[2] | 1 |
|
---|
| 2 | /* Complex object implementation */
|
---|
| 3 |
|
---|
| 4 | /* Borrows heavily from floatobject.c */
|
---|
| 5 |
|
---|
| 6 | /* Submitted by Jim Hugunin */
|
---|
| 7 |
|
---|
| 8 | #include "Python.h"
|
---|
| 9 | #include "structmember.h"
|
---|
| 10 |
|
---|
| 11 | #ifndef WITHOUT_COMPLEX
|
---|
| 12 |
|
---|
| 13 | /* Precisions used by repr() and str(), respectively.
|
---|
| 14 |
|
---|
| 15 | The repr() precision (17 significant decimal digits) is the minimal number
|
---|
| 16 | that is guaranteed to have enough precision so that if the number is read
|
---|
| 17 | back in the exact same binary value is recreated. This is true for IEEE
|
---|
| 18 | floating point by design, and also happens to work for all other modern
|
---|
| 19 | hardware.
|
---|
| 20 |
|
---|
| 21 | The str() precision is chosen so that in most cases, the rounding noise
|
---|
| 22 | created by various operations is suppressed, while giving plenty of
|
---|
| 23 | precision for practical use.
|
---|
| 24 | */
|
---|
| 25 |
|
---|
[391] | 26 | #define PREC_REPR 17
|
---|
| 27 | #define PREC_STR 12
|
---|
[2] | 28 |
|
---|
| 29 | /* elementary operations on complex numbers */
|
---|
| 30 |
|
---|
| 31 | static Py_complex c_1 = {1., 0.};
|
---|
| 32 |
|
---|
| 33 | Py_complex
|
---|
| 34 | c_sum(Py_complex a, Py_complex b)
|
---|
| 35 | {
|
---|
[391] | 36 | Py_complex r;
|
---|
| 37 | r.real = a.real + b.real;
|
---|
| 38 | r.imag = a.imag + b.imag;
|
---|
| 39 | return r;
|
---|
[2] | 40 | }
|
---|
| 41 |
|
---|
| 42 | Py_complex
|
---|
| 43 | c_diff(Py_complex a, Py_complex b)
|
---|
| 44 | {
|
---|
[391] | 45 | Py_complex r;
|
---|
| 46 | r.real = a.real - b.real;
|
---|
| 47 | r.imag = a.imag - b.imag;
|
---|
| 48 | return r;
|
---|
[2] | 49 | }
|
---|
| 50 |
|
---|
| 51 | Py_complex
|
---|
| 52 | c_neg(Py_complex a)
|
---|
| 53 | {
|
---|
[391] | 54 | Py_complex r;
|
---|
| 55 | r.real = -a.real;
|
---|
| 56 | r.imag = -a.imag;
|
---|
| 57 | return r;
|
---|
[2] | 58 | }
|
---|
| 59 |
|
---|
| 60 | Py_complex
|
---|
| 61 | c_prod(Py_complex a, Py_complex b)
|
---|
| 62 | {
|
---|
[391] | 63 | Py_complex r;
|
---|
| 64 | r.real = a.real*b.real - a.imag*b.imag;
|
---|
| 65 | r.imag = a.real*b.imag + a.imag*b.real;
|
---|
| 66 | return r;
|
---|
[2] | 67 | }
|
---|
| 68 |
|
---|
| 69 | Py_complex
|
---|
| 70 | c_quot(Py_complex a, Py_complex b)
|
---|
| 71 | {
|
---|
[391] | 72 | /******************************************************************
|
---|
| 73 | This was the original algorithm. It's grossly prone to spurious
|
---|
| 74 | overflow and underflow errors. It also merrily divides by 0 despite
|
---|
| 75 | checking for that(!). The code still serves a doc purpose here, as
|
---|
| 76 | the algorithm following is a simple by-cases transformation of this
|
---|
| 77 | one:
|
---|
[2] | 78 |
|
---|
[391] | 79 | Py_complex r;
|
---|
| 80 | double d = b.real*b.real + b.imag*b.imag;
|
---|
| 81 | if (d == 0.)
|
---|
| 82 | errno = EDOM;
|
---|
| 83 | r.real = (a.real*b.real + a.imag*b.imag)/d;
|
---|
| 84 | r.imag = (a.imag*b.real - a.real*b.imag)/d;
|
---|
| 85 | return r;
|
---|
| 86 | ******************************************************************/
|
---|
[2] | 87 |
|
---|
[391] | 88 | /* This algorithm is better, and is pretty obvious: first divide the
|
---|
| 89 | * numerators and denominator by whichever of {b.real, b.imag} has
|
---|
| 90 | * larger magnitude. The earliest reference I found was to CACM
|
---|
| 91 | * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
|
---|
| 92 | * University). As usual, though, we're still ignoring all IEEE
|
---|
| 93 | * endcases.
|
---|
| 94 | */
|
---|
| 95 | Py_complex r; /* the result */
|
---|
| 96 | const double abs_breal = b.real < 0 ? -b.real : b.real;
|
---|
| 97 | const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
|
---|
[2] | 98 |
|
---|
[391] | 99 | if (abs_breal >= abs_bimag) {
|
---|
| 100 | /* divide tops and bottom by b.real */
|
---|
| 101 | if (abs_breal == 0.0) {
|
---|
| 102 | errno = EDOM;
|
---|
| 103 | r.real = r.imag = 0.0;
|
---|
| 104 | }
|
---|
| 105 | else {
|
---|
| 106 | const double ratio = b.imag / b.real;
|
---|
| 107 | const double denom = b.real + b.imag * ratio;
|
---|
| 108 | r.real = (a.real + a.imag * ratio) / denom;
|
---|
| 109 | r.imag = (a.imag - a.real * ratio) / denom;
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 | else {
|
---|
| 113 | /* divide tops and bottom by b.imag */
|
---|
| 114 | const double ratio = b.real / b.imag;
|
---|
| 115 | const double denom = b.real * ratio + b.imag;
|
---|
| 116 | assert(b.imag != 0.0);
|
---|
| 117 | r.real = (a.real * ratio + a.imag) / denom;
|
---|
| 118 | r.imag = (a.imag * ratio - a.real) / denom;
|
---|
| 119 | }
|
---|
| 120 | return r;
|
---|
[2] | 121 | }
|
---|
| 122 |
|
---|
| 123 | Py_complex
|
---|
| 124 | c_pow(Py_complex a, Py_complex b)
|
---|
| 125 | {
|
---|
[391] | 126 | Py_complex r;
|
---|
| 127 | double vabs,len,at,phase;
|
---|
| 128 | if (b.real == 0. && b.imag == 0.) {
|
---|
| 129 | r.real = 1.;
|
---|
| 130 | r.imag = 0.;
|
---|
| 131 | }
|
---|
| 132 | else if (a.real == 0. && a.imag == 0.) {
|
---|
| 133 | if (b.imag != 0. || b.real < 0.)
|
---|
| 134 | errno = EDOM;
|
---|
| 135 | r.real = 0.;
|
---|
| 136 | r.imag = 0.;
|
---|
| 137 | }
|
---|
| 138 | else {
|
---|
| 139 | vabs = hypot(a.real,a.imag);
|
---|
| 140 | len = pow(vabs,b.real);
|
---|
| 141 | at = atan2(a.imag, a.real);
|
---|
| 142 | phase = at*b.real;
|
---|
| 143 | if (b.imag != 0.0) {
|
---|
| 144 | len /= exp(at*b.imag);
|
---|
| 145 | phase += b.imag*log(vabs);
|
---|
| 146 | }
|
---|
| 147 | r.real = len*cos(phase);
|
---|
| 148 | r.imag = len*sin(phase);
|
---|
| 149 | }
|
---|
| 150 | return r;
|
---|
[2] | 151 | }
|
---|
| 152 |
|
---|
| 153 | static Py_complex
|
---|
| 154 | c_powu(Py_complex x, long n)
|
---|
| 155 | {
|
---|
[391] | 156 | Py_complex r, p;
|
---|
| 157 | long mask = 1;
|
---|
| 158 | r = c_1;
|
---|
| 159 | p = x;
|
---|
| 160 | while (mask > 0 && n >= mask) {
|
---|
| 161 | if (n & mask)
|
---|
| 162 | r = c_prod(r,p);
|
---|
| 163 | mask <<= 1;
|
---|
| 164 | p = c_prod(p,p);
|
---|
| 165 | }
|
---|
| 166 | return r;
|
---|
[2] | 167 | }
|
---|
| 168 |
|
---|
| 169 | static Py_complex
|
---|
| 170 | c_powi(Py_complex x, long n)
|
---|
| 171 | {
|
---|
[391] | 172 | Py_complex cn;
|
---|
[2] | 173 |
|
---|
[391] | 174 | if (n > 100 || n < -100) {
|
---|
| 175 | cn.real = (double) n;
|
---|
| 176 | cn.imag = 0.;
|
---|
| 177 | return c_pow(x,cn);
|
---|
| 178 | }
|
---|
| 179 | else if (n > 0)
|
---|
| 180 | return c_powu(x,n);
|
---|
| 181 | else
|
---|
| 182 | return c_quot(c_1,c_powu(x,-n));
|
---|
[2] | 183 |
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | double
|
---|
| 187 | c_abs(Py_complex z)
|
---|
| 188 | {
|
---|
[391] | 189 | /* sets errno = ERANGE on overflow; otherwise errno = 0 */
|
---|
| 190 | double result;
|
---|
[2] | 191 |
|
---|
[391] | 192 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
| 193 | /* C99 rules: if either the real or the imaginary part is an
|
---|
| 194 | infinity, return infinity, even if the other part is a
|
---|
| 195 | NaN. */
|
---|
| 196 | if (Py_IS_INFINITY(z.real)) {
|
---|
| 197 | result = fabs(z.real);
|
---|
| 198 | errno = 0;
|
---|
| 199 | return result;
|
---|
| 200 | }
|
---|
| 201 | if (Py_IS_INFINITY(z.imag)) {
|
---|
| 202 | result = fabs(z.imag);
|
---|
| 203 | errno = 0;
|
---|
| 204 | return result;
|
---|
| 205 | }
|
---|
| 206 | /* either the real or imaginary part is a NaN,
|
---|
| 207 | and neither is infinite. Result should be NaN. */
|
---|
| 208 | return Py_NAN;
|
---|
| 209 | }
|
---|
| 210 | result = hypot(z.real, z.imag);
|
---|
| 211 | if (!Py_IS_FINITE(result))
|
---|
| 212 | errno = ERANGE;
|
---|
| 213 | else
|
---|
| 214 | errno = 0;
|
---|
| 215 | return result;
|
---|
[2] | 216 | }
|
---|
| 217 |
|
---|
| 218 | static PyObject *
|
---|
| 219 | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
|
---|
| 220 | {
|
---|
[391] | 221 | PyObject *op;
|
---|
[2] | 222 |
|
---|
[391] | 223 | op = type->tp_alloc(type, 0);
|
---|
| 224 | if (op != NULL)
|
---|
| 225 | ((PyComplexObject *)op)->cval = cval;
|
---|
| 226 | return op;
|
---|
[2] | 227 | }
|
---|
| 228 |
|
---|
| 229 | PyObject *
|
---|
| 230 | PyComplex_FromCComplex(Py_complex cval)
|
---|
| 231 | {
|
---|
[391] | 232 | register PyComplexObject *op;
|
---|
[2] | 233 |
|
---|
[391] | 234 | /* Inline PyObject_New */
|
---|
| 235 | op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
|
---|
| 236 | if (op == NULL)
|
---|
| 237 | return PyErr_NoMemory();
|
---|
| 238 | PyObject_INIT(op, &PyComplex_Type);
|
---|
| 239 | op->cval = cval;
|
---|
| 240 | return (PyObject *) op;
|
---|
[2] | 241 | }
|
---|
| 242 |
|
---|
| 243 | static PyObject *
|
---|
| 244 | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
|
---|
| 245 | {
|
---|
[391] | 246 | Py_complex c;
|
---|
| 247 | c.real = real;
|
---|
| 248 | c.imag = imag;
|
---|
| 249 | return complex_subtype_from_c_complex(type, c);
|
---|
[2] | 250 | }
|
---|
| 251 |
|
---|
| 252 | PyObject *
|
---|
| 253 | PyComplex_FromDoubles(double real, double imag)
|
---|
| 254 | {
|
---|
[391] | 255 | Py_complex c;
|
---|
| 256 | c.real = real;
|
---|
| 257 | c.imag = imag;
|
---|
| 258 | return PyComplex_FromCComplex(c);
|
---|
[2] | 259 | }
|
---|
| 260 |
|
---|
| 261 | double
|
---|
| 262 | PyComplex_RealAsDouble(PyObject *op)
|
---|
| 263 | {
|
---|
[391] | 264 | if (PyComplex_Check(op)) {
|
---|
| 265 | return ((PyComplexObject *)op)->cval.real;
|
---|
| 266 | }
|
---|
| 267 | else {
|
---|
| 268 | return PyFloat_AsDouble(op);
|
---|
| 269 | }
|
---|
[2] | 270 | }
|
---|
| 271 |
|
---|
| 272 | double
|
---|
| 273 | PyComplex_ImagAsDouble(PyObject *op)
|
---|
| 274 | {
|
---|
[391] | 275 | if (PyComplex_Check(op)) {
|
---|
| 276 | return ((PyComplexObject *)op)->cval.imag;
|
---|
| 277 | }
|
---|
| 278 | else {
|
---|
| 279 | return 0.0;
|
---|
| 280 | }
|
---|
[2] | 281 | }
|
---|
| 282 |
|
---|
[391] | 283 | static PyObject *
|
---|
| 284 | try_complex_special_method(PyObject *op) {
|
---|
| 285 | PyObject *f;
|
---|
| 286 | static PyObject *complexstr;
|
---|
| 287 |
|
---|
| 288 | if (complexstr == NULL) {
|
---|
| 289 | complexstr = PyString_InternFromString("__complex__");
|
---|
| 290 | if (complexstr == NULL)
|
---|
| 291 | return NULL;
|
---|
| 292 | }
|
---|
| 293 | if (PyInstance_Check(op)) {
|
---|
| 294 | f = PyObject_GetAttr(op, complexstr);
|
---|
| 295 | if (f == NULL) {
|
---|
| 296 | if (PyErr_ExceptionMatches(PyExc_AttributeError))
|
---|
| 297 | PyErr_Clear();
|
---|
| 298 | else
|
---|
| 299 | return NULL;
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 | else {
|
---|
| 303 | f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
|
---|
| 304 | if (f == NULL && PyErr_Occurred())
|
---|
| 305 | return NULL;
|
---|
| 306 | }
|
---|
| 307 | if (f != NULL) {
|
---|
| 308 | PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
|
---|
| 309 | Py_DECREF(f);
|
---|
| 310 | return res;
|
---|
| 311 | }
|
---|
| 312 | return NULL;
|
---|
| 313 | }
|
---|
| 314 |
|
---|
[2] | 315 | Py_complex
|
---|
| 316 | PyComplex_AsCComplex(PyObject *op)
|
---|
| 317 | {
|
---|
[391] | 318 | Py_complex cv;
|
---|
| 319 | PyObject *newop = NULL;
|
---|
[2] | 320 |
|
---|
[391] | 321 | assert(op);
|
---|
| 322 | /* If op is already of type PyComplex_Type, return its value */
|
---|
| 323 | if (PyComplex_Check(op)) {
|
---|
| 324 | return ((PyComplexObject *)op)->cval;
|
---|
| 325 | }
|
---|
| 326 | /* If not, use op's __complex__ method, if it exists */
|
---|
[2] | 327 |
|
---|
[391] | 328 | /* return -1 on failure */
|
---|
| 329 | cv.real = -1.;
|
---|
| 330 | cv.imag = 0.;
|
---|
[2] | 331 |
|
---|
[391] | 332 | newop = try_complex_special_method(op);
|
---|
[2] | 333 |
|
---|
[391] | 334 | if (newop) {
|
---|
| 335 | if (!PyComplex_Check(newop)) {
|
---|
| 336 | PyErr_SetString(PyExc_TypeError,
|
---|
| 337 | "__complex__ should return a complex object");
|
---|
| 338 | Py_DECREF(newop);
|
---|
| 339 | return cv;
|
---|
| 340 | }
|
---|
| 341 | cv = ((PyComplexObject *)newop)->cval;
|
---|
| 342 | Py_DECREF(newop);
|
---|
| 343 | return cv;
|
---|
| 344 | }
|
---|
| 345 | else if (PyErr_Occurred()) {
|
---|
| 346 | return cv;
|
---|
| 347 | }
|
---|
| 348 | /* If neither of the above works, interpret op as a float giving the
|
---|
| 349 | real part of the result, and fill in the imaginary part as 0. */
|
---|
| 350 | else {
|
---|
| 351 | /* PyFloat_AsDouble will return -1 on failure */
|
---|
| 352 | cv.real = PyFloat_AsDouble(op);
|
---|
| 353 | return cv;
|
---|
| 354 | }
|
---|
[2] | 355 | }
|
---|
| 356 |
|
---|
| 357 | static void
|
---|
| 358 | complex_dealloc(PyObject *op)
|
---|
| 359 | {
|
---|
[391] | 360 | op->ob_type->tp_free(op);
|
---|
[2] | 361 | }
|
---|
| 362 |
|
---|
| 363 |
|
---|
[391] | 364 | static PyObject *
|
---|
| 365 | complex_format(PyComplexObject *v, int precision, char format_code)
|
---|
[2] | 366 | {
|
---|
[391] | 367 | PyObject *result = NULL;
|
---|
| 368 | Py_ssize_t len;
|
---|
| 369 |
|
---|
| 370 | /* If these are non-NULL, they'll need to be freed. */
|
---|
| 371 | char *pre = NULL;
|
---|
| 372 | char *im = NULL;
|
---|
| 373 | char *buf = NULL;
|
---|
| 374 |
|
---|
| 375 | /* These do not need to be freed. re is either an alias
|
---|
| 376 | for pre or a pointer to a constant. lead and tail
|
---|
| 377 | are pointers to constants. */
|
---|
| 378 | char *re = NULL;
|
---|
| 379 | char *lead = "";
|
---|
| 380 | char *tail = "";
|
---|
| 381 |
|
---|
| 382 | if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
|
---|
| 383 | re = "";
|
---|
| 384 | im = PyOS_double_to_string(v->cval.imag, format_code,
|
---|
| 385 | precision, 0, NULL);
|
---|
| 386 | if (!im) {
|
---|
| 387 | PyErr_NoMemory();
|
---|
| 388 | goto done;
|
---|
| 389 | }
|
---|
| 390 | } else {
|
---|
| 391 | /* Format imaginary part with sign, real part without */
|
---|
| 392 | pre = PyOS_double_to_string(v->cval.real, format_code,
|
---|
| 393 | precision, 0, NULL);
|
---|
| 394 | if (!pre) {
|
---|
| 395 | PyErr_NoMemory();
|
---|
| 396 | goto done;
|
---|
| 397 | }
|
---|
| 398 | re = pre;
|
---|
| 399 |
|
---|
| 400 | im = PyOS_double_to_string(v->cval.imag, format_code,
|
---|
| 401 | precision, Py_DTSF_SIGN, NULL);
|
---|
| 402 | if (!im) {
|
---|
| 403 | PyErr_NoMemory();
|
---|
| 404 | goto done;
|
---|
| 405 | }
|
---|
| 406 | lead = "(";
|
---|
| 407 | tail = ")";
|
---|
| 408 | }
|
---|
| 409 | /* Alloc the final buffer. Add one for the "j" in the format string,
|
---|
| 410 | and one for the trailing zero. */
|
---|
| 411 | len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
|
---|
| 412 | buf = PyMem_Malloc(len);
|
---|
| 413 | if (!buf) {
|
---|
| 414 | PyErr_NoMemory();
|
---|
| 415 | goto done;
|
---|
| 416 | }
|
---|
| 417 | PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
|
---|
| 418 | result = PyString_FromString(buf);
|
---|
| 419 | done:
|
---|
| 420 | PyMem_Free(im);
|
---|
| 421 | PyMem_Free(pre);
|
---|
| 422 | PyMem_Free(buf);
|
---|
| 423 |
|
---|
| 424 | return result;
|
---|
[2] | 425 | }
|
---|
| 426 |
|
---|
| 427 | static int
|
---|
| 428 | complex_print(PyComplexObject *v, FILE *fp, int flags)
|
---|
| 429 | {
|
---|
[391] | 430 | PyObject *formatv;
|
---|
| 431 | char *buf;
|
---|
| 432 | if (flags & Py_PRINT_RAW)
|
---|
| 433 | formatv = complex_format(v, PyFloat_STR_PRECISION, 'g');
|
---|
| 434 | else
|
---|
| 435 | formatv = complex_format(v, 0, 'r');
|
---|
| 436 | if (formatv == NULL)
|
---|
| 437 | return -1;
|
---|
| 438 | buf = PyString_AS_STRING(formatv);
|
---|
| 439 | Py_BEGIN_ALLOW_THREADS
|
---|
| 440 | fputs(buf, fp);
|
---|
| 441 | Py_END_ALLOW_THREADS
|
---|
| 442 | Py_DECREF(formatv);
|
---|
| 443 | return 0;
|
---|
[2] | 444 | }
|
---|
| 445 |
|
---|
| 446 | static PyObject *
|
---|
| 447 | complex_repr(PyComplexObject *v)
|
---|
| 448 | {
|
---|
[391] | 449 | return complex_format(v, 0, 'r');
|
---|
[2] | 450 | }
|
---|
| 451 |
|
---|
| 452 | static PyObject *
|
---|
| 453 | complex_str(PyComplexObject *v)
|
---|
| 454 | {
|
---|
[391] | 455 | return complex_format(v, PyFloat_STR_PRECISION, 'g');
|
---|
[2] | 456 | }
|
---|
| 457 |
|
---|
| 458 | static long
|
---|
| 459 | complex_hash(PyComplexObject *v)
|
---|
| 460 | {
|
---|
[391] | 461 | long hashreal, hashimag, combined;
|
---|
| 462 | hashreal = _Py_HashDouble(v->cval.real);
|
---|
| 463 | if (hashreal == -1)
|
---|
| 464 | return -1;
|
---|
| 465 | hashimag = _Py_HashDouble(v->cval.imag);
|
---|
| 466 | if (hashimag == -1)
|
---|
| 467 | return -1;
|
---|
| 468 | /* Note: if the imaginary part is 0, hashimag is 0 now,
|
---|
| 469 | * so the following returns hashreal unchanged. This is
|
---|
| 470 | * important because numbers of different types that
|
---|
| 471 | * compare equal must have the same hash value, so that
|
---|
| 472 | * hash(x + 0*j) must equal hash(x).
|
---|
| 473 | */
|
---|
| 474 | combined = hashreal + 1000003 * hashimag;
|
---|
| 475 | if (combined == -1)
|
---|
| 476 | combined = -2;
|
---|
| 477 | return combined;
|
---|
[2] | 478 | }
|
---|
| 479 |
|
---|
| 480 | /* This macro may return! */
|
---|
| 481 | #define TO_COMPLEX(obj, c) \
|
---|
[391] | 482 | if (PyComplex_Check(obj)) \
|
---|
| 483 | c = ((PyComplexObject *)(obj))->cval; \
|
---|
| 484 | else if (to_complex(&(obj), &(c)) < 0) \
|
---|
| 485 | return (obj)
|
---|
[2] | 486 |
|
---|
| 487 | static int
|
---|
| 488 | to_complex(PyObject **pobj, Py_complex *pc)
|
---|
| 489 | {
|
---|
| 490 | PyObject *obj = *pobj;
|
---|
| 491 |
|
---|
| 492 | pc->real = pc->imag = 0.0;
|
---|
| 493 | if (PyInt_Check(obj)) {
|
---|
[391] | 494 | pc->real = PyInt_AS_LONG(obj);
|
---|
| 495 | return 0;
|
---|
[2] | 496 | }
|
---|
| 497 | if (PyLong_Check(obj)) {
|
---|
[391] | 498 | pc->real = PyLong_AsDouble(obj);
|
---|
| 499 | if (pc->real == -1.0 && PyErr_Occurred()) {
|
---|
| 500 | *pobj = NULL;
|
---|
| 501 | return -1;
|
---|
[2] | 502 | }
|
---|
[391] | 503 | return 0;
|
---|
| 504 | }
|
---|
[2] | 505 | if (PyFloat_Check(obj)) {
|
---|
[391] | 506 | pc->real = PyFloat_AsDouble(obj);
|
---|
| 507 | return 0;
|
---|
[2] | 508 | }
|
---|
| 509 | Py_INCREF(Py_NotImplemented);
|
---|
| 510 | *pobj = Py_NotImplemented;
|
---|
| 511 | return -1;
|
---|
| 512 | }
|
---|
| 513 |
|
---|
[391] | 514 |
|
---|
[2] | 515 | static PyObject *
|
---|
[391] | 516 | complex_add(PyObject *v, PyObject *w)
|
---|
[2] | 517 | {
|
---|
[391] | 518 | Py_complex result;
|
---|
| 519 | Py_complex a, b;
|
---|
| 520 | TO_COMPLEX(v, a);
|
---|
| 521 | TO_COMPLEX(w, b);
|
---|
| 522 | PyFPE_START_PROTECT("complex_add", return 0)
|
---|
| 523 | result = c_sum(a, b);
|
---|
| 524 | PyFPE_END_PROTECT(result)
|
---|
| 525 | return PyComplex_FromCComplex(result);
|
---|
[2] | 526 | }
|
---|
| 527 |
|
---|
| 528 | static PyObject *
|
---|
[391] | 529 | complex_sub(PyObject *v, PyObject *w)
|
---|
[2] | 530 | {
|
---|
[391] | 531 | Py_complex result;
|
---|
| 532 | Py_complex a, b;
|
---|
| 533 | TO_COMPLEX(v, a);
|
---|
| 534 | TO_COMPLEX(w, b);;
|
---|
| 535 | PyFPE_START_PROTECT("complex_sub", return 0)
|
---|
| 536 | result = c_diff(a, b);
|
---|
| 537 | PyFPE_END_PROTECT(result)
|
---|
| 538 | return PyComplex_FromCComplex(result);
|
---|
[2] | 539 | }
|
---|
| 540 |
|
---|
| 541 | static PyObject *
|
---|
[391] | 542 | complex_mul(PyObject *v, PyObject *w)
|
---|
[2] | 543 | {
|
---|
[391] | 544 | Py_complex result;
|
---|
| 545 | Py_complex a, b;
|
---|
| 546 | TO_COMPLEX(v, a);
|
---|
| 547 | TO_COMPLEX(w, b);
|
---|
| 548 | PyFPE_START_PROTECT("complex_mul", return 0)
|
---|
| 549 | result = c_prod(a, b);
|
---|
| 550 | PyFPE_END_PROTECT(result)
|
---|
| 551 | return PyComplex_FromCComplex(result);
|
---|
[2] | 552 | }
|
---|
| 553 |
|
---|
| 554 | static PyObject *
|
---|
[391] | 555 | complex_div(PyObject *v, PyObject *w)
|
---|
[2] | 556 | {
|
---|
[391] | 557 | Py_complex quot;
|
---|
| 558 | Py_complex a, b;
|
---|
| 559 | TO_COMPLEX(v, a);
|
---|
| 560 | TO_COMPLEX(w, b);
|
---|
| 561 | PyFPE_START_PROTECT("complex_div", return 0)
|
---|
| 562 | errno = 0;
|
---|
| 563 | quot = c_quot(a, b);
|
---|
| 564 | PyFPE_END_PROTECT(quot)
|
---|
| 565 | if (errno == EDOM) {
|
---|
| 566 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
|
---|
| 567 | return NULL;
|
---|
| 568 | }
|
---|
| 569 | return PyComplex_FromCComplex(quot);
|
---|
[2] | 570 | }
|
---|
| 571 |
|
---|
| 572 | static PyObject *
|
---|
[391] | 573 | complex_classic_div(PyObject *v, PyObject *w)
|
---|
[2] | 574 | {
|
---|
[391] | 575 | Py_complex quot;
|
---|
| 576 | Py_complex a, b;
|
---|
| 577 | TO_COMPLEX(v, a);
|
---|
| 578 | TO_COMPLEX(w, b);
|
---|
| 579 | if (Py_DivisionWarningFlag >= 2 &&
|
---|
| 580 | PyErr_Warn(PyExc_DeprecationWarning,
|
---|
| 581 | "classic complex division") < 0)
|
---|
| 582 | return NULL;
|
---|
[2] | 583 |
|
---|
[391] | 584 | PyFPE_START_PROTECT("complex_classic_div", return 0)
|
---|
| 585 | errno = 0;
|
---|
| 586 | quot = c_quot(a, b);
|
---|
| 587 | PyFPE_END_PROTECT(quot)
|
---|
| 588 | if (errno == EDOM) {
|
---|
| 589 | PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
|
---|
| 590 | return NULL;
|
---|
| 591 | }
|
---|
| 592 | return PyComplex_FromCComplex(quot);
|
---|
[2] | 593 | }
|
---|
| 594 |
|
---|
| 595 | static PyObject *
|
---|
[391] | 596 | complex_remainder(PyObject *v, PyObject *w)
|
---|
[2] | 597 | {
|
---|
[391] | 598 | Py_complex div, mod;
|
---|
| 599 | Py_complex a, b;
|
---|
| 600 | TO_COMPLEX(v, a);
|
---|
| 601 | TO_COMPLEX(w, b);
|
---|
| 602 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
| 603 | "complex divmod(), // and % are deprecated") < 0)
|
---|
| 604 | return NULL;
|
---|
[2] | 605 |
|
---|
[391] | 606 | errno = 0;
|
---|
| 607 | div = c_quot(a, b); /* The raw divisor value. */
|
---|
| 608 | if (errno == EDOM) {
|
---|
| 609 | PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
|
---|
| 610 | return NULL;
|
---|
| 611 | }
|
---|
| 612 | div.real = floor(div.real); /* Use the floor of the real part. */
|
---|
| 613 | div.imag = 0.0;
|
---|
| 614 | mod = c_diff(a, c_prod(b, div));
|
---|
[2] | 615 |
|
---|
[391] | 616 | return PyComplex_FromCComplex(mod);
|
---|
[2] | 617 | }
|
---|
| 618 |
|
---|
| 619 |
|
---|
| 620 | static PyObject *
|
---|
[391] | 621 | complex_divmod(PyObject *v, PyObject *w)
|
---|
[2] | 622 | {
|
---|
[391] | 623 | Py_complex div, mod;
|
---|
| 624 | PyObject *d, *m, *z;
|
---|
| 625 | Py_complex a, b;
|
---|
| 626 | TO_COMPLEX(v, a);
|
---|
| 627 | TO_COMPLEX(w, b);
|
---|
| 628 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
| 629 | "complex divmod(), // and % are deprecated") < 0)
|
---|
| 630 | return NULL;
|
---|
[2] | 631 |
|
---|
[391] | 632 | errno = 0;
|
---|
| 633 | div = c_quot(a, b); /* The raw divisor value. */
|
---|
| 634 | if (errno == EDOM) {
|
---|
| 635 | PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
|
---|
| 636 | return NULL;
|
---|
| 637 | }
|
---|
| 638 | div.real = floor(div.real); /* Use the floor of the real part. */
|
---|
| 639 | div.imag = 0.0;
|
---|
| 640 | mod = c_diff(a, c_prod(b, div));
|
---|
| 641 | d = PyComplex_FromCComplex(div);
|
---|
| 642 | m = PyComplex_FromCComplex(mod);
|
---|
| 643 | z = PyTuple_Pack(2, d, m);
|
---|
| 644 | Py_XDECREF(d);
|
---|
| 645 | Py_XDECREF(m);
|
---|
| 646 | return z;
|
---|
[2] | 647 | }
|
---|
| 648 |
|
---|
| 649 | static PyObject *
|
---|
| 650 | complex_pow(PyObject *v, PyObject *w, PyObject *z)
|
---|
| 651 | {
|
---|
[391] | 652 | Py_complex p;
|
---|
| 653 | Py_complex exponent;
|
---|
| 654 | long int_exponent;
|
---|
| 655 | Py_complex a, b;
|
---|
| 656 | TO_COMPLEX(v, a);
|
---|
| 657 | TO_COMPLEX(w, b);
|
---|
| 658 | if (z!=Py_None) {
|
---|
| 659 | PyErr_SetString(PyExc_ValueError, "complex modulo");
|
---|
| 660 | return NULL;
|
---|
| 661 | }
|
---|
| 662 | PyFPE_START_PROTECT("complex_pow", return 0)
|
---|
| 663 | errno = 0;
|
---|
| 664 | exponent = b;
|
---|
| 665 | int_exponent = (long)exponent.real;
|
---|
| 666 | if (exponent.imag == 0. && exponent.real == int_exponent)
|
---|
| 667 | p = c_powi(a,int_exponent);
|
---|
| 668 | else
|
---|
| 669 | p = c_pow(a,exponent);
|
---|
[2] | 670 |
|
---|
[391] | 671 | PyFPE_END_PROTECT(p)
|
---|
| 672 | Py_ADJUST_ERANGE2(p.real, p.imag);
|
---|
| 673 | if (errno == EDOM) {
|
---|
| 674 | PyErr_SetString(PyExc_ZeroDivisionError,
|
---|
| 675 | "0.0 to a negative or complex power");
|
---|
| 676 | return NULL;
|
---|
| 677 | }
|
---|
| 678 | else if (errno == ERANGE) {
|
---|
| 679 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 680 | "complex exponentiation");
|
---|
| 681 | return NULL;
|
---|
| 682 | }
|
---|
| 683 | return PyComplex_FromCComplex(p);
|
---|
[2] | 684 | }
|
---|
| 685 |
|
---|
| 686 | static PyObject *
|
---|
[391] | 687 | complex_int_div(PyObject *v, PyObject *w)
|
---|
[2] | 688 | {
|
---|
[391] | 689 | PyObject *t, *r;
|
---|
| 690 | Py_complex a, b;
|
---|
| 691 | TO_COMPLEX(v, a);
|
---|
| 692 | TO_COMPLEX(w, b);
|
---|
| 693 | if (PyErr_Warn(PyExc_DeprecationWarning,
|
---|
| 694 | "complex divmod(), // and % are deprecated") < 0)
|
---|
| 695 | return NULL;
|
---|
[2] | 696 |
|
---|
[391] | 697 | t = complex_divmod(v, w);
|
---|
| 698 | if (t != NULL) {
|
---|
| 699 | r = PyTuple_GET_ITEM(t, 0);
|
---|
| 700 | Py_INCREF(r);
|
---|
| 701 | Py_DECREF(t);
|
---|
| 702 | return r;
|
---|
| 703 | }
|
---|
| 704 | return NULL;
|
---|
[2] | 705 | }
|
---|
| 706 |
|
---|
| 707 | static PyObject *
|
---|
| 708 | complex_neg(PyComplexObject *v)
|
---|
| 709 | {
|
---|
[391] | 710 | Py_complex neg;
|
---|
| 711 | neg.real = -v->cval.real;
|
---|
| 712 | neg.imag = -v->cval.imag;
|
---|
| 713 | return PyComplex_FromCComplex(neg);
|
---|
[2] | 714 | }
|
---|
| 715 |
|
---|
| 716 | static PyObject *
|
---|
| 717 | complex_pos(PyComplexObject *v)
|
---|
| 718 | {
|
---|
[391] | 719 | if (PyComplex_CheckExact(v)) {
|
---|
| 720 | Py_INCREF(v);
|
---|
| 721 | return (PyObject *)v;
|
---|
| 722 | }
|
---|
| 723 | else
|
---|
| 724 | return PyComplex_FromCComplex(v->cval);
|
---|
[2] | 725 | }
|
---|
| 726 |
|
---|
| 727 | static PyObject *
|
---|
| 728 | complex_abs(PyComplexObject *v)
|
---|
| 729 | {
|
---|
[391] | 730 | double result;
|
---|
[2] | 731 |
|
---|
[391] | 732 | PyFPE_START_PROTECT("complex_abs", return 0)
|
---|
| 733 | result = c_abs(v->cval);
|
---|
| 734 | PyFPE_END_PROTECT(result)
|
---|
[2] | 735 |
|
---|
[391] | 736 | if (errno == ERANGE) {
|
---|
| 737 | PyErr_SetString(PyExc_OverflowError,
|
---|
| 738 | "absolute value too large");
|
---|
| 739 | return NULL;
|
---|
| 740 | }
|
---|
| 741 | return PyFloat_FromDouble(result);
|
---|
[2] | 742 | }
|
---|
| 743 |
|
---|
| 744 | static int
|
---|
| 745 | complex_nonzero(PyComplexObject *v)
|
---|
| 746 | {
|
---|
[391] | 747 | return v->cval.real != 0.0 || v->cval.imag != 0.0;
|
---|
[2] | 748 | }
|
---|
| 749 |
|
---|
| 750 | static int
|
---|
| 751 | complex_coerce(PyObject **pv, PyObject **pw)
|
---|
| 752 | {
|
---|
[391] | 753 | Py_complex cval;
|
---|
| 754 | cval.imag = 0.;
|
---|
| 755 | if (PyInt_Check(*pw)) {
|
---|
| 756 | cval.real = (double)PyInt_AsLong(*pw);
|
---|
| 757 | *pw = PyComplex_FromCComplex(cval);
|
---|
| 758 | Py_INCREF(*pv);
|
---|
| 759 | return 0;
|
---|
| 760 | }
|
---|
| 761 | else if (PyLong_Check(*pw)) {
|
---|
| 762 | cval.real = PyLong_AsDouble(*pw);
|
---|
| 763 | if (cval.real == -1.0 && PyErr_Occurred())
|
---|
| 764 | return -1;
|
---|
| 765 | *pw = PyComplex_FromCComplex(cval);
|
---|
| 766 | Py_INCREF(*pv);
|
---|
| 767 | return 0;
|
---|
| 768 | }
|
---|
| 769 | else if (PyFloat_Check(*pw)) {
|
---|
| 770 | cval.real = PyFloat_AsDouble(*pw);
|
---|
| 771 | *pw = PyComplex_FromCComplex(cval);
|
---|
| 772 | Py_INCREF(*pv);
|
---|
| 773 | return 0;
|
---|
| 774 | }
|
---|
| 775 | else if (PyComplex_Check(*pw)) {
|
---|
| 776 | Py_INCREF(*pv);
|
---|
| 777 | Py_INCREF(*pw);
|
---|
| 778 | return 0;
|
---|
| 779 | }
|
---|
| 780 | return 1; /* Can't do it */
|
---|
[2] | 781 | }
|
---|
| 782 |
|
---|
| 783 | static PyObject *
|
---|
| 784 | complex_richcompare(PyObject *v, PyObject *w, int op)
|
---|
| 785 | {
|
---|
[391] | 786 | PyObject *res;
|
---|
| 787 | Py_complex i;
|
---|
| 788 | int equal;
|
---|
[2] | 789 |
|
---|
[391] | 790 | if (op != Py_EQ && op != Py_NE) {
|
---|
| 791 | /* for backwards compatibility, comparisons with non-numbers return
|
---|
| 792 | * NotImplemented. Only comparisons with core numeric types raise
|
---|
| 793 | * TypeError.
|
---|
| 794 | */
|
---|
| 795 | if (PyInt_Check(w) || PyLong_Check(w) ||
|
---|
| 796 | PyFloat_Check(w) || PyComplex_Check(w)) {
|
---|
| 797 | PyErr_SetString(PyExc_TypeError,
|
---|
| 798 | "no ordering relation is defined "
|
---|
| 799 | "for complex numbers");
|
---|
| 800 | return NULL;
|
---|
| 801 | }
|
---|
| 802 | goto Unimplemented;
|
---|
| 803 | }
|
---|
[2] | 804 |
|
---|
[391] | 805 | assert(PyComplex_Check(v));
|
---|
| 806 | TO_COMPLEX(v, i);
|
---|
[2] | 807 |
|
---|
[391] | 808 | if (PyInt_Check(w) || PyLong_Check(w)) {
|
---|
| 809 | /* Check for 0.0 imaginary part first to avoid the rich
|
---|
| 810 | * comparison when possible.
|
---|
| 811 | */
|
---|
| 812 | if (i.imag == 0.0) {
|
---|
| 813 | PyObject *j, *sub_res;
|
---|
| 814 | j = PyFloat_FromDouble(i.real);
|
---|
| 815 | if (j == NULL)
|
---|
| 816 | return NULL;
|
---|
[2] | 817 |
|
---|
[391] | 818 | sub_res = PyObject_RichCompare(j, w, op);
|
---|
| 819 | Py_DECREF(j);
|
---|
| 820 | return sub_res;
|
---|
| 821 | }
|
---|
| 822 | else {
|
---|
| 823 | equal = 0;
|
---|
| 824 | }
|
---|
| 825 | }
|
---|
| 826 | else if (PyFloat_Check(w)) {
|
---|
| 827 | equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
|
---|
| 828 | }
|
---|
| 829 | else if (PyComplex_Check(w)) {
|
---|
| 830 | Py_complex j;
|
---|
[2] | 831 |
|
---|
[391] | 832 | TO_COMPLEX(w, j);
|
---|
| 833 | equal = (i.real == j.real && i.imag == j.imag);
|
---|
| 834 | }
|
---|
| 835 | else {
|
---|
| 836 | goto Unimplemented;
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | if (equal == (op == Py_EQ))
|
---|
| 840 | res = Py_True;
|
---|
| 841 | else
|
---|
| 842 | res = Py_False;
|
---|
| 843 |
|
---|
| 844 | Py_INCREF(res);
|
---|
| 845 | return res;
|
---|
| 846 |
|
---|
| 847 | Unimplemented:
|
---|
| 848 | Py_INCREF(Py_NotImplemented);
|
---|
| 849 | return Py_NotImplemented;
|
---|
[2] | 850 | }
|
---|
| 851 |
|
---|
| 852 | static PyObject *
|
---|
| 853 | complex_int(PyObject *v)
|
---|
| 854 | {
|
---|
[391] | 855 | PyErr_SetString(PyExc_TypeError,
|
---|
| 856 | "can't convert complex to int");
|
---|
| 857 | return NULL;
|
---|
[2] | 858 | }
|
---|
| 859 |
|
---|
| 860 | static PyObject *
|
---|
| 861 | complex_long(PyObject *v)
|
---|
| 862 | {
|
---|
[391] | 863 | PyErr_SetString(PyExc_TypeError,
|
---|
| 864 | "can't convert complex to long");
|
---|
| 865 | return NULL;
|
---|
[2] | 866 | }
|
---|
| 867 |
|
---|
| 868 | static PyObject *
|
---|
| 869 | complex_float(PyObject *v)
|
---|
| 870 | {
|
---|
[391] | 871 | PyErr_SetString(PyExc_TypeError,
|
---|
| 872 | "can't convert complex to float");
|
---|
| 873 | return NULL;
|
---|
[2] | 874 | }
|
---|
| 875 |
|
---|
| 876 | static PyObject *
|
---|
| 877 | complex_conjugate(PyObject *self)
|
---|
| 878 | {
|
---|
[391] | 879 | Py_complex c;
|
---|
| 880 | c = ((PyComplexObject *)self)->cval;
|
---|
| 881 | c.imag = -c.imag;
|
---|
| 882 | return PyComplex_FromCComplex(c);
|
---|
[2] | 883 | }
|
---|
| 884 |
|
---|
| 885 | PyDoc_STRVAR(complex_conjugate_doc,
|
---|
| 886 | "complex.conjugate() -> complex\n"
|
---|
| 887 | "\n"
|
---|
[391] | 888 | "Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
|
---|
[2] | 889 |
|
---|
| 890 | static PyObject *
|
---|
| 891 | complex_getnewargs(PyComplexObject *v)
|
---|
| 892 | {
|
---|
[391] | 893 | Py_complex c = v->cval;
|
---|
| 894 | return Py_BuildValue("(dd)", c.real, c.imag);
|
---|
[2] | 895 | }
|
---|
| 896 |
|
---|
[391] | 897 | PyDoc_STRVAR(complex__format__doc,
|
---|
| 898 | "complex.__format__() -> str\n"
|
---|
| 899 | "\n"
|
---|
| 900 | "Convert to a string according to format_spec.");
|
---|
| 901 |
|
---|
| 902 | static PyObject *
|
---|
| 903 | complex__format__(PyObject* self, PyObject* args)
|
---|
| 904 | {
|
---|
| 905 | PyObject *format_spec;
|
---|
| 906 |
|
---|
| 907 | if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
|
---|
| 908 | return NULL;
|
---|
| 909 | if (PyBytes_Check(format_spec))
|
---|
| 910 | return _PyComplex_FormatAdvanced(self,
|
---|
| 911 | PyBytes_AS_STRING(format_spec),
|
---|
| 912 | PyBytes_GET_SIZE(format_spec));
|
---|
| 913 | if (PyUnicode_Check(format_spec)) {
|
---|
| 914 | /* Convert format_spec to a str */
|
---|
| 915 | PyObject *result;
|
---|
| 916 | PyObject *str_spec = PyObject_Str(format_spec);
|
---|
| 917 |
|
---|
| 918 | if (str_spec == NULL)
|
---|
| 919 | return NULL;
|
---|
| 920 |
|
---|
| 921 | result = _PyComplex_FormatAdvanced(self,
|
---|
| 922 | PyBytes_AS_STRING(str_spec),
|
---|
| 923 | PyBytes_GET_SIZE(str_spec));
|
---|
| 924 |
|
---|
| 925 | Py_DECREF(str_spec);
|
---|
| 926 | return result;
|
---|
| 927 | }
|
---|
| 928 | PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
|
---|
| 929 | return NULL;
|
---|
| 930 | }
|
---|
| 931 |
|
---|
[2] | 932 | #if 0
|
---|
| 933 | static PyObject *
|
---|
| 934 | complex_is_finite(PyObject *self)
|
---|
| 935 | {
|
---|
[391] | 936 | Py_complex c;
|
---|
| 937 | c = ((PyComplexObject *)self)->cval;
|
---|
| 938 | return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
|
---|
| 939 | Py_IS_FINITE(c.imag)));
|
---|
[2] | 940 | }
|
---|
| 941 |
|
---|
| 942 | PyDoc_STRVAR(complex_is_finite_doc,
|
---|
| 943 | "complex.is_finite() -> bool\n"
|
---|
| 944 | "\n"
|
---|
| 945 | "Returns True if the real and the imaginary part is finite.");
|
---|
| 946 | #endif
|
---|
| 947 |
|
---|
| 948 | static PyMethodDef complex_methods[] = {
|
---|
[391] | 949 | {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
|
---|
| 950 | complex_conjugate_doc},
|
---|
[2] | 951 | #if 0
|
---|
[391] | 952 | {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
|
---|
| 953 | complex_is_finite_doc},
|
---|
[2] | 954 | #endif
|
---|
[391] | 955 | {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
|
---|
| 956 | {"__format__", (PyCFunction)complex__format__,
|
---|
| 957 | METH_VARARGS, complex__format__doc},
|
---|
| 958 | {NULL, NULL} /* sentinel */
|
---|
[2] | 959 | };
|
---|
| 960 |
|
---|
| 961 | static PyMemberDef complex_members[] = {
|
---|
[391] | 962 | {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
|
---|
| 963 | "the real part of a complex number"},
|
---|
| 964 | {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
|
---|
| 965 | "the imaginary part of a complex number"},
|
---|
| 966 | {0},
|
---|
[2] | 967 | };
|
---|
| 968 |
|
---|
| 969 | static PyObject *
|
---|
| 970 | complex_subtype_from_string(PyTypeObject *type, PyObject *v)
|
---|
| 971 | {
|
---|
[391] | 972 | const char *s, *start;
|
---|
| 973 | char *end;
|
---|
| 974 | double x=0.0, y=0.0, z;
|
---|
| 975 | int got_bracket=0;
|
---|
[2] | 976 | #ifdef Py_USING_UNICODE
|
---|
[391] | 977 | char *s_buffer = NULL;
|
---|
[2] | 978 | #endif
|
---|
[391] | 979 | Py_ssize_t len;
|
---|
[2] | 980 |
|
---|
[391] | 981 | if (PyString_Check(v)) {
|
---|
| 982 | s = PyString_AS_STRING(v);
|
---|
| 983 | len = PyString_GET_SIZE(v);
|
---|
| 984 | }
|
---|
[2] | 985 | #ifdef Py_USING_UNICODE
|
---|
[391] | 986 | else if (PyUnicode_Check(v)) {
|
---|
| 987 | s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
|
---|
| 988 | if (s_buffer == NULL)
|
---|
| 989 | return PyErr_NoMemory();
|
---|
| 990 | if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
---|
| 991 | PyUnicode_GET_SIZE(v),
|
---|
| 992 | s_buffer,
|
---|
| 993 | NULL))
|
---|
| 994 | goto error;
|
---|
| 995 | s = s_buffer;
|
---|
| 996 | len = strlen(s);
|
---|
| 997 | }
|
---|
[2] | 998 | #endif
|
---|
[391] | 999 | else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
---|
| 1000 | PyErr_SetString(PyExc_TypeError,
|
---|
| 1001 | "complex() arg is not a string");
|
---|
| 1002 | return NULL;
|
---|
| 1003 | }
|
---|
[2] | 1004 |
|
---|
[391] | 1005 | /* position on first nonblank */
|
---|
| 1006 | start = s;
|
---|
| 1007 | while (Py_ISSPACE(*s))
|
---|
| 1008 | s++;
|
---|
| 1009 | if (*s == '(') {
|
---|
| 1010 | /* Skip over possible bracket from repr(). */
|
---|
| 1011 | got_bracket = 1;
|
---|
| 1012 | s++;
|
---|
| 1013 | while (Py_ISSPACE(*s))
|
---|
| 1014 | s++;
|
---|
| 1015 | }
|
---|
[2] | 1016 |
|
---|
[391] | 1017 | /* a valid complex string usually takes one of the three forms:
|
---|
[2] | 1018 |
|
---|
[391] | 1019 | <float> - real part only
|
---|
| 1020 | <float>j - imaginary part only
|
---|
| 1021 | <float><signed-float>j - real and imaginary parts
|
---|
[2] | 1022 |
|
---|
[391] | 1023 | where <float> represents any numeric string that's accepted by the
|
---|
| 1024 | float constructor (including 'nan', 'inf', 'infinity', etc.), and
|
---|
| 1025 | <signed-float> is any string of the form <float> whose first
|
---|
| 1026 | character is '+' or '-'.
|
---|
[2] | 1027 |
|
---|
[391] | 1028 | For backwards compatibility, the extra forms
|
---|
[2] | 1029 |
|
---|
[391] | 1030 | <float><sign>j
|
---|
| 1031 | <sign>j
|
---|
| 1032 | j
|
---|
[2] | 1033 |
|
---|
[391] | 1034 | are also accepted, though support for these forms may be removed from
|
---|
| 1035 | a future version of Python.
|
---|
| 1036 | */
|
---|
[2] | 1037 |
|
---|
[391] | 1038 | /* first look for forms starting with <float> */
|
---|
| 1039 | z = PyOS_string_to_double(s, &end, NULL);
|
---|
| 1040 | if (z == -1.0 && PyErr_Occurred()) {
|
---|
| 1041 | if (PyErr_ExceptionMatches(PyExc_ValueError))
|
---|
| 1042 | PyErr_Clear();
|
---|
| 1043 | else
|
---|
| 1044 | goto error;
|
---|
| 1045 | }
|
---|
| 1046 | if (end != s) {
|
---|
| 1047 | /* all 4 forms starting with <float> land here */
|
---|
| 1048 | s = end;
|
---|
| 1049 | if (*s == '+' || *s == '-') {
|
---|
| 1050 | /* <float><signed-float>j | <float><sign>j */
|
---|
| 1051 | x = z;
|
---|
| 1052 | y = PyOS_string_to_double(s, &end, NULL);
|
---|
| 1053 | if (y == -1.0 && PyErr_Occurred()) {
|
---|
| 1054 | if (PyErr_ExceptionMatches(PyExc_ValueError))
|
---|
| 1055 | PyErr_Clear();
|
---|
| 1056 | else
|
---|
| 1057 | goto error;
|
---|
| 1058 | }
|
---|
| 1059 | if (end != s)
|
---|
| 1060 | /* <float><signed-float>j */
|
---|
| 1061 | s = end;
|
---|
| 1062 | else {
|
---|
| 1063 | /* <float><sign>j */
|
---|
| 1064 | y = *s == '+' ? 1.0 : -1.0;
|
---|
| 1065 | s++;
|
---|
| 1066 | }
|
---|
| 1067 | if (!(*s == 'j' || *s == 'J'))
|
---|
| 1068 | goto parse_error;
|
---|
| 1069 | s++;
|
---|
| 1070 | }
|
---|
| 1071 | else if (*s == 'j' || *s == 'J') {
|
---|
| 1072 | /* <float>j */
|
---|
| 1073 | s++;
|
---|
| 1074 | y = z;
|
---|
| 1075 | }
|
---|
| 1076 | else
|
---|
| 1077 | /* <float> */
|
---|
| 1078 | x = z;
|
---|
| 1079 | }
|
---|
| 1080 | else {
|
---|
| 1081 | /* not starting with <float>; must be <sign>j or j */
|
---|
| 1082 | if (*s == '+' || *s == '-') {
|
---|
| 1083 | /* <sign>j */
|
---|
| 1084 | y = *s == '+' ? 1.0 : -1.0;
|
---|
| 1085 | s++;
|
---|
| 1086 | }
|
---|
| 1087 | else
|
---|
| 1088 | /* j */
|
---|
| 1089 | y = 1.0;
|
---|
| 1090 | if (!(*s == 'j' || *s == 'J'))
|
---|
| 1091 | goto parse_error;
|
---|
| 1092 | s++;
|
---|
| 1093 | }
|
---|
[2] | 1094 |
|
---|
[391] | 1095 | /* trailing whitespace and closing bracket */
|
---|
| 1096 | while (Py_ISSPACE(*s))
|
---|
| 1097 | s++;
|
---|
| 1098 | if (got_bracket) {
|
---|
| 1099 | /* if there was an opening parenthesis, then the corresponding
|
---|
| 1100 | closing parenthesis should be right here */
|
---|
| 1101 | if (*s != ')')
|
---|
| 1102 | goto parse_error;
|
---|
| 1103 | s++;
|
---|
| 1104 | while (Py_ISSPACE(*s))
|
---|
| 1105 | s++;
|
---|
| 1106 | }
|
---|
[2] | 1107 |
|
---|
[391] | 1108 | /* we should now be at the end of the string */
|
---|
| 1109 | if (s-start != len)
|
---|
| 1110 | goto parse_error;
|
---|
[2] | 1111 |
|
---|
| 1112 |
|
---|
[391] | 1113 | #ifdef Py_USING_UNICODE
|
---|
| 1114 | if (s_buffer)
|
---|
| 1115 | PyMem_FREE(s_buffer);
|
---|
| 1116 | #endif
|
---|
| 1117 | return complex_subtype_from_doubles(type, x, y);
|
---|
[2] | 1118 |
|
---|
[391] | 1119 | parse_error:
|
---|
| 1120 | PyErr_SetString(PyExc_ValueError,
|
---|
| 1121 | "complex() arg is a malformed string");
|
---|
| 1122 | error:
|
---|
| 1123 | #ifdef Py_USING_UNICODE
|
---|
| 1124 | if (s_buffer)
|
---|
| 1125 | PyMem_FREE(s_buffer);
|
---|
| 1126 | #endif
|
---|
| 1127 | return NULL;
|
---|
[2] | 1128 | }
|
---|
| 1129 |
|
---|
| 1130 | static PyObject *
|
---|
| 1131 | complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
---|
| 1132 | {
|
---|
[391] | 1133 | PyObject *r, *i, *tmp;
|
---|
| 1134 | PyNumberMethods *nbr, *nbi = NULL;
|
---|
| 1135 | Py_complex cr, ci;
|
---|
| 1136 | int own_r = 0;
|
---|
| 1137 | int cr_is_complex = 0;
|
---|
| 1138 | int ci_is_complex = 0;
|
---|
| 1139 | static char *kwlist[] = {"real", "imag", 0};
|
---|
[2] | 1140 |
|
---|
[391] | 1141 | r = Py_False;
|
---|
| 1142 | i = NULL;
|
---|
| 1143 | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
|
---|
| 1144 | &r, &i))
|
---|
| 1145 | return NULL;
|
---|
[2] | 1146 |
|
---|
[391] | 1147 | /* Special-case for a single argument when type(arg) is complex. */
|
---|
| 1148 | if (PyComplex_CheckExact(r) && i == NULL &&
|
---|
| 1149 | type == &PyComplex_Type) {
|
---|
| 1150 | /* Note that we can't know whether it's safe to return
|
---|
| 1151 | a complex *subclass* instance as-is, hence the restriction
|
---|
| 1152 | to exact complexes here. If either the input or the
|
---|
| 1153 | output is a complex subclass, it will be handled below
|
---|
| 1154 | as a non-orthogonal vector. */
|
---|
| 1155 | Py_INCREF(r);
|
---|
| 1156 | return r;
|
---|
| 1157 | }
|
---|
| 1158 | if (PyString_Check(r) || PyUnicode_Check(r)) {
|
---|
| 1159 | if (i != NULL) {
|
---|
| 1160 | PyErr_SetString(PyExc_TypeError,
|
---|
| 1161 | "complex() can't take second arg"
|
---|
| 1162 | " if first is a string");
|
---|
| 1163 | return NULL;
|
---|
| 1164 | }
|
---|
| 1165 | return complex_subtype_from_string(type, r);
|
---|
| 1166 | }
|
---|
| 1167 | if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
|
---|
| 1168 | PyErr_SetString(PyExc_TypeError,
|
---|
| 1169 | "complex() second arg can't be a string");
|
---|
| 1170 | return NULL;
|
---|
| 1171 | }
|
---|
[2] | 1172 |
|
---|
[391] | 1173 | tmp = try_complex_special_method(r);
|
---|
| 1174 | if (tmp) {
|
---|
| 1175 | r = tmp;
|
---|
| 1176 | own_r = 1;
|
---|
| 1177 | }
|
---|
| 1178 | else if (PyErr_Occurred()) {
|
---|
| 1179 | return NULL;
|
---|
| 1180 | }
|
---|
[2] | 1181 |
|
---|
[391] | 1182 | nbr = r->ob_type->tp_as_number;
|
---|
| 1183 | if (i != NULL)
|
---|
| 1184 | nbi = i->ob_type->tp_as_number;
|
---|
| 1185 | if (nbr == NULL || nbr->nb_float == NULL ||
|
---|
| 1186 | ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
|
---|
| 1187 | PyErr_SetString(PyExc_TypeError,
|
---|
| 1188 | "complex() argument must be a string or a number");
|
---|
| 1189 | if (own_r) {
|
---|
| 1190 | Py_DECREF(r);
|
---|
| 1191 | }
|
---|
| 1192 | return NULL;
|
---|
| 1193 | }
|
---|
[2] | 1194 |
|
---|
[391] | 1195 | /* If we get this far, then the "real" and "imag" parts should
|
---|
| 1196 | both be treated as numbers, and the constructor should return a
|
---|
| 1197 | complex number equal to (real + imag*1j).
|
---|
[2] | 1198 |
|
---|
[391] | 1199 | Note that we do NOT assume the input to already be in canonical
|
---|
| 1200 | form; the "real" and "imag" parts might themselves be complex
|
---|
| 1201 | numbers, which slightly complicates the code below. */
|
---|
| 1202 | if (PyComplex_Check(r)) {
|
---|
| 1203 | /* Note that if r is of a complex subtype, we're only
|
---|
| 1204 | retaining its real & imag parts here, and the return
|
---|
| 1205 | value is (properly) of the builtin complex type. */
|
---|
| 1206 | cr = ((PyComplexObject*)r)->cval;
|
---|
| 1207 | cr_is_complex = 1;
|
---|
| 1208 | if (own_r) {
|
---|
| 1209 | Py_DECREF(r);
|
---|
| 1210 | }
|
---|
| 1211 | }
|
---|
| 1212 | else {
|
---|
| 1213 | /* The "real" part really is entirely real, and contributes
|
---|
| 1214 | nothing in the imaginary direction.
|
---|
| 1215 | Just treat it as a double. */
|
---|
| 1216 | tmp = PyNumber_Float(r);
|
---|
| 1217 | if (own_r) {
|
---|
| 1218 | /* r was a newly created complex number, rather
|
---|
| 1219 | than the original "real" argument. */
|
---|
| 1220 | Py_DECREF(r);
|
---|
| 1221 | }
|
---|
| 1222 | if (tmp == NULL)
|
---|
| 1223 | return NULL;
|
---|
| 1224 | if (!PyFloat_Check(tmp)) {
|
---|
| 1225 | PyErr_SetString(PyExc_TypeError,
|
---|
| 1226 | "float(r) didn't return a float");
|
---|
| 1227 | Py_DECREF(tmp);
|
---|
| 1228 | return NULL;
|
---|
| 1229 | }
|
---|
| 1230 | cr.real = PyFloat_AsDouble(tmp);
|
---|
| 1231 | cr.imag = 0.0; /* Shut up compiler warning */
|
---|
| 1232 | Py_DECREF(tmp);
|
---|
| 1233 | }
|
---|
| 1234 | if (i == NULL) {
|
---|
| 1235 | ci.real = 0.0;
|
---|
| 1236 | }
|
---|
| 1237 | else if (PyComplex_Check(i)) {
|
---|
| 1238 | ci = ((PyComplexObject*)i)->cval;
|
---|
| 1239 | ci_is_complex = 1;
|
---|
| 1240 | } else {
|
---|
| 1241 | /* The "imag" part really is entirely imaginary, and
|
---|
| 1242 | contributes nothing in the real direction.
|
---|
| 1243 | Just treat it as a double. */
|
---|
| 1244 | tmp = (*nbi->nb_float)(i);
|
---|
| 1245 | if (tmp == NULL)
|
---|
| 1246 | return NULL;
|
---|
| 1247 | ci.real = PyFloat_AsDouble(tmp);
|
---|
| 1248 | Py_DECREF(tmp);
|
---|
| 1249 | }
|
---|
| 1250 | /* If the input was in canonical form, then the "real" and "imag"
|
---|
| 1251 | parts are real numbers, so that ci.imag and cr.imag are zero.
|
---|
| 1252 | We need this correction in case they were not real numbers. */
|
---|
| 1253 |
|
---|
| 1254 | if (ci_is_complex) {
|
---|
| 1255 | cr.real -= ci.imag;
|
---|
| 1256 | }
|
---|
| 1257 | if (cr_is_complex) {
|
---|
| 1258 | ci.real += cr.imag;
|
---|
| 1259 | }
|
---|
| 1260 | return complex_subtype_from_doubles(type, cr.real, ci.real);
|
---|
[2] | 1261 | }
|
---|
| 1262 |
|
---|
| 1263 | PyDoc_STRVAR(complex_doc,
|
---|
| 1264 | "complex(real[, imag]) -> complex number\n"
|
---|
| 1265 | "\n"
|
---|
| 1266 | "Create a complex number from a real part and an optional imaginary part.\n"
|
---|
| 1267 | "This is equivalent to (real + imag*1j) where imag defaults to 0.");
|
---|
| 1268 |
|
---|
| 1269 | static PyNumberMethods complex_as_number = {
|
---|
[391] | 1270 | (binaryfunc)complex_add, /* nb_add */
|
---|
| 1271 | (binaryfunc)complex_sub, /* nb_subtract */
|
---|
| 1272 | (binaryfunc)complex_mul, /* nb_multiply */
|
---|
| 1273 | (binaryfunc)complex_classic_div, /* nb_divide */
|
---|
| 1274 | (binaryfunc)complex_remainder, /* nb_remainder */
|
---|
| 1275 | (binaryfunc)complex_divmod, /* nb_divmod */
|
---|
| 1276 | (ternaryfunc)complex_pow, /* nb_power */
|
---|
| 1277 | (unaryfunc)complex_neg, /* nb_negative */
|
---|
| 1278 | (unaryfunc)complex_pos, /* nb_positive */
|
---|
| 1279 | (unaryfunc)complex_abs, /* nb_absolute */
|
---|
| 1280 | (inquiry)complex_nonzero, /* nb_nonzero */
|
---|
| 1281 | 0, /* nb_invert */
|
---|
| 1282 | 0, /* nb_lshift */
|
---|
| 1283 | 0, /* nb_rshift */
|
---|
| 1284 | 0, /* nb_and */
|
---|
| 1285 | 0, /* nb_xor */
|
---|
| 1286 | 0, /* nb_or */
|
---|
| 1287 | complex_coerce, /* nb_coerce */
|
---|
| 1288 | complex_int, /* nb_int */
|
---|
| 1289 | complex_long, /* nb_long */
|
---|
| 1290 | complex_float, /* nb_float */
|
---|
| 1291 | 0, /* nb_oct */
|
---|
| 1292 | 0, /* nb_hex */
|
---|
| 1293 | 0, /* nb_inplace_add */
|
---|
| 1294 | 0, /* nb_inplace_subtract */
|
---|
| 1295 | 0, /* nb_inplace_multiply*/
|
---|
| 1296 | 0, /* nb_inplace_divide */
|
---|
| 1297 | 0, /* nb_inplace_remainder */
|
---|
| 1298 | 0, /* nb_inplace_power */
|
---|
| 1299 | 0, /* nb_inplace_lshift */
|
---|
| 1300 | 0, /* nb_inplace_rshift */
|
---|
| 1301 | 0, /* nb_inplace_and */
|
---|
| 1302 | 0, /* nb_inplace_xor */
|
---|
| 1303 | 0, /* nb_inplace_or */
|
---|
| 1304 | (binaryfunc)complex_int_div, /* nb_floor_divide */
|
---|
| 1305 | (binaryfunc)complex_div, /* nb_true_divide */
|
---|
| 1306 | 0, /* nb_inplace_floor_divide */
|
---|
| 1307 | 0, /* nb_inplace_true_divide */
|
---|
[2] | 1308 | };
|
---|
| 1309 |
|
---|
| 1310 | PyTypeObject PyComplex_Type = {
|
---|
[391] | 1311 | PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
---|
| 1312 | "complex",
|
---|
| 1313 | sizeof(PyComplexObject),
|
---|
| 1314 | 0,
|
---|
| 1315 | complex_dealloc, /* tp_dealloc */
|
---|
| 1316 | (printfunc)complex_print, /* tp_print */
|
---|
| 1317 | 0, /* tp_getattr */
|
---|
| 1318 | 0, /* tp_setattr */
|
---|
| 1319 | 0, /* tp_compare */
|
---|
| 1320 | (reprfunc)complex_repr, /* tp_repr */
|
---|
| 1321 | &complex_as_number, /* tp_as_number */
|
---|
| 1322 | 0, /* tp_as_sequence */
|
---|
| 1323 | 0, /* tp_as_mapping */
|
---|
| 1324 | (hashfunc)complex_hash, /* tp_hash */
|
---|
| 1325 | 0, /* tp_call */
|
---|
| 1326 | (reprfunc)complex_str, /* tp_str */
|
---|
| 1327 | PyObject_GenericGetAttr, /* tp_getattro */
|
---|
| 1328 | 0, /* tp_setattro */
|
---|
| 1329 | 0, /* tp_as_buffer */
|
---|
| 1330 | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
---|
| 1331 | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
---|
| 1332 | complex_doc, /* tp_doc */
|
---|
| 1333 | 0, /* tp_traverse */
|
---|
| 1334 | 0, /* tp_clear */
|
---|
| 1335 | complex_richcompare, /* tp_richcompare */
|
---|
| 1336 | 0, /* tp_weaklistoffset */
|
---|
| 1337 | 0, /* tp_iter */
|
---|
| 1338 | 0, /* tp_iternext */
|
---|
| 1339 | complex_methods, /* tp_methods */
|
---|
| 1340 | complex_members, /* tp_members */
|
---|
| 1341 | 0, /* tp_getset */
|
---|
| 1342 | 0, /* tp_base */
|
---|
| 1343 | 0, /* tp_dict */
|
---|
| 1344 | 0, /* tp_descr_get */
|
---|
| 1345 | 0, /* tp_descr_set */
|
---|
| 1346 | 0, /* tp_dictoffset */
|
---|
| 1347 | 0, /* tp_init */
|
---|
| 1348 | PyType_GenericAlloc, /* tp_alloc */
|
---|
| 1349 | complex_new, /* tp_new */
|
---|
| 1350 | PyObject_Del, /* tp_free */
|
---|
[2] | 1351 | };
|
---|
| 1352 |
|
---|
| 1353 | #endif
|
---|