[2] | 1 | /*
|
---|
| 2 |
|
---|
| 3 | Reference Cycle Garbage Collection
|
---|
| 4 | ==================================
|
---|
| 5 |
|
---|
| 6 | Neil Schemenauer <nas@arctrix.com>
|
---|
| 7 |
|
---|
| 8 | Based on a post on the python-dev list. Ideas from Guido van Rossum,
|
---|
| 9 | Eric Tiedemann, and various others.
|
---|
| 10 |
|
---|
| 11 | http://www.arctrix.com/nas/python/gc/
|
---|
| 12 | http://www.python.org/pipermail/python-dev/2000-March/003869.html
|
---|
| 13 | http://www.python.org/pipermail/python-dev/2000-March/004010.html
|
---|
| 14 | http://www.python.org/pipermail/python-dev/2000-March/004022.html
|
---|
| 15 |
|
---|
| 16 | For a highlevel view of the collection process, read the collect
|
---|
| 17 | function.
|
---|
| 18 |
|
---|
| 19 | */
|
---|
| 20 |
|
---|
| 21 | #include "Python.h"
|
---|
[391] | 22 | #include "frameobject.h" /* for PyFrame_ClearFreeList */
|
---|
[2] | 23 |
|
---|
| 24 | /* Get an object's GC head */
|
---|
| 25 | #define AS_GC(o) ((PyGC_Head *)(o)-1)
|
---|
| 26 |
|
---|
| 27 | /* Get the object given the GC head */
|
---|
| 28 | #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
|
---|
| 29 |
|
---|
| 30 | /*** Global GC state ***/
|
---|
| 31 |
|
---|
| 32 | struct gc_generation {
|
---|
[391] | 33 | PyGC_Head head;
|
---|
| 34 | int threshold; /* collection threshold */
|
---|
| 35 | int count; /* count of allocations or collections of younger
|
---|
| 36 | generations */
|
---|
[2] | 37 | };
|
---|
| 38 |
|
---|
| 39 | #define NUM_GENERATIONS 3
|
---|
| 40 | #define GEN_HEAD(n) (&generations[n].head)
|
---|
| 41 |
|
---|
| 42 | /* linked lists of container objects */
|
---|
| 43 | static struct gc_generation generations[NUM_GENERATIONS] = {
|
---|
[391] | 44 | /* PyGC_Head, threshold, count */
|
---|
| 45 | {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0},
|
---|
| 46 | {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0},
|
---|
| 47 | {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0},
|
---|
[2] | 48 | };
|
---|
| 49 |
|
---|
| 50 | PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
|
---|
| 51 |
|
---|
| 52 | static int enabled = 1; /* automatic collection enabled? */
|
---|
| 53 |
|
---|
| 54 | /* true if we are currently running the collector */
|
---|
| 55 | static int collecting = 0;
|
---|
| 56 |
|
---|
| 57 | /* list of uncollectable objects */
|
---|
| 58 | static PyObject *garbage = NULL;
|
---|
| 59 |
|
---|
| 60 | /* Python string to use if unhandled exception occurs */
|
---|
| 61 | static PyObject *gc_str = NULL;
|
---|
| 62 |
|
---|
| 63 | /* Python string used to look for __del__ attribute. */
|
---|
| 64 | static PyObject *delstr = NULL;
|
---|
| 65 |
|
---|
[391] | 66 | /* This is the number of objects who survived the last full collection. It
|
---|
| 67 | approximates the number of long lived objects tracked by the GC.
|
---|
| 68 |
|
---|
| 69 | (by "full collection", we mean a collection of the oldest generation).
|
---|
| 70 | */
|
---|
| 71 | static Py_ssize_t long_lived_total = 0;
|
---|
| 72 |
|
---|
| 73 | /* This is the number of objects who survived all "non-full" collections,
|
---|
| 74 | and are awaiting to undergo a full collection for the first time.
|
---|
| 75 |
|
---|
| 76 | */
|
---|
| 77 | static Py_ssize_t long_lived_pending = 0;
|
---|
| 78 |
|
---|
| 79 | /*
|
---|
| 80 | NOTE: about the counting of long-lived objects.
|
---|
| 81 |
|
---|
| 82 | To limit the cost of garbage collection, there are two strategies;
|
---|
| 83 | - make each collection faster, e.g. by scanning fewer objects
|
---|
| 84 | - do less collections
|
---|
| 85 | This heuristic is about the latter strategy.
|
---|
| 86 |
|
---|
| 87 | In addition to the various configurable thresholds, we only trigger a
|
---|
| 88 | full collection if the ratio
|
---|
| 89 | long_lived_pending / long_lived_total
|
---|
| 90 | is above a given value (hardwired to 25%).
|
---|
| 91 |
|
---|
| 92 | The reason is that, while "non-full" collections (i.e., collections of
|
---|
| 93 | the young and middle generations) will always examine roughly the same
|
---|
| 94 | number of objects -- determined by the aforementioned thresholds --,
|
---|
| 95 | the cost of a full collection is proportional to the total number of
|
---|
| 96 | long-lived objects, which is virtually unbounded.
|
---|
| 97 |
|
---|
| 98 | Indeed, it has been remarked that doing a full collection every
|
---|
| 99 | <constant number> of object creations entails a dramatic performance
|
---|
| 100 | degradation in workloads which consist in creating and storing lots of
|
---|
| 101 | long-lived objects (e.g. building a large list of GC-tracked objects would
|
---|
| 102 | show quadratic performance, instead of linear as expected: see issue #4074).
|
---|
| 103 |
|
---|
| 104 | Using the above ratio, instead, yields amortized linear performance in
|
---|
| 105 | the total number of objects (the effect of which can be summarized
|
---|
| 106 | thusly: "each full garbage collection is more and more costly as the
|
---|
| 107 | number of objects grows, but we do fewer and fewer of them").
|
---|
| 108 |
|
---|
| 109 | This heuristic was suggested by Martin von Löwis on python-dev in
|
---|
| 110 | June 2008. His original analysis and proposal can be found at:
|
---|
| 111 | http://mail.python.org/pipermail/python-dev/2008-June/080579.html
|
---|
| 112 | */
|
---|
| 113 |
|
---|
| 114 | /*
|
---|
| 115 | NOTE: about untracking of mutable objects.
|
---|
| 116 |
|
---|
| 117 | Certain types of container cannot participate in a reference cycle, and
|
---|
| 118 | so do not need to be tracked by the garbage collector. Untracking these
|
---|
| 119 | objects reduces the cost of garbage collections. However, determining
|
---|
| 120 | which objects may be untracked is not free, and the costs must be
|
---|
| 121 | weighed against the benefits for garbage collection.
|
---|
| 122 |
|
---|
| 123 | There are two possible strategies for when to untrack a container:
|
---|
| 124 |
|
---|
| 125 | i) When the container is created.
|
---|
| 126 | ii) When the container is examined by the garbage collector.
|
---|
| 127 |
|
---|
| 128 | Tuples containing only immutable objects (integers, strings etc, and
|
---|
| 129 | recursively, tuples of immutable objects) do not need to be tracked.
|
---|
| 130 | The interpreter creates a large number of tuples, many of which will
|
---|
| 131 | not survive until garbage collection. It is therefore not worthwhile
|
---|
| 132 | to untrack eligible tuples at creation time.
|
---|
| 133 |
|
---|
| 134 | Instead, all tuples except the empty tuple are tracked when created.
|
---|
| 135 | During garbage collection it is determined whether any surviving tuples
|
---|
| 136 | can be untracked. A tuple can be untracked if all of its contents are
|
---|
| 137 | already not tracked. Tuples are examined for untracking in all garbage
|
---|
| 138 | collection cycles. It may take more than one cycle to untrack a tuple.
|
---|
| 139 |
|
---|
| 140 | Dictionaries containing only immutable objects also do not need to be
|
---|
| 141 | tracked. Dictionaries are untracked when created. If a tracked item is
|
---|
| 142 | inserted into a dictionary (either as a key or value), the dictionary
|
---|
| 143 | becomes tracked. During a full garbage collection (all generations),
|
---|
| 144 | the collector will untrack any dictionaries whose contents are not
|
---|
| 145 | tracked.
|
---|
| 146 |
|
---|
| 147 | The module provides the python function is_tracked(obj), which returns
|
---|
| 148 | the CURRENT tracking status of the object. Subsequent garbage
|
---|
| 149 | collections may change the tracking status of the object.
|
---|
| 150 |
|
---|
| 151 | Untracking of certain containers was introduced in issue #4688, and
|
---|
| 152 | the algorithm was refined in response to issue #14775.
|
---|
| 153 | */
|
---|
| 154 |
|
---|
[2] | 155 | /* set for debugging information */
|
---|
[391] | 156 | #define DEBUG_STATS (1<<0) /* print collection statistics */
|
---|
| 157 | #define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
|
---|
| 158 | #define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
|
---|
| 159 | #define DEBUG_INSTANCES (1<<3) /* print instances */
|
---|
| 160 | #define DEBUG_OBJECTS (1<<4) /* print other objects */
|
---|
| 161 | #define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
|
---|
| 162 | #define DEBUG_LEAK DEBUG_COLLECTABLE | \
|
---|
| 163 | DEBUG_UNCOLLECTABLE | \
|
---|
| 164 | DEBUG_INSTANCES | \
|
---|
| 165 | DEBUG_OBJECTS | \
|
---|
| 166 | DEBUG_SAVEALL
|
---|
[2] | 167 | static int debug;
|
---|
| 168 | static PyObject *tmod = NULL;
|
---|
| 169 |
|
---|
| 170 | /*--------------------------------------------------------------------------
|
---|
| 171 | gc_refs values.
|
---|
| 172 |
|
---|
| 173 | Between collections, every gc'ed object has one of two gc_refs values:
|
---|
| 174 |
|
---|
| 175 | GC_UNTRACKED
|
---|
| 176 | The initial state; objects returned by PyObject_GC_Malloc are in this
|
---|
| 177 | state. The object doesn't live in any generation list, and its
|
---|
| 178 | tp_traverse slot must not be called.
|
---|
| 179 |
|
---|
| 180 | GC_REACHABLE
|
---|
| 181 | The object lives in some generation list, and its tp_traverse is safe to
|
---|
| 182 | call. An object transitions to GC_REACHABLE when PyObject_GC_Track
|
---|
| 183 | is called.
|
---|
| 184 |
|
---|
| 185 | During a collection, gc_refs can temporarily take on other states:
|
---|
| 186 |
|
---|
| 187 | >= 0
|
---|
| 188 | At the start of a collection, update_refs() copies the true refcount
|
---|
| 189 | to gc_refs, for each object in the generation being collected.
|
---|
| 190 | subtract_refs() then adjusts gc_refs so that it equals the number of
|
---|
| 191 | times an object is referenced directly from outside the generation
|
---|
| 192 | being collected.
|
---|
| 193 | gc_refs remains >= 0 throughout these steps.
|
---|
| 194 |
|
---|
| 195 | GC_TENTATIVELY_UNREACHABLE
|
---|
| 196 | move_unreachable() then moves objects not reachable (whether directly or
|
---|
| 197 | indirectly) from outside the generation into an "unreachable" set.
|
---|
| 198 | Objects that are found to be reachable have gc_refs set to GC_REACHABLE
|
---|
| 199 | again. Objects that are found to be unreachable have gc_refs set to
|
---|
| 200 | GC_TENTATIVELY_UNREACHABLE. It's "tentatively" because the pass doing
|
---|
| 201 | this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
|
---|
| 202 | transition back to GC_REACHABLE.
|
---|
| 203 |
|
---|
| 204 | Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
|
---|
| 205 | for collection. If it's decided not to collect such an object (e.g.,
|
---|
| 206 | it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
|
---|
| 207 | ----------------------------------------------------------------------------
|
---|
| 208 | */
|
---|
[391] | 209 | #define GC_UNTRACKED _PyGC_REFS_UNTRACKED
|
---|
| 210 | #define GC_REACHABLE _PyGC_REFS_REACHABLE
|
---|
| 211 | #define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE
|
---|
[2] | 212 |
|
---|
| 213 | #define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
|
---|
| 214 | #define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
|
---|
| 215 | #define IS_TENTATIVELY_UNREACHABLE(o) ( \
|
---|
[391] | 216 | (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
|
---|
[2] | 217 |
|
---|
| 218 | /*** list functions ***/
|
---|
| 219 |
|
---|
| 220 | static void
|
---|
| 221 | gc_list_init(PyGC_Head *list)
|
---|
| 222 | {
|
---|
[391] | 223 | list->gc.gc_prev = list;
|
---|
| 224 | list->gc.gc_next = list;
|
---|
[2] | 225 | }
|
---|
| 226 |
|
---|
| 227 | static int
|
---|
| 228 | gc_list_is_empty(PyGC_Head *list)
|
---|
| 229 | {
|
---|
[391] | 230 | return (list->gc.gc_next == list);
|
---|
[2] | 231 | }
|
---|
| 232 |
|
---|
| 233 | #if 0
|
---|
| 234 | /* This became unused after gc_list_move() was introduced. */
|
---|
| 235 | /* Append `node` to `list`. */
|
---|
| 236 | static void
|
---|
| 237 | gc_list_append(PyGC_Head *node, PyGC_Head *list)
|
---|
| 238 | {
|
---|
[391] | 239 | node->gc.gc_next = list;
|
---|
| 240 | node->gc.gc_prev = list->gc.gc_prev;
|
---|
| 241 | node->gc.gc_prev->gc.gc_next = node;
|
---|
| 242 | list->gc.gc_prev = node;
|
---|
[2] | 243 | }
|
---|
| 244 | #endif
|
---|
| 245 |
|
---|
| 246 | /* Remove `node` from the gc list it's currently in. */
|
---|
| 247 | static void
|
---|
| 248 | gc_list_remove(PyGC_Head *node)
|
---|
| 249 | {
|
---|
[391] | 250 | node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
|
---|
| 251 | node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
|
---|
| 252 | node->gc.gc_next = NULL; /* object is not currently tracked */
|
---|
[2] | 253 | }
|
---|
| 254 |
|
---|
| 255 | /* Move `node` from the gc list it's currently in (which is not explicitly
|
---|
| 256 | * named here) to the end of `list`. This is semantically the same as
|
---|
| 257 | * gc_list_remove(node) followed by gc_list_append(node, list).
|
---|
| 258 | */
|
---|
| 259 | static void
|
---|
| 260 | gc_list_move(PyGC_Head *node, PyGC_Head *list)
|
---|
| 261 | {
|
---|
[391] | 262 | PyGC_Head *new_prev;
|
---|
| 263 | PyGC_Head *current_prev = node->gc.gc_prev;
|
---|
| 264 | PyGC_Head *current_next = node->gc.gc_next;
|
---|
| 265 | /* Unlink from current list. */
|
---|
| 266 | current_prev->gc.gc_next = current_next;
|
---|
| 267 | current_next->gc.gc_prev = current_prev;
|
---|
| 268 | /* Relink at end of new list. */
|
---|
| 269 | new_prev = node->gc.gc_prev = list->gc.gc_prev;
|
---|
| 270 | new_prev->gc.gc_next = list->gc.gc_prev = node;
|
---|
| 271 | node->gc.gc_next = list;
|
---|
[2] | 272 | }
|
---|
| 273 |
|
---|
| 274 | /* append list `from` onto list `to`; `from` becomes an empty list */
|
---|
| 275 | static void
|
---|
| 276 | gc_list_merge(PyGC_Head *from, PyGC_Head *to)
|
---|
| 277 | {
|
---|
[391] | 278 | PyGC_Head *tail;
|
---|
| 279 | assert(from != to);
|
---|
| 280 | if (!gc_list_is_empty(from)) {
|
---|
| 281 | tail = to->gc.gc_prev;
|
---|
| 282 | tail->gc.gc_next = from->gc.gc_next;
|
---|
| 283 | tail->gc.gc_next->gc.gc_prev = tail;
|
---|
| 284 | to->gc.gc_prev = from->gc.gc_prev;
|
---|
| 285 | to->gc.gc_prev->gc.gc_next = to;
|
---|
| 286 | }
|
---|
| 287 | gc_list_init(from);
|
---|
[2] | 288 | }
|
---|
| 289 |
|
---|
| 290 | static Py_ssize_t
|
---|
| 291 | gc_list_size(PyGC_Head *list)
|
---|
| 292 | {
|
---|
[391] | 293 | PyGC_Head *gc;
|
---|
| 294 | Py_ssize_t n = 0;
|
---|
| 295 | for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
|
---|
| 296 | n++;
|
---|
| 297 | }
|
---|
| 298 | return n;
|
---|
[2] | 299 | }
|
---|
| 300 |
|
---|
| 301 | /* Append objects in a GC list to a Python list.
|
---|
| 302 | * Return 0 if all OK, < 0 if error (out of memory for list).
|
---|
| 303 | */
|
---|
| 304 | static int
|
---|
| 305 | append_objects(PyObject *py_list, PyGC_Head *gc_list)
|
---|
| 306 | {
|
---|
[391] | 307 | PyGC_Head *gc;
|
---|
| 308 | for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
|
---|
| 309 | PyObject *op = FROM_GC(gc);
|
---|
| 310 | if (op != py_list) {
|
---|
| 311 | if (PyList_Append(py_list, op)) {
|
---|
| 312 | return -1; /* exception */
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | }
|
---|
| 316 | return 0;
|
---|
[2] | 317 | }
|
---|
| 318 |
|
---|
| 319 | /*** end of list stuff ***/
|
---|
| 320 |
|
---|
| 321 |
|
---|
| 322 | /* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 for all objects
|
---|
| 323 | * in containers, and is GC_REACHABLE for all tracked gc objects not in
|
---|
| 324 | * containers.
|
---|
| 325 | */
|
---|
| 326 | static void
|
---|
| 327 | update_refs(PyGC_Head *containers)
|
---|
| 328 | {
|
---|
[391] | 329 | PyGC_Head *gc = containers->gc.gc_next;
|
---|
| 330 | for (; gc != containers; gc = gc->gc.gc_next) {
|
---|
| 331 | assert(gc->gc.gc_refs == GC_REACHABLE);
|
---|
| 332 | gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
|
---|
| 333 | /* Python's cyclic gc should never see an incoming refcount
|
---|
| 334 | * of 0: if something decref'ed to 0, it should have been
|
---|
| 335 | * deallocated immediately at that time.
|
---|
| 336 | * Possible cause (if the assert triggers): a tp_dealloc
|
---|
| 337 | * routine left a gc-aware object tracked during its teardown
|
---|
| 338 | * phase, and did something-- or allowed something to happen --
|
---|
| 339 | * that called back into Python. gc can trigger then, and may
|
---|
| 340 | * see the still-tracked dying object. Before this assert
|
---|
| 341 | * was added, such mistakes went on to allow gc to try to
|
---|
| 342 | * delete the object again. In a debug build, that caused
|
---|
| 343 | * a mysterious segfault, when _Py_ForgetReference tried
|
---|
| 344 | * to remove the object from the doubly-linked list of all
|
---|
| 345 | * objects a second time. In a release build, an actual
|
---|
| 346 | * double deallocation occurred, which leads to corruption
|
---|
| 347 | * of the allocator's internal bookkeeping pointers. That's
|
---|
| 348 | * so serious that maybe this should be a release-build
|
---|
| 349 | * check instead of an assert?
|
---|
| 350 | */
|
---|
| 351 | assert(gc->gc.gc_refs != 0);
|
---|
| 352 | }
|
---|
[2] | 353 | }
|
---|
| 354 |
|
---|
| 355 | /* A traversal callback for subtract_refs. */
|
---|
| 356 | static int
|
---|
| 357 | visit_decref(PyObject *op, void *data)
|
---|
| 358 | {
|
---|
[391] | 359 | assert(op != NULL);
|
---|
| 360 | if (PyObject_IS_GC(op)) {
|
---|
| 361 | PyGC_Head *gc = AS_GC(op);
|
---|
| 362 | /* We're only interested in gc_refs for objects in the
|
---|
| 363 | * generation being collected, which can be recognized
|
---|
| 364 | * because only they have positive gc_refs.
|
---|
| 365 | */
|
---|
| 366 | assert(gc->gc.gc_refs != 0); /* else refcount was too small */
|
---|
| 367 | if (gc->gc.gc_refs > 0)
|
---|
| 368 | gc->gc.gc_refs--;
|
---|
| 369 | }
|
---|
| 370 | return 0;
|
---|
[2] | 371 | }
|
---|
| 372 |
|
---|
| 373 | /* Subtract internal references from gc_refs. After this, gc_refs is >= 0
|
---|
| 374 | * for all objects in containers, and is GC_REACHABLE for all tracked gc
|
---|
| 375 | * objects not in containers. The ones with gc_refs > 0 are directly
|
---|
| 376 | * reachable from outside containers, and so can't be collected.
|
---|
| 377 | */
|
---|
| 378 | static void
|
---|
| 379 | subtract_refs(PyGC_Head *containers)
|
---|
| 380 | {
|
---|
[391] | 381 | traverseproc traverse;
|
---|
| 382 | PyGC_Head *gc = containers->gc.gc_next;
|
---|
| 383 | for (; gc != containers; gc=gc->gc.gc_next) {
|
---|
| 384 | traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
|
---|
| 385 | (void) traverse(FROM_GC(gc),
|
---|
| 386 | (visitproc)visit_decref,
|
---|
| 387 | NULL);
|
---|
| 388 | }
|
---|
[2] | 389 | }
|
---|
| 390 |
|
---|
| 391 | /* A traversal callback for move_unreachable. */
|
---|
| 392 | static int
|
---|
| 393 | visit_reachable(PyObject *op, PyGC_Head *reachable)
|
---|
| 394 | {
|
---|
[391] | 395 | if (PyObject_IS_GC(op)) {
|
---|
| 396 | PyGC_Head *gc = AS_GC(op);
|
---|
| 397 | const Py_ssize_t gc_refs = gc->gc.gc_refs;
|
---|
[2] | 398 |
|
---|
[391] | 399 | if (gc_refs == 0) {
|
---|
| 400 | /* This is in move_unreachable's 'young' list, but
|
---|
| 401 | * the traversal hasn't yet gotten to it. All
|
---|
| 402 | * we need to do is tell move_unreachable that it's
|
---|
| 403 | * reachable.
|
---|
| 404 | */
|
---|
| 405 | gc->gc.gc_refs = 1;
|
---|
| 406 | }
|
---|
| 407 | else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
|
---|
| 408 | /* This had gc_refs = 0 when move_unreachable got
|
---|
| 409 | * to it, but turns out it's reachable after all.
|
---|
| 410 | * Move it back to move_unreachable's 'young' list,
|
---|
| 411 | * and move_unreachable will eventually get to it
|
---|
| 412 | * again.
|
---|
| 413 | */
|
---|
| 414 | gc_list_move(gc, reachable);
|
---|
| 415 | gc->gc.gc_refs = 1;
|
---|
| 416 | }
|
---|
| 417 | /* Else there's nothing to do.
|
---|
| 418 | * If gc_refs > 0, it must be in move_unreachable's 'young'
|
---|
| 419 | * list, and move_unreachable will eventually get to it.
|
---|
| 420 | * If gc_refs == GC_REACHABLE, it's either in some other
|
---|
| 421 | * generation so we don't care about it, or move_unreachable
|
---|
| 422 | * already dealt with it.
|
---|
| 423 | * If gc_refs == GC_UNTRACKED, it must be ignored.
|
---|
| 424 | */
|
---|
| 425 | else {
|
---|
| 426 | assert(gc_refs > 0
|
---|
| 427 | || gc_refs == GC_REACHABLE
|
---|
| 428 | || gc_refs == GC_UNTRACKED);
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | return 0;
|
---|
[2] | 432 | }
|
---|
| 433 |
|
---|
| 434 | /* Move the unreachable objects from young to unreachable. After this,
|
---|
| 435 | * all objects in young have gc_refs = GC_REACHABLE, and all objects in
|
---|
| 436 | * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE. All tracked
|
---|
| 437 | * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
|
---|
| 438 | * All objects in young after this are directly or indirectly reachable
|
---|
| 439 | * from outside the original young; and all objects in unreachable are
|
---|
| 440 | * not.
|
---|
| 441 | */
|
---|
| 442 | static void
|
---|
| 443 | move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
|
---|
| 444 | {
|
---|
[391] | 445 | PyGC_Head *gc = young->gc.gc_next;
|
---|
[2] | 446 |
|
---|
[391] | 447 | /* Invariants: all objects "to the left" of us in young have gc_refs
|
---|
| 448 | * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
|
---|
| 449 | * from outside the young list as it was at entry. All other objects
|
---|
| 450 | * from the original young "to the left" of us are in unreachable now,
|
---|
| 451 | * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
|
---|
| 452 | * left of us in 'young' now have been scanned, and no objects here
|
---|
| 453 | * or to the right have been scanned yet.
|
---|
| 454 | */
|
---|
[2] | 455 |
|
---|
[391] | 456 | while (gc != young) {
|
---|
| 457 | PyGC_Head *next;
|
---|
[2] | 458 |
|
---|
[391] | 459 | if (gc->gc.gc_refs) {
|
---|
| 460 | /* gc is definitely reachable from outside the
|
---|
| 461 | * original 'young'. Mark it as such, and traverse
|
---|
| 462 | * its pointers to find any other objects that may
|
---|
| 463 | * be directly reachable from it. Note that the
|
---|
| 464 | * call to tp_traverse may append objects to young,
|
---|
| 465 | * so we have to wait until it returns to determine
|
---|
| 466 | * the next object to visit.
|
---|
| 467 | */
|
---|
| 468 | PyObject *op = FROM_GC(gc);
|
---|
| 469 | traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
---|
| 470 | assert(gc->gc.gc_refs > 0);
|
---|
| 471 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
| 472 | (void) traverse(op,
|
---|
| 473 | (visitproc)visit_reachable,
|
---|
| 474 | (void *)young);
|
---|
| 475 | next = gc->gc.gc_next;
|
---|
| 476 | if (PyTuple_CheckExact(op)) {
|
---|
| 477 | _PyTuple_MaybeUntrack(op);
|
---|
| 478 | }
|
---|
| 479 | }
|
---|
| 480 | else {
|
---|
| 481 | /* This *may* be unreachable. To make progress,
|
---|
| 482 | * assume it is. gc isn't directly reachable from
|
---|
| 483 | * any object we've already traversed, but may be
|
---|
| 484 | * reachable from an object we haven't gotten to yet.
|
---|
| 485 | * visit_reachable will eventually move gc back into
|
---|
| 486 | * young if that's so, and we'll see it again.
|
---|
| 487 | */
|
---|
| 488 | next = gc->gc.gc_next;
|
---|
| 489 | gc_list_move(gc, unreachable);
|
---|
| 490 | gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
|
---|
| 491 | }
|
---|
| 492 | gc = next;
|
---|
| 493 | }
|
---|
[2] | 494 | }
|
---|
| 495 |
|
---|
| 496 | /* Return true if object has a finalization method.
|
---|
| 497 | * CAUTION: An instance of an old-style class has to be checked for a
|
---|
| 498 | *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
|
---|
| 499 | * which in turn could call the class's __getattr__ hook (if any). That
|
---|
| 500 | * could invoke arbitrary Python code, mutating the object graph in arbitrary
|
---|
| 501 | * ways, and that was the source of some excruciatingly subtle bugs.
|
---|
| 502 | */
|
---|
| 503 | static int
|
---|
| 504 | has_finalizer(PyObject *op)
|
---|
| 505 | {
|
---|
[391] | 506 | if (PyInstance_Check(op)) {
|
---|
| 507 | assert(delstr != NULL);
|
---|
| 508 | return _PyInstance_Lookup(op, delstr) != NULL;
|
---|
| 509 | }
|
---|
| 510 | else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
|
---|
| 511 | return op->ob_type->tp_del != NULL;
|
---|
| 512 | else if (PyGen_CheckExact(op))
|
---|
| 513 | return PyGen_NeedsFinalizing((PyGenObject *)op);
|
---|
| 514 | else
|
---|
| 515 | return 0;
|
---|
[2] | 516 | }
|
---|
| 517 |
|
---|
[391] | 518 | /* Try to untrack all currently tracked dictionaries */
|
---|
| 519 | static void
|
---|
| 520 | untrack_dicts(PyGC_Head *head)
|
---|
| 521 | {
|
---|
| 522 | PyGC_Head *next, *gc = head->gc.gc_next;
|
---|
| 523 | while (gc != head) {
|
---|
| 524 | PyObject *op = FROM_GC(gc);
|
---|
| 525 | next = gc->gc.gc_next;
|
---|
| 526 | if (PyDict_CheckExact(op))
|
---|
| 527 | _PyDict_MaybeUntrack(op);
|
---|
| 528 | gc = next;
|
---|
| 529 | }
|
---|
| 530 | }
|
---|
| 531 |
|
---|
[2] | 532 | /* Move the objects in unreachable with __del__ methods into `finalizers`.
|
---|
| 533 | * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
|
---|
| 534 | * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
|
---|
| 535 | */
|
---|
| 536 | static void
|
---|
| 537 | move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
|
---|
| 538 | {
|
---|
[391] | 539 | PyGC_Head *gc;
|
---|
| 540 | PyGC_Head *next;
|
---|
[2] | 541 |
|
---|
[391] | 542 | /* March over unreachable. Move objects with finalizers into
|
---|
| 543 | * `finalizers`.
|
---|
| 544 | */
|
---|
| 545 | for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
|
---|
| 546 | PyObject *op = FROM_GC(gc);
|
---|
[2] | 547 |
|
---|
[391] | 548 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
| 549 | next = gc->gc.gc_next;
|
---|
[2] | 550 |
|
---|
[391] | 551 | if (has_finalizer(op)) {
|
---|
| 552 | gc_list_move(gc, finalizers);
|
---|
| 553 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
| 554 | }
|
---|
| 555 | }
|
---|
[2] | 556 | }
|
---|
| 557 |
|
---|
| 558 | /* A traversal callback for move_finalizer_reachable. */
|
---|
| 559 | static int
|
---|
| 560 | visit_move(PyObject *op, PyGC_Head *tolist)
|
---|
| 561 | {
|
---|
[391] | 562 | if (PyObject_IS_GC(op)) {
|
---|
| 563 | if (IS_TENTATIVELY_UNREACHABLE(op)) {
|
---|
| 564 | PyGC_Head *gc = AS_GC(op);
|
---|
| 565 | gc_list_move(gc, tolist);
|
---|
| 566 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
| 567 | }
|
---|
| 568 | }
|
---|
| 569 | return 0;
|
---|
[2] | 570 | }
|
---|
| 571 |
|
---|
| 572 | /* Move objects that are reachable from finalizers, from the unreachable set
|
---|
| 573 | * into finalizers set.
|
---|
| 574 | */
|
---|
| 575 | static void
|
---|
| 576 | move_finalizer_reachable(PyGC_Head *finalizers)
|
---|
| 577 | {
|
---|
[391] | 578 | traverseproc traverse;
|
---|
| 579 | PyGC_Head *gc = finalizers->gc.gc_next;
|
---|
| 580 | for (; gc != finalizers; gc = gc->gc.gc_next) {
|
---|
| 581 | /* Note that the finalizers list may grow during this. */
|
---|
| 582 | traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
|
---|
| 583 | (void) traverse(FROM_GC(gc),
|
---|
| 584 | (visitproc)visit_move,
|
---|
| 585 | (void *)finalizers);
|
---|
| 586 | }
|
---|
[2] | 587 | }
|
---|
| 588 |
|
---|
| 589 | /* Clear all weakrefs to unreachable objects, and if such a weakref has a
|
---|
| 590 | * callback, invoke it if necessary. Note that it's possible for such
|
---|
| 591 | * weakrefs to be outside the unreachable set -- indeed, those are precisely
|
---|
| 592 | * the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
|
---|
| 593 | * overview & some details. Some weakrefs with callbacks may be reclaimed
|
---|
| 594 | * directly by this routine; the number reclaimed is the return value. Other
|
---|
| 595 | * weakrefs with callbacks may be moved into the `old` generation. Objects
|
---|
| 596 | * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
|
---|
| 597 | * unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
|
---|
| 598 | * no object in `unreachable` is weakly referenced anymore.
|
---|
| 599 | */
|
---|
| 600 | static int
|
---|
| 601 | handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
|
---|
| 602 | {
|
---|
[391] | 603 | PyGC_Head *gc;
|
---|
| 604 | PyObject *op; /* generally FROM_GC(gc) */
|
---|
| 605 | PyWeakReference *wr; /* generally a cast of op */
|
---|
| 606 | PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
|
---|
| 607 | PyGC_Head *next;
|
---|
| 608 | int num_freed = 0;
|
---|
[2] | 609 |
|
---|
[391] | 610 | gc_list_init(&wrcb_to_call);
|
---|
[2] | 611 |
|
---|
[391] | 612 | /* Clear all weakrefs to the objects in unreachable. If such a weakref
|
---|
| 613 | * also has a callback, move it into `wrcb_to_call` if the callback
|
---|
| 614 | * needs to be invoked. Note that we cannot invoke any callbacks until
|
---|
| 615 | * all weakrefs to unreachable objects are cleared, lest the callback
|
---|
| 616 | * resurrect an unreachable object via a still-active weakref. We
|
---|
| 617 | * make another pass over wrcb_to_call, invoking callbacks, after this
|
---|
| 618 | * pass completes.
|
---|
| 619 | */
|
---|
| 620 | for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
|
---|
| 621 | PyWeakReference **wrlist;
|
---|
[2] | 622 |
|
---|
[391] | 623 | op = FROM_GC(gc);
|
---|
| 624 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
| 625 | next = gc->gc.gc_next;
|
---|
[2] | 626 |
|
---|
[391] | 627 | if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
|
---|
| 628 | continue;
|
---|
[2] | 629 |
|
---|
[391] | 630 | /* It supports weakrefs. Does it have any? */
|
---|
| 631 | wrlist = (PyWeakReference **)
|
---|
| 632 | PyObject_GET_WEAKREFS_LISTPTR(op);
|
---|
[2] | 633 |
|
---|
[391] | 634 | /* `op` may have some weakrefs. March over the list, clear
|
---|
| 635 | * all the weakrefs, and move the weakrefs with callbacks
|
---|
| 636 | * that must be called into wrcb_to_call.
|
---|
| 637 | */
|
---|
| 638 | for (wr = *wrlist; wr != NULL; wr = *wrlist) {
|
---|
| 639 | PyGC_Head *wrasgc; /* AS_GC(wr) */
|
---|
[2] | 640 |
|
---|
[391] | 641 | /* _PyWeakref_ClearRef clears the weakref but leaves
|
---|
| 642 | * the callback pointer intact. Obscure: it also
|
---|
| 643 | * changes *wrlist.
|
---|
| 644 | */
|
---|
| 645 | assert(wr->wr_object == op);
|
---|
| 646 | _PyWeakref_ClearRef(wr);
|
---|
| 647 | assert(wr->wr_object == Py_None);
|
---|
| 648 | if (wr->wr_callback == NULL)
|
---|
| 649 | continue; /* no callback */
|
---|
[2] | 650 |
|
---|
[391] | 651 | /* Headache time. `op` is going away, and is weakly referenced by
|
---|
| 652 | * `wr`, which has a callback. Should the callback be invoked? If wr
|
---|
| 653 | * is also trash, no:
|
---|
| 654 | *
|
---|
| 655 | * 1. There's no need to call it. The object and the weakref are
|
---|
| 656 | * both going away, so it's legitimate to pretend the weakref is
|
---|
| 657 | * going away first. The user has to ensure a weakref outlives its
|
---|
| 658 | * referent if they want a guarantee that the wr callback will get
|
---|
| 659 | * invoked.
|
---|
| 660 | *
|
---|
| 661 | * 2. It may be catastrophic to call it. If the callback is also in
|
---|
| 662 | * cyclic trash (CT), then although the CT is unreachable from
|
---|
| 663 | * outside the current generation, CT may be reachable from the
|
---|
| 664 | * callback. Then the callback could resurrect insane objects.
|
---|
| 665 | *
|
---|
| 666 | * Since the callback is never needed and may be unsafe in this case,
|
---|
| 667 | * wr is simply left in the unreachable set. Note that because we
|
---|
| 668 | * already called _PyWeakref_ClearRef(wr), its callback will never
|
---|
| 669 | * trigger.
|
---|
| 670 | *
|
---|
| 671 | * OTOH, if wr isn't part of CT, we should invoke the callback: the
|
---|
| 672 | * weakref outlived the trash. Note that since wr isn't CT in this
|
---|
| 673 | * case, its callback can't be CT either -- wr acted as an external
|
---|
| 674 | * root to this generation, and therefore its callback did too. So
|
---|
| 675 | * nothing in CT is reachable from the callback either, so it's hard
|
---|
| 676 | * to imagine how calling it later could create a problem for us. wr
|
---|
| 677 | * is moved to wrcb_to_call in this case.
|
---|
| 678 | */
|
---|
| 679 | if (IS_TENTATIVELY_UNREACHABLE(wr))
|
---|
| 680 | continue;
|
---|
| 681 | assert(IS_REACHABLE(wr));
|
---|
[2] | 682 |
|
---|
[391] | 683 | /* Create a new reference so that wr can't go away
|
---|
| 684 | * before we can process it again.
|
---|
| 685 | */
|
---|
| 686 | Py_INCREF(wr);
|
---|
[2] | 687 |
|
---|
[391] | 688 | /* Move wr to wrcb_to_call, for the next pass. */
|
---|
| 689 | wrasgc = AS_GC(wr);
|
---|
| 690 | assert(wrasgc != next); /* wrasgc is reachable, but
|
---|
| 691 | next isn't, so they can't
|
---|
| 692 | be the same */
|
---|
| 693 | gc_list_move(wrasgc, &wrcb_to_call);
|
---|
| 694 | }
|
---|
| 695 | }
|
---|
[2] | 696 |
|
---|
[391] | 697 | /* Invoke the callbacks we decided to honor. It's safe to invoke them
|
---|
| 698 | * because they can't reference unreachable objects.
|
---|
| 699 | */
|
---|
| 700 | while (! gc_list_is_empty(&wrcb_to_call)) {
|
---|
| 701 | PyObject *temp;
|
---|
| 702 | PyObject *callback;
|
---|
[2] | 703 |
|
---|
[391] | 704 | gc = wrcb_to_call.gc.gc_next;
|
---|
| 705 | op = FROM_GC(gc);
|
---|
| 706 | assert(IS_REACHABLE(op));
|
---|
| 707 | assert(PyWeakref_Check(op));
|
---|
| 708 | wr = (PyWeakReference *)op;
|
---|
| 709 | callback = wr->wr_callback;
|
---|
| 710 | assert(callback != NULL);
|
---|
[2] | 711 |
|
---|
[391] | 712 | /* copy-paste of weakrefobject.c's handle_callback() */
|
---|
| 713 | temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
|
---|
| 714 | if (temp == NULL)
|
---|
| 715 | PyErr_WriteUnraisable(callback);
|
---|
| 716 | else
|
---|
| 717 | Py_DECREF(temp);
|
---|
[2] | 718 |
|
---|
[391] | 719 | /* Give up the reference we created in the first pass. When
|
---|
| 720 | * op's refcount hits 0 (which it may or may not do right now),
|
---|
| 721 | * op's tp_dealloc will decref op->wr_callback too. Note
|
---|
| 722 | * that the refcount probably will hit 0 now, and because this
|
---|
| 723 | * weakref was reachable to begin with, gc didn't already
|
---|
| 724 | * add it to its count of freed objects. Example: a reachable
|
---|
| 725 | * weak value dict maps some key to this reachable weakref.
|
---|
| 726 | * The callback removes this key->weakref mapping from the
|
---|
| 727 | * dict, leaving no other references to the weakref (excepting
|
---|
| 728 | * ours).
|
---|
| 729 | */
|
---|
| 730 | Py_DECREF(op);
|
---|
| 731 | if (wrcb_to_call.gc.gc_next == gc) {
|
---|
| 732 | /* object is still alive -- move it */
|
---|
| 733 | gc_list_move(gc, old);
|
---|
| 734 | }
|
---|
| 735 | else
|
---|
| 736 | ++num_freed;
|
---|
| 737 | }
|
---|
[2] | 738 |
|
---|
[391] | 739 | return num_freed;
|
---|
[2] | 740 | }
|
---|
| 741 |
|
---|
| 742 | static void
|
---|
| 743 | debug_instance(char *msg, PyInstanceObject *inst)
|
---|
| 744 | {
|
---|
[391] | 745 | char *cname;
|
---|
| 746 | /* simple version of instance_repr */
|
---|
| 747 | PyObject *classname = inst->in_class->cl_name;
|
---|
| 748 | if (classname != NULL && PyString_Check(classname))
|
---|
| 749 | cname = PyString_AsString(classname);
|
---|
| 750 | else
|
---|
| 751 | cname = "?";
|
---|
| 752 | PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
|
---|
| 753 | msg, cname, inst);
|
---|
[2] | 754 | }
|
---|
| 755 |
|
---|
| 756 | static void
|
---|
| 757 | debug_cycle(char *msg, PyObject *op)
|
---|
| 758 | {
|
---|
[391] | 759 | if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
|
---|
| 760 | debug_instance(msg, (PyInstanceObject *)op);
|
---|
| 761 | }
|
---|
| 762 | else if (debug & DEBUG_OBJECTS) {
|
---|
| 763 | PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
|
---|
| 764 | msg, Py_TYPE(op)->tp_name, op);
|
---|
| 765 | }
|
---|
[2] | 766 | }
|
---|
| 767 |
|
---|
| 768 | /* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
|
---|
| 769 | * only from such cycles).
|
---|
| 770 | * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
|
---|
| 771 | * garbage list (a Python list), else only the objects in finalizers with
|
---|
| 772 | * __del__ methods are appended to garbage. All objects in finalizers are
|
---|
| 773 | * merged into the old list regardless.
|
---|
| 774 | * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list).
|
---|
| 775 | * The finalizers list is made empty on a successful return.
|
---|
| 776 | */
|
---|
| 777 | static int
|
---|
| 778 | handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
|
---|
| 779 | {
|
---|
[391] | 780 | PyGC_Head *gc = finalizers->gc.gc_next;
|
---|
[2] | 781 |
|
---|
[391] | 782 | if (garbage == NULL) {
|
---|
| 783 | garbage = PyList_New(0);
|
---|
| 784 | if (garbage == NULL)
|
---|
| 785 | Py_FatalError("gc couldn't create gc.garbage list");
|
---|
| 786 | }
|
---|
| 787 | for (; gc != finalizers; gc = gc->gc.gc_next) {
|
---|
| 788 | PyObject *op = FROM_GC(gc);
|
---|
[2] | 789 |
|
---|
[391] | 790 | if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
|
---|
| 791 | if (PyList_Append(garbage, op) < 0)
|
---|
| 792 | return -1;
|
---|
| 793 | }
|
---|
| 794 | }
|
---|
[2] | 795 |
|
---|
[391] | 796 | gc_list_merge(finalizers, old);
|
---|
| 797 | return 0;
|
---|
[2] | 798 | }
|
---|
| 799 |
|
---|
[391] | 800 | /* Break reference cycles by clearing the containers involved. This is
|
---|
[2] | 801 | * tricky business as the lists can be changing and we don't know which
|
---|
| 802 | * objects may be freed. It is possible I screwed something up here.
|
---|
| 803 | */
|
---|
| 804 | static void
|
---|
| 805 | delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
|
---|
| 806 | {
|
---|
[391] | 807 | inquiry clear;
|
---|
[2] | 808 |
|
---|
[391] | 809 | while (!gc_list_is_empty(collectable)) {
|
---|
| 810 | PyGC_Head *gc = collectable->gc.gc_next;
|
---|
| 811 | PyObject *op = FROM_GC(gc);
|
---|
[2] | 812 |
|
---|
[391] | 813 | assert(IS_TENTATIVELY_UNREACHABLE(op));
|
---|
| 814 | if (debug & DEBUG_SAVEALL) {
|
---|
| 815 | PyList_Append(garbage, op);
|
---|
| 816 | }
|
---|
| 817 | else {
|
---|
| 818 | if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
|
---|
| 819 | Py_INCREF(op);
|
---|
| 820 | clear(op);
|
---|
| 821 | Py_DECREF(op);
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 | if (collectable->gc.gc_next == gc) {
|
---|
| 825 | /* object is still alive, move it, it may die later */
|
---|
| 826 | gc_list_move(gc, old);
|
---|
| 827 | gc->gc.gc_refs = GC_REACHABLE;
|
---|
| 828 | }
|
---|
| 829 | }
|
---|
[2] | 830 | }
|
---|
| 831 |
|
---|
| 832 | /* Clear all free lists
|
---|
| 833 | * All free lists are cleared during the collection of the highest generation.
|
---|
| 834 | * Allocated items in the free list may keep a pymalloc arena occupied.
|
---|
| 835 | * Clearing the free lists may give back memory to the OS earlier.
|
---|
| 836 | */
|
---|
| 837 | static void
|
---|
| 838 | clear_freelists(void)
|
---|
| 839 | {
|
---|
[391] | 840 | (void)PyMethod_ClearFreeList();
|
---|
| 841 | (void)PyFrame_ClearFreeList();
|
---|
| 842 | (void)PyCFunction_ClearFreeList();
|
---|
| 843 | (void)PyTuple_ClearFreeList();
|
---|
| 844 | #ifdef Py_USING_UNICODE
|
---|
| 845 | (void)PyUnicode_ClearFreeList();
|
---|
| 846 | #endif
|
---|
| 847 | (void)PyInt_ClearFreeList();
|
---|
| 848 | (void)PyFloat_ClearFreeList();
|
---|
[2] | 849 | }
|
---|
| 850 |
|
---|
| 851 | static double
|
---|
| 852 | get_time(void)
|
---|
| 853 | {
|
---|
[391] | 854 | double result = 0;
|
---|
| 855 | if (tmod != NULL) {
|
---|
| 856 | PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
|
---|
| 857 | if (f == NULL) {
|
---|
| 858 | PyErr_Clear();
|
---|
| 859 | }
|
---|
| 860 | else {
|
---|
| 861 | if (PyFloat_Check(f))
|
---|
| 862 | result = PyFloat_AsDouble(f);
|
---|
| 863 | Py_DECREF(f);
|
---|
| 864 | }
|
---|
| 865 | }
|
---|
| 866 | return result;
|
---|
[2] | 867 | }
|
---|
| 868 |
|
---|
| 869 | /* This is the main function. Read this to understand how the
|
---|
| 870 | * collection process works. */
|
---|
| 871 | static Py_ssize_t
|
---|
| 872 | collect(int generation)
|
---|
| 873 | {
|
---|
[391] | 874 | int i;
|
---|
| 875 | Py_ssize_t m = 0; /* # objects collected */
|
---|
| 876 | Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
|
---|
| 877 | PyGC_Head *young; /* the generation we are examining */
|
---|
| 878 | PyGC_Head *old; /* next older generation */
|
---|
| 879 | PyGC_Head unreachable; /* non-problematic unreachable trash */
|
---|
| 880 | PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
|
---|
| 881 | PyGC_Head *gc;
|
---|
| 882 | double t1 = 0.0;
|
---|
[2] | 883 |
|
---|
[391] | 884 | if (delstr == NULL) {
|
---|
| 885 | delstr = PyString_InternFromString("__del__");
|
---|
| 886 | if (delstr == NULL)
|
---|
| 887 | Py_FatalError("gc couldn't allocate \"__del__\"");
|
---|
| 888 | }
|
---|
[2] | 889 |
|
---|
[391] | 890 | if (debug & DEBUG_STATS) {
|
---|
| 891 | PySys_WriteStderr("gc: collecting generation %d...\n",
|
---|
| 892 | generation);
|
---|
| 893 | PySys_WriteStderr("gc: objects in each generation:");
|
---|
| 894 | for (i = 0; i < NUM_GENERATIONS; i++)
|
---|
| 895 | PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
|
---|
| 896 | gc_list_size(GEN_HEAD(i)));
|
---|
| 897 | t1 = get_time();
|
---|
| 898 | PySys_WriteStderr("\n");
|
---|
| 899 | }
|
---|
[2] | 900 |
|
---|
[391] | 901 | /* update collection and allocation counters */
|
---|
| 902 | if (generation+1 < NUM_GENERATIONS)
|
---|
| 903 | generations[generation+1].count += 1;
|
---|
| 904 | for (i = 0; i <= generation; i++)
|
---|
| 905 | generations[i].count = 0;
|
---|
[2] | 906 |
|
---|
[391] | 907 | /* merge younger generations with one we are currently collecting */
|
---|
| 908 | for (i = 0; i < generation; i++) {
|
---|
| 909 | gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
|
---|
| 910 | }
|
---|
[2] | 911 |
|
---|
[391] | 912 | /* handy references */
|
---|
| 913 | young = GEN_HEAD(generation);
|
---|
| 914 | if (generation < NUM_GENERATIONS-1)
|
---|
| 915 | old = GEN_HEAD(generation+1);
|
---|
| 916 | else
|
---|
| 917 | old = young;
|
---|
[2] | 918 |
|
---|
[391] | 919 | /* Using ob_refcnt and gc_refs, calculate which objects in the
|
---|
| 920 | * container set are reachable from outside the set (i.e., have a
|
---|
| 921 | * refcount greater than 0 when all the references within the
|
---|
| 922 | * set are taken into account).
|
---|
| 923 | */
|
---|
| 924 | update_refs(young);
|
---|
| 925 | subtract_refs(young);
|
---|
[2] | 926 |
|
---|
[391] | 927 | /* Leave everything reachable from outside young in young, and move
|
---|
| 928 | * everything else (in young) to unreachable.
|
---|
| 929 | * NOTE: This used to move the reachable objects into a reachable
|
---|
| 930 | * set instead. But most things usually turn out to be reachable,
|
---|
| 931 | * so it's more efficient to move the unreachable things.
|
---|
| 932 | */
|
---|
| 933 | gc_list_init(&unreachable);
|
---|
| 934 | move_unreachable(young, &unreachable);
|
---|
[2] | 935 |
|
---|
[391] | 936 | /* Move reachable objects to next generation. */
|
---|
| 937 | if (young != old) {
|
---|
| 938 | if (generation == NUM_GENERATIONS - 2) {
|
---|
| 939 | long_lived_pending += gc_list_size(young);
|
---|
| 940 | }
|
---|
| 941 | gc_list_merge(young, old);
|
---|
| 942 | }
|
---|
| 943 | else {
|
---|
| 944 | /* We only untrack dicts in full collections, to avoid quadratic
|
---|
| 945 | dict build-up. See issue #14775. */
|
---|
| 946 | untrack_dicts(young);
|
---|
| 947 | long_lived_pending = 0;
|
---|
| 948 | long_lived_total = gc_list_size(young);
|
---|
| 949 | }
|
---|
[2] | 950 |
|
---|
[391] | 951 | /* All objects in unreachable are trash, but objects reachable from
|
---|
| 952 | * finalizers can't safely be deleted. Python programmers should take
|
---|
| 953 | * care not to create such things. For Python, finalizers means
|
---|
| 954 | * instance objects with __del__ methods. Weakrefs with callbacks
|
---|
| 955 | * can also call arbitrary Python code but they will be dealt with by
|
---|
| 956 | * handle_weakrefs().
|
---|
| 957 | */
|
---|
| 958 | gc_list_init(&finalizers);
|
---|
| 959 | move_finalizers(&unreachable, &finalizers);
|
---|
| 960 | /* finalizers contains the unreachable objects with a finalizer;
|
---|
| 961 | * unreachable objects reachable *from* those are also uncollectable,
|
---|
| 962 | * and we move those into the finalizers list too.
|
---|
| 963 | */
|
---|
| 964 | move_finalizer_reachable(&finalizers);
|
---|
[2] | 965 |
|
---|
[391] | 966 | /* Collect statistics on collectable objects found and print
|
---|
| 967 | * debugging information.
|
---|
| 968 | */
|
---|
| 969 | for (gc = unreachable.gc.gc_next; gc != &unreachable;
|
---|
| 970 | gc = gc->gc.gc_next) {
|
---|
| 971 | m++;
|
---|
| 972 | if (debug & DEBUG_COLLECTABLE) {
|
---|
| 973 | debug_cycle("collectable", FROM_GC(gc));
|
---|
| 974 | }
|
---|
| 975 | }
|
---|
[2] | 976 |
|
---|
[391] | 977 | /* Clear weakrefs and invoke callbacks as necessary. */
|
---|
| 978 | m += handle_weakrefs(&unreachable, old);
|
---|
[2] | 979 |
|
---|
[391] | 980 | /* Call tp_clear on objects in the unreachable set. This will cause
|
---|
| 981 | * the reference cycles to be broken. It may also cause some objects
|
---|
| 982 | * in finalizers to be freed.
|
---|
| 983 | */
|
---|
| 984 | delete_garbage(&unreachable, old);
|
---|
[2] | 985 |
|
---|
[391] | 986 | /* Collect statistics on uncollectable objects found and print
|
---|
| 987 | * debugging information. */
|
---|
| 988 | for (gc = finalizers.gc.gc_next;
|
---|
| 989 | gc != &finalizers;
|
---|
| 990 | gc = gc->gc.gc_next) {
|
---|
| 991 | n++;
|
---|
| 992 | if (debug & DEBUG_UNCOLLECTABLE)
|
---|
| 993 | debug_cycle("uncollectable", FROM_GC(gc));
|
---|
| 994 | }
|
---|
| 995 | if (debug & DEBUG_STATS) {
|
---|
| 996 | double t2 = get_time();
|
---|
| 997 | if (m == 0 && n == 0)
|
---|
| 998 | PySys_WriteStderr("gc: done");
|
---|
| 999 | else
|
---|
| 1000 | PySys_WriteStderr(
|
---|
| 1001 | "gc: done, "
|
---|
| 1002 | "%" PY_FORMAT_SIZE_T "d unreachable, "
|
---|
| 1003 | "%" PY_FORMAT_SIZE_T "d uncollectable",
|
---|
| 1004 | n+m, n);
|
---|
| 1005 | if (t1 && t2) {
|
---|
| 1006 | PySys_WriteStderr(", %.4fs elapsed", t2-t1);
|
---|
| 1007 | }
|
---|
| 1008 | PySys_WriteStderr(".\n");
|
---|
| 1009 | }
|
---|
[2] | 1010 |
|
---|
[391] | 1011 | /* Append instances in the uncollectable set to a Python
|
---|
| 1012 | * reachable list of garbage. The programmer has to deal with
|
---|
| 1013 | * this if they insist on creating this type of structure.
|
---|
| 1014 | */
|
---|
| 1015 | (void)handle_finalizers(&finalizers, old);
|
---|
[2] | 1016 |
|
---|
[391] | 1017 | /* Clear free list only during the collection of the highest
|
---|
| 1018 | * generation */
|
---|
| 1019 | if (generation == NUM_GENERATIONS-1) {
|
---|
| 1020 | clear_freelists();
|
---|
| 1021 | }
|
---|
[2] | 1022 |
|
---|
[391] | 1023 | if (PyErr_Occurred()) {
|
---|
| 1024 | if (gc_str == NULL)
|
---|
| 1025 | gc_str = PyString_FromString("garbage collection");
|
---|
| 1026 | PyErr_WriteUnraisable(gc_str);
|
---|
| 1027 | Py_FatalError("unexpected exception during garbage collection");
|
---|
| 1028 | }
|
---|
| 1029 | return n+m;
|
---|
[2] | 1030 | }
|
---|
| 1031 |
|
---|
| 1032 | static Py_ssize_t
|
---|
| 1033 | collect_generations(void)
|
---|
| 1034 | {
|
---|
[391] | 1035 | int i;
|
---|
| 1036 | Py_ssize_t n = 0;
|
---|
[2] | 1037 |
|
---|
[391] | 1038 | /* Find the oldest generation (highest numbered) where the count
|
---|
| 1039 | * exceeds the threshold. Objects in the that generation and
|
---|
| 1040 | * generations younger than it will be collected. */
|
---|
| 1041 | for (i = NUM_GENERATIONS-1; i >= 0; i--) {
|
---|
| 1042 | if (generations[i].count > generations[i].threshold) {
|
---|
| 1043 | /* Avoid quadratic performance degradation in number
|
---|
| 1044 | of tracked objects. See comments at the beginning
|
---|
| 1045 | of this file, and issue #4074.
|
---|
| 1046 | */
|
---|
| 1047 | if (i == NUM_GENERATIONS - 1
|
---|
| 1048 | && long_lived_pending < long_lived_total / 4)
|
---|
| 1049 | continue;
|
---|
| 1050 | n = collect(i);
|
---|
| 1051 | break;
|
---|
| 1052 | }
|
---|
| 1053 | }
|
---|
| 1054 | return n;
|
---|
[2] | 1055 | }
|
---|
| 1056 |
|
---|
| 1057 | PyDoc_STRVAR(gc_enable__doc__,
|
---|
| 1058 | "enable() -> None\n"
|
---|
| 1059 | "\n"
|
---|
| 1060 | "Enable automatic garbage collection.\n");
|
---|
| 1061 |
|
---|
| 1062 | static PyObject *
|
---|
| 1063 | gc_enable(PyObject *self, PyObject *noargs)
|
---|
| 1064 | {
|
---|
[391] | 1065 | enabled = 1;
|
---|
| 1066 | Py_INCREF(Py_None);
|
---|
| 1067 | return Py_None;
|
---|
[2] | 1068 | }
|
---|
| 1069 |
|
---|
| 1070 | PyDoc_STRVAR(gc_disable__doc__,
|
---|
| 1071 | "disable() -> None\n"
|
---|
| 1072 | "\n"
|
---|
| 1073 | "Disable automatic garbage collection.\n");
|
---|
| 1074 |
|
---|
| 1075 | static PyObject *
|
---|
| 1076 | gc_disable(PyObject *self, PyObject *noargs)
|
---|
| 1077 | {
|
---|
[391] | 1078 | enabled = 0;
|
---|
| 1079 | Py_INCREF(Py_None);
|
---|
| 1080 | return Py_None;
|
---|
[2] | 1081 | }
|
---|
| 1082 |
|
---|
| 1083 | PyDoc_STRVAR(gc_isenabled__doc__,
|
---|
| 1084 | "isenabled() -> status\n"
|
---|
| 1085 | "\n"
|
---|
| 1086 | "Returns true if automatic garbage collection is enabled.\n");
|
---|
| 1087 |
|
---|
| 1088 | static PyObject *
|
---|
| 1089 | gc_isenabled(PyObject *self, PyObject *noargs)
|
---|
| 1090 | {
|
---|
[391] | 1091 | return PyBool_FromLong((long)enabled);
|
---|
[2] | 1092 | }
|
---|
| 1093 |
|
---|
| 1094 | PyDoc_STRVAR(gc_collect__doc__,
|
---|
| 1095 | "collect([generation]) -> n\n"
|
---|
| 1096 | "\n"
|
---|
| 1097 | "With no arguments, run a full collection. The optional argument\n"
|
---|
| 1098 | "may be an integer specifying which generation to collect. A ValueError\n"
|
---|
| 1099 | "is raised if the generation number is invalid.\n\n"
|
---|
| 1100 | "The number of unreachable objects is returned.\n");
|
---|
| 1101 |
|
---|
| 1102 | static PyObject *
|
---|
| 1103 | gc_collect(PyObject *self, PyObject *args, PyObject *kws)
|
---|
| 1104 | {
|
---|
[391] | 1105 | static char *keywords[] = {"generation", NULL};
|
---|
| 1106 | int genarg = NUM_GENERATIONS - 1;
|
---|
| 1107 | Py_ssize_t n;
|
---|
[2] | 1108 |
|
---|
[391] | 1109 | if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
|
---|
| 1110 | return NULL;
|
---|
[2] | 1111 |
|
---|
[391] | 1112 | else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
|
---|
| 1113 | PyErr_SetString(PyExc_ValueError, "invalid generation");
|
---|
| 1114 | return NULL;
|
---|
| 1115 | }
|
---|
[2] | 1116 |
|
---|
[391] | 1117 | if (collecting)
|
---|
| 1118 | n = 0; /* already collecting, don't do anything */
|
---|
| 1119 | else {
|
---|
| 1120 | collecting = 1;
|
---|
| 1121 | n = collect(genarg);
|
---|
| 1122 | collecting = 0;
|
---|
| 1123 | }
|
---|
[2] | 1124 |
|
---|
[391] | 1125 | return PyInt_FromSsize_t(n);
|
---|
[2] | 1126 | }
|
---|
| 1127 |
|
---|
| 1128 | PyDoc_STRVAR(gc_set_debug__doc__,
|
---|
| 1129 | "set_debug(flags) -> None\n"
|
---|
| 1130 | "\n"
|
---|
| 1131 | "Set the garbage collection debugging flags. Debugging information is\n"
|
---|
| 1132 | "written to sys.stderr.\n"
|
---|
| 1133 | "\n"
|
---|
| 1134 | "flags is an integer and can have the following bits turned on:\n"
|
---|
| 1135 | "\n"
|
---|
| 1136 | " DEBUG_STATS - Print statistics during collection.\n"
|
---|
| 1137 | " DEBUG_COLLECTABLE - Print collectable objects found.\n"
|
---|
| 1138 | " DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
|
---|
| 1139 | " DEBUG_INSTANCES - Print instance objects.\n"
|
---|
| 1140 | " DEBUG_OBJECTS - Print objects other than instances.\n"
|
---|
| 1141 | " DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
|
---|
| 1142 | " DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");
|
---|
| 1143 |
|
---|
| 1144 | static PyObject *
|
---|
| 1145 | gc_set_debug(PyObject *self, PyObject *args)
|
---|
| 1146 | {
|
---|
[391] | 1147 | if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
|
---|
| 1148 | return NULL;
|
---|
[2] | 1149 |
|
---|
[391] | 1150 | Py_INCREF(Py_None);
|
---|
| 1151 | return Py_None;
|
---|
[2] | 1152 | }
|
---|
| 1153 |
|
---|
| 1154 | PyDoc_STRVAR(gc_get_debug__doc__,
|
---|
| 1155 | "get_debug() -> flags\n"
|
---|
| 1156 | "\n"
|
---|
| 1157 | "Get the garbage collection debugging flags.\n");
|
---|
| 1158 |
|
---|
| 1159 | static PyObject *
|
---|
| 1160 | gc_get_debug(PyObject *self, PyObject *noargs)
|
---|
| 1161 | {
|
---|
[391] | 1162 | return Py_BuildValue("i", debug);
|
---|
[2] | 1163 | }
|
---|
| 1164 |
|
---|
| 1165 | PyDoc_STRVAR(gc_set_thresh__doc__,
|
---|
| 1166 | "set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
|
---|
| 1167 | "\n"
|
---|
| 1168 | "Sets the collection thresholds. Setting threshold0 to zero disables\n"
|
---|
| 1169 | "collection.\n");
|
---|
| 1170 |
|
---|
| 1171 | static PyObject *
|
---|
| 1172 | gc_set_thresh(PyObject *self, PyObject *args)
|
---|
| 1173 | {
|
---|
[391] | 1174 | int i;
|
---|
| 1175 | if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
|
---|
| 1176 | &generations[0].threshold,
|
---|
| 1177 | &generations[1].threshold,
|
---|
| 1178 | &generations[2].threshold))
|
---|
| 1179 | return NULL;
|
---|
| 1180 | for (i = 2; i < NUM_GENERATIONS; i++) {
|
---|
| 1181 | /* generations higher than 2 get the same threshold */
|
---|
| 1182 | generations[i].threshold = generations[2].threshold;
|
---|
| 1183 | }
|
---|
[2] | 1184 |
|
---|
[391] | 1185 | Py_INCREF(Py_None);
|
---|
| 1186 | return Py_None;
|
---|
[2] | 1187 | }
|
---|
| 1188 |
|
---|
| 1189 | PyDoc_STRVAR(gc_get_thresh__doc__,
|
---|
| 1190 | "get_threshold() -> (threshold0, threshold1, threshold2)\n"
|
---|
| 1191 | "\n"
|
---|
| 1192 | "Return the current collection thresholds\n");
|
---|
| 1193 |
|
---|
| 1194 | static PyObject *
|
---|
| 1195 | gc_get_thresh(PyObject *self, PyObject *noargs)
|
---|
| 1196 | {
|
---|
[391] | 1197 | return Py_BuildValue("(iii)",
|
---|
| 1198 | generations[0].threshold,
|
---|
| 1199 | generations[1].threshold,
|
---|
| 1200 | generations[2].threshold);
|
---|
[2] | 1201 | }
|
---|
| 1202 |
|
---|
| 1203 | PyDoc_STRVAR(gc_get_count__doc__,
|
---|
| 1204 | "get_count() -> (count0, count1, count2)\n"
|
---|
| 1205 | "\n"
|
---|
| 1206 | "Return the current collection counts\n");
|
---|
| 1207 |
|
---|
| 1208 | static PyObject *
|
---|
| 1209 | gc_get_count(PyObject *self, PyObject *noargs)
|
---|
| 1210 | {
|
---|
[391] | 1211 | return Py_BuildValue("(iii)",
|
---|
| 1212 | generations[0].count,
|
---|
| 1213 | generations[1].count,
|
---|
| 1214 | generations[2].count);
|
---|
[2] | 1215 | }
|
---|
| 1216 |
|
---|
| 1217 | static int
|
---|
| 1218 | referrersvisit(PyObject* obj, PyObject *objs)
|
---|
| 1219 | {
|
---|
[391] | 1220 | Py_ssize_t i;
|
---|
| 1221 | for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
|
---|
| 1222 | if (PyTuple_GET_ITEM(objs, i) == obj)
|
---|
| 1223 | return 1;
|
---|
| 1224 | return 0;
|
---|
[2] | 1225 | }
|
---|
| 1226 |
|
---|
| 1227 | static int
|
---|
| 1228 | gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
|
---|
| 1229 | {
|
---|
[391] | 1230 | PyGC_Head *gc;
|
---|
| 1231 | PyObject *obj;
|
---|
| 1232 | traverseproc traverse;
|
---|
| 1233 | for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
|
---|
| 1234 | obj = FROM_GC(gc);
|
---|
| 1235 | traverse = Py_TYPE(obj)->tp_traverse;
|
---|
| 1236 | if (obj == objs || obj == resultlist)
|
---|
| 1237 | continue;
|
---|
| 1238 | if (traverse(obj, (visitproc)referrersvisit, objs)) {
|
---|
| 1239 | if (PyList_Append(resultlist, obj) < 0)
|
---|
| 1240 | return 0; /* error */
|
---|
| 1241 | }
|
---|
| 1242 | }
|
---|
| 1243 | return 1; /* no error */
|
---|
[2] | 1244 | }
|
---|
| 1245 |
|
---|
| 1246 | PyDoc_STRVAR(gc_get_referrers__doc__,
|
---|
| 1247 | "get_referrers(*objs) -> list\n\
|
---|
| 1248 | Return the list of objects that directly refer to any of objs.");
|
---|
| 1249 |
|
---|
| 1250 | static PyObject *
|
---|
| 1251 | gc_get_referrers(PyObject *self, PyObject *args)
|
---|
| 1252 | {
|
---|
[391] | 1253 | int i;
|
---|
| 1254 | PyObject *result = PyList_New(0);
|
---|
| 1255 | if (!result) return NULL;
|
---|
[2] | 1256 |
|
---|
[391] | 1257 | for (i = 0; i < NUM_GENERATIONS; i++) {
|
---|
| 1258 | if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
|
---|
| 1259 | Py_DECREF(result);
|
---|
| 1260 | return NULL;
|
---|
| 1261 | }
|
---|
| 1262 | }
|
---|
| 1263 | return result;
|
---|
[2] | 1264 | }
|
---|
| 1265 |
|
---|
| 1266 | /* Append obj to list; return true if error (out of memory), false if OK. */
|
---|
| 1267 | static int
|
---|
| 1268 | referentsvisit(PyObject *obj, PyObject *list)
|
---|
| 1269 | {
|
---|
[391] | 1270 | return PyList_Append(list, obj) < 0;
|
---|
[2] | 1271 | }
|
---|
| 1272 |
|
---|
| 1273 | PyDoc_STRVAR(gc_get_referents__doc__,
|
---|
| 1274 | "get_referents(*objs) -> list\n\
|
---|
| 1275 | Return the list of objects that are directly referred to by objs.");
|
---|
| 1276 |
|
---|
| 1277 | static PyObject *
|
---|
| 1278 | gc_get_referents(PyObject *self, PyObject *args)
|
---|
| 1279 | {
|
---|
[391] | 1280 | Py_ssize_t i;
|
---|
| 1281 | PyObject *result = PyList_New(0);
|
---|
[2] | 1282 |
|
---|
[391] | 1283 | if (result == NULL)
|
---|
| 1284 | return NULL;
|
---|
[2] | 1285 |
|
---|
[391] | 1286 | for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
|
---|
| 1287 | traverseproc traverse;
|
---|
| 1288 | PyObject *obj = PyTuple_GET_ITEM(args, i);
|
---|
[2] | 1289 |
|
---|
[391] | 1290 | if (! PyObject_IS_GC(obj))
|
---|
| 1291 | continue;
|
---|
| 1292 | traverse = Py_TYPE(obj)->tp_traverse;
|
---|
| 1293 | if (! traverse)
|
---|
| 1294 | continue;
|
---|
| 1295 | if (traverse(obj, (visitproc)referentsvisit, result)) {
|
---|
| 1296 | Py_DECREF(result);
|
---|
| 1297 | return NULL;
|
---|
| 1298 | }
|
---|
| 1299 | }
|
---|
| 1300 | return result;
|
---|
[2] | 1301 | }
|
---|
| 1302 |
|
---|
| 1303 | PyDoc_STRVAR(gc_get_objects__doc__,
|
---|
| 1304 | "get_objects() -> [...]\n"
|
---|
| 1305 | "\n"
|
---|
| 1306 | "Return a list of objects tracked by the collector (excluding the list\n"
|
---|
| 1307 | "returned).\n");
|
---|
| 1308 |
|
---|
| 1309 | static PyObject *
|
---|
| 1310 | gc_get_objects(PyObject *self, PyObject *noargs)
|
---|
| 1311 | {
|
---|
[391] | 1312 | int i;
|
---|
| 1313 | PyObject* result;
|
---|
[2] | 1314 |
|
---|
[391] | 1315 | result = PyList_New(0);
|
---|
| 1316 | if (result == NULL)
|
---|
| 1317 | return NULL;
|
---|
| 1318 | for (i = 0; i < NUM_GENERATIONS; i++) {
|
---|
| 1319 | if (append_objects(result, GEN_HEAD(i))) {
|
---|
| 1320 | Py_DECREF(result);
|
---|
| 1321 | return NULL;
|
---|
| 1322 | }
|
---|
| 1323 | }
|
---|
| 1324 | return result;
|
---|
[2] | 1325 | }
|
---|
| 1326 |
|
---|
[391] | 1327 | PyDoc_STRVAR(gc_is_tracked__doc__,
|
---|
| 1328 | "is_tracked(obj) -> bool\n"
|
---|
| 1329 | "\n"
|
---|
| 1330 | "Returns true if the object is tracked by the garbage collector.\n"
|
---|
| 1331 | "Simple atomic objects will return false.\n"
|
---|
| 1332 | );
|
---|
[2] | 1333 |
|
---|
[391] | 1334 | static PyObject *
|
---|
| 1335 | gc_is_tracked(PyObject *self, PyObject *obj)
|
---|
| 1336 | {
|
---|
| 1337 | PyObject *result;
|
---|
| 1338 |
|
---|
| 1339 | if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
|
---|
| 1340 | result = Py_True;
|
---|
| 1341 | else
|
---|
| 1342 | result = Py_False;
|
---|
| 1343 | Py_INCREF(result);
|
---|
| 1344 | return result;
|
---|
| 1345 | }
|
---|
| 1346 |
|
---|
| 1347 |
|
---|
[2] | 1348 | PyDoc_STRVAR(gc__doc__,
|
---|
| 1349 | "This module provides access to the garbage collector for reference cycles.\n"
|
---|
| 1350 | "\n"
|
---|
| 1351 | "enable() -- Enable automatic garbage collection.\n"
|
---|
| 1352 | "disable() -- Disable automatic garbage collection.\n"
|
---|
| 1353 | "isenabled() -- Returns true if automatic collection is enabled.\n"
|
---|
| 1354 | "collect() -- Do a full collection right now.\n"
|
---|
| 1355 | "get_count() -- Return the current collection counts.\n"
|
---|
| 1356 | "set_debug() -- Set debugging flags.\n"
|
---|
| 1357 | "get_debug() -- Get debugging flags.\n"
|
---|
| 1358 | "set_threshold() -- Set the collection thresholds.\n"
|
---|
| 1359 | "get_threshold() -- Return the current the collection thresholds.\n"
|
---|
| 1360 | "get_objects() -- Return a list of all objects tracked by the collector.\n"
|
---|
[391] | 1361 | "is_tracked() -- Returns true if a given object is tracked.\n"
|
---|
[2] | 1362 | "get_referrers() -- Return the list of objects that refer to an object.\n"
|
---|
| 1363 | "get_referents() -- Return the list of objects that an object refers to.\n");
|
---|
| 1364 |
|
---|
| 1365 | static PyMethodDef GcMethods[] = {
|
---|
[391] | 1366 | {"enable", gc_enable, METH_NOARGS, gc_enable__doc__},
|
---|
| 1367 | {"disable", gc_disable, METH_NOARGS, gc_disable__doc__},
|
---|
| 1368 | {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__},
|
---|
| 1369 | {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__},
|
---|
| 1370 | {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__},
|
---|
| 1371 | {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__},
|
---|
| 1372 | {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
|
---|
| 1373 | {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__},
|
---|
| 1374 | {"collect", (PyCFunction)gc_collect,
|
---|
| 1375 | METH_VARARGS | METH_KEYWORDS, gc_collect__doc__},
|
---|
| 1376 | {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__},
|
---|
| 1377 | {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__},
|
---|
| 1378 | {"get_referrers", gc_get_referrers, METH_VARARGS,
|
---|
| 1379 | gc_get_referrers__doc__},
|
---|
| 1380 | {"get_referents", gc_get_referents, METH_VARARGS,
|
---|
| 1381 | gc_get_referents__doc__},
|
---|
| 1382 | {NULL, NULL} /* Sentinel */
|
---|
[2] | 1383 | };
|
---|
| 1384 |
|
---|
| 1385 | PyMODINIT_FUNC
|
---|
| 1386 | initgc(void)
|
---|
| 1387 | {
|
---|
[391] | 1388 | PyObject *m;
|
---|
[2] | 1389 |
|
---|
[391] | 1390 | m = Py_InitModule4("gc",
|
---|
| 1391 | GcMethods,
|
---|
| 1392 | gc__doc__,
|
---|
| 1393 | NULL,
|
---|
| 1394 | PYTHON_API_VERSION);
|
---|
| 1395 | if (m == NULL)
|
---|
| 1396 | return;
|
---|
[2] | 1397 |
|
---|
[391] | 1398 | if (garbage == NULL) {
|
---|
| 1399 | garbage = PyList_New(0);
|
---|
| 1400 | if (garbage == NULL)
|
---|
| 1401 | return;
|
---|
| 1402 | }
|
---|
| 1403 | Py_INCREF(garbage);
|
---|
| 1404 | if (PyModule_AddObject(m, "garbage", garbage) < 0)
|
---|
| 1405 | return;
|
---|
[2] | 1406 |
|
---|
[391] | 1407 | /* Importing can't be done in collect() because collect()
|
---|
| 1408 | * can be called via PyGC_Collect() in Py_Finalize().
|
---|
| 1409 | * This wouldn't be a problem, except that <initialized> is
|
---|
| 1410 | * reset to 0 before calling collect which trips up
|
---|
| 1411 | * the import and triggers an assertion.
|
---|
| 1412 | */
|
---|
| 1413 | if (tmod == NULL) {
|
---|
| 1414 | tmod = PyImport_ImportModuleNoBlock("time");
|
---|
| 1415 | if (tmod == NULL)
|
---|
| 1416 | PyErr_Clear();
|
---|
| 1417 | }
|
---|
[2] | 1418 |
|
---|
| 1419 | #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
|
---|
[391] | 1420 | ADD_INT(DEBUG_STATS);
|
---|
| 1421 | ADD_INT(DEBUG_COLLECTABLE);
|
---|
| 1422 | ADD_INT(DEBUG_UNCOLLECTABLE);
|
---|
| 1423 | ADD_INT(DEBUG_INSTANCES);
|
---|
| 1424 | ADD_INT(DEBUG_OBJECTS);
|
---|
| 1425 | ADD_INT(DEBUG_SAVEALL);
|
---|
| 1426 | ADD_INT(DEBUG_LEAK);
|
---|
[2] | 1427 | #undef ADD_INT
|
---|
| 1428 | }
|
---|
| 1429 |
|
---|
| 1430 | /* API to invoke gc.collect() from C */
|
---|
| 1431 | Py_ssize_t
|
---|
| 1432 | PyGC_Collect(void)
|
---|
| 1433 | {
|
---|
[391] | 1434 | Py_ssize_t n;
|
---|
[2] | 1435 |
|
---|
[391] | 1436 | if (collecting)
|
---|
| 1437 | n = 0; /* already collecting, don't do anything */
|
---|
| 1438 | else {
|
---|
| 1439 | collecting = 1;
|
---|
| 1440 | n = collect(NUM_GENERATIONS - 1);
|
---|
| 1441 | collecting = 0;
|
---|
| 1442 | }
|
---|
[2] | 1443 |
|
---|
[391] | 1444 | return n;
|
---|
[2] | 1445 | }
|
---|
| 1446 |
|
---|
| 1447 | /* for debugging */
|
---|
| 1448 | void
|
---|
| 1449 | _PyGC_Dump(PyGC_Head *g)
|
---|
| 1450 | {
|
---|
[391] | 1451 | _PyObject_Dump(FROM_GC(g));
|
---|
[2] | 1452 | }
|
---|
| 1453 |
|
---|
| 1454 | /* extension modules might be compiled with GC support so these
|
---|
| 1455 | functions must always be available */
|
---|
| 1456 |
|
---|
| 1457 | #undef PyObject_GC_Track
|
---|
| 1458 | #undef PyObject_GC_UnTrack
|
---|
| 1459 | #undef PyObject_GC_Del
|
---|
| 1460 | #undef _PyObject_GC_Malloc
|
---|
| 1461 |
|
---|
| 1462 | void
|
---|
| 1463 | PyObject_GC_Track(void *op)
|
---|
| 1464 | {
|
---|
[391] | 1465 | _PyObject_GC_TRACK(op);
|
---|
[2] | 1466 | }
|
---|
| 1467 |
|
---|
| 1468 | /* for binary compatibility with 2.2 */
|
---|
| 1469 | void
|
---|
| 1470 | _PyObject_GC_Track(PyObject *op)
|
---|
| 1471 | {
|
---|
| 1472 | PyObject_GC_Track(op);
|
---|
| 1473 | }
|
---|
| 1474 |
|
---|
| 1475 | void
|
---|
| 1476 | PyObject_GC_UnTrack(void *op)
|
---|
| 1477 | {
|
---|
[391] | 1478 | /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
|
---|
| 1479 | * call PyObject_GC_UnTrack twice on an object.
|
---|
| 1480 | */
|
---|
| 1481 | if (IS_TRACKED(op))
|
---|
| 1482 | _PyObject_GC_UNTRACK(op);
|
---|
[2] | 1483 | }
|
---|
| 1484 |
|
---|
| 1485 | /* for binary compatibility with 2.2 */
|
---|
| 1486 | void
|
---|
| 1487 | _PyObject_GC_UnTrack(PyObject *op)
|
---|
| 1488 | {
|
---|
| 1489 | PyObject_GC_UnTrack(op);
|
---|
| 1490 | }
|
---|
| 1491 |
|
---|
| 1492 | PyObject *
|
---|
| 1493 | _PyObject_GC_Malloc(size_t basicsize)
|
---|
| 1494 | {
|
---|
[391] | 1495 | PyObject *op;
|
---|
| 1496 | PyGC_Head *g;
|
---|
| 1497 | if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
|
---|
| 1498 | return PyErr_NoMemory();
|
---|
| 1499 | g = (PyGC_Head *)PyObject_MALLOC(
|
---|
| 1500 | sizeof(PyGC_Head) + basicsize);
|
---|
| 1501 | if (g == NULL)
|
---|
| 1502 | return PyErr_NoMemory();
|
---|
| 1503 | g->gc.gc_refs = GC_UNTRACKED;
|
---|
| 1504 | generations[0].count++; /* number of allocated GC objects */
|
---|
| 1505 | if (generations[0].count > generations[0].threshold &&
|
---|
| 1506 | enabled &&
|
---|
| 1507 | generations[0].threshold &&
|
---|
| 1508 | !collecting &&
|
---|
| 1509 | !PyErr_Occurred()) {
|
---|
| 1510 | collecting = 1;
|
---|
| 1511 | collect_generations();
|
---|
| 1512 | collecting = 0;
|
---|
| 1513 | }
|
---|
| 1514 | op = FROM_GC(g);
|
---|
| 1515 | return op;
|
---|
[2] | 1516 | }
|
---|
| 1517 |
|
---|
| 1518 | PyObject *
|
---|
| 1519 | _PyObject_GC_New(PyTypeObject *tp)
|
---|
| 1520 | {
|
---|
[391] | 1521 | PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
|
---|
| 1522 | if (op != NULL)
|
---|
| 1523 | op = PyObject_INIT(op, tp);
|
---|
| 1524 | return op;
|
---|
[2] | 1525 | }
|
---|
| 1526 |
|
---|
| 1527 | PyVarObject *
|
---|
| 1528 | _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
|
---|
| 1529 | {
|
---|
[391] | 1530 | const size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
---|
| 1531 | PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
|
---|
| 1532 | if (op != NULL)
|
---|
| 1533 | op = PyObject_INIT_VAR(op, tp, nitems);
|
---|
| 1534 | return op;
|
---|
[2] | 1535 | }
|
---|
| 1536 |
|
---|
| 1537 | PyVarObject *
|
---|
| 1538 | _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
|
---|
| 1539 | {
|
---|
[391] | 1540 | const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
|
---|
| 1541 | PyGC_Head *g = AS_GC(op);
|
---|
| 1542 | if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
|
---|
| 1543 | return (PyVarObject *)PyErr_NoMemory();
|
---|
| 1544 | g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
|
---|
| 1545 | if (g == NULL)
|
---|
| 1546 | return (PyVarObject *)PyErr_NoMemory();
|
---|
| 1547 | op = (PyVarObject *) FROM_GC(g);
|
---|
| 1548 | Py_SIZE(op) = nitems;
|
---|
| 1549 | return op;
|
---|
[2] | 1550 | }
|
---|
| 1551 |
|
---|
| 1552 | void
|
---|
| 1553 | PyObject_GC_Del(void *op)
|
---|
| 1554 | {
|
---|
[391] | 1555 | PyGC_Head *g = AS_GC(op);
|
---|
| 1556 | if (IS_TRACKED(op))
|
---|
| 1557 | gc_list_remove(g);
|
---|
| 1558 | if (generations[0].count > 0) {
|
---|
| 1559 | generations[0].count--;
|
---|
| 1560 | }
|
---|
| 1561 | PyObject_FREE(g);
|
---|
[2] | 1562 | }
|
---|
| 1563 |
|
---|
| 1564 | /* for binary compatibility with 2.2 */
|
---|
| 1565 | #undef _PyObject_GC_Del
|
---|
| 1566 | void
|
---|
| 1567 | _PyObject_GC_Del(PyObject *op)
|
---|
| 1568 | {
|
---|
| 1569 | PyObject_GC_Del(op);
|
---|
| 1570 | }
|
---|