, float_setformat_doc},
|
---|
| 2044 | {"__format__", (PyCFunction)float__format__,
|
---|
| 2045 | METH_VARARGS, float__format__doc},
|
---|
| 2046 | {NULL, NULL} /* sentinel */
|
---|
[2] | 2047 | };
|
---|
| 2048 |
|
---|
| 2049 | static PyGetSetDef float_getset[] = {
|
---|
[391] | 2050 | {"real",
|
---|
[2] | 2051 | (getter)float_float, (setter)NULL,
|
---|
| 2052 | "the real part of a complex number",
|
---|
| 2053 | NULL},
|
---|
[391] | 2054 | {"imag",
|
---|
[2] | 2055 | (getter)float_getzero, (setter)NULL,
|
---|
| 2056 | "the imaginary part of a complex number",
|
---|
| 2057 | NULL},
|
---|
| 2058 | {NULL} /* Sentinel */
|
---|
| 2059 | };
|
---|
| 2060 |
|
---|
| 2061 | PyDoc_STRVAR(float_doc,
|
---|
| 2062 | "float(x) -> floating point number\n\
|
---|
| 2063 | \n\
|
---|
| 2064 | Convert a string or number to a floating point number, if possible.");
|
---|
| 2065 |
|
---|
| 2066 |
|
---|
| 2067 | static PyNumberMethods float_as_number = {
|
---|
[391] | 2068 | float_add, /*nb_add*/
|
---|
| 2069 | float_sub, /*nb_subtract*/
|
---|
| 2070 | float_mul, /*nb_multiply*/
|
---|
| 2071 | float_classic_div, /*nb_divide*/
|
---|
| 2072 | float_rem, /*nb_remainder*/
|
---|
| 2073 | float_divmod, /*nb_divmod*/
|
---|
| 2074 | float_pow, /*nb_power*/
|
---|
| 2075 | (unaryfunc)float_neg, /*nb_negative*/
|
---|
| 2076 | (unaryfunc)float_float, /*nb_positive*/
|
---|
| 2077 | (unaryfunc)float_abs, /*nb_absolute*/
|
---|
| 2078 | (inquiry)float_nonzero, /*nb_nonzero*/
|
---|
| 2079 | 0, /*nb_invert*/
|
---|
| 2080 | 0, /*nb_lshift*/
|
---|
| 2081 | 0, /*nb_rshift*/
|
---|
| 2082 | 0, /*nb_and*/
|
---|
| 2083 | 0, /*nb_xor*/
|
---|
| 2084 | 0, /*nb_or*/
|
---|
| 2085 | float_coerce, /*nb_coerce*/
|
---|
| 2086 | float_trunc, /*nb_int*/
|
---|
| 2087 | float_long, /*nb_long*/
|
---|
| 2088 | float_float, /*nb_float*/
|
---|
| 2089 | 0, /* nb_oct */
|
---|
| 2090 | 0, /* nb_hex */
|
---|
| 2091 | 0, /* nb_inplace_add */
|
---|
| 2092 | 0, /* nb_inplace_subtract */
|
---|
| 2093 | 0, /* nb_inplace_multiply */
|
---|
| 2094 | 0, /* nb_inplace_divide */
|
---|
| 2095 | 0, /* nb_inplace_remainder */
|
---|
| 2096 | 0, /* nb_inplace_power */
|
---|
| 2097 | 0, /* nb_inplace_lshift */
|
---|
| 2098 | 0, /* nb_inplace_rshift */
|
---|
| 2099 | 0, /* nb_inplace_and */
|
---|
| 2100 | 0, /* nb_inplace_xor */
|
---|
| 2101 | 0, /* nb_inplace_or */
|
---|
| 2102 | float_floor_div, /* nb_floor_divide */
|
---|
| 2103 | float_div, /* nb_true_divide */
|
---|
| 2104 | 0, /* nb_inplace_floor_divide */
|
---|
| 2105 | 0, /* nb_inplace_true_divide */
|
---|
[2] | 2106 | };
|
---|
| 2107 |
|
---|
| 2108 | PyTypeObject PyFloat_Type = {
|
---|
[391] | 2109 | PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
---|
| 2110 | "float",
|
---|
| 2111 | sizeof(PyFloatObject),
|
---|
| 2112 | 0,
|
---|
| 2113 | (destructor)float_dealloc, /* tp_dealloc */
|
---|
| 2114 | (printfunc)float_print, /* tp_print */
|
---|
| 2115 | 0, /* tp_getattr */
|
---|
| 2116 | 0, /* tp_setattr */
|
---|
| 2117 | 0, /* tp_compare */
|
---|
| 2118 | (reprfunc)float_repr, /* tp_repr */
|
---|
| 2119 | &float_as_number, /* tp_as_number */
|
---|
| 2120 | 0, /* tp_as_sequence */
|
---|
| 2121 | 0, /* tp_as_mapping */
|
---|
| 2122 | (hashfunc)float_hash, /* tp_hash */
|
---|
| 2123 | 0, /* tp_call */
|
---|
| 2124 | (reprfunc)float_str, /* tp_str */
|
---|
| 2125 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
| 2126 | 0, /* tp_setattro */
|
---|
| 2127 | 0, /* tp_as_buffer */
|
---|
| 2128 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
---|
| 2129 | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
---|
| 2130 | float_doc, /* tp_doc */
|
---|
| 2131 | 0, /* tp_traverse */
|
---|
| 2132 | 0, /* tp_clear */
|
---|
| 2133 | float_richcompare, /* tp_richcompare */
|
---|
| 2134 | 0, /* tp_weaklistoffset */
|
---|
| 2135 | 0, /* tp_iter */
|
---|
| 2136 | 0, /* tp_iternext */
|
---|
| 2137 | float_methods, /* tp_methods */
|
---|
| 2138 | 0, /* tp_members */
|
---|
| 2139 | float_getset, /* tp_getset */
|
---|
| 2140 | 0, /* tp_base */
|
---|
| 2141 | 0, /* tp_dict */
|
---|
| 2142 | 0, /* tp_descr_get */
|
---|
| 2143 | 0, /* tp_descr_set */
|
---|
| 2144 | 0, /* tp_dictoffset */
|
---|
| 2145 | 0, /* tp_init */
|
---|
| 2146 | 0, /* tp_alloc */
|
---|
| 2147 | float_new, /* tp_new */
|
---|
[2] | 2148 | };
|
---|
| 2149 |
|
---|
| 2150 | void
|
---|
| 2151 | _PyFloat_Init(void)
|
---|
| 2152 | {
|
---|
[391] | 2153 | /* We attempt to determine if this machine is using IEEE
|
---|
| 2154 | floating point formats by peering at the bits of some
|
---|
| 2155 | carefully chosen values. If it looks like we are on an
|
---|
| 2156 | IEEE platform, the float packing/unpacking routines can
|
---|
| 2157 | just copy bits, if not they resort to arithmetic & shifts
|
---|
| 2158 | and masks. The shifts & masks approach works on all finite
|
---|
| 2159 | values, but what happens to infinities, NaNs and signed
|
---|
| 2160 | zeroes on packing is an accident, and attempting to unpack
|
---|
| 2161 | a NaN or an infinity will raise an exception.
|
---|
[2] | 2162 |
|
---|
[391] | 2163 | Note that if we're on some whacked-out platform which uses
|
---|
| 2164 | IEEE formats but isn't strictly little-endian or big-
|
---|
| 2165 | endian, we will fall back to the portable shifts & masks
|
---|
| 2166 | method. */
|
---|
[2] | 2167 |
|
---|
| 2168 | #if SIZEOF_DOUBLE == 8
|
---|
[391] | 2169 | {
|
---|
| 2170 | double x = 9006104071832581.0;
|
---|
| 2171 | if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
|
---|
| 2172 | detected_double_format = ieee_big_endian_format;
|
---|
| 2173 | else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
|
---|
| 2174 | detected_double_format = ieee_little_endian_format;
|
---|
| 2175 | else
|
---|
| 2176 | detected_double_format = unknown_format;
|
---|
| 2177 | }
|
---|
[2] | 2178 | #else
|
---|
[391] | 2179 | detected_double_format = unknown_format;
|
---|
[2] | 2180 | #endif
|
---|
| 2181 |
|
---|
| 2182 | #if SIZEOF_FLOAT == 4
|
---|
[391] | 2183 | {
|
---|
| 2184 | float y = 16711938.0;
|
---|
| 2185 | if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
|
---|
| 2186 | detected_float_format = ieee_big_endian_format;
|
---|
| 2187 | else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
|
---|
| 2188 | detected_float_format = ieee_little_endian_format;
|
---|
| 2189 | else
|
---|
| 2190 | detected_float_format = unknown_format;
|
---|
| 2191 | }
|
---|
[2] | 2192 | #else
|
---|
[391] | 2193 | detected_float_format = unknown_format;
|
---|
[2] | 2194 | #endif
|
---|
| 2195 |
|
---|
[391] | 2196 | double_format = detected_double_format;
|
---|
| 2197 | float_format = detected_float_format;
|
---|
[2] | 2198 |
|
---|
[391] | 2199 | /* Init float info */
|
---|
| 2200 | if (FloatInfoType.tp_name == 0)
|
---|
| 2201 | PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
|
---|
[2] | 2202 | }
|
---|
| 2203 |
|
---|
| 2204 | int
|
---|
| 2205 | PyFloat_ClearFreeList(void)
|
---|
| 2206 | {
|
---|
[391] | 2207 | PyFloatObject *p;
|
---|
| 2208 | PyFloatBlock *list, *next;
|
---|
| 2209 | int i;
|
---|
| 2210 | int u; /* remaining unfreed ints per block */
|
---|
| 2211 | int freelist_size = 0;
|
---|
[2] | 2212 |
|
---|
[391] | 2213 | list = block_list;
|
---|
| 2214 | block_list = NULL;
|
---|
| 2215 | free_list = NULL;
|
---|
| 2216 | while (list != NULL) {
|
---|
| 2217 | u = 0;
|
---|
| 2218 | for (i = 0, p = &list->objects[0];
|
---|
| 2219 | i < N_FLOATOBJECTS;
|
---|
| 2220 | i++, p++) {
|
---|
| 2221 | if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
|
---|
| 2222 | u++;
|
---|
| 2223 | }
|
---|
| 2224 | next = list->next;
|
---|
| 2225 | if (u) {
|
---|
| 2226 | list->next = block_list;
|
---|
| 2227 | block_list = list;
|
---|
| 2228 | for (i = 0, p = &list->objects[0];
|
---|
| 2229 | i < N_FLOATOBJECTS;
|
---|
| 2230 | i++, p++) {
|
---|
| 2231 | if (!PyFloat_CheckExact(p) ||
|
---|
| 2232 | Py_REFCNT(p) == 0) {
|
---|
| 2233 | Py_TYPE(p) = (struct _typeobject *)
|
---|
| 2234 | free_list;
|
---|
| 2235 | free_list = p;
|
---|
| 2236 | }
|
---|
| 2237 | }
|
---|
| 2238 | }
|
---|
| 2239 | else {
|
---|
| 2240 | PyMem_FREE(list);
|
---|
| 2241 | }
|
---|
| 2242 | freelist_size += u;
|
---|
| 2243 | list = next;
|
---|
| 2244 | }
|
---|
| 2245 | return freelist_size;
|
---|
[2] | 2246 | }
|
---|
| 2247 |
|
---|
| 2248 | void
|
---|
| 2249 | PyFloat_Fini(void)
|
---|
| 2250 | {
|
---|
[391] | 2251 | PyFloatObject *p;
|
---|
| 2252 | PyFloatBlock *list;
|
---|
| 2253 | int i;
|
---|
| 2254 | int u; /* total unfreed floats per block */
|
---|
[2] | 2255 |
|
---|
[391] | 2256 | u = PyFloat_ClearFreeList();
|
---|
[2] | 2257 |
|
---|
[391] | 2258 | if (!Py_VerboseFlag)
|
---|
| 2259 | return;
|
---|
| 2260 | fprintf(stderr, "# cleanup floats");
|
---|
| 2261 | if (!u) {
|
---|
| 2262 | fprintf(stderr, "\n");
|
---|
| 2263 | }
|
---|
| 2264 | else {
|
---|
| 2265 | fprintf(stderr,
|
---|
| 2266 | ": %d unfreed float%s\n",
|
---|
| 2267 | u, u == 1 ? "" : "s");
|
---|
| 2268 | }
|
---|
| 2269 | if (Py_VerboseFlag > 1) {
|
---|
| 2270 | list = block_list;
|
---|
| 2271 | while (list != NULL) {
|
---|
| 2272 | for (i = 0, p = &list->objects[0];
|
---|
| 2273 | i < N_FLOATOBJECTS;
|
---|
| 2274 | i++, p++) {
|
---|
| 2275 | if (PyFloat_CheckExact(p) &&
|
---|
| 2276 | Py_REFCNT(p) != 0) {
|
---|
| 2277 | char *buf = PyOS_double_to_string(
|
---|
| 2278 | PyFloat_AS_DOUBLE(p), 'r',
|
---|
| 2279 | 0, 0, NULL);
|
---|
| 2280 | if (buf) {
|
---|
| 2281 | /* XXX(twouters) cast
|
---|
| 2282 | refcount to long
|
---|
| 2283 | until %zd is
|
---|
| 2284 | universally
|
---|
| 2285 | available
|
---|
| 2286 | */
|
---|
| 2287 | fprintf(stderr,
|
---|
| 2288 | "# <float at %p, refcnt=%ld, val=%s>\n",
|
---|
| 2289 | p, (long)Py_REFCNT(p), buf);
|
---|
| 2290 | PyMem_Free(buf);
|
---|
| 2291 | }
|
---|
| 2292 | }
|
---|
| 2293 | }
|
---|
| 2294 | list = list->next;
|
---|
| 2295 | }
|
---|
| 2296 | }
|
---|
[2] | 2297 | }
|
---|
| 2298 |
|
---|
| 2299 | /*----------------------------------------------------------------------------
|
---|
| 2300 | * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
|
---|
| 2301 | */
|
---|
| 2302 | int
|
---|
| 2303 | _PyFloat_Pack4(double x, unsigned char *p, int le)
|
---|
| 2304 | {
|
---|
[391] | 2305 | if (float_format == unknown_format) {
|
---|
| 2306 | unsigned char sign;
|
---|
| 2307 | int e;
|
---|
| 2308 | double f;
|
---|
| 2309 | unsigned int fbits;
|
---|
| 2310 | int incr = 1;
|
---|
[2] | 2311 |
|
---|
[391] | 2312 | if (le) {
|
---|
| 2313 | p += 3;
|
---|
| 2314 | incr = -1;
|
---|
| 2315 | }
|
---|
[2] | 2316 |
|
---|
[391] | 2317 | if (x < 0) {
|
---|
| 2318 | sign = 1;
|
---|
| 2319 | x = -x;
|
---|
| 2320 | }
|
---|
| 2321 | else
|
---|
| 2322 | sign = 0;
|
---|
[2] | 2323 |
|
---|
[391] | 2324 | f = frexp(x, &e);
|
---|
[2] | 2325 |
|
---|
[391] | 2326 | /* Normalize f to be in the range [1.0, 2.0) */
|
---|
| 2327 | if (0.5 <= f && f < 1.0) {
|
---|
| 2328 | f *= 2.0;
|
---|
| 2329 | e--;
|
---|
| 2330 | }
|
---|
| 2331 | else if (f == 0.0)
|
---|
| 2332 | e = 0;
|
---|
| 2333 | else {
|
---|
| 2334 | PyErr_SetString(PyExc_SystemError,
|
---|
| 2335 | "frexp() result out of range");
|
---|
| 2336 | return -1;
|
---|
| 2337 | }
|
---|
[2] | 2338 |
|
---|
[391] | 2339 | if (e >= 128)
|
---|
| 2340 | goto Overflow;
|
---|
| 2341 | else if (e < -126) {
|
---|
| 2342 | /* Gradual underflow */
|
---|
| 2343 | f = ldexp(f, 126 + e);
|
---|
| 2344 | e = 0;
|
---|
| 2345 | }
|
---|
| 2346 | else if (!(e == 0 && f == 0.0)) {
|
---|
| 2347 | e += 127;
|
---|
| 2348 | f -= 1.0; /* Get rid of leading 1 */
|
---|
| 2349 | }
|
---|
[2] | 2350 |
|
---|
[391] | 2351 | f *= 8388608.0; /* 2**23 */
|
---|
| 2352 | fbits = (unsigned int)(f + 0.5); /* Round */
|
---|
| 2353 | assert(fbits <= 8388608);
|
---|
| 2354 | if (fbits >> 23) {
|
---|
| 2355 | /* The carry propagated out of a string of 23 1 bits. */
|
---|
| 2356 | fbits = 0;
|
---|
| 2357 | ++e;
|
---|
| 2358 | if (e >= 255)
|
---|
| 2359 | goto Overflow;
|
---|
| 2360 | }
|
---|
[2] | 2361 |
|
---|
[391] | 2362 | /* First byte */
|
---|
| 2363 | *p = (sign << 7) | (e >> 1);
|
---|
| 2364 | p += incr;
|
---|
[2] | 2365 |
|
---|
[391] | 2366 | /* Second byte */
|
---|
| 2367 | *p = (char) (((e & 1) << 7) | (fbits >> 16));
|
---|
| 2368 | p += incr;
|
---|
[2] | 2369 |
|
---|
[391] | 2370 | /* Third byte */
|
---|
| 2371 | *p = (fbits >> 8) & 0xFF;
|
---|
| 2372 | p += incr;
|
---|
[2] | 2373 |
|
---|
[391] | 2374 | /* Fourth byte */
|
---|
| 2375 | *p = fbits & 0xFF;
|
---|
[2] | 2376 |
|
---|
[391] | 2377 | /* Done */
|
---|
| 2378 | return 0;
|
---|
[2] | 2379 |
|
---|
[391] | 2380 | }
|
---|
| 2381 | else {
|
---|
| 2382 | float y = (float)x;
|
---|
| 2383 | const char *s = (char*)&y;
|
---|
| 2384 | int i, incr = 1;
|
---|
[2] | 2385 |
|
---|
[391] | 2386 | if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
|
---|
| 2387 | goto Overflow;
|
---|
[2] | 2388 |
|
---|
[391] | 2389 | if ((float_format == ieee_little_endian_format && !le)
|
---|
| 2390 | || (float_format == ieee_big_endian_format && le)) {
|
---|
| 2391 | p += 3;
|
---|
| 2392 | incr = -1;
|
---|
| 2393 | }
|
---|
[2] | 2394 |
|
---|
[391] | 2395 | for (i = 0; i < 4; i++) {
|
---|
| 2396 | *p = *s++;
|
---|
| 2397 | p += incr;
|
---|
| 2398 | }
|
---|
| 2399 | return 0;
|
---|
| 2400 | }
|
---|
[2] | 2401 | Overflow:
|
---|
[391] | 2402 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 2403 | "float too large to pack with f format");
|
---|
| 2404 | return -1;
|
---|
[2] | 2405 | }
|
---|
| 2406 |
|
---|
| 2407 | int
|
---|
| 2408 | _PyFloat_Pack8(double x, unsigned char *p, int le)
|
---|
| 2409 | {
|
---|
[391] | 2410 | if (double_format == unknown_format) {
|
---|
| 2411 | unsigned char sign;
|
---|
| 2412 | int e;
|
---|
| 2413 | double f;
|
---|
| 2414 | unsigned int fhi, flo;
|
---|
| 2415 | int incr = 1;
|
---|
[2] | 2416 |
|
---|
[391] | 2417 | if (le) {
|
---|
| 2418 | p += 7;
|
---|
| 2419 | incr = -1;
|
---|
| 2420 | }
|
---|
[2] | 2421 |
|
---|
[391] | 2422 | if (x < 0) {
|
---|
| 2423 | sign = 1;
|
---|
| 2424 | x = -x;
|
---|
| 2425 | }
|
---|
| 2426 | else
|
---|
| 2427 | sign = 0;
|
---|
[2] | 2428 |
|
---|
[391] | 2429 | f = frexp(x, &e);
|
---|
[2] | 2430 |
|
---|
[391] | 2431 | /* Normalize f to be in the range [1.0, 2.0) */
|
---|
| 2432 | if (0.5 <= f && f < 1.0) {
|
---|
| 2433 | f *= 2.0;
|
---|
| 2434 | e--;
|
---|
| 2435 | }
|
---|
| 2436 | else if (f == 0.0)
|
---|
| 2437 | e = 0;
|
---|
| 2438 | else {
|
---|
| 2439 | PyErr_SetString(PyExc_SystemError,
|
---|
| 2440 | "frexp() result out of range");
|
---|
| 2441 | return -1;
|
---|
| 2442 | }
|
---|
[2] | 2443 |
|
---|
[391] | 2444 | if (e >= 1024)
|
---|
| 2445 | goto Overflow;
|
---|
| 2446 | else if (e < -1022) {
|
---|
| 2447 | /* Gradual underflow */
|
---|
| 2448 | f = ldexp(f, 1022 + e);
|
---|
| 2449 | e = 0;
|
---|
| 2450 | }
|
---|
| 2451 | else if (!(e == 0 && f == 0.0)) {
|
---|
| 2452 | e += 1023;
|
---|
| 2453 | f -= 1.0; /* Get rid of leading 1 */
|
---|
| 2454 | }
|
---|
[2] | 2455 |
|
---|
[391] | 2456 | /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
|
---|
| 2457 | f *= 268435456.0; /* 2**28 */
|
---|
| 2458 | fhi = (unsigned int)f; /* Truncate */
|
---|
| 2459 | assert(fhi < 268435456);
|
---|
[2] | 2460 |
|
---|
[391] | 2461 | f -= (double)fhi;
|
---|
| 2462 | f *= 16777216.0; /* 2**24 */
|
---|
| 2463 | flo = (unsigned int)(f + 0.5); /* Round */
|
---|
| 2464 | assert(flo <= 16777216);
|
---|
| 2465 | if (flo >> 24) {
|
---|
| 2466 | /* The carry propagated out of a string of 24 1 bits. */
|
---|
| 2467 | flo = 0;
|
---|
| 2468 | ++fhi;
|
---|
| 2469 | if (fhi >> 28) {
|
---|
| 2470 | /* And it also progagated out of the next 28 bits. */
|
---|
| 2471 | fhi = 0;
|
---|
| 2472 | ++e;
|
---|
| 2473 | if (e >= 2047)
|
---|
| 2474 | goto Overflow;
|
---|
| 2475 | }
|
---|
| 2476 | }
|
---|
[2] | 2477 |
|
---|
[391] | 2478 | /* First byte */
|
---|
| 2479 | *p = (sign << 7) | (e >> 4);
|
---|
| 2480 | p += incr;
|
---|
[2] | 2481 |
|
---|
[391] | 2482 | /* Second byte */
|
---|
| 2483 | *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
|
---|
| 2484 | p += incr;
|
---|
[2] | 2485 |
|
---|
[391] | 2486 | /* Third byte */
|
---|
| 2487 | *p = (fhi >> 16) & 0xFF;
|
---|
| 2488 | p += incr;
|
---|
[2] | 2489 |
|
---|
[391] | 2490 | /* Fourth byte */
|
---|
| 2491 | *p = (fhi >> 8) & 0xFF;
|
---|
| 2492 | p += incr;
|
---|
[2] | 2493 |
|
---|
[391] | 2494 | /* Fifth byte */
|
---|
| 2495 | *p = fhi & 0xFF;
|
---|
| 2496 | p += incr;
|
---|
[2] | 2497 |
|
---|
[391] | 2498 | /* Sixth byte */
|
---|
| 2499 | *p = (flo >> 16) & 0xFF;
|
---|
| 2500 | p += incr;
|
---|
[2] | 2501 |
|
---|
[391] | 2502 | /* Seventh byte */
|
---|
| 2503 | *p = (flo >> 8) & 0xFF;
|
---|
| 2504 | p += incr;
|
---|
[2] | 2505 |
|
---|
[391] | 2506 | /* Eighth byte */
|
---|
| 2507 | *p = flo & 0xFF;
|
---|
| 2508 | /* p += incr; Unneeded (for now) */
|
---|
[2] | 2509 |
|
---|
[391] | 2510 | /* Done */
|
---|
| 2511 | return 0;
|
---|
[2] | 2512 |
|
---|
[391] | 2513 | Overflow:
|
---|
| 2514 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 2515 | "float too large to pack with d format");
|
---|
| 2516 | return -1;
|
---|
| 2517 | }
|
---|
| 2518 | else {
|
---|
| 2519 | const char *s = (char*)&x;
|
---|
| 2520 | int i, incr = 1;
|
---|
[2] | 2521 |
|
---|
[391] | 2522 | if ((double_format == ieee_little_endian_format && !le)
|
---|
| 2523 | || (double_format == ieee_big_endian_format && le)) {
|
---|
| 2524 | p += 7;
|
---|
| 2525 | incr = -1;
|
---|
| 2526 | }
|
---|
| 2527 |
|
---|
| 2528 | for (i = 0; i < 8; i++) {
|
---|
| 2529 | *p = *s++;
|
---|
| 2530 | p += incr;
|
---|
| 2531 | }
|
---|
| 2532 | return 0;
|
---|
| 2533 | }
|
---|
[2] | 2534 | }
|
---|
| 2535 |
|
---|
| 2536 | double
|
---|
| 2537 | _PyFloat_Unpack4(const unsigned char *p, int le)
|
---|
| 2538 | {
|
---|
[391] | 2539 | if (float_format == unknown_format) {
|
---|
| 2540 | unsigned char sign;
|
---|
| 2541 | int e;
|
---|
| 2542 | unsigned int f;
|
---|
| 2543 | double x;
|
---|
| 2544 | int incr = 1;
|
---|
[2] | 2545 |
|
---|
[391] | 2546 | if (le) {
|
---|
| 2547 | p += 3;
|
---|
| 2548 | incr = -1;
|
---|
| 2549 | }
|
---|
[2] | 2550 |
|
---|
[391] | 2551 | /* First byte */
|
---|
| 2552 | sign = (*p >> 7) & 1;
|
---|
| 2553 | e = (*p & 0x7F) << 1;
|
---|
| 2554 | p += incr;
|
---|
[2] | 2555 |
|
---|
[391] | 2556 | /* Second byte */
|
---|
| 2557 | e |= (*p >> 7) & 1;
|
---|
| 2558 | f = (*p & 0x7F) << 16;
|
---|
| 2559 | p += incr;
|
---|
[2] | 2560 |
|
---|
[391] | 2561 | if (e == 255) {
|
---|
| 2562 | PyErr_SetString(
|
---|
| 2563 | PyExc_ValueError,
|
---|
| 2564 | "can't unpack IEEE 754 special value "
|
---|
| 2565 | "on non-IEEE platform");
|
---|
| 2566 | return -1;
|
---|
| 2567 | }
|
---|
[2] | 2568 |
|
---|
[391] | 2569 | /* Third byte */
|
---|
| 2570 | f |= *p << 8;
|
---|
| 2571 | p += incr;
|
---|
[2] | 2572 |
|
---|
[391] | 2573 | /* Fourth byte */
|
---|
| 2574 | f |= *p;
|
---|
[2] | 2575 |
|
---|
[391] | 2576 | x = (double)f / 8388608.0;
|
---|
[2] | 2577 |
|
---|
[391] | 2578 | /* XXX This sadly ignores Inf/NaN issues */
|
---|
| 2579 | if (e == 0)
|
---|
| 2580 | e = -126;
|
---|
| 2581 | else {
|
---|
| 2582 | x += 1.0;
|
---|
| 2583 | e -= 127;
|
---|
| 2584 | }
|
---|
| 2585 | x = ldexp(x, e);
|
---|
[2] | 2586 |
|
---|
[391] | 2587 | if (sign)
|
---|
| 2588 | x = -x;
|
---|
[2] | 2589 |
|
---|
[391] | 2590 | return x;
|
---|
| 2591 | }
|
---|
| 2592 | else {
|
---|
| 2593 | float x;
|
---|
[2] | 2594 |
|
---|
[391] | 2595 | if ((float_format == ieee_little_endian_format && !le)
|
---|
| 2596 | || (float_format == ieee_big_endian_format && le)) {
|
---|
| 2597 | char buf[4];
|
---|
| 2598 | char *d = &buf[3];
|
---|
| 2599 | int i;
|
---|
[2] | 2600 |
|
---|
[391] | 2601 | for (i = 0; i < 4; i++) {
|
---|
| 2602 | *d-- = *p++;
|
---|
| 2603 | }
|
---|
| 2604 | memcpy(&x, buf, 4);
|
---|
| 2605 | }
|
---|
| 2606 | else {
|
---|
| 2607 | memcpy(&x, p, 4);
|
---|
| 2608 | }
|
---|
[2] | 2609 |
|
---|
[391] | 2610 | return x;
|
---|
| 2611 | }
|
---|
[2] | 2612 | }
|
---|
| 2613 |
|
---|
| 2614 | double
|
---|
| 2615 | _PyFloat_Unpack8(const unsigned char *p, int le)
|
---|
| 2616 | {
|
---|
[391] | 2617 | if (double_format == unknown_format) {
|
---|
| 2618 | unsigned char sign;
|
---|
| 2619 | int e;
|
---|
| 2620 | unsigned int fhi, flo;
|
---|
| 2621 | double x;
|
---|
| 2622 | int incr = 1;
|
---|
[2] | 2623 |
|
---|
[391] | 2624 | if (le) {
|
---|
| 2625 | p += 7;
|
---|
| 2626 | incr = -1;
|
---|
| 2627 | }
|
---|
[2] | 2628 |
|
---|
[391] | 2629 | /* First byte */
|
---|
| 2630 | sign = (*p >> 7) & 1;
|
---|
| 2631 | e = (*p & 0x7F) << 4;
|
---|
[2] | 2632 |
|
---|
[391] | 2633 | p += incr;
|
---|
[2] | 2634 |
|
---|
[391] | 2635 | /* Second byte */
|
---|
| 2636 | e |= (*p >> 4) & 0xF;
|
---|
| 2637 | fhi = (*p & 0xF) << 24;
|
---|
| 2638 | p += incr;
|
---|
[2] | 2639 |
|
---|
[391] | 2640 | if (e == 2047) {
|
---|
| 2641 | PyErr_SetString(
|
---|
| 2642 | PyExc_ValueError,
|
---|
| 2643 | "can't unpack IEEE 754 special value "
|
---|
| 2644 | "on non-IEEE platform");
|
---|
| 2645 | return -1.0;
|
---|
| 2646 | }
|
---|
[2] | 2647 |
|
---|
[391] | 2648 | /* Third byte */
|
---|
| 2649 | fhi |= *p << 16;
|
---|
| 2650 | p += incr;
|
---|
[2] | 2651 |
|
---|
[391] | 2652 | /* Fourth byte */
|
---|
| 2653 | fhi |= *p << 8;
|
---|
| 2654 | p += incr;
|
---|
[2] | 2655 |
|
---|
[391] | 2656 | /* Fifth byte */
|
---|
| 2657 | fhi |= *p;
|
---|
| 2658 | p += incr;
|
---|
[2] | 2659 |
|
---|
[391] | 2660 | /* Sixth byte */
|
---|
| 2661 | flo = *p << 16;
|
---|
| 2662 | p += incr;
|
---|
[2] | 2663 |
|
---|
[391] | 2664 | /* Seventh byte */
|
---|
| 2665 | flo |= *p << 8;
|
---|
| 2666 | p += incr;
|
---|
[2] | 2667 |
|
---|
[391] | 2668 | /* Eighth byte */
|
---|
| 2669 | flo |= *p;
|
---|
[2] | 2670 |
|
---|
[391] | 2671 | x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
|
---|
| 2672 | x /= 268435456.0; /* 2**28 */
|
---|
[2] | 2673 |
|
---|
[391] | 2674 | if (e == 0)
|
---|
| 2675 | e = -1022;
|
---|
| 2676 | else {
|
---|
| 2677 | x += 1.0;
|
---|
| 2678 | e -= 1023;
|
---|
| 2679 | }
|
---|
| 2680 | x = ldexp(x, e);
|
---|
[2] | 2681 |
|
---|
[391] | 2682 | if (sign)
|
---|
| 2683 | x = -x;
|
---|
[2] | 2684 |
|
---|
[391] | 2685 | return x;
|
---|
| 2686 | }
|
---|
| 2687 | else {
|
---|
| 2688 | double x;
|
---|
[2] | 2689 |
|
---|
[391] | 2690 | if ((double_format == ieee_little_endian_format && !le)
|
---|
| 2691 | || (double_format == ieee_big_endian_format && le)) {
|
---|
| 2692 | char buf[8];
|
---|
| 2693 | char *d = &buf[7];
|
---|
| 2694 | int i;
|
---|
| 2695 |
|
---|
| 2696 | for (i = 0; i < 8; i++) {
|
---|
| 2697 | *d-- = *p++;
|
---|
| 2698 | }
|
---|
| 2699 | memcpy(&x, buf, 8);
|
---|
| 2700 | }
|
---|
| 2701 | else {
|
---|
| 2702 | memcpy(&x, p, 8);
|
---|
| 2703 | }
|
---|
| 2704 |
|
---|
| 2705 | return x;
|
---|
| 2706 | }
|
---|
[2] | 2707 | }
|
---|