1 |
|
---|
2 | /* Complex object implementation */
|
---|
3 |
|
---|
4 | /* Borrows heavily from floatobject.c */
|
---|
5 |
|
---|
6 | /* Submitted by Jim Hugunin */
|
---|
7 |
|
---|
8 | #include "Python.h"
|
---|
9 | #include "structmember.h"
|
---|
10 |
|
---|
11 | #ifdef HAVE_IEEEFP_H
|
---|
12 | #include <ieeefp.h>
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #ifndef WITHOUT_COMPLEX
|
---|
16 |
|
---|
17 | /* Precisions used by repr() and str(), respectively.
|
---|
18 |
|
---|
19 | The repr() precision (17 significant decimal digits) is the minimal number
|
---|
20 | that is guaranteed to have enough precision so that if the number is read
|
---|
21 | back in the exact same binary value is recreated. This is true for IEEE
|
---|
22 | floating point by design, and also happens to work for all other modern
|
---|
23 | hardware.
|
---|
24 |
|
---|
25 | The str() precision is chosen so that in most cases, the rounding noise
|
---|
26 | created by various operations is suppressed, while giving plenty of
|
---|
27 | precision for practical use.
|
---|
28 | */
|
---|
29 |
|
---|
30 | #define PREC_REPR 17
|
---|
31 | #define PREC_STR 12
|
---|
32 |
|
---|
33 | /* elementary operations on complex numbers */
|
---|
34 |
|
---|
35 | static Py_complex c_1 = {1., 0.};
|
---|
36 |
|
---|
37 | Py_complex
|
---|
38 | c_sum(Py_complex a, Py_complex b)
|
---|
39 | {
|
---|
40 | Py_complex r;
|
---|
41 | r.real = a.real + b.real;
|
---|
42 | r.imag = a.imag + b.imag;
|
---|
43 | return r;
|
---|
44 | }
|
---|
45 |
|
---|
46 | Py_complex
|
---|
47 | c_diff(Py_complex a, Py_complex b)
|
---|
48 | {
|
---|
49 | Py_complex r;
|
---|
50 | r.real = a.real - b.real;
|
---|
51 | r.imag = a.imag - b.imag;
|
---|
52 | return r;
|
---|
53 | }
|
---|
54 |
|
---|
55 | Py_complex
|
---|
56 | c_neg(Py_complex a)
|
---|
57 | {
|
---|
58 | Py_complex r;
|
---|
59 | r.real = -a.real;
|
---|
60 | r.imag = -a.imag;
|
---|
61 | return r;
|
---|
62 | }
|
---|
63 |
|
---|
64 | Py_complex
|
---|
65 | c_prod(Py_complex a, Py_complex b)
|
---|
66 | {
|
---|
67 | Py_complex r;
|
---|
68 | r.real = a.real*b.real - a.imag*b.imag;
|
---|
69 | r.imag = a.real*b.imag + a.imag*b.real;
|
---|
70 | return r;
|
---|
71 | }
|
---|
72 |
|
---|
73 | Py_complex
|
---|
74 | c_quot(Py_complex a, Py_complex b)
|
---|
75 | {
|
---|
76 | /******************************************************************
|
---|
77 | This was the original algorithm. It's grossly prone to spurious
|
---|
78 | overflow and underflow errors. It also merrily divides by 0 despite
|
---|
79 | checking for that(!). The code still serves a doc purpose here, as
|
---|
80 | the algorithm following is a simple by-cases transformation of this
|
---|
81 | one:
|
---|
82 |
|
---|
83 | Py_complex r;
|
---|
84 | double d = b.real*b.real + b.imag*b.imag;
|
---|
85 | if (d == 0.)
|
---|
86 | errno = EDOM;
|
---|
87 | r.real = (a.real*b.real + a.imag*b.imag)/d;
|
---|
88 | r.imag = (a.imag*b.real - a.real*b.imag)/d;
|
---|
89 | return r;
|
---|
90 | ******************************************************************/
|
---|
91 |
|
---|
92 | /* This algorithm is better, and is pretty obvious: first divide the
|
---|
93 | * numerators and denominator by whichever of {b.real, b.imag} has
|
---|
94 | * larger magnitude. The earliest reference I found was to CACM
|
---|
95 | * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
|
---|
96 | * University). As usual, though, we're still ignoring all IEEE
|
---|
97 | * endcases.
|
---|
98 | */
|
---|
99 | Py_complex r; /* the result */
|
---|
100 | const double abs_breal = b.real < 0 ? -b.real : b.real;
|
---|
101 | const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
|
---|
102 |
|
---|
103 | if (abs_breal >= abs_bimag) {
|
---|
104 | /* divide tops and bottom by b.real */
|
---|
105 | if (abs_breal == 0.0) {
|
---|
106 | errno = EDOM;
|
---|
107 | r.real = r.imag = 0.0;
|
---|
108 | }
|
---|
109 | else {
|
---|
110 | const double ratio = b.imag / b.real;
|
---|
111 | const double denom = b.real + b.imag * ratio;
|
---|
112 | r.real = (a.real + a.imag * ratio) / denom;
|
---|
113 | r.imag = (a.imag - a.real * ratio) / denom;
|
---|
114 | }
|
---|
115 | }
|
---|
116 | else {
|
---|
117 | /* divide tops and bottom by b.imag */
|
---|
118 | const double ratio = b.real / b.imag;
|
---|
119 | const double denom = b.real * ratio + b.imag;
|
---|
120 | assert(b.imag != 0.0);
|
---|
121 | r.real = (a.real * ratio + a.imag) / denom;
|
---|
122 | r.imag = (a.imag * ratio - a.real) / denom;
|
---|
123 | }
|
---|
124 | return r;
|
---|
125 | }
|
---|
126 |
|
---|
127 | Py_complex
|
---|
128 | c_pow(Py_complex a, Py_complex b)
|
---|
129 | {
|
---|
130 | Py_complex r;
|
---|
131 | double vabs,len,at,phase;
|
---|
132 | if (b.real == 0. && b.imag == 0.) {
|
---|
133 | r.real = 1.;
|
---|
134 | r.imag = 0.;
|
---|
135 | }
|
---|
136 | else if (a.real == 0. && a.imag == 0.) {
|
---|
137 | if (b.imag != 0. || b.real < 0.)
|
---|
138 | errno = EDOM;
|
---|
139 | r.real = 0.;
|
---|
140 | r.imag = 0.;
|
---|
141 | }
|
---|
142 | else {
|
---|
143 | vabs = hypot(a.real,a.imag);
|
---|
144 | len = pow(vabs,b.real);
|
---|
145 | at = atan2(a.imag, a.real);
|
---|
146 | phase = at*b.real;
|
---|
147 | if (b.imag != 0.0) {
|
---|
148 | len /= exp(at*b.imag);
|
---|
149 | phase += b.imag*log(vabs);
|
---|
150 | }
|
---|
151 | r.real = len*cos(phase);
|
---|
152 | r.imag = len*sin(phase);
|
---|
153 | }
|
---|
154 | return r;
|
---|
155 | }
|
---|
156 |
|
---|
157 | static Py_complex
|
---|
158 | c_powu(Py_complex x, long n)
|
---|
159 | {
|
---|
160 | Py_complex r, p;
|
---|
161 | long mask = 1;
|
---|
162 | r = c_1;
|
---|
163 | p = x;
|
---|
164 | while (mask > 0 && n >= mask) {
|
---|
165 | if (n & mask)
|
---|
166 | r = c_prod(r,p);
|
---|
167 | mask <<= 1;
|
---|
168 | p = c_prod(p,p);
|
---|
169 | }
|
---|
170 | return r;
|
---|
171 | }
|
---|
172 |
|
---|
173 | static Py_complex
|
---|
174 | c_powi(Py_complex x, long n)
|
---|
175 | {
|
---|
176 | Py_complex cn;
|
---|
177 |
|
---|
178 | if (n > 100 || n < -100) {
|
---|
179 | cn.real = (double) n;
|
---|
180 | cn.imag = 0.;
|
---|
181 | return c_pow(x,cn);
|
---|
182 | }
|
---|
183 | else if (n > 0)
|
---|
184 | return c_powu(x,n);
|
---|
185 | else
|
---|
186 | return c_quot(c_1,c_powu(x,-n));
|
---|
187 |
|
---|
188 | }
|
---|
189 |
|
---|
190 | double
|
---|
191 | c_abs(Py_complex z)
|
---|
192 | {
|
---|
193 | /* sets errno = ERANGE on overflow; otherwise errno = 0 */
|
---|
194 | double result;
|
---|
195 |
|
---|
196 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
197 | /* C99 rules: if either the real or the imaginary part is an
|
---|
198 | infinity, return infinity, even if the other part is a
|
---|
199 | NaN. */
|
---|
200 | if (Py_IS_INFINITY(z.real)) {
|
---|
201 | result = fabs(z.real);
|
---|
202 | errno = 0;
|
---|
203 | return result;
|
---|
204 | }
|
---|
205 | if (Py_IS_INFINITY(z.imag)) {
|
---|
206 | result = fabs(z.imag);
|
---|
207 | errno = 0;
|
---|
208 | return result;
|
---|
209 | }
|
---|
210 | /* either the real or imaginary part is a NaN,
|
---|
211 | and neither is infinite. Result should be NaN. */
|
---|
212 | return Py_NAN;
|
---|
213 | }
|
---|
214 | result = hypot(z.real, z.imag);
|
---|
215 | if (!Py_IS_FINITE(result))
|
---|
216 | errno = ERANGE;
|
---|
217 | else
|
---|
218 | errno = 0;
|
---|
219 | return result;
|
---|
220 | }
|
---|
221 |
|
---|
222 | static PyObject *
|
---|
223 | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
|
---|
224 | {
|
---|
225 | PyObject *op;
|
---|
226 |
|
---|
227 | op = type->tp_alloc(type, 0);
|
---|
228 | if (op != NULL)
|
---|
229 | ((PyComplexObject *)op)->cval = cval;
|
---|
230 | return op;
|
---|
231 | }
|
---|
232 |
|
---|
233 | PyObject *
|
---|
234 | PyComplex_FromCComplex(Py_complex cval)
|
---|
235 | {
|
---|
236 | register PyComplexObject *op;
|
---|
237 |
|
---|
238 | /* Inline PyObject_New */
|
---|
239 | op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
|
---|
240 | if (op == NULL)
|
---|
241 | return PyErr_NoMemory();
|
---|
242 | PyObject_INIT(op, &PyComplex_Type);
|
---|
243 | op->cval = cval;
|
---|
244 | return (PyObject *) op;
|
---|
245 | }
|
---|
246 |
|
---|
247 | static PyObject *
|
---|
248 | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
|
---|
249 | {
|
---|
250 | Py_complex c;
|
---|
251 | c.real = real;
|
---|
252 | c.imag = imag;
|
---|
253 | return complex_subtype_from_c_complex(type, c);
|
---|
254 | }
|
---|
255 |
|
---|
256 | PyObject *
|
---|
257 | PyComplex_FromDoubles(double real, double imag)
|
---|
258 | {
|
---|
259 | Py_complex c;
|
---|
260 | c.real = real;
|
---|
261 | c.imag = imag;
|
---|
262 | return PyComplex_FromCComplex(c);
|
---|
263 | }
|
---|
264 |
|
---|
265 | double
|
---|
266 | PyComplex_RealAsDouble(PyObject *op)
|
---|
267 | {
|
---|
268 | if (PyComplex_Check(op)) {
|
---|
269 | return ((PyComplexObject *)op)->cval.real;
|
---|
270 | }
|
---|
271 | else {
|
---|
272 | return PyFloat_AsDouble(op);
|
---|
273 | }
|
---|
274 | }
|
---|
275 |
|
---|
276 | double
|
---|
277 | PyComplex_ImagAsDouble(PyObject *op)
|
---|
278 | {
|
---|
279 | if (PyComplex_Check(op)) {
|
---|
280 | return ((PyComplexObject *)op)->cval.imag;
|
---|
281 | }
|
---|
282 | else {
|
---|
283 | return 0.0;
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 | Py_complex
|
---|
288 | PyComplex_AsCComplex(PyObject *op)
|
---|
289 | {
|
---|
290 | Py_complex cv;
|
---|
291 | PyObject *newop = NULL;
|
---|
292 | static PyObject *complex_str = NULL;
|
---|
293 |
|
---|
294 | assert(op);
|
---|
295 | /* If op is already of type PyComplex_Type, return its value */
|
---|
296 | if (PyComplex_Check(op)) {
|
---|
297 | return ((PyComplexObject *)op)->cval;
|
---|
298 | }
|
---|
299 | /* If not, use op's __complex__ method, if it exists */
|
---|
300 |
|
---|
301 | /* return -1 on failure */
|
---|
302 | cv.real = -1.;
|
---|
303 | cv.imag = 0.;
|
---|
304 |
|
---|
305 | if (complex_str == NULL) {
|
---|
306 | if (!(complex_str = PyString_InternFromString("__complex__")))
|
---|
307 | return cv;
|
---|
308 | }
|
---|
309 |
|
---|
310 | if (PyInstance_Check(op)) {
|
---|
311 | /* this can go away in python 3000 */
|
---|
312 | if (PyObject_HasAttr(op, complex_str)) {
|
---|
313 | newop = PyObject_CallMethod(op, "__complex__", NULL);
|
---|
314 | if (!newop)
|
---|
315 | return cv;
|
---|
316 | }
|
---|
317 | /* else try __float__ */
|
---|
318 | } else {
|
---|
319 | PyObject *complexfunc;
|
---|
320 | complexfunc = _PyType_Lookup(op->ob_type, complex_str);
|
---|
321 | /* complexfunc is a borrowed reference */
|
---|
322 | if (complexfunc) {
|
---|
323 | newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
|
---|
324 | if (!newop)
|
---|
325 | return cv;
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | if (newop) {
|
---|
330 | if (!PyComplex_Check(newop)) {
|
---|
331 | PyErr_SetString(PyExc_TypeError,
|
---|
332 | "__complex__ should return a complex object");
|
---|
333 | Py_DECREF(newop);
|
---|
334 | return cv;
|
---|
335 | }
|
---|
336 | cv = ((PyComplexObject *)newop)->cval;
|
---|
337 | Py_DECREF(newop);
|
---|
338 | return cv;
|
---|
339 | }
|
---|
340 | /* If neither of the above works, interpret op as a float giving the
|
---|
341 | real part of the result, and fill in the imaginary part as 0. */
|
---|
342 | else {
|
---|
343 | /* PyFloat_AsDouble will return -1 on failure */
|
---|
344 | cv.real = PyFloat_AsDouble(op);
|
---|
345 | return cv;
|
---|
346 | }
|
---|
347 | }
|
---|
348 |
|
---|
349 | static void
|
---|
350 | complex_dealloc(PyObject *op)
|
---|
351 | {
|
---|
352 | op->ob_type->tp_free(op);
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | static void
|
---|
357 | complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
|
---|
358 | {
|
---|
359 | char format[32];
|
---|
360 | if (v->cval.real == 0.) {
|
---|
361 | if (!Py_IS_FINITE(v->cval.imag)) {
|
---|
362 | if (Py_IS_NAN(v->cval.imag))
|
---|
363 | strncpy(buf, "nan*j", 6);
|
---|
364 | else if (copysign(1, v->cval.imag) == 1)
|
---|
365 | strncpy(buf, "inf*j", 6);
|
---|
366 | else
|
---|
367 | strncpy(buf, "-inf*j", 7);
|
---|
368 | }
|
---|
369 | else {
|
---|
370 | PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
---|
371 | PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
|
---|
372 | strncat(buf, "j", 1);
|
---|
373 | }
|
---|
374 | } else {
|
---|
375 | char re[64], im[64];
|
---|
376 | /* Format imaginary part with sign, real part without */
|
---|
377 | if (!Py_IS_FINITE(v->cval.real)) {
|
---|
378 | if (Py_IS_NAN(v->cval.real))
|
---|
379 | strncpy(re, "nan", 4);
|
---|
380 | /* else if (copysign(1, v->cval.real) == 1) */
|
---|
381 | else if (v->cval.real > 0)
|
---|
382 | strncpy(re, "inf", 4);
|
---|
383 | else
|
---|
384 | strncpy(re, "-inf", 5);
|
---|
385 | }
|
---|
386 | else {
|
---|
387 | PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
---|
388 | PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
|
---|
389 | }
|
---|
390 | if (!Py_IS_FINITE(v->cval.imag)) {
|
---|
391 | if (Py_IS_NAN(v->cval.imag))
|
---|
392 | strncpy(im, "+nan*", 6);
|
---|
393 | /* else if (copysign(1, v->cval.imag) == 1) */
|
---|
394 | else if (v->cval.imag > 0)
|
---|
395 | strncpy(im, "+inf*", 6);
|
---|
396 | else
|
---|
397 | strncpy(im, "-inf*", 6);
|
---|
398 | }
|
---|
399 | else {
|
---|
400 | PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
|
---|
401 | PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
|
---|
402 | }
|
---|
403 | PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | static int
|
---|
408 | complex_print(PyComplexObject *v, FILE *fp, int flags)
|
---|
409 | {
|
---|
410 | char buf[100];
|
---|
411 | complex_to_buf(buf, sizeof(buf), v,
|
---|
412 | (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
|
---|
413 | Py_BEGIN_ALLOW_THREADS
|
---|
414 | fputs(buf, fp);
|
---|
415 | Py_END_ALLOW_THREADS
|
---|
416 | return 0;
|
---|
417 | }
|
---|
418 |
|
---|
419 | static PyObject *
|
---|
420 | complex_repr(PyComplexObject *v)
|
---|
421 | {
|
---|
422 | char buf[100];
|
---|
423 | complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
|
---|
424 | return PyString_FromString(buf);
|
---|
425 | }
|
---|
426 |
|
---|
427 | static PyObject *
|
---|
428 | complex_str(PyComplexObject *v)
|
---|
429 | {
|
---|
430 | char buf[100];
|
---|
431 | complex_to_buf(buf, sizeof(buf), v, PREC_STR);
|
---|
432 | return PyString_FromString(buf);
|
---|
433 | }
|
---|
434 |
|
---|
435 | static long
|
---|
436 | complex_hash(PyComplexObject *v)
|
---|
437 | {
|
---|
438 | long hashreal, hashimag, combined;
|
---|
439 | hashreal = _Py_HashDouble(v->cval.real);
|
---|
440 | if (hashreal == -1)
|
---|
441 | return -1;
|
---|
442 | hashimag = _Py_HashDouble(v->cval.imag);
|
---|
443 | if (hashimag == -1)
|
---|
444 | return -1;
|
---|
445 | /* Note: if the imaginary part is 0, hashimag is 0 now,
|
---|
446 | * so the following returns hashreal unchanged. This is
|
---|
447 | * important because numbers of different types that
|
---|
448 | * compare equal must have the same hash value, so that
|
---|
449 | * hash(x + 0*j) must equal hash(x).
|
---|
450 | */
|
---|
451 | combined = hashreal + 1000003 * hashimag;
|
---|
452 | if (combined == -1)
|
---|
453 | combined = -2;
|
---|
454 | return combined;
|
---|
455 | }
|
---|
456 |
|
---|
457 | /* This macro may return! */
|
---|
458 | #define TO_COMPLEX(obj, c) \
|
---|
459 | if (PyComplex_Check(obj)) \
|
---|
460 | c = ((PyComplexObject *)(obj))->cval; \
|
---|
461 | else if (to_complex(&(obj), &(c)) < 0) \
|
---|
462 | return (obj)
|
---|
463 |
|
---|
464 | static int
|
---|
465 | to_complex(PyObject **pobj, Py_complex *pc)
|
---|
466 | {
|
---|
467 | PyObject *obj = *pobj;
|
---|
468 |
|
---|
469 | pc->real = pc->imag = 0.0;
|
---|
470 | if (PyInt_Check(obj)) {
|
---|
471 | pc->real = PyInt_AS_LONG(obj);
|
---|
472 | return 0;
|
---|
473 | }
|
---|
474 | if (PyLong_Check(obj)) {
|
---|
475 | pc->real = PyLong_AsDouble(obj);
|
---|
476 | if (pc->real == -1.0 && PyErr_Occurred()) {
|
---|
477 | *pobj = NULL;
|
---|
478 | return -1;
|
---|
479 | }
|
---|
480 | return 0;
|
---|
481 | }
|
---|
482 | if (PyFloat_Check(obj)) {
|
---|
483 | pc->real = PyFloat_AsDouble(obj);
|
---|
484 | return 0;
|
---|
485 | }
|
---|
486 | Py_INCREF(Py_NotImplemented);
|
---|
487 | *pobj = Py_NotImplemented;
|
---|
488 | return -1;
|
---|
489 | }
|
---|
490 |
|
---|
491 |
|
---|
492 | static PyObject *
|
---|
493 | complex_add(PyComplexObject *v, PyComplexObject *w)
|
---|
494 | {
|
---|
495 | Py_complex result;
|
---|
496 | PyFPE_START_PROTECT("complex_add", return 0)
|
---|
497 | result = c_sum(v->cval,w->cval);
|
---|
498 | PyFPE_END_PROTECT(result)
|
---|
499 | return PyComplex_FromCComplex(result);
|
---|
500 | }
|
---|
501 |
|
---|
502 | static PyObject *
|
---|
503 | complex_sub(PyComplexObject *v, PyComplexObject *w)
|
---|
504 | {
|
---|
505 | Py_complex result;
|
---|
506 | PyFPE_START_PROTECT("complex_sub", return 0)
|
---|
507 | result = c_diff(v->cval,w->cval);
|
---|
508 | PyFPE_END_PROTECT(result)
|
---|
509 | return PyComplex_FromCComplex(result);
|
---|
510 | }
|
---|
511 |
|
---|
512 | static PyObject *
|
---|
513 | complex_mul(PyComplexObject *v, PyComplexObject *w)
|
---|
514 | {
|
---|
515 | Py_complex result;
|
---|
516 | PyFPE_START_PROTECT("complex_mul", return 0)
|
---|
517 | result = c_prod(v->cval,w->cval);
|
---|
518 | PyFPE_END_PROTECT(result)
|
---|
519 | return PyComplex_FromCComplex(result);
|
---|
520 | }
|
---|
521 |
|
---|
522 | static PyObject *
|
---|
523 | complex_div(PyComplexObject *v, PyComplexObject *w)
|
---|
524 | {
|
---|
525 | Py_complex quot;
|
---|
526 |
|
---|
527 | PyFPE_START_PROTECT("complex_div", return 0)
|
---|
528 | errno = 0;
|
---|
529 | quot = c_quot(v->cval,w->cval);
|
---|
530 | PyFPE_END_PROTECT(quot)
|
---|
531 | if (errno == EDOM) {
|
---|
532 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
|
---|
533 | return NULL;
|
---|
534 | }
|
---|
535 | return PyComplex_FromCComplex(quot);
|
---|
536 | }
|
---|
537 |
|
---|
538 | static PyObject *
|
---|
539 | complex_classic_div(PyComplexObject *v, PyComplexObject *w)
|
---|
540 | {
|
---|
541 | Py_complex quot;
|
---|
542 |
|
---|
543 | if (Py_DivisionWarningFlag >= 2 &&
|
---|
544 | PyErr_Warn(PyExc_DeprecationWarning,
|
---|
545 | "classic complex division") < 0)
|
---|
546 | return NULL;
|
---|
547 |
|
---|
548 | PyFPE_START_PROTECT("complex_classic_div", return 0)
|
---|
549 | errno = 0;
|
---|
550 | quot = c_quot(v->cval,w->cval);
|
---|
551 | PyFPE_END_PROTECT(quot)
|
---|
552 | if (errno == EDOM) {
|
---|
553 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
|
---|
554 | return NULL;
|
---|
555 | }
|
---|
556 | return PyComplex_FromCComplex(quot);
|
---|
557 | }
|
---|
558 |
|
---|
559 | static PyObject *
|
---|
560 | complex_remainder(PyComplexObject *v, PyComplexObject *w)
|
---|
561 | {
|
---|
562 | Py_complex div, mod;
|
---|
563 |
|
---|
564 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
565 | "complex divmod(), // and % are deprecated") < 0)
|
---|
566 | return NULL;
|
---|
567 |
|
---|
568 | errno = 0;
|
---|
569 | div = c_quot(v->cval,w->cval); /* The raw divisor value. */
|
---|
570 | if (errno == EDOM) {
|
---|
571 | PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
|
---|
572 | return NULL;
|
---|
573 | }
|
---|
574 | div.real = floor(div.real); /* Use the floor of the real part. */
|
---|
575 | div.imag = 0.0;
|
---|
576 | mod = c_diff(v->cval, c_prod(w->cval, div));
|
---|
577 |
|
---|
578 | return PyComplex_FromCComplex(mod);
|
---|
579 | }
|
---|
580 |
|
---|
581 |
|
---|
582 | static PyObject *
|
---|
583 | complex_divmod(PyComplexObject *v, PyComplexObject *w)
|
---|
584 | {
|
---|
585 | Py_complex div, mod;
|
---|
586 | PyObject *d, *m, *z;
|
---|
587 |
|
---|
588 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
589 | "complex divmod(), // and % are deprecated") < 0)
|
---|
590 | return NULL;
|
---|
591 |
|
---|
592 | errno = 0;
|
---|
593 | div = c_quot(v->cval,w->cval); /* The raw divisor value. */
|
---|
594 | if (errno == EDOM) {
|
---|
595 | PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
|
---|
596 | return NULL;
|
---|
597 | }
|
---|
598 | div.real = floor(div.real); /* Use the floor of the real part. */
|
---|
599 | div.imag = 0.0;
|
---|
600 | mod = c_diff(v->cval, c_prod(w->cval, div));
|
---|
601 | d = PyComplex_FromCComplex(div);
|
---|
602 | m = PyComplex_FromCComplex(mod);
|
---|
603 | z = PyTuple_Pack(2, d, m);
|
---|
604 | Py_XDECREF(d);
|
---|
605 | Py_XDECREF(m);
|
---|
606 | return z;
|
---|
607 | }
|
---|
608 |
|
---|
609 | static PyObject *
|
---|
610 | complex_pow(PyObject *v, PyObject *w, PyObject *z)
|
---|
611 | {
|
---|
612 | Py_complex p;
|
---|
613 | Py_complex exponent;
|
---|
614 | long int_exponent;
|
---|
615 | Py_complex a, b;
|
---|
616 | TO_COMPLEX(v, a);
|
---|
617 | TO_COMPLEX(w, b);
|
---|
618 |
|
---|
619 | if (z!=Py_None) {
|
---|
620 | PyErr_SetString(PyExc_ValueError, "complex modulo");
|
---|
621 | return NULL;
|
---|
622 | }
|
---|
623 | PyFPE_START_PROTECT("complex_pow", return 0)
|
---|
624 | errno = 0;
|
---|
625 | exponent = b;
|
---|
626 | int_exponent = (long)exponent.real;
|
---|
627 | if (exponent.imag == 0. && exponent.real == int_exponent)
|
---|
628 | p = c_powi(a,int_exponent);
|
---|
629 | else
|
---|
630 | p = c_pow(a,exponent);
|
---|
631 |
|
---|
632 | PyFPE_END_PROTECT(p)
|
---|
633 | Py_ADJUST_ERANGE2(p.real, p.imag);
|
---|
634 | if (errno == EDOM) {
|
---|
635 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
636 | "0.0 to a negative or complex power");
|
---|
637 | return NULL;
|
---|
638 | }
|
---|
639 | else if (errno == ERANGE) {
|
---|
640 | PyErr_SetString(PyExc_OverflowError,
|
---|
641 | "complex exponentiation");
|
---|
642 | return NULL;
|
---|
643 | }
|
---|
644 | return PyComplex_FromCComplex(p);
|
---|
645 | }
|
---|
646 |
|
---|
647 | static PyObject *
|
---|
648 | complex_int_div(PyComplexObject *v, PyComplexObject *w)
|
---|
649 | {
|
---|
650 | PyObject *t, *r;
|
---|
651 |
|
---|
652 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
653 | "complex divmod(), // and % are deprecated") < 0)
|
---|
654 | return NULL;
|
---|
655 |
|
---|
656 | t = complex_divmod(v, w);
|
---|
657 | if (t != NULL) {
|
---|
658 | r = PyTuple_GET_ITEM(t, 0);
|
---|
659 | Py_INCREF(r);
|
---|
660 | Py_DECREF(t);
|
---|
661 | return r;
|
---|
662 | }
|
---|
663 | return NULL;
|
---|
664 | }
|
---|
665 |
|
---|
666 | static PyObject *
|
---|
667 | complex_neg(PyComplexObject *v)
|
---|
668 | {
|
---|
669 | Py_complex neg;
|
---|
670 | neg.real = -v->cval.real;
|
---|
671 | neg.imag = -v->cval.imag;
|
---|
672 | return PyComplex_FromCComplex(neg);
|
---|
673 | }
|
---|
674 |
|
---|
675 | static PyObject *
|
---|
676 | complex_pos(PyComplexObject *v)
|
---|
677 | {
|
---|
678 | if (PyComplex_CheckExact(v)) {
|
---|
679 | Py_INCREF(v);
|
---|
680 | return (PyObject *)v;
|
---|
681 | }
|
---|
682 | else
|
---|
683 | return PyComplex_FromCComplex(v->cval);
|
---|
684 | }
|
---|
685 |
|
---|
686 | static PyObject *
|
---|
687 | complex_abs(PyComplexObject *v)
|
---|
688 | {
|
---|
689 | double result;
|
---|
690 |
|
---|
691 | PyFPE_START_PROTECT("complex_abs", return 0)
|
---|
692 | result = c_abs(v->cval);
|
---|
693 | PyFPE_END_PROTECT(result)
|
---|
694 |
|
---|
695 | if (errno == ERANGE) {
|
---|
696 | PyErr_SetString(PyExc_OverflowError,
|
---|
697 | "absolute value too large");
|
---|
698 | return NULL;
|
---|
699 | }
|
---|
700 | return PyFloat_FromDouble(result);
|
---|
701 | }
|
---|
702 |
|
---|
703 | static int
|
---|
704 | complex_nonzero(PyComplexObject *v)
|
---|
705 | {
|
---|
706 | return v->cval.real != 0.0 || v->cval.imag != 0.0;
|
---|
707 | }
|
---|
708 |
|
---|
709 | static int
|
---|
710 | complex_coerce(PyObject **pv, PyObject **pw)
|
---|
711 | {
|
---|
712 | Py_complex cval;
|
---|
713 | cval.imag = 0.;
|
---|
714 | if (PyInt_Check(*pw)) {
|
---|
715 | cval.real = (double)PyInt_AsLong(*pw);
|
---|
716 | *pw = PyComplex_FromCComplex(cval);
|
---|
717 | Py_INCREF(*pv);
|
---|
718 | return 0;
|
---|
719 | }
|
---|
720 | else if (PyLong_Check(*pw)) {
|
---|
721 | cval.real = PyLong_AsDouble(*pw);
|
---|
722 | if (cval.real == -1.0 && PyErr_Occurred())
|
---|
723 | return -1;
|
---|
724 | *pw = PyComplex_FromCComplex(cval);
|
---|
725 | Py_INCREF(*pv);
|
---|
726 | return 0;
|
---|
727 | }
|
---|
728 | else if (PyFloat_Check(*pw)) {
|
---|
729 | cval.real = PyFloat_AsDouble(*pw);
|
---|
730 | *pw = PyComplex_FromCComplex(cval);
|
---|
731 | Py_INCREF(*pv);
|
---|
732 | return 0;
|
---|
733 | }
|
---|
734 | else if (PyComplex_Check(*pw)) {
|
---|
735 | Py_INCREF(*pv);
|
---|
736 | Py_INCREF(*pw);
|
---|
737 | return 0;
|
---|
738 | }
|
---|
739 | return 1; /* Can't do it */
|
---|
740 | }
|
---|
741 |
|
---|
742 | static PyObject *
|
---|
743 | complex_richcompare(PyObject *v, PyObject *w, int op)
|
---|
744 | {
|
---|
745 | int c;
|
---|
746 | Py_complex i, j;
|
---|
747 | PyObject *res;
|
---|
748 |
|
---|
749 | c = PyNumber_CoerceEx(&v, &w);
|
---|
750 | if (c < 0)
|
---|
751 | return NULL;
|
---|
752 | if (c > 0) {
|
---|
753 | Py_INCREF(Py_NotImplemented);
|
---|
754 | return Py_NotImplemented;
|
---|
755 | }
|
---|
756 | /* Make sure both arguments are complex. */
|
---|
757 | if (!(PyComplex_Check(v) && PyComplex_Check(w))) {
|
---|
758 | Py_DECREF(v);
|
---|
759 | Py_DECREF(w);
|
---|
760 | Py_INCREF(Py_NotImplemented);
|
---|
761 | return Py_NotImplemented;
|
---|
762 | }
|
---|
763 |
|
---|
764 | i = ((PyComplexObject *)v)->cval;
|
---|
765 | j = ((PyComplexObject *)w)->cval;
|
---|
766 | Py_DECREF(v);
|
---|
767 | Py_DECREF(w);
|
---|
768 |
|
---|
769 | if (op != Py_EQ && op != Py_NE) {
|
---|
770 | PyErr_SetString(PyExc_TypeError,
|
---|
771 | "no ordering relation is defined for complex numbers");
|
---|
772 | return NULL;
|
---|
773 | }
|
---|
774 |
|
---|
775 | if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
|
---|
776 | res = Py_True;
|
---|
777 | else
|
---|
778 | res = Py_False;
|
---|
779 |
|
---|
780 | Py_INCREF(res);
|
---|
781 | return res;
|
---|
782 | }
|
---|
783 |
|
---|
784 | static PyObject *
|
---|
785 | complex_int(PyObject *v)
|
---|
786 | {
|
---|
787 | PyErr_SetString(PyExc_TypeError,
|
---|
788 | "can't convert complex to int");
|
---|
789 | return NULL;
|
---|
790 | }
|
---|
791 |
|
---|
792 | static PyObject *
|
---|
793 | complex_long(PyObject *v)
|
---|
794 | {
|
---|
795 | PyErr_SetString(PyExc_TypeError,
|
---|
796 | "can't convert complex to long");
|
---|
797 | return NULL;
|
---|
798 | }
|
---|
799 |
|
---|
800 | static PyObject *
|
---|
801 | complex_float(PyObject *v)
|
---|
802 | {
|
---|
803 | PyErr_SetString(PyExc_TypeError,
|
---|
804 | "can't convert complex to float");
|
---|
805 | return NULL;
|
---|
806 | }
|
---|
807 |
|
---|
808 | static PyObject *
|
---|
809 | complex_conjugate(PyObject *self)
|
---|
810 | {
|
---|
811 | Py_complex c;
|
---|
812 | c = ((PyComplexObject *)self)->cval;
|
---|
813 | c.imag = -c.imag;
|
---|
814 | return PyComplex_FromCComplex(c);
|
---|
815 | }
|
---|
816 |
|
---|
817 | PyDoc_STRVAR(complex_conjugate_doc,
|
---|
818 | "complex.conjugate() -> complex\n"
|
---|
819 | "\n"
|
---|
820 | "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
|
---|
821 |
|
---|
822 | static PyObject *
|
---|
823 | complex_getnewargs(PyComplexObject *v)
|
---|
824 | {
|
---|
825 | Py_complex c = v->cval;
|
---|
826 | return Py_BuildValue("(dd)", c.real, c.imag);
|
---|
827 | }
|
---|
828 |
|
---|
829 | #if 0
|
---|
830 | static PyObject *
|
---|
831 | complex_is_finite(PyObject *self)
|
---|
832 | {
|
---|
833 | Py_complex c;
|
---|
834 | c = ((PyComplexObject *)self)->cval;
|
---|
835 | return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
|
---|
836 | Py_IS_FINITE(c.imag)));
|
---|
837 | }
|
---|
838 |
|
---|
839 | PyDoc_STRVAR(complex_is_finite_doc,
|
---|
840 | "complex.is_finite() -> bool\n"
|
---|
841 | "\n"
|
---|
842 | "Returns True if the real and the imaginary part is finite.");
|
---|
843 | #endif
|
---|
844 |
|
---|
845 | static PyMethodDef complex_methods[] = {
|
---|
846 | {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
|
---|
847 | complex_conjugate_doc},
|
---|
848 | #if 0
|
---|
849 | {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
|
---|
850 | complex_is_finite_doc},
|
---|
851 | #endif
|
---|
852 | {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
|
---|
853 | {NULL, NULL} /* sentinel */
|
---|
854 | };
|
---|
855 |
|
---|
856 | static PyMemberDef complex_members[] = {
|
---|
857 | {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
|
---|
858 | "the real part of a complex number"},
|
---|
859 | {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
|
---|
860 | "the imaginary part of a complex number"},
|
---|
861 | {0},
|
---|
862 | };
|
---|
863 |
|
---|
864 | static PyObject *
|
---|
865 | complex_subtype_from_string(PyTypeObject *type, PyObject *v)
|
---|
866 | {
|
---|
867 | const char *s, *start;
|
---|
868 | char *end;
|
---|
869 | double x=0.0, y=0.0, z;
|
---|
870 | int got_re=0, got_im=0, got_bracket=0, done=0;
|
---|
871 | int digit_or_dot;
|
---|
872 | int sw_error=0;
|
---|
873 | int sign;
|
---|
874 | char buffer[256]; /* For errors */
|
---|
875 | #ifdef Py_USING_UNICODE
|
---|
876 | char s_buffer[256];
|
---|
877 | #endif
|
---|
878 | Py_ssize_t len;
|
---|
879 |
|
---|
880 | if (PyString_Check(v)) {
|
---|
881 | s = PyString_AS_STRING(v);
|
---|
882 | len = PyString_GET_SIZE(v);
|
---|
883 | }
|
---|
884 | #ifdef Py_USING_UNICODE
|
---|
885 | else if (PyUnicode_Check(v)) {
|
---|
886 | if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
|
---|
887 | PyErr_SetString(PyExc_ValueError,
|
---|
888 | "complex() literal too large to convert");
|
---|
889 | return NULL;
|
---|
890 | }
|
---|
891 | if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
---|
892 | PyUnicode_GET_SIZE(v),
|
---|
893 | s_buffer,
|
---|
894 | NULL))
|
---|
895 | return NULL;
|
---|
896 | s = s_buffer;
|
---|
897 | len = strlen(s);
|
---|
898 | }
|
---|
899 | #endif
|
---|
900 | else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
---|
901 | PyErr_SetString(PyExc_TypeError,
|
---|
902 | "complex() arg is not a string");
|
---|
903 | return NULL;
|
---|
904 | }
|
---|
905 |
|
---|
906 | /* position on first nonblank */
|
---|
907 | start = s;
|
---|
908 | while (*s && isspace(Py_CHARMASK(*s)))
|
---|
909 | s++;
|
---|
910 | if (s[0] == '\0') {
|
---|
911 | PyErr_SetString(PyExc_ValueError,
|
---|
912 | "complex() arg is an empty string");
|
---|
913 | return NULL;
|
---|
914 | }
|
---|
915 | if (s[0] == '(') {
|
---|
916 | /* Skip over possible bracket from repr(). */
|
---|
917 | got_bracket = 1;
|
---|
918 | s++;
|
---|
919 | while (*s && isspace(Py_CHARMASK(*s)))
|
---|
920 | s++;
|
---|
921 | }
|
---|
922 |
|
---|
923 | z = -1.0;
|
---|
924 | sign = 1;
|
---|
925 | do {
|
---|
926 |
|
---|
927 | switch (*s) {
|
---|
928 |
|
---|
929 | case '\0':
|
---|
930 | if (s-start != len) {
|
---|
931 | PyErr_SetString(
|
---|
932 | PyExc_ValueError,
|
---|
933 | "complex() arg contains a null byte");
|
---|
934 | return NULL;
|
---|
935 | }
|
---|
936 | if(!done) sw_error=1;
|
---|
937 | break;
|
---|
938 |
|
---|
939 | case ')':
|
---|
940 | if (!got_bracket || !(got_re || got_im)) {
|
---|
941 | sw_error=1;
|
---|
942 | break;
|
---|
943 | }
|
---|
944 | got_bracket=0;
|
---|
945 | done=1;
|
---|
946 | s++;
|
---|
947 | while (*s && isspace(Py_CHARMASK(*s)))
|
---|
948 | s++;
|
---|
949 | if (*s) sw_error=1;
|
---|
950 | break;
|
---|
951 |
|
---|
952 | case '-':
|
---|
953 | sign = -1;
|
---|
954 | /* Fallthrough */
|
---|
955 | case '+':
|
---|
956 | if (done) sw_error=1;
|
---|
957 | s++;
|
---|
958 | if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'||
|
---|
959 | isspace(Py_CHARMASK(*s)) ) sw_error=1;
|
---|
960 | break;
|
---|
961 |
|
---|
962 | case 'J':
|
---|
963 | case 'j':
|
---|
964 | if (got_im || done) {
|
---|
965 | sw_error = 1;
|
---|
966 | break;
|
---|
967 | }
|
---|
968 | if (z<0.0) {
|
---|
969 | y=sign;
|
---|
970 | }
|
---|
971 | else{
|
---|
972 | y=sign*z;
|
---|
973 | }
|
---|
974 | got_im=1;
|
---|
975 | s++;
|
---|
976 | if (*s!='+' && *s!='-' )
|
---|
977 | done=1;
|
---|
978 | break;
|
---|
979 |
|
---|
980 | default:
|
---|
981 | if (isspace(Py_CHARMASK(*s))) {
|
---|
982 | while (*s && isspace(Py_CHARMASK(*s)))
|
---|
983 | s++;
|
---|
984 | if (*s && *s != ')')
|
---|
985 | sw_error=1;
|
---|
986 | else
|
---|
987 | done = 1;
|
---|
988 | break;
|
---|
989 | }
|
---|
990 | digit_or_dot =
|
---|
991 | (*s=='.' || isdigit(Py_CHARMASK(*s)));
|
---|
992 | if (done||!digit_or_dot) {
|
---|
993 | sw_error=1;
|
---|
994 | break;
|
---|
995 | }
|
---|
996 | errno = 0;
|
---|
997 | PyFPE_START_PROTECT("strtod", return 0)
|
---|
998 | z = PyOS_ascii_strtod(s, &end) ;
|
---|
999 | PyFPE_END_PROTECT(z)
|
---|
1000 | if (errno == ERANGE && fabs(z) >= 1.0) {
|
---|
1001 | PyOS_snprintf(buffer, sizeof(buffer),
|
---|
1002 | "float() out of range: %.150s", s);
|
---|
1003 | PyErr_SetString(
|
---|
1004 | PyExc_ValueError,
|
---|
1005 | buffer);
|
---|
1006 | return NULL;
|
---|
1007 | }
|
---|
1008 | s=end;
|
---|
1009 | if (*s=='J' || *s=='j') {
|
---|
1010 |
|
---|
1011 | break;
|
---|
1012 | }
|
---|
1013 | if (got_re) {
|
---|
1014 | sw_error=1;
|
---|
1015 | break;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | /* accept a real part */
|
---|
1019 | x=sign*z;
|
---|
1020 | got_re=1;
|
---|
1021 | if (got_im) done=1;
|
---|
1022 | z = -1.0;
|
---|
1023 | sign = 1;
|
---|
1024 | break;
|
---|
1025 |
|
---|
1026 | } /* end of switch */
|
---|
1027 |
|
---|
1028 | } while (s - start < len && !sw_error);
|
---|
1029 |
|
---|
1030 | if (sw_error || got_bracket) {
|
---|
1031 | PyErr_SetString(PyExc_ValueError,
|
---|
1032 | "complex() arg is a malformed string");
|
---|
1033 | return NULL;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | return complex_subtype_from_doubles(type, x, y);
|
---|
1037 | }
|
---|
1038 |
|
---|
1039 | static PyObject *
|
---|
1040 | complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
1041 | {
|
---|
1042 | PyObject *r, *i, *tmp, *f;
|
---|
1043 | PyNumberMethods *nbr, *nbi = NULL;
|
---|
1044 | Py_complex cr, ci;
|
---|
1045 | int own_r = 0;
|
---|
1046 | int cr_is_complex = 0;
|
---|
1047 | int ci_is_complex = 0;
|
---|
1048 | static PyObject *complexstr;
|
---|
1049 | static char *kwlist[] = {"real", "imag", 0};
|
---|
1050 |
|
---|
1051 | r = Py_False;
|
---|
1052 | i = NULL;
|
---|
1053 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
|
---|
1054 | &r, &i))
|
---|
1055 | return NULL;
|
---|
1056 |
|
---|
1057 | /* Special-case for a single argument when type(arg) is complex. */
|
---|
1058 | if (PyComplex_CheckExact(r) && i == NULL &&
|
---|
1059 | type == &PyComplex_Type) {
|
---|
1060 | /* Note that we can't know whether it's safe to return
|
---|
1061 | a complex *subclass* instance as-is, hence the restriction
|
---|
1062 | to exact complexes here. If either the input or the
|
---|
1063 | output is a complex subclass, it will be handled below
|
---|
1064 | as a non-orthogonal vector. */
|
---|
1065 | Py_INCREF(r);
|
---|
1066 | return r;
|
---|
1067 | }
|
---|
1068 | if (PyString_Check(r) || PyUnicode_Check(r)) {
|
---|
1069 | if (i != NULL) {
|
---|
1070 | PyErr_SetString(PyExc_TypeError,
|
---|
1071 | "complex() can't take second arg"
|
---|
1072 | " if first is a string");
|
---|
1073 | return NULL;
|
---|
1074 | }
|
---|
1075 | return complex_subtype_from_string(type, r);
|
---|
1076 | }
|
---|
1077 | if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
|
---|
1078 | PyErr_SetString(PyExc_TypeError,
|
---|
1079 | "complex() second arg can't be a string");
|
---|
1080 | return NULL;
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | /* XXX Hack to support classes with __complex__ method */
|
---|
1084 | if (complexstr == NULL) {
|
---|
1085 | complexstr = PyString_InternFromString("__complex__");
|
---|
1086 | if (complexstr == NULL)
|
---|
1087 | return NULL;
|
---|
1088 | }
|
---|
1089 | f = PyObject_GetAttr(r, complexstr);
|
---|
1090 | if (f == NULL)
|
---|
1091 | PyErr_Clear();
|
---|
1092 | else {
|
---|
1093 | PyObject *args = PyTuple_New(0);
|
---|
1094 | if (args == NULL)
|
---|
1095 | return NULL;
|
---|
1096 | r = PyEval_CallObject(f, args);
|
---|
1097 | Py_DECREF(args);
|
---|
1098 | Py_DECREF(f);
|
---|
1099 | if (r == NULL)
|
---|
1100 | return NULL;
|
---|
1101 | own_r = 1;
|
---|
1102 | }
|
---|
1103 | nbr = r->ob_type->tp_as_number;
|
---|
1104 | if (i != NULL)
|
---|
1105 | nbi = i->ob_type->tp_as_number;
|
---|
1106 | if (nbr == NULL || nbr->nb_float == NULL ||
|
---|
1107 | ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
|
---|
1108 | PyErr_SetString(PyExc_TypeError,
|
---|
1109 | "complex() argument must be a string or a number");
|
---|
1110 | if (own_r) {
|
---|
1111 | Py_DECREF(r);
|
---|
1112 | }
|
---|
1113 | return NULL;
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 | /* If we get this far, then the "real" and "imag" parts should
|
---|
1117 | both be treated as numbers, and the constructor should return a
|
---|
1118 | complex number equal to (real + imag*1j).
|
---|
1119 |
|
---|
1120 | Note that we do NOT assume the input to already be in canonical
|
---|
1121 | form; the "real" and "imag" parts might themselves be complex
|
---|
1122 | numbers, which slightly complicates the code below. */
|
---|
1123 | if (PyComplex_Check(r)) {
|
---|
1124 | /* Note that if r is of a complex subtype, we're only
|
---|
1125 | retaining its real & imag parts here, and the return
|
---|
1126 | value is (properly) of the builtin complex type. */
|
---|
1127 | cr = ((PyComplexObject*)r)->cval;
|
---|
1128 | cr_is_complex = 1;
|
---|
1129 | if (own_r) {
|
---|
1130 | Py_DECREF(r);
|
---|
1131 | }
|
---|
1132 | }
|
---|
1133 | else {
|
---|
1134 | /* The "real" part really is entirely real, and contributes
|
---|
1135 | nothing in the imaginary direction.
|
---|
1136 | Just treat it as a double. */
|
---|
1137 | tmp = PyNumber_Float(r);
|
---|
1138 | if (own_r) {
|
---|
1139 | /* r was a newly created complex number, rather
|
---|
1140 | than the original "real" argument. */
|
---|
1141 | Py_DECREF(r);
|
---|
1142 | }
|
---|
1143 | if (tmp == NULL)
|
---|
1144 | return NULL;
|
---|
1145 | if (!PyFloat_Check(tmp)) {
|
---|
1146 | PyErr_SetString(PyExc_TypeError,
|
---|
1147 | "float(r) didn't return a float");
|
---|
1148 | Py_DECREF(tmp);
|
---|
1149 | return NULL;
|
---|
1150 | }
|
---|
1151 | cr.real = PyFloat_AsDouble(tmp);
|
---|
1152 | cr.imag = 0.0; /* Shut up compiler warning */
|
---|
1153 | Py_DECREF(tmp);
|
---|
1154 | }
|
---|
1155 | if (i == NULL) {
|
---|
1156 | ci.real = 0.0;
|
---|
1157 | }
|
---|
1158 | else if (PyComplex_Check(i)) {
|
---|
1159 | ci = ((PyComplexObject*)i)->cval;
|
---|
1160 | ci_is_complex = 1;
|
---|
1161 | } else {
|
---|
1162 | /* The "imag" part really is entirely imaginary, and
|
---|
1163 | contributes nothing in the real direction.
|
---|
1164 | Just treat it as a double. */
|
---|
1165 | tmp = (*nbi->nb_float)(i);
|
---|
1166 | if (tmp == NULL)
|
---|
1167 | return NULL;
|
---|
1168 | ci.real = PyFloat_AsDouble(tmp);
|
---|
1169 | Py_DECREF(tmp);
|
---|
1170 | }
|
---|
1171 | /* If the input was in canonical form, then the "real" and "imag"
|
---|
1172 | parts are real numbers, so that ci.imag and cr.imag are zero.
|
---|
1173 | We need this correction in case they were not real numbers. */
|
---|
1174 |
|
---|
1175 | if (ci_is_complex) {
|
---|
1176 | cr.real -= ci.imag;
|
---|
1177 | }
|
---|
1178 | if (cr_is_complex) {
|
---|
1179 | ci.real += cr.imag;
|
---|
1180 | }
|
---|
1181 | return complex_subtype_from_doubles(type, cr.real, ci.real);
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | PyDoc_STRVAR(complex_doc,
|
---|
1185 | "complex(real[, imag]) -> complex number\n"
|
---|
1186 | "\n"
|
---|
1187 | "Create a complex number from a real part and an optional imaginary part.\n"
|
---|
1188 | "This is equivalent to (real + imag*1j) where imag defaults to 0.");
|
---|
1189 |
|
---|
1190 | static PyNumberMethods complex_as_number = {
|
---|
1191 | (binaryfunc)complex_add, /* nb_add */
|
---|
1192 | (binaryfunc)complex_sub, /* nb_subtract */
|
---|
1193 | (binaryfunc)complex_mul, /* nb_multiply */
|
---|
1194 | (binaryfunc)complex_classic_div, /* nb_divide */
|
---|
1195 | (binaryfunc)complex_remainder, /* nb_remainder */
|
---|
1196 | (binaryfunc)complex_divmod, /* nb_divmod */
|
---|
1197 | (ternaryfunc)complex_pow, /* nb_power */
|
---|
1198 | (unaryfunc)complex_neg, /* nb_negative */
|
---|
1199 | (unaryfunc)complex_pos, /* nb_positive */
|
---|
1200 | (unaryfunc)complex_abs, /* nb_absolute */
|
---|
1201 | (inquiry)complex_nonzero, /* nb_nonzero */
|
---|
1202 | 0, /* nb_invert */
|
---|
1203 | 0, /* nb_lshift */
|
---|
1204 | 0, /* nb_rshift */
|
---|
1205 | 0, /* nb_and */
|
---|
1206 | 0, /* nb_xor */
|
---|
1207 | 0, /* nb_or */
|
---|
1208 | complex_coerce, /* nb_coerce */
|
---|
1209 | complex_int, /* nb_int */
|
---|
1210 | complex_long, /* nb_long */
|
---|
1211 | complex_float, /* nb_float */
|
---|
1212 | 0, /* nb_oct */
|
---|
1213 | 0, /* nb_hex */
|
---|
1214 | 0, /* nb_inplace_add */
|
---|
1215 | 0, /* nb_inplace_subtract */
|
---|
1216 | 0, /* nb_inplace_multiply*/
|
---|
1217 | 0, /* nb_inplace_divide */
|
---|
1218 | 0, /* nb_inplace_remainder */
|
---|
1219 | 0, /* nb_inplace_power */
|
---|
1220 | 0, /* nb_inplace_lshift */
|
---|
1221 | 0, /* nb_inplace_rshift */
|
---|
1222 | 0, /* nb_inplace_and */
|
---|
1223 | 0, /* nb_inplace_xor */
|
---|
1224 | 0, /* nb_inplace_or */
|
---|
1225 | (binaryfunc)complex_int_div, /* nb_floor_divide */
|
---|
1226 | (binaryfunc)complex_div, /* nb_true_divide */
|
---|
1227 | 0, /* nb_inplace_floor_divide */
|
---|
1228 | 0, /* nb_inplace_true_divide */
|
---|
1229 | };
|
---|
1230 |
|
---|
1231 | PyTypeObject PyComplex_Type = {
|
---|
1232 | PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
---|
1233 | "complex",
|
---|
1234 | sizeof(PyComplexObject),
|
---|
1235 | 0,
|
---|
1236 | complex_dealloc, /* tp_dealloc */
|
---|
1237 | (printfunc)complex_print, /* tp_print */
|
---|
1238 | 0, /* tp_getattr */
|
---|
1239 | 0, /* tp_setattr */
|
---|
1240 | 0, /* tp_compare */
|
---|
1241 | (reprfunc)complex_repr, /* tp_repr */
|
---|
1242 | &complex_as_number, /* tp_as_number */
|
---|
1243 | 0, /* tp_as_sequence */
|
---|
1244 | 0, /* tp_as_mapping */
|
---|
1245 | (hashfunc)complex_hash, /* tp_hash */
|
---|
1246 | 0, /* tp_call */
|
---|
1247 | (reprfunc)complex_str, /* tp_str */
|
---|
1248 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
1249 | 0, /* tp_setattro */
|
---|
1250 | 0, /* tp_as_buffer */
|
---|
1251 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
---|
1252 | complex_doc, /* tp_doc */
|
---|
1253 | 0, /* tp_traverse */
|
---|
1254 | 0, /* tp_clear */
|
---|
1255 | complex_richcompare, /* tp_richcompare */
|
---|
1256 | 0, /* tp_weaklistoffset */
|
---|
1257 | 0, /* tp_iter */
|
---|
1258 | 0, /* tp_iternext */
|
---|
1259 | complex_methods, /* tp_methods */
|
---|
1260 | complex_members, /* tp_members */
|
---|
1261 | 0, /* tp_getset */
|
---|
1262 | 0, /* tp_base */
|
---|
1263 | 0, /* tp_dict */
|
---|
1264 | 0, /* tp_descr_get */
|
---|
1265 | 0, /* tp_descr_set */
|
---|
1266 | 0, /* tp_dictoffset */
|
---|
1267 | 0, /* tp_init */
|
---|
1268 | PyType_GenericAlloc, /* tp_alloc */
|
---|
1269 | complex_new, /* tp_new */
|
---|
1270 | PyObject_Del, /* tp_free */
|
---|
1271 | };
|
---|
1272 |
|
---|
1273 | #endif
|
---|