| 1 |
|
|---|
| 2 | /* Complex object implementation */
|
|---|
| 3 |
|
|---|
| 4 | /* Borrows heavily from floatobject.c */
|
|---|
| 5 |
|
|---|
| 6 | /* Submitted by Jim Hugunin */
|
|---|
| 7 |
|
|---|
| 8 | #include "Python.h"
|
|---|
| 9 | #include "structmember.h"
|
|---|
| 10 |
|
|---|
| 11 | #ifdef HAVE_IEEEFP_H
|
|---|
| 12 | #include <ieeefp.h>
|
|---|
| 13 | #endif
|
|---|
| 14 |
|
|---|
| 15 | #ifndef WITHOUT_COMPLEX
|
|---|
| 16 |
|
|---|
| 17 | /* Precisions used by repr() and str(), respectively.
|
|---|
| 18 |
|
|---|
| 19 | The repr() precision (17 significant decimal digits) is the minimal number
|
|---|
| 20 | that is guaranteed to have enough precision so that if the number is read
|
|---|
| 21 | back in the exact same binary value is recreated. This is true for IEEE
|
|---|
| 22 | floating point by design, and also happens to work for all other modern
|
|---|
| 23 | hardware.
|
|---|
| 24 |
|
|---|
| 25 | The str() precision is chosen so that in most cases, the rounding noise
|
|---|
| 26 | created by various operations is suppressed, while giving plenty of
|
|---|
| 27 | precision for practical use.
|
|---|
| 28 | */
|
|---|
| 29 |
|
|---|
| 30 | #define PREC_REPR 17
|
|---|
| 31 | #define PREC_STR 12
|
|---|
| 32 |
|
|---|
| 33 | /* elementary operations on complex numbers */
|
|---|
| 34 |
|
|---|
| 35 | static Py_complex c_1 = {1., 0.};
|
|---|
| 36 |
|
|---|
| 37 | Py_complex
|
|---|
| 38 | c_sum(Py_complex a, Py_complex b)
|
|---|
| 39 | {
|
|---|
| 40 | Py_complex r;
|
|---|
| 41 | r.real = a.real + b.real;
|
|---|
| 42 | r.imag = a.imag + b.imag;
|
|---|
| 43 | return r;
|
|---|
| 44 | }
|
|---|
| 45 |
|
|---|
| 46 | Py_complex
|
|---|
| 47 | c_diff(Py_complex a, Py_complex b)
|
|---|
| 48 | {
|
|---|
| 49 | Py_complex r;
|
|---|
| 50 | r.real = a.real - b.real;
|
|---|
| 51 | r.imag = a.imag - b.imag;
|
|---|
| 52 | return r;
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | Py_complex
|
|---|
| 56 | c_neg(Py_complex a)
|
|---|
| 57 | {
|
|---|
| 58 | Py_complex r;
|
|---|
| 59 | r.real = -a.real;
|
|---|
| 60 | r.imag = -a.imag;
|
|---|
| 61 | return r;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | Py_complex
|
|---|
| 65 | c_prod(Py_complex a, Py_complex b)
|
|---|
| 66 | {
|
|---|
| 67 | Py_complex r;
|
|---|
| 68 | r.real = a.real*b.real - a.imag*b.imag;
|
|---|
| 69 | r.imag = a.real*b.imag + a.imag*b.real;
|
|---|
| 70 | return r;
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | Py_complex
|
|---|
| 74 | c_quot(Py_complex a, Py_complex b)
|
|---|
| 75 | {
|
|---|
| 76 | /******************************************************************
|
|---|
| 77 | This was the original algorithm. It's grossly prone to spurious
|
|---|
| 78 | overflow and underflow errors. It also merrily divides by 0 despite
|
|---|
| 79 | checking for that(!). The code still serves a doc purpose here, as
|
|---|
| 80 | the algorithm following is a simple by-cases transformation of this
|
|---|
| 81 | one:
|
|---|
| 82 |
|
|---|
| 83 | Py_complex r;
|
|---|
| 84 | double d = b.real*b.real + b.imag*b.imag;
|
|---|
| 85 | if (d == 0.)
|
|---|
| 86 | errno = EDOM;
|
|---|
| 87 | r.real = (a.real*b.real + a.imag*b.imag)/d;
|
|---|
| 88 | r.imag = (a.imag*b.real - a.real*b.imag)/d;
|
|---|
| 89 | return r;
|
|---|
| 90 | ******************************************************************/
|
|---|
| 91 |
|
|---|
| 92 | /* This algorithm is better, and is pretty obvious: first divide the
|
|---|
| 93 | * numerators and denominator by whichever of {b.real, b.imag} has
|
|---|
| 94 | * larger magnitude. The earliest reference I found was to CACM
|
|---|
| 95 | * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
|
|---|
| 96 | * University). As usual, though, we're still ignoring all IEEE
|
|---|
| 97 | * endcases.
|
|---|
| 98 | */
|
|---|
| 99 | Py_complex r; /* the result */
|
|---|
| 100 | const double abs_breal = b.real < 0 ? -b.real : b.real;
|
|---|
| 101 | const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
|
|---|
| 102 |
|
|---|
| 103 | if (abs_breal >= abs_bimag) {
|
|---|
| 104 | /* divide tops and bottom by b.real */
|
|---|
| 105 | if (abs_breal == 0.0) {
|
|---|
| 106 | errno = EDOM;
|
|---|
| 107 | r.real = r.imag = 0.0;
|
|---|
| 108 | }
|
|---|
| 109 | else {
|
|---|
| 110 | const double ratio = b.imag / b.real;
|
|---|
| 111 | const double denom = b.real + b.imag * ratio;
|
|---|
| 112 | r.real = (a.real + a.imag * ratio) / denom;
|
|---|
| 113 | r.imag = (a.imag - a.real * ratio) / denom;
|
|---|
| 114 | }
|
|---|
| 115 | }
|
|---|
| 116 | else {
|
|---|
| 117 | /* divide tops and bottom by b.imag */
|
|---|
| 118 | const double ratio = b.real / b.imag;
|
|---|
| 119 | const double denom = b.real * ratio + b.imag;
|
|---|
| 120 | assert(b.imag != 0.0);
|
|---|
| 121 | r.real = (a.real * ratio + a.imag) / denom;
|
|---|
| 122 | r.imag = (a.imag * ratio - a.real) / denom;
|
|---|
| 123 | }
|
|---|
| 124 | return r;
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 | Py_complex
|
|---|
| 128 | c_pow(Py_complex a, Py_complex b)
|
|---|
| 129 | {
|
|---|
| 130 | Py_complex r;
|
|---|
| 131 | double vabs,len,at,phase;
|
|---|
| 132 | if (b.real == 0. && b.imag == 0.) {
|
|---|
| 133 | r.real = 1.;
|
|---|
| 134 | r.imag = 0.;
|
|---|
| 135 | }
|
|---|
| 136 | else if (a.real == 0. && a.imag == 0.) {
|
|---|
| 137 | if (b.imag != 0. || b.real < 0.)
|
|---|
| 138 | errno = EDOM;
|
|---|
| 139 | r.real = 0.;
|
|---|
| 140 | r.imag = 0.;
|
|---|
| 141 | }
|
|---|
| 142 | else {
|
|---|
| 143 | vabs = hypot(a.real,a.imag);
|
|---|
| 144 | len = pow(vabs,b.real);
|
|---|
| 145 | at = atan2(a.imag, a.real);
|
|---|
| 146 | phase = at*b.real;
|
|---|
| 147 | if (b.imag != 0.0) {
|
|---|
| 148 | len /= exp(at*b.imag);
|
|---|
| 149 | phase += b.imag*log(vabs);
|
|---|
| 150 | }
|
|---|
| 151 | r.real = len*cos(phase);
|
|---|
| 152 | r.imag = len*sin(phase);
|
|---|
| 153 | }
|
|---|
| 154 | return r;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | static Py_complex
|
|---|
| 158 | c_powu(Py_complex x, long n)
|
|---|
| 159 | {
|
|---|
| 160 | Py_complex r, p;
|
|---|
| 161 | long mask = 1;
|
|---|
| 162 | r = c_1;
|
|---|
| 163 | p = x;
|
|---|
| 164 | while (mask > 0 && n >= mask) {
|
|---|
| 165 | if (n & mask)
|
|---|
| 166 | r = c_prod(r,p);
|
|---|
| 167 | mask <<= 1;
|
|---|
| 168 | p = c_prod(p,p);
|
|---|
| 169 | }
|
|---|
| 170 | return r;
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 | static Py_complex
|
|---|
| 174 | c_powi(Py_complex x, long n)
|
|---|
| 175 | {
|
|---|
| 176 | Py_complex cn;
|
|---|
| 177 |
|
|---|
| 178 | if (n > 100 || n < -100) {
|
|---|
| 179 | cn.real = (double) n;
|
|---|
| 180 | cn.imag = 0.;
|
|---|
| 181 | return c_pow(x,cn);
|
|---|
| 182 | }
|
|---|
| 183 | else if (n > 0)
|
|---|
| 184 | return c_powu(x,n);
|
|---|
| 185 | else
|
|---|
| 186 | return c_quot(c_1,c_powu(x,-n));
|
|---|
| 187 |
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | double
|
|---|
| 191 | c_abs(Py_complex z)
|
|---|
| 192 | {
|
|---|
| 193 | /* sets errno = ERANGE on overflow; otherwise errno = 0 */
|
|---|
| 194 | double result;
|
|---|
| 195 |
|
|---|
| 196 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|---|
| 197 | /* C99 rules: if either the real or the imaginary part is an
|
|---|
| 198 | infinity, return infinity, even if the other part is a
|
|---|
| 199 | NaN. */
|
|---|
| 200 | if (Py_IS_INFINITY(z.real)) {
|
|---|
| 201 | result = fabs(z.real);
|
|---|
| 202 | errno = 0;
|
|---|
| 203 | return result;
|
|---|
| 204 | }
|
|---|
| 205 | if (Py_IS_INFINITY(z.imag)) {
|
|---|
| 206 | result = fabs(z.imag);
|
|---|
| 207 | errno = 0;
|
|---|
| 208 | return result;
|
|---|
| 209 | }
|
|---|
| 210 | /* either the real or imaginary part is a NaN,
|
|---|
| 211 | and neither is infinite. Result should be NaN. */
|
|---|
| 212 | return Py_NAN;
|
|---|
| 213 | }
|
|---|
| 214 | result = hypot(z.real, z.imag);
|
|---|
| 215 | if (!Py_IS_FINITE(result))
|
|---|
| 216 | errno = ERANGE;
|
|---|
| 217 | else
|
|---|
| 218 | errno = 0;
|
|---|
| 219 | return result;
|
|---|
| 220 | }
|
|---|
| 221 |
|
|---|
| 222 | static PyObject *
|
|---|
| 223 | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
|
|---|
| 224 | {
|
|---|
| 225 | PyObject *op;
|
|---|
| 226 |
|
|---|
| 227 | op = type->tp_alloc(type, 0);
|
|---|
| 228 | if (op != NULL)
|
|---|
| 229 | ((PyComplexObject *)op)->cval = cval;
|
|---|
| 230 | return op;
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | PyObject *
|
|---|
| 234 | PyComplex_FromCComplex(Py_complex cval)
|
|---|
| 235 | {
|
|---|
| 236 | register PyComplexObject *op;
|
|---|
| 237 |
|
|---|
| 238 | /* Inline PyObject_New */
|
|---|
| 239 | op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
|
|---|
| 240 | if (op == NULL)
|
|---|
| 241 | return PyErr_NoMemory();
|
|---|
| 242 | PyObject_INIT(op, &PyComplex_Type);
|
|---|
| 243 | op->cval = cval;
|
|---|
| 244 | return (PyObject *) op;
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | static PyObject *
|
|---|
| 248 | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
|
|---|
| 249 | {
|
|---|
| 250 | Py_complex c;
|
|---|
| 251 | c.real = real;
|
|---|
| 252 | c.imag = imag;
|
|---|
| 253 | return complex_subtype_from_c_complex(type, c);
|
|---|
| 254 | }
|
|---|
| 255 |
|
|---|
| 256 | PyObject *
|
|---|
| 257 | PyComplex_FromDoubles(double real, double imag)
|
|---|
| 258 | {
|
|---|
| 259 | Py_complex c;
|
|---|
| 260 | c.real = real;
|
|---|
| 261 | c.imag = imag;
|
|---|
| 262 | return PyComplex_FromCComplex(c);
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 | double
|
|---|
| 266 | PyComplex_RealAsDouble(PyObject *op)
|
|---|
| 267 | {
|
|---|
| 268 | if (PyComplex_Check(op)) {
|
|---|
| 269 | return ((PyComplexObject *)op)->cval.real;
|
|---|
| 270 | }
|
|---|
| 271 | else {
|
|---|
| 272 | return PyFloat_AsDouble(op);
|
|---|
| 273 | }
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | double
|
|---|
| 277 | PyComplex_ImagAsDouble(PyObject *op)
|
|---|
| 278 | {
|
|---|
| 279 | if (PyComplex_Check(op)) {
|
|---|
| 280 | return ((PyComplexObject *)op)->cval.imag;
|
|---|
| 281 | }
|
|---|
| 282 | else {
|
|---|
| 283 | return 0.0;
|
|---|
| 284 | }
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 | Py_complex
|
|---|
| 288 | PyComplex_AsCComplex(PyObject *op)
|
|---|
| 289 | {
|
|---|
| 290 | Py_complex cv;
|
|---|
| 291 | PyObject *newop = NULL;
|
|---|
| 292 | static PyObject *complex_str = NULL;
|
|---|
| 293 |
|
|---|
| 294 | assert(op);
|
|---|
| 295 | /* If op is already of type PyComplex_Type, return its value */
|
|---|
| 296 | if (PyComplex_Check(op)) {
|
|---|
| 297 | return ((PyComplexObject *)op)->cval;
|
|---|
| 298 | }
|
|---|
| 299 | /* If not, use op's __complex__ method, if it exists */
|
|---|
| 300 |
|
|---|
| 301 | /* return -1 on failure */
|
|---|
| 302 | cv.real = -1.;
|
|---|
| 303 | cv.imag = 0.;
|
|---|
| 304 |
|
|---|
| 305 | if (complex_str == NULL) {
|
|---|
| 306 | if (!(complex_str = PyString_InternFromString("__complex__")))
|
|---|
| 307 | return cv;
|
|---|
| 308 | }
|
|---|
| 309 |
|
|---|
| 310 | if (PyInstance_Check(op)) {
|
|---|
| 311 | /* this can go away in python 3000 */
|
|---|
| 312 | if (PyObject_HasAttr(op, complex_str)) {
|
|---|
| 313 | newop = PyObject_CallMethod(op, "__complex__", NULL);
|
|---|
| 314 | if (!newop)
|
|---|
| 315 | return cv;
|
|---|
| 316 | }
|
|---|
| 317 | /* else try __float__ */
|
|---|
| 318 | } else {
|
|---|
| 319 | PyObject *complexfunc;
|
|---|
| 320 | complexfunc = _PyType_Lookup(op->ob_type, complex_str);
|
|---|
| 321 | /* complexfunc is a borrowed reference */
|
|---|
| 322 | if (complexfunc) {
|
|---|
| 323 | newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
|
|---|
| 324 | if (!newop)
|
|---|
| 325 | return cv;
|
|---|
| 326 | }
|
|---|
| 327 | }
|
|---|
| 328 |
|
|---|
| 329 | if (newop) {
|
|---|
| 330 | if (!PyComplex_Check(newop)) {
|
|---|
| 331 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 332 | "__complex__ should return a complex object");
|
|---|
| 333 | Py_DECREF(newop);
|
|---|
| 334 | return cv;
|
|---|
| 335 | }
|
|---|
| 336 | cv = ((PyComplexObject *)newop)->cval;
|
|---|
| 337 | Py_DECREF(newop);
|
|---|
| 338 | return cv;
|
|---|
| 339 | }
|
|---|
| 340 | /* If neither of the above works, interpret op as a float giving the
|
|---|
| 341 | real part of the result, and fill in the imaginary part as 0. */
|
|---|
| 342 | else {
|
|---|
| 343 | /* PyFloat_AsDouble will return -1 on failure */
|
|---|
| 344 | cv.real = PyFloat_AsDouble(op);
|
|---|
| 345 | return cv;
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 |
|
|---|
| 349 | static void
|
|---|
| 350 | complex_dealloc(PyObject *op)
|
|---|
| 351 | {
|
|---|
| 352 | op->ob_type->tp_free(op);
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 |
|
|---|
| 356 | static void
|
|---|
| 357 | complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
|
|---|
| 358 | {
|
|---|
| 359 | char format[32];
|
|---|
| 360 | if (v->cval.real == 0.) {
|
|---|
| 361 | if (!Py_IS_FINITE(v->cval.imag)) {
|
|---|
| 362 | if (Py_IS_NAN(v->cval.imag))
|
|---|
| 363 | strncpy(buf, "nan*j", 6);
|
|---|
| 364 | else if (copysign(1, v->cval.imag) == 1)
|
|---|
| 365 | strncpy(buf, "inf*j", 6);
|
|---|
| 366 | else
|
|---|
| 367 | strncpy(buf, "-inf*j", 7);
|
|---|
| 368 | }
|
|---|
| 369 | else {
|
|---|
| 370 | PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
|---|
| 371 | PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
|
|---|
| 372 | strncat(buf, "j", 1);
|
|---|
| 373 | }
|
|---|
| 374 | } else {
|
|---|
| 375 | char re[64], im[64];
|
|---|
| 376 | /* Format imaginary part with sign, real part without */
|
|---|
| 377 | if (!Py_IS_FINITE(v->cval.real)) {
|
|---|
| 378 | if (Py_IS_NAN(v->cval.real))
|
|---|
| 379 | strncpy(re, "nan", 4);
|
|---|
| 380 | /* else if (copysign(1, v->cval.real) == 1) */
|
|---|
| 381 | else if (v->cval.real > 0)
|
|---|
| 382 | strncpy(re, "inf", 4);
|
|---|
| 383 | else
|
|---|
| 384 | strncpy(re, "-inf", 5);
|
|---|
| 385 | }
|
|---|
| 386 | else {
|
|---|
| 387 | PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
|---|
| 388 | PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
|
|---|
| 389 | }
|
|---|
| 390 | if (!Py_IS_FINITE(v->cval.imag)) {
|
|---|
| 391 | if (Py_IS_NAN(v->cval.imag))
|
|---|
| 392 | strncpy(im, "+nan*", 6);
|
|---|
| 393 | /* else if (copysign(1, v->cval.imag) == 1) */
|
|---|
| 394 | else if (v->cval.imag > 0)
|
|---|
| 395 | strncpy(im, "+inf*", 6);
|
|---|
| 396 | else
|
|---|
| 397 | strncpy(im, "-inf*", 6);
|
|---|
| 398 | }
|
|---|
| 399 | else {
|
|---|
| 400 | PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
|
|---|
| 401 | PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
|
|---|
| 402 | }
|
|---|
| 403 | PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
|
|---|
| 404 | }
|
|---|
| 405 | }
|
|---|
| 406 |
|
|---|
| 407 | static int
|
|---|
| 408 | complex_print(PyComplexObject *v, FILE *fp, int flags)
|
|---|
| 409 | {
|
|---|
| 410 | char buf[100];
|
|---|
| 411 | complex_to_buf(buf, sizeof(buf), v,
|
|---|
| 412 | (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
|
|---|
| 413 | Py_BEGIN_ALLOW_THREADS
|
|---|
| 414 | fputs(buf, fp);
|
|---|
| 415 | Py_END_ALLOW_THREADS
|
|---|
| 416 | return 0;
|
|---|
| 417 | }
|
|---|
| 418 |
|
|---|
| 419 | static PyObject *
|
|---|
| 420 | complex_repr(PyComplexObject *v)
|
|---|
| 421 | {
|
|---|
| 422 | char buf[100];
|
|---|
| 423 | complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
|
|---|
| 424 | return PyString_FromString(buf);
|
|---|
| 425 | }
|
|---|
| 426 |
|
|---|
| 427 | static PyObject *
|
|---|
| 428 | complex_str(PyComplexObject *v)
|
|---|
| 429 | {
|
|---|
| 430 | char buf[100];
|
|---|
| 431 | complex_to_buf(buf, sizeof(buf), v, PREC_STR);
|
|---|
| 432 | return PyString_FromString(buf);
|
|---|
| 433 | }
|
|---|
| 434 |
|
|---|
| 435 | static long
|
|---|
| 436 | complex_hash(PyComplexObject *v)
|
|---|
| 437 | {
|
|---|
| 438 | long hashreal, hashimag, combined;
|
|---|
| 439 | hashreal = _Py_HashDouble(v->cval.real);
|
|---|
| 440 | if (hashreal == -1)
|
|---|
| 441 | return -1;
|
|---|
| 442 | hashimag = _Py_HashDouble(v->cval.imag);
|
|---|
| 443 | if (hashimag == -1)
|
|---|
| 444 | return -1;
|
|---|
| 445 | /* Note: if the imaginary part is 0, hashimag is 0 now,
|
|---|
| 446 | * so the following returns hashreal unchanged. This is
|
|---|
| 447 | * important because numbers of different types that
|
|---|
| 448 | * compare equal must have the same hash value, so that
|
|---|
| 449 | * hash(x + 0*j) must equal hash(x).
|
|---|
| 450 | */
|
|---|
| 451 | combined = hashreal + 1000003 * hashimag;
|
|---|
| 452 | if (combined == -1)
|
|---|
| 453 | combined = -2;
|
|---|
| 454 | return combined;
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | /* This macro may return! */
|
|---|
| 458 | #define TO_COMPLEX(obj, c) \
|
|---|
| 459 | if (PyComplex_Check(obj)) \
|
|---|
| 460 | c = ((PyComplexObject *)(obj))->cval; \
|
|---|
| 461 | else if (to_complex(&(obj), &(c)) < 0) \
|
|---|
| 462 | return (obj)
|
|---|
| 463 |
|
|---|
| 464 | static int
|
|---|
| 465 | to_complex(PyObject **pobj, Py_complex *pc)
|
|---|
| 466 | {
|
|---|
| 467 | PyObject *obj = *pobj;
|
|---|
| 468 |
|
|---|
| 469 | pc->real = pc->imag = 0.0;
|
|---|
| 470 | if (PyInt_Check(obj)) {
|
|---|
| 471 | pc->real = PyInt_AS_LONG(obj);
|
|---|
| 472 | return 0;
|
|---|
| 473 | }
|
|---|
| 474 | if (PyLong_Check(obj)) {
|
|---|
| 475 | pc->real = PyLong_AsDouble(obj);
|
|---|
| 476 | if (pc->real == -1.0 && PyErr_Occurred()) {
|
|---|
| 477 | *pobj = NULL;
|
|---|
| 478 | return -1;
|
|---|
| 479 | }
|
|---|
| 480 | return 0;
|
|---|
| 481 | }
|
|---|
| 482 | if (PyFloat_Check(obj)) {
|
|---|
| 483 | pc->real = PyFloat_AsDouble(obj);
|
|---|
| 484 | return 0;
|
|---|
| 485 | }
|
|---|
| 486 | Py_INCREF(Py_NotImplemented);
|
|---|
| 487 | *pobj = Py_NotImplemented;
|
|---|
| 488 | return -1;
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 |
|
|---|
| 492 | static PyObject *
|
|---|
| 493 | complex_add(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 494 | {
|
|---|
| 495 | Py_complex result;
|
|---|
| 496 | PyFPE_START_PROTECT("complex_add", return 0)
|
|---|
| 497 | result = c_sum(v->cval,w->cval);
|
|---|
| 498 | PyFPE_END_PROTECT(result)
|
|---|
| 499 | return PyComplex_FromCComplex(result);
|
|---|
| 500 | }
|
|---|
| 501 |
|
|---|
| 502 | static PyObject *
|
|---|
| 503 | complex_sub(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 504 | {
|
|---|
| 505 | Py_complex result;
|
|---|
| 506 | PyFPE_START_PROTECT("complex_sub", return 0)
|
|---|
| 507 | result = c_diff(v->cval,w->cval);
|
|---|
| 508 | PyFPE_END_PROTECT(result)
|
|---|
| 509 | return PyComplex_FromCComplex(result);
|
|---|
| 510 | }
|
|---|
| 511 |
|
|---|
| 512 | static PyObject *
|
|---|
| 513 | complex_mul(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 514 | {
|
|---|
| 515 | Py_complex result;
|
|---|
| 516 | PyFPE_START_PROTECT("complex_mul", return 0)
|
|---|
| 517 | result = c_prod(v->cval,w->cval);
|
|---|
| 518 | PyFPE_END_PROTECT(result)
|
|---|
| 519 | return PyComplex_FromCComplex(result);
|
|---|
| 520 | }
|
|---|
| 521 |
|
|---|
| 522 | static PyObject *
|
|---|
| 523 | complex_div(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 524 | {
|
|---|
| 525 | Py_complex quot;
|
|---|
| 526 |
|
|---|
| 527 | PyFPE_START_PROTECT("complex_div", return 0)
|
|---|
| 528 | errno = 0;
|
|---|
| 529 | quot = c_quot(v->cval,w->cval);
|
|---|
| 530 | PyFPE_END_PROTECT(quot)
|
|---|
| 531 | if (errno == EDOM) {
|
|---|
| 532 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
|
|---|
| 533 | return NULL;
|
|---|
| 534 | }
|
|---|
| 535 | return PyComplex_FromCComplex(quot);
|
|---|
| 536 | }
|
|---|
| 537 |
|
|---|
| 538 | static PyObject *
|
|---|
| 539 | complex_classic_div(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 540 | {
|
|---|
| 541 | Py_complex quot;
|
|---|
| 542 |
|
|---|
| 543 | if (Py_DivisionWarningFlag >= 2 &&
|
|---|
| 544 | PyErr_Warn(PyExc_DeprecationWarning,
|
|---|
| 545 | "classic complex division") < 0)
|
|---|
| 546 | return NULL;
|
|---|
| 547 |
|
|---|
| 548 | PyFPE_START_PROTECT("complex_classic_div", return 0)
|
|---|
| 549 | errno = 0;
|
|---|
| 550 | quot = c_quot(v->cval,w->cval);
|
|---|
| 551 | PyFPE_END_PROTECT(quot)
|
|---|
| 552 | if (errno == EDOM) {
|
|---|
| 553 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
|
|---|
| 554 | return NULL;
|
|---|
| 555 | }
|
|---|
| 556 | return PyComplex_FromCComplex(quot);
|
|---|
| 557 | }
|
|---|
| 558 |
|
|---|
| 559 | static PyObject *
|
|---|
| 560 | complex_remainder(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 561 | {
|
|---|
| 562 | Py_complex div, mod;
|
|---|
| 563 |
|
|---|
| 564 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
|---|
| 565 | "complex divmod(), // and % are deprecated") < 0)
|
|---|
| 566 | return NULL;
|
|---|
| 567 |
|
|---|
| 568 | errno = 0;
|
|---|
| 569 | div = c_quot(v->cval,w->cval); /* The raw divisor value. */
|
|---|
| 570 | if (errno == EDOM) {
|
|---|
| 571 | PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
|
|---|
| 572 | return NULL;
|
|---|
| 573 | }
|
|---|
| 574 | div.real = floor(div.real); /* Use the floor of the real part. */
|
|---|
| 575 | div.imag = 0.0;
|
|---|
| 576 | mod = c_diff(v->cval, c_prod(w->cval, div));
|
|---|
| 577 |
|
|---|
| 578 | return PyComplex_FromCComplex(mod);
|
|---|
| 579 | }
|
|---|
| 580 |
|
|---|
| 581 |
|
|---|
| 582 | static PyObject *
|
|---|
| 583 | complex_divmod(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 584 | {
|
|---|
| 585 | Py_complex div, mod;
|
|---|
| 586 | PyObject *d, *m, *z;
|
|---|
| 587 |
|
|---|
| 588 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
|---|
| 589 | "complex divmod(), // and % are deprecated") < 0)
|
|---|
| 590 | return NULL;
|
|---|
| 591 |
|
|---|
| 592 | errno = 0;
|
|---|
| 593 | div = c_quot(v->cval,w->cval); /* The raw divisor value. */
|
|---|
| 594 | if (errno == EDOM) {
|
|---|
| 595 | PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
|
|---|
| 596 | return NULL;
|
|---|
| 597 | }
|
|---|
| 598 | div.real = floor(div.real); /* Use the floor of the real part. */
|
|---|
| 599 | div.imag = 0.0;
|
|---|
| 600 | mod = c_diff(v->cval, c_prod(w->cval, div));
|
|---|
| 601 | d = PyComplex_FromCComplex(div);
|
|---|
| 602 | m = PyComplex_FromCComplex(mod);
|
|---|
| 603 | z = PyTuple_Pack(2, d, m);
|
|---|
| 604 | Py_XDECREF(d);
|
|---|
| 605 | Py_XDECREF(m);
|
|---|
| 606 | return z;
|
|---|
| 607 | }
|
|---|
| 608 |
|
|---|
| 609 | static PyObject *
|
|---|
| 610 | complex_pow(PyObject *v, PyObject *w, PyObject *z)
|
|---|
| 611 | {
|
|---|
| 612 | Py_complex p;
|
|---|
| 613 | Py_complex exponent;
|
|---|
| 614 | long int_exponent;
|
|---|
| 615 | Py_complex a, b;
|
|---|
| 616 | TO_COMPLEX(v, a);
|
|---|
| 617 | TO_COMPLEX(w, b);
|
|---|
| 618 |
|
|---|
| 619 | if (z!=Py_None) {
|
|---|
| 620 | PyErr_SetString(PyExc_ValueError, "complex modulo");
|
|---|
| 621 | return NULL;
|
|---|
| 622 | }
|
|---|
| 623 | PyFPE_START_PROTECT("complex_pow", return 0)
|
|---|
| 624 | errno = 0;
|
|---|
| 625 | exponent = b;
|
|---|
| 626 | int_exponent = (long)exponent.real;
|
|---|
| 627 | if (exponent.imag == 0. && exponent.real == int_exponent)
|
|---|
| 628 | p = c_powi(a,int_exponent);
|
|---|
| 629 | else
|
|---|
| 630 | p = c_pow(a,exponent);
|
|---|
| 631 |
|
|---|
| 632 | PyFPE_END_PROTECT(p)
|
|---|
| 633 | Py_ADJUST_ERANGE2(p.real, p.imag);
|
|---|
| 634 | if (errno == EDOM) {
|
|---|
| 635 | PyErr_SetString(PyExc_ZeroDivisionError,
|
|---|
| 636 | "0.0 to a negative or complex power");
|
|---|
| 637 | return NULL;
|
|---|
| 638 | }
|
|---|
| 639 | else if (errno == ERANGE) {
|
|---|
| 640 | PyErr_SetString(PyExc_OverflowError,
|
|---|
| 641 | "complex exponentiation");
|
|---|
| 642 | return NULL;
|
|---|
| 643 | }
|
|---|
| 644 | return PyComplex_FromCComplex(p);
|
|---|
| 645 | }
|
|---|
| 646 |
|
|---|
| 647 | static PyObject *
|
|---|
| 648 | complex_int_div(PyComplexObject *v, PyComplexObject *w)
|
|---|
| 649 | {
|
|---|
| 650 | PyObject *t, *r;
|
|---|
| 651 |
|
|---|
| 652 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
|---|
| 653 | "complex divmod(), // and % are deprecated") < 0)
|
|---|
| 654 | return NULL;
|
|---|
| 655 |
|
|---|
| 656 | t = complex_divmod(v, w);
|
|---|
| 657 | if (t != NULL) {
|
|---|
| 658 | r = PyTuple_GET_ITEM(t, 0);
|
|---|
| 659 | Py_INCREF(r);
|
|---|
| 660 | Py_DECREF(t);
|
|---|
| 661 | return r;
|
|---|
| 662 | }
|
|---|
| 663 | return NULL;
|
|---|
| 664 | }
|
|---|
| 665 |
|
|---|
| 666 | static PyObject *
|
|---|
| 667 | complex_neg(PyComplexObject *v)
|
|---|
| 668 | {
|
|---|
| 669 | Py_complex neg;
|
|---|
| 670 | neg.real = -v->cval.real;
|
|---|
| 671 | neg.imag = -v->cval.imag;
|
|---|
| 672 | return PyComplex_FromCComplex(neg);
|
|---|
| 673 | }
|
|---|
| 674 |
|
|---|
| 675 | static PyObject *
|
|---|
| 676 | complex_pos(PyComplexObject *v)
|
|---|
| 677 | {
|
|---|
| 678 | if (PyComplex_CheckExact(v)) {
|
|---|
| 679 | Py_INCREF(v);
|
|---|
| 680 | return (PyObject *)v;
|
|---|
| 681 | }
|
|---|
| 682 | else
|
|---|
| 683 | return PyComplex_FromCComplex(v->cval);
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | static PyObject *
|
|---|
| 687 | complex_abs(PyComplexObject *v)
|
|---|
| 688 | {
|
|---|
| 689 | double result;
|
|---|
| 690 |
|
|---|
| 691 | PyFPE_START_PROTECT("complex_abs", return 0)
|
|---|
| 692 | result = c_abs(v->cval);
|
|---|
| 693 | PyFPE_END_PROTECT(result)
|
|---|
| 694 |
|
|---|
| 695 | if (errno == ERANGE) {
|
|---|
| 696 | PyErr_SetString(PyExc_OverflowError,
|
|---|
| 697 | "absolute value too large");
|
|---|
| 698 | return NULL;
|
|---|
| 699 | }
|
|---|
| 700 | return PyFloat_FromDouble(result);
|
|---|
| 701 | }
|
|---|
| 702 |
|
|---|
| 703 | static int
|
|---|
| 704 | complex_nonzero(PyComplexObject *v)
|
|---|
| 705 | {
|
|---|
| 706 | return v->cval.real != 0.0 || v->cval.imag != 0.0;
|
|---|
| 707 | }
|
|---|
| 708 |
|
|---|
| 709 | static int
|
|---|
| 710 | complex_coerce(PyObject **pv, PyObject **pw)
|
|---|
| 711 | {
|
|---|
| 712 | Py_complex cval;
|
|---|
| 713 | cval.imag = 0.;
|
|---|
| 714 | if (PyInt_Check(*pw)) {
|
|---|
| 715 | cval.real = (double)PyInt_AsLong(*pw);
|
|---|
| 716 | *pw = PyComplex_FromCComplex(cval);
|
|---|
| 717 | Py_INCREF(*pv);
|
|---|
| 718 | return 0;
|
|---|
| 719 | }
|
|---|
| 720 | else if (PyLong_Check(*pw)) {
|
|---|
| 721 | cval.real = PyLong_AsDouble(*pw);
|
|---|
| 722 | if (cval.real == -1.0 && PyErr_Occurred())
|
|---|
| 723 | return -1;
|
|---|
| 724 | *pw = PyComplex_FromCComplex(cval);
|
|---|
| 725 | Py_INCREF(*pv);
|
|---|
| 726 | return 0;
|
|---|
| 727 | }
|
|---|
| 728 | else if (PyFloat_Check(*pw)) {
|
|---|
| 729 | cval.real = PyFloat_AsDouble(*pw);
|
|---|
| 730 | *pw = PyComplex_FromCComplex(cval);
|
|---|
| 731 | Py_INCREF(*pv);
|
|---|
| 732 | return 0;
|
|---|
| 733 | }
|
|---|
| 734 | else if (PyComplex_Check(*pw)) {
|
|---|
| 735 | Py_INCREF(*pv);
|
|---|
| 736 | Py_INCREF(*pw);
|
|---|
| 737 | return 0;
|
|---|
| 738 | }
|
|---|
| 739 | return 1; /* Can't do it */
|
|---|
| 740 | }
|
|---|
| 741 |
|
|---|
| 742 | static PyObject *
|
|---|
| 743 | complex_richcompare(PyObject *v, PyObject *w, int op)
|
|---|
| 744 | {
|
|---|
| 745 | int c;
|
|---|
| 746 | Py_complex i, j;
|
|---|
| 747 | PyObject *res;
|
|---|
| 748 |
|
|---|
| 749 | c = PyNumber_CoerceEx(&v, &w);
|
|---|
| 750 | if (c < 0)
|
|---|
| 751 | return NULL;
|
|---|
| 752 | if (c > 0) {
|
|---|
| 753 | Py_INCREF(Py_NotImplemented);
|
|---|
| 754 | return Py_NotImplemented;
|
|---|
| 755 | }
|
|---|
| 756 | /* Make sure both arguments are complex. */
|
|---|
| 757 | if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
|
|---|
| 758 | Py_DECREF(v);
|
|---|
| 759 | Py_DECREF(w);
|
|---|
| 760 | Py_INCREF(Py_NotImplemented);
|
|---|
| 761 | return Py_NotImplemented;
|
|---|
| 762 | }
|
|---|
| 763 |
|
|---|
| 764 | i = ((PyComplexObject *)v)->cval;
|
|---|
| 765 | j = ((PyComplexObject *)w)->cval;
|
|---|
| 766 | Py_DECREF(v);
|
|---|
| 767 | Py_DECREF(w);
|
|---|
| 768 |
|
|---|
| 769 | if (op != Py_EQ && op != Py_NE) {
|
|---|
| 770 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 771 | "no ordering relation is defined for complex numbers");
|
|---|
| 772 | return NULL;
|
|---|
| 773 | }
|
|---|
| 774 |
|
|---|
| 775 | if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
|
|---|
| 776 | res = Py_True;
|
|---|
| 777 | else
|
|---|
| 778 | res = Py_False;
|
|---|
| 779 |
|
|---|
| 780 | Py_INCREF(res);
|
|---|
| 781 | return res;
|
|---|
| 782 | }
|
|---|
| 783 |
|
|---|
| 784 | static PyObject *
|
|---|
| 785 | complex_int(PyObject *v)
|
|---|
| 786 | {
|
|---|
| 787 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 788 | "can't convert complex to int");
|
|---|
| 789 | return NULL;
|
|---|
| 790 | }
|
|---|
| 791 |
|
|---|
| 792 | static PyObject *
|
|---|
| 793 | complex_long(PyObject *v)
|
|---|
| 794 | {
|
|---|
| 795 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 796 | "can't convert complex to long");
|
|---|
| 797 | return NULL;
|
|---|
| 798 | }
|
|---|
| 799 |
|
|---|
| 800 | static PyObject *
|
|---|
| 801 | complex_float(PyObject *v)
|
|---|
| 802 | {
|
|---|
| 803 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 804 | "can't convert complex to float");
|
|---|
| 805 | return NULL;
|
|---|
| 806 | }
|
|---|
| 807 |
|
|---|
| 808 | static PyObject *
|
|---|
| 809 | complex_conjugate(PyObject *self)
|
|---|
| 810 | {
|
|---|
| 811 | Py_complex c;
|
|---|
| 812 | c = ((PyComplexObject *)self)->cval;
|
|---|
| 813 | c.imag = -c.imag;
|
|---|
| 814 | return PyComplex_FromCComplex(c);
|
|---|
| 815 | }
|
|---|
| 816 |
|
|---|
| 817 | PyDoc_STRVAR(complex_conjugate_doc,
|
|---|
| 818 | "complex.conjugate() -> complex\n"
|
|---|
| 819 | "\n"
|
|---|
| 820 | "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
|
|---|
| 821 |
|
|---|
| 822 | static PyObject *
|
|---|
| 823 | complex_getnewargs(PyComplexObject *v)
|
|---|
| 824 | {
|
|---|
| 825 | Py_complex c = v->cval;
|
|---|
| 826 | return Py_BuildValue("(dd)", c.real, c.imag);
|
|---|
| 827 | }
|
|---|
| 828 |
|
|---|
| 829 | #if 0
|
|---|
| 830 | static PyObject *
|
|---|
| 831 | complex_is_finite(PyObject *self)
|
|---|
| 832 | {
|
|---|
| 833 | Py_complex c;
|
|---|
| 834 | c = ((PyComplexObject *)self)->cval;
|
|---|
| 835 | return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
|
|---|
| 836 | Py_IS_FINITE(c.imag)));
|
|---|
| 837 | }
|
|---|
| 838 |
|
|---|
| 839 | PyDoc_STRVAR(complex_is_finite_doc,
|
|---|
| 840 | "complex.is_finite() -> bool\n"
|
|---|
| 841 | "\n"
|
|---|
| 842 | "Returns True if the real and the imaginary part is finite.");
|
|---|
| 843 | #endif
|
|---|
| 844 |
|
|---|
| 845 | static PyMethodDef complex_methods[] = {
|
|---|
| 846 | {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
|
|---|
| 847 | complex_conjugate_doc},
|
|---|
| 848 | #if 0
|
|---|
| 849 | {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
|
|---|
| 850 | complex_is_finite_doc},
|
|---|
| 851 | #endif
|
|---|
| 852 | {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
|
|---|
| 853 | {NULL, NULL} /* sentinel */
|
|---|
| 854 | };
|
|---|
| 855 |
|
|---|
| 856 | static PyMemberDef complex_members[] = {
|
|---|
| 857 | {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
|
|---|
| 858 | "the real part of a complex number"},
|
|---|
| 859 | {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
|
|---|
| 860 | "the imaginary part of a complex number"},
|
|---|
| 861 | {0},
|
|---|
| 862 | };
|
|---|
| 863 |
|
|---|
| 864 | static PyObject *
|
|---|
| 865 | complex_subtype_from_string(PyTypeObject *type, PyObject *v)
|
|---|
| 866 | {
|
|---|
| 867 | const char *s, *start;
|
|---|
| 868 | char *end;
|
|---|
| 869 | double x=0.0, y=0.0, z;
|
|---|
| 870 | int got_re=0, got_im=0, got_bracket=0, done=0;
|
|---|
| 871 | int digit_or_dot;
|
|---|
| 872 | int sw_error=0;
|
|---|
| 873 | int sign;
|
|---|
| 874 | char buffer[256]; /* For errors */
|
|---|
| 875 | #ifdef Py_USING_UNICODE
|
|---|
| 876 | char s_buffer[256];
|
|---|
| 877 | #endif
|
|---|
| 878 | Py_ssize_t len;
|
|---|
| 879 |
|
|---|
| 880 | if (PyString_Check(v)) {
|
|---|
| 881 | s = PyString_AS_STRING(v);
|
|---|
| 882 | len = PyString_GET_SIZE(v);
|
|---|
| 883 | }
|
|---|
| 884 | #ifdef Py_USING_UNICODE
|
|---|
| 885 | else if (PyUnicode_Check(v)) {
|
|---|
| 886 | if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
|
|---|
| 887 | PyErr_SetString(PyExc_ValueError,
|
|---|
| 888 | "complex() literal too large to convert");
|
|---|
| 889 | return NULL;
|
|---|
| 890 | }
|
|---|
| 891 | if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
|---|
| 892 | PyUnicode_GET_SIZE(v),
|
|---|
| 893 | s_buffer,
|
|---|
| 894 | NULL))
|
|---|
| 895 | return NULL;
|
|---|
| 896 | s = s_buffer;
|
|---|
| 897 | len = strlen(s);
|
|---|
| 898 | }
|
|---|
| 899 | #endif
|
|---|
| 900 | else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
|---|
| 901 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 902 | "complex() arg is not a string");
|
|---|
| 903 | return NULL;
|
|---|
| 904 | }
|
|---|
| 905 |
|
|---|
| 906 | /* position on first nonblank */
|
|---|
| 907 | start = s;
|
|---|
| 908 | while (*s && isspace(Py_CHARMASK(*s)))
|
|---|
| 909 | s++;
|
|---|
| 910 | if (s[0] == '\0') {
|
|---|
| 911 | PyErr_SetString(PyExc_ValueError,
|
|---|
| 912 | "complex() arg is an empty string");
|
|---|
| 913 | return NULL;
|
|---|
| 914 | }
|
|---|
| 915 | if (s[0] == '(') {
|
|---|
| 916 | /* Skip over possible bracket from repr(). */
|
|---|
| 917 | got_bracket = 1;
|
|---|
| 918 | s++;
|
|---|
| 919 | while (*s && isspace(Py_CHARMASK(*s)))
|
|---|
| 920 | s++;
|
|---|
| 921 | }
|
|---|
| 922 |
|
|---|
| 923 | z = -1.0;
|
|---|
| 924 | sign = 1;
|
|---|
| 925 | do {
|
|---|
| 926 |
|
|---|
| 927 | switch (*s) {
|
|---|
| 928 |
|
|---|
| 929 | case '\0':
|
|---|
| 930 | if (s-start != len) {
|
|---|
| 931 | PyErr_SetString(
|
|---|
| 932 | PyExc_ValueError,
|
|---|
| 933 | "complex() arg contains a null byte");
|
|---|
| 934 | return NULL;
|
|---|
| 935 | }
|
|---|
| 936 | if(!done) sw_error=1;
|
|---|
| 937 | break;
|
|---|
| 938 |
|
|---|
| 939 | case ')':
|
|---|
| 940 | if (!got_bracket || !(got_re || got_im)) {
|
|---|
| 941 | sw_error=1;
|
|---|
| 942 | break;
|
|---|
| 943 | }
|
|---|
| 944 | got_bracket=0;
|
|---|
| 945 | done=1;
|
|---|
| 946 | s++;
|
|---|
| 947 | while (*s && isspace(Py_CHARMASK(*s)))
|
|---|
| 948 | s++;
|
|---|
| 949 | if (*s) sw_error=1;
|
|---|
| 950 | break;
|
|---|
| 951 |
|
|---|
| 952 | case '-':
|
|---|
| 953 | sign = -1;
|
|---|
| 954 | /* Fallthrough */
|
|---|
| 955 | case '+':
|
|---|
| 956 | if (done) sw_error=1;
|
|---|
| 957 | s++;
|
|---|
| 958 | if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'||
|
|---|
| 959 | isspace(Py_CHARMASK(*s)) ) sw_error=1;
|
|---|
| 960 | break;
|
|---|
| 961 |
|
|---|
| 962 | case 'J':
|
|---|
| 963 | case 'j':
|
|---|
| 964 | if (got_im || done) {
|
|---|
| 965 | sw_error = 1;
|
|---|
| 966 | break;
|
|---|
| 967 | }
|
|---|
| 968 | if (z<0.0) {
|
|---|
| 969 | y=sign;
|
|---|
| 970 | }
|
|---|
| 971 | else{
|
|---|
| 972 | y=sign*z;
|
|---|
| 973 | }
|
|---|
| 974 | got_im=1;
|
|---|
| 975 | s++;
|
|---|
| 976 | if (*s!='+' && *s!='-' )
|
|---|
| 977 | done=1;
|
|---|
| 978 | break;
|
|---|
| 979 |
|
|---|
| 980 | default:
|
|---|
| 981 | if (isspace(Py_CHARMASK(*s))) {
|
|---|
| 982 | while (*s && isspace(Py_CHARMASK(*s)))
|
|---|
| 983 | s++;
|
|---|
| 984 | if (*s && *s != ')')
|
|---|
| 985 | sw_error=1;
|
|---|
| 986 | else
|
|---|
| 987 | done = 1;
|
|---|
| 988 | break;
|
|---|
| 989 | }
|
|---|
| 990 | digit_or_dot =
|
|---|
| 991 | (*s=='.' || isdigit(Py_CHARMASK(*s)));
|
|---|
| 992 | if (done||!digit_or_dot) {
|
|---|
| 993 | sw_error=1;
|
|---|
| 994 | break;
|
|---|
| 995 | }
|
|---|
| 996 | errno = 0;
|
|---|
| 997 | PyFPE_START_PROTECT("strtod", return 0)
|
|---|
| 998 | z = PyOS_ascii_strtod(s, &end) ;
|
|---|
| 999 | PyFPE_END_PROTECT(z)
|
|---|
| 1000 | if (errno == ERANGE && fabs(z) >= 1.0) {
|
|---|
| 1001 | PyOS_snprintf(buffer, sizeof(buffer),
|
|---|
| 1002 | "float() out of range: %.150s", s);
|
|---|
| 1003 | PyErr_SetString(
|
|---|
| 1004 | PyExc_ValueError,
|
|---|
| 1005 | buffer);
|
|---|
| 1006 | return NULL;
|
|---|
| 1007 | }
|
|---|
| 1008 | s=end;
|
|---|
| 1009 | if (*s=='J' || *s=='j') {
|
|---|
| 1010 |
|
|---|
| 1011 | break;
|
|---|
| 1012 | }
|
|---|
| 1013 | if (got_re) {
|
|---|
| 1014 | sw_error=1;
|
|---|
| 1015 | break;
|
|---|
| 1016 | }
|
|---|
| 1017 |
|
|---|
| 1018 | /* accept a real part */
|
|---|
| 1019 | x=sign*z;
|
|---|
| 1020 | got_re=1;
|
|---|
| 1021 | if (got_im) done=1;
|
|---|
| 1022 | z = -1.0;
|
|---|
| 1023 | sign = 1;
|
|---|
| 1024 | break;
|
|---|
| 1025 |
|
|---|
| 1026 | } /* end of switch */
|
|---|
| 1027 |
|
|---|
| 1028 | } while (s - start < len && !sw_error);
|
|---|
| 1029 |
|
|---|
| 1030 | if (sw_error || got_bracket) {
|
|---|
| 1031 | PyErr_SetString(PyExc_ValueError,
|
|---|
| 1032 | "complex() arg is a malformed string");
|
|---|
| 1033 | return NULL;
|
|---|
| 1034 | }
|
|---|
| 1035 |
|
|---|
| 1036 | return complex_subtype_from_doubles(type, x, y);
|
|---|
| 1037 | }
|
|---|
| 1038 |
|
|---|
| 1039 | static PyObject *
|
|---|
| 1040 | complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|---|
| 1041 | {
|
|---|
| 1042 | PyObject *r, *i, *tmp, *f;
|
|---|
| 1043 | PyNumberMethods *nbr, *nbi = NULL;
|
|---|
| 1044 | Py_complex cr, ci;
|
|---|
| 1045 | int own_r = 0;
|
|---|
| 1046 | int cr_is_complex = 0;
|
|---|
| 1047 | int ci_is_complex = 0;
|
|---|
| 1048 | static PyObject *complexstr;
|
|---|
| 1049 | static char *kwlist[] = {"real", "imag", 0};
|
|---|
| 1050 |
|
|---|
| 1051 | r = Py_False;
|
|---|
| 1052 | i = NULL;
|
|---|
| 1053 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
|
|---|
| 1054 | &r, &i))
|
|---|
| 1055 | return NULL;
|
|---|
| 1056 |
|
|---|
| 1057 | /* Special-case for a single argument when type(arg) is complex. */
|
|---|
| 1058 | if (PyComplex_CheckExact(r) && i == NULL &&
|
|---|
| 1059 | type == &PyComplex_Type) {
|
|---|
| 1060 | /* Note that we can't know whether it's safe to return
|
|---|
| 1061 | a complex *subclass* instance as-is, hence the restriction
|
|---|
| 1062 | to exact complexes here. If either the input or the
|
|---|
| 1063 | output is a complex subclass, it will be handled below
|
|---|
| 1064 | as a non-orthogonal vector. */
|
|---|
| 1065 | Py_INCREF(r);
|
|---|
| 1066 | return r;
|
|---|
| 1067 | }
|
|---|
| 1068 | if (PyString_Check(r) || PyUnicode_Check(r)) {
|
|---|
| 1069 | if (i != NULL) {
|
|---|
| 1070 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 1071 | "complex() can't take second arg"
|
|---|
| 1072 | " if first is a string");
|
|---|
| 1073 | return NULL;
|
|---|
| 1074 | }
|
|---|
| 1075 | return complex_subtype_from_string(type, r);
|
|---|
| 1076 | }
|
|---|
| 1077 | if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
|
|---|
| 1078 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 1079 | "complex() second arg can't be a string");
|
|---|
| 1080 | return NULL;
|
|---|
| 1081 | }
|
|---|
| 1082 |
|
|---|
| 1083 | /* XXX Hack to support classes with __complex__ method */
|
|---|
| 1084 | if (complexstr == NULL) {
|
|---|
| 1085 | complexstr = PyString_InternFromString("__complex__");
|
|---|
| 1086 | if (complexstr == NULL)
|
|---|
| 1087 | return NULL;
|
|---|
| 1088 | }
|
|---|
| 1089 | f = PyObject_GetAttr(r, complexstr);
|
|---|
| 1090 | if (f == NULL)
|
|---|
| 1091 | PyErr_Clear();
|
|---|
| 1092 | else {
|
|---|
| 1093 | PyObject *args = PyTuple_New(0);
|
|---|
| 1094 | if (args == NULL)
|
|---|
| 1095 | return NULL;
|
|---|
| 1096 | r = PyEval_CallObject(f, args);
|
|---|
| 1097 | Py_DECREF(args);
|
|---|
| 1098 | Py_DECREF(f);
|
|---|
| 1099 | if (r == NULL)
|
|---|
| 1100 | return NULL;
|
|---|
| 1101 | own_r = 1;
|
|---|
| 1102 | }
|
|---|
| 1103 | nbr = r->ob_type->tp_as_number;
|
|---|
| 1104 | if (i != NULL)
|
|---|
| 1105 | nbi = i->ob_type->tp_as_number;
|
|---|
| 1106 | if (nbr == NULL || nbr->nb_float == NULL ||
|
|---|
| 1107 | ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
|
|---|
| 1108 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 1109 | "complex() argument must be a string or a number");
|
|---|
| 1110 | if (own_r) {
|
|---|
| 1111 | Py_DECREF(r);
|
|---|
| 1112 | }
|
|---|
| 1113 | return NULL;
|
|---|
| 1114 | }
|
|---|
| 1115 |
|
|---|
| 1116 | /* If we get this far, then the "real" and "imag" parts should
|
|---|
| 1117 | both be treated as numbers, and the constructor should return a
|
|---|
| 1118 | complex number equal to (real + imag*1j).
|
|---|
| 1119 |
|
|---|
| 1120 | Note that we do NOT assume the input to already be in canonical
|
|---|
| 1121 | form; the "real" and "imag" parts might themselves be complex
|
|---|
| 1122 | numbers, which slightly complicates the code below. */
|
|---|
| 1123 | if (PyComplex_Check(r)) {
|
|---|
| 1124 | /* Note that if r is of a complex subtype, we're only
|
|---|
| 1125 | retaining its real & imag parts here, and the return
|
|---|
| 1126 | value is (properly) of the builtin complex type. */
|
|---|
| 1127 | cr = ((PyComplexObject*)r)->cval;
|
|---|
| 1128 | cr_is_complex = 1;
|
|---|
| 1129 | if (own_r) {
|
|---|
| 1130 | Py_DECREF(r);
|
|---|
| 1131 | }
|
|---|
| 1132 | }
|
|---|
| 1133 | else {
|
|---|
| 1134 | /* The "real" part really is entirely real, and contributes
|
|---|
| 1135 | nothing in the imaginary direction.
|
|---|
| 1136 | Just treat it as a double. */
|
|---|
| 1137 | tmp = PyNumber_Float(r);
|
|---|
| 1138 | if (own_r) {
|
|---|
| 1139 | /* r was a newly created complex number, rather
|
|---|
| 1140 | than the original "real" argument. */
|
|---|
| 1141 | Py_DECREF(r);
|
|---|
| 1142 | }
|
|---|
| 1143 | if (tmp == NULL)
|
|---|
| 1144 | return NULL;
|
|---|
| 1145 | if (!PyFloat_Check(tmp)) {
|
|---|
| 1146 | PyErr_SetString(PyExc_TypeError,
|
|---|
| 1147 | "float(r) didn't return a float");
|
|---|
| 1148 | Py_DECREF(tmp);
|
|---|
| 1149 | return NULL;
|
|---|
| 1150 | }
|
|---|
| 1151 | cr.real = PyFloat_AsDouble(tmp);
|
|---|
| 1152 | cr.imag = 0.0; /* Shut up compiler warning */
|
|---|
| 1153 | Py_DECREF(tmp);
|
|---|
| 1154 | }
|
|---|
| 1155 | if (i == NULL) {
|
|---|
| 1156 | ci.real = 0.0;
|
|---|
| 1157 | }
|
|---|
| 1158 | else if (PyComplex_Check(i)) {
|
|---|
| 1159 | ci = ((PyComplexObject*)i)->cval;
|
|---|
| 1160 | ci_is_complex = 1;
|
|---|
| 1161 | } else {
|
|---|
| 1162 | /* The "imag" part really is entirely imaginary, and
|
|---|
| 1163 | contributes nothing in the real direction.
|
|---|
| 1164 | Just treat it as a double. */
|
|---|
| 1165 | tmp = (*nbi->nb_float)(i);
|
|---|
| 1166 | if (tmp == NULL)
|
|---|
| 1167 | return NULL;
|
|---|
| 1168 | ci.real = PyFloat_AsDouble(tmp);
|
|---|
| 1169 | Py_DECREF(tmp);
|
|---|
| 1170 | }
|
|---|
| 1171 | /* If the input was in canonical form, then the "real" and "imag"
|
|---|
| 1172 | parts are real numbers, so that ci.imag and cr.imag are zero.
|
|---|
| 1173 | We need this correction in case they were not real numbers. */
|
|---|
| 1174 |
|
|---|
| 1175 | if (ci_is_complex) {
|
|---|
| 1176 | cr.real -= ci.imag;
|
|---|
| 1177 | }
|
|---|
| 1178 | if (cr_is_complex) {
|
|---|
| 1179 | ci.real += cr.imag;
|
|---|
| 1180 | }
|
|---|
| 1181 | return complex_subtype_from_doubles(type, cr.real, ci.real);
|
|---|
| 1182 | }
|
|---|
| 1183 |
|
|---|
| 1184 | PyDoc_STRVAR(complex_doc,
|
|---|
| 1185 | "complex(real[, imag]) -> complex number\n"
|
|---|
| 1186 | "\n"
|
|---|
| 1187 | "Create a complex number from a real part and an optional imaginary part.\n"
|
|---|
| 1188 | "This is equivalent to (real + imag*1j) where imag defaults to 0.");
|
|---|
| 1189 |
|
|---|
| 1190 | static PyNumberMethods complex_as_number = {
|
|---|
| 1191 | (binaryfunc)complex_add, /* nb_add */
|
|---|
| 1192 | (binaryfunc)complex_sub, /* nb_subtract */
|
|---|
| 1193 | (binaryfunc)complex_mul, /* nb_multiply */
|
|---|
| 1194 | (binaryfunc)complex_classic_div, /* nb_divide */
|
|---|
| 1195 | (binaryfunc)complex_remainder, /* nb_remainder */
|
|---|
| 1196 | (binaryfunc)complex_divmod, /* nb_divmod */
|
|---|
| 1197 | (ternaryfunc)complex_pow, /* nb_power */
|
|---|
| 1198 | (unaryfunc)complex_neg, /* nb_negative */
|
|---|
| 1199 | (unaryfunc)complex_pos, /* nb_positive */
|
|---|
| 1200 | (unaryfunc)complex_abs, /* nb_absolute */
|
|---|
| 1201 | (inquiry)complex_nonzero, /* nb_nonzero */
|
|---|
| 1202 | 0, /* nb_invert */
|
|---|
| 1203 | 0, /* nb_lshift */
|
|---|
| 1204 | 0, /* nb_rshift */
|
|---|
| 1205 | 0, /* nb_and */
|
|---|
| 1206 | 0, /* nb_xor */
|
|---|
| 1207 | 0, /* nb_or */
|
|---|
| 1208 | complex_coerce, /* nb_coerce */
|
|---|
| 1209 | complex_int, /* nb_int */
|
|---|
| 1210 | complex_long, /* nb_long */
|
|---|
| 1211 | complex_float, /* nb_float */
|
|---|
| 1212 | 0, /* nb_oct */
|
|---|
| 1213 | 0, /* nb_hex */
|
|---|
| 1214 | 0, /* nb_inplace_add */
|
|---|
| 1215 | 0, /* nb_inplace_subtract */
|
|---|
| 1216 | 0, /* nb_inplace_multiply*/
|
|---|
| 1217 | 0, /* nb_inplace_divide */
|
|---|
| 1218 | 0, /* nb_inplace_remainder */
|
|---|
| 1219 | 0, /* nb_inplace_power */
|
|---|
| 1220 | 0, /* nb_inplace_lshift */
|
|---|
| 1221 | 0, /* nb_inplace_rshift */
|
|---|
| 1222 | 0, /* nb_inplace_and */
|
|---|
| 1223 | 0, /* nb_inplace_xor */
|
|---|
| 1224 | 0, /* nb_inplace_or */
|
|---|
| 1225 | (binaryfunc)complex_int_div, /* nb_floor_divide */
|
|---|
| 1226 | (binaryfunc)complex_div, /* nb_true_divide */
|
|---|
| 1227 | 0, /* nb_inplace_floor_divide */
|
|---|
| 1228 | 0, /* nb_inplace_true_divide */
|
|---|
| 1229 | };
|
|---|
| 1230 |
|
|---|
| 1231 | PyTypeObject PyComplex_Type = {
|
|---|
| 1232 | PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|---|
| 1233 | "complex",
|
|---|
| 1234 | sizeof(PyComplexObject),
|
|---|
| 1235 | 0,
|
|---|
| 1236 | complex_dealloc, /* tp_dealloc */
|
|---|
| 1237 | (printfunc)complex_print, /* tp_print */
|
|---|
| 1238 | 0, /* tp_getattr */
|
|---|
| 1239 | 0, /* tp_setattr */
|
|---|
| 1240 | 0, /* tp_compare */
|
|---|
| 1241 | (reprfunc)complex_repr, /* tp_repr */
|
|---|
| 1242 | &complex_as_number, /* tp_as_number */
|
|---|
| 1243 | 0, /* tp_as_sequence */
|
|---|
| 1244 | 0, /* tp_as_mapping */
|
|---|
| 1245 | (hashfunc)complex_hash, /* tp_hash */
|
|---|
| 1246 | 0, /* tp_call */
|
|---|
| 1247 | (reprfunc)complex_str, /* tp_str */
|
|---|
| 1248 | PyObject_GenericGetAttr, /* tp_getattro */
|
|---|
| 1249 | 0, /* tp_setattro */
|
|---|
| 1250 | 0, /* tp_as_buffer */
|
|---|
| 1251 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|---|
| 1252 | complex_doc, /* tp_doc */
|
|---|
| 1253 | 0, /* tp_traverse */
|
|---|
| 1254 | 0, /* tp_clear */
|
|---|
| 1255 | complex_richcompare, /* tp_richcompare */
|
|---|
| 1256 | 0, /* tp_weaklistoffset */
|
|---|
| 1257 | 0, /* tp_iter */
|
|---|
| 1258 | 0, /* tp_iternext */
|
|---|
| 1259 | complex_methods, /* tp_methods */
|
|---|
| 1260 | complex_members, /* tp_members */
|
|---|
| 1261 | 0, /* tp_getset */
|
|---|
| 1262 | 0, /* tp_base */
|
|---|
| 1263 | 0, /* tp_dict */
|
|---|
| 1264 | 0, /* tp_descr_get */
|
|---|
| 1265 | 0, /* tp_descr_set */
|
|---|
| 1266 | 0, /* tp_dictoffset */
|
|---|
| 1267 | 0, /* tp_init */
|
|---|
| 1268 | PyType_GenericAlloc, /* tp_alloc */
|
|---|
| 1269 | complex_new, /* tp_new */
|
|---|
| 1270 | PyObject_Del, /* tp_free */
|
|---|
| 1271 | };
|
|---|
| 1272 |
|
|---|
| 1273 | #endif
|
|---|