[2] | 1 | #include "rotatingtree.h"
|
---|
| 2 |
|
---|
| 3 | #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2))
|
---|
| 4 |
|
---|
| 5 | /* The randombits() function below is a fast-and-dirty generator that
|
---|
| 6 | * is probably irregular enough for our purposes. Note that it's biased:
|
---|
| 7 | * I think that ones are slightly more probable than zeroes. It's not
|
---|
| 8 | * important here, though.
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | static unsigned int random_value = 1;
|
---|
| 12 | static unsigned int random_stream = 0;
|
---|
| 13 |
|
---|
| 14 | static int
|
---|
| 15 | randombits(int bits)
|
---|
| 16 | {
|
---|
[391] | 17 | int result;
|
---|
| 18 | if (random_stream < (1U << bits)) {
|
---|
| 19 | random_value *= 1082527;
|
---|
| 20 | random_stream = random_value;
|
---|
| 21 | }
|
---|
| 22 | result = random_stream & ((1<<bits)-1);
|
---|
| 23 | random_stream >>= bits;
|
---|
| 24 | return result;
|
---|
[2] | 25 | }
|
---|
| 26 |
|
---|
| 27 |
|
---|
| 28 | /* Insert a new node into the tree.
|
---|
| 29 | (*root) is modified to point to the new root. */
|
---|
| 30 | void
|
---|
| 31 | RotatingTree_Add(rotating_node_t **root, rotating_node_t *node)
|
---|
| 32 | {
|
---|
[391] | 33 | while (*root != NULL) {
|
---|
| 34 | if (KEY_LOWER_THAN(node->key, (*root)->key))
|
---|
| 35 | root = &((*root)->left);
|
---|
| 36 | else
|
---|
| 37 | root = &((*root)->right);
|
---|
| 38 | }
|
---|
| 39 | node->left = NULL;
|
---|
| 40 | node->right = NULL;
|
---|
| 41 | *root = node;
|
---|
[2] | 42 | }
|
---|
| 43 |
|
---|
| 44 | /* Locate the node with the given key. This is the most complicated
|
---|
| 45 | function because it occasionally rebalances the tree to move the
|
---|
| 46 | resulting node closer to the root. */
|
---|
| 47 | rotating_node_t *
|
---|
| 48 | RotatingTree_Get(rotating_node_t **root, void *key)
|
---|
| 49 | {
|
---|
[391] | 50 | if (randombits(3) != 4) {
|
---|
| 51 | /* Fast path, no rebalancing */
|
---|
| 52 | rotating_node_t *node = *root;
|
---|
| 53 | while (node != NULL) {
|
---|
| 54 | if (node->key == key)
|
---|
| 55 | return node;
|
---|
| 56 | if (KEY_LOWER_THAN(key, node->key))
|
---|
| 57 | node = node->left;
|
---|
| 58 | else
|
---|
| 59 | node = node->right;
|
---|
| 60 | }
|
---|
| 61 | return NULL;
|
---|
| 62 | }
|
---|
| 63 | else {
|
---|
| 64 | rotating_node_t **pnode = root;
|
---|
| 65 | rotating_node_t *node = *pnode;
|
---|
| 66 | rotating_node_t *next;
|
---|
| 67 | int rotate;
|
---|
| 68 | if (node == NULL)
|
---|
| 69 | return NULL;
|
---|
| 70 | while (1) {
|
---|
| 71 | if (node->key == key)
|
---|
| 72 | return node;
|
---|
| 73 | rotate = !randombits(1);
|
---|
| 74 | if (KEY_LOWER_THAN(key, node->key)) {
|
---|
| 75 | next = node->left;
|
---|
| 76 | if (next == NULL)
|
---|
| 77 | return NULL;
|
---|
| 78 | if (rotate) {
|
---|
| 79 | node->left = next->right;
|
---|
| 80 | next->right = node;
|
---|
| 81 | *pnode = next;
|
---|
| 82 | }
|
---|
| 83 | else
|
---|
| 84 | pnode = &(node->left);
|
---|
| 85 | }
|
---|
| 86 | else {
|
---|
| 87 | next = node->right;
|
---|
| 88 | if (next == NULL)
|
---|
| 89 | return NULL;
|
---|
| 90 | if (rotate) {
|
---|
| 91 | node->right = next->left;
|
---|
| 92 | next->left = node;
|
---|
| 93 | *pnode = next;
|
---|
| 94 | }
|
---|
| 95 | else
|
---|
| 96 | pnode = &(node->right);
|
---|
| 97 | }
|
---|
| 98 | node = next;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
[2] | 101 | }
|
---|
| 102 |
|
---|
| 103 | /* Enumerate all nodes in the tree. The callback enumfn() should return
|
---|
| 104 | zero to continue the enumeration, or non-zero to interrupt it.
|
---|
| 105 | A non-zero value is directly returned by RotatingTree_Enum(). */
|
---|
| 106 | int
|
---|
| 107 | RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn,
|
---|
[391] | 108 | void *arg)
|
---|
[2] | 109 | {
|
---|
[391] | 110 | int result;
|
---|
| 111 | rotating_node_t *node;
|
---|
| 112 | while (root != NULL) {
|
---|
| 113 | result = RotatingTree_Enum(root->left, enumfn, arg);
|
---|
| 114 | if (result != 0) return result;
|
---|
| 115 | node = root->right;
|
---|
| 116 | result = enumfn(root, arg);
|
---|
| 117 | if (result != 0) return result;
|
---|
| 118 | root = node;
|
---|
| 119 | }
|
---|
| 120 | return 0;
|
---|
[2] | 121 | }
|
---|