[2] | 1 | /* Complex math module */
|
---|
| 2 |
|
---|
| 3 | /* much code borrowed from mathmodule.c */
|
---|
| 4 |
|
---|
| 5 | #include "Python.h"
|
---|
[391] | 6 | #include "_math.h"
|
---|
[2] | 7 | /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
|
---|
| 8 | float.h. We assume that FLT_RADIX is either 2 or 16. */
|
---|
| 9 | #include <float.h>
|
---|
| 10 |
|
---|
| 11 | #if (FLT_RADIX != 2 && FLT_RADIX != 16)
|
---|
| 12 | #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
|
---|
| 13 | #endif
|
---|
| 14 |
|
---|
| 15 | #ifndef M_LN2
|
---|
| 16 | #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
|
---|
| 17 | #endif
|
---|
| 18 |
|
---|
| 19 | #ifndef M_LN10
|
---|
| 20 | #define M_LN10 (2.302585092994045684) /* natural log of 10 */
|
---|
| 21 | #endif
|
---|
| 22 |
|
---|
| 23 | /*
|
---|
| 24 | CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
|
---|
| 25 | inverse trig and inverse hyperbolic trig functions. Its log is used in the
|
---|
[391] | 26 | evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
|
---|
[2] | 27 | overflow.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
| 30 | #define CM_LARGE_DOUBLE (DBL_MAX/4.)
|
---|
| 31 | #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
|
---|
| 32 | #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
|
---|
| 33 | #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
|
---|
| 34 |
|
---|
[391] | 35 | /*
|
---|
[2] | 36 | CM_SCALE_UP is an odd integer chosen such that multiplication by
|
---|
| 37 | 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
|
---|
| 38 | CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
|
---|
| 39 | square roots accurately when the real and imaginary parts of the argument
|
---|
| 40 | are subnormal.
|
---|
| 41 | */
|
---|
| 42 |
|
---|
| 43 | #if FLT_RADIX==2
|
---|
| 44 | #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
|
---|
| 45 | #elif FLT_RADIX==16
|
---|
| 46 | #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
|
---|
| 47 | #endif
|
---|
| 48 | #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
|
---|
| 49 |
|
---|
| 50 | /* forward declarations */
|
---|
| 51 | static Py_complex c_asinh(Py_complex);
|
---|
| 52 | static Py_complex c_atanh(Py_complex);
|
---|
| 53 | static Py_complex c_cosh(Py_complex);
|
---|
| 54 | static Py_complex c_sinh(Py_complex);
|
---|
| 55 | static Py_complex c_sqrt(Py_complex);
|
---|
| 56 | static Py_complex c_tanh(Py_complex);
|
---|
| 57 | static PyObject * math_error(void);
|
---|
| 58 |
|
---|
| 59 | /* Code to deal with special values (infinities, NaNs, etc.). */
|
---|
| 60 |
|
---|
| 61 | /* special_type takes a double and returns an integer code indicating
|
---|
| 62 | the type of the double as follows:
|
---|
| 63 | */
|
---|
| 64 |
|
---|
| 65 | enum special_types {
|
---|
[391] | 66 | ST_NINF, /* 0, negative infinity */
|
---|
| 67 | ST_NEG, /* 1, negative finite number (nonzero) */
|
---|
| 68 | ST_NZERO, /* 2, -0. */
|
---|
| 69 | ST_PZERO, /* 3, +0. */
|
---|
| 70 | ST_POS, /* 4, positive finite number (nonzero) */
|
---|
| 71 | ST_PINF, /* 5, positive infinity */
|
---|
| 72 | ST_NAN /* 6, Not a Number */
|
---|
[2] | 73 | };
|
---|
| 74 |
|
---|
| 75 | static enum special_types
|
---|
| 76 | special_type(double d)
|
---|
| 77 | {
|
---|
[391] | 78 | if (Py_IS_FINITE(d)) {
|
---|
| 79 | if (d != 0) {
|
---|
| 80 | if (copysign(1., d) == 1.)
|
---|
| 81 | return ST_POS;
|
---|
| 82 | else
|
---|
| 83 | return ST_NEG;
|
---|
| 84 | }
|
---|
| 85 | else {
|
---|
| 86 | if (copysign(1., d) == 1.)
|
---|
| 87 | return ST_PZERO;
|
---|
| 88 | else
|
---|
| 89 | return ST_NZERO;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | if (Py_IS_NAN(d))
|
---|
| 93 | return ST_NAN;
|
---|
| 94 | if (copysign(1., d) == 1.)
|
---|
| 95 | return ST_PINF;
|
---|
| 96 | else
|
---|
| 97 | return ST_NINF;
|
---|
[2] | 98 | }
|
---|
| 99 |
|
---|
[391] | 100 | #define SPECIAL_VALUE(z, table) \
|
---|
| 101 | if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
|
---|
| 102 | errno = 0; \
|
---|
| 103 | return table[special_type((z).real)] \
|
---|
| 104 | [special_type((z).imag)]; \
|
---|
| 105 | }
|
---|
[2] | 106 |
|
---|
| 107 | #define P Py_MATH_PI
|
---|
| 108 | #define P14 0.25*Py_MATH_PI
|
---|
| 109 | #define P12 0.5*Py_MATH_PI
|
---|
| 110 | #define P34 0.75*Py_MATH_PI
|
---|
| 111 | #define INF Py_HUGE_VAL
|
---|
| 112 | #define N Py_NAN
|
---|
| 113 | #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
|
---|
| 114 |
|
---|
| 115 | /* First, the C functions that do the real work. Each of the c_*
|
---|
| 116 | functions computes and returns the C99 Annex G recommended result
|
---|
| 117 | and also sets errno as follows: errno = 0 if no floating-point
|
---|
| 118 | exception is associated with the result; errno = EDOM if C99 Annex
|
---|
| 119 | G recommends raising divide-by-zero or invalid for this result; and
|
---|
| 120 | errno = ERANGE where the overflow floating-point signal should be
|
---|
| 121 | raised.
|
---|
| 122 | */
|
---|
| 123 |
|
---|
| 124 | static Py_complex acos_special_values[7][7];
|
---|
| 125 |
|
---|
| 126 | static Py_complex
|
---|
| 127 | c_acos(Py_complex z)
|
---|
| 128 | {
|
---|
[391] | 129 | Py_complex s1, s2, r;
|
---|
[2] | 130 |
|
---|
[391] | 131 | SPECIAL_VALUE(z, acos_special_values);
|
---|
[2] | 132 |
|
---|
[391] | 133 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
| 134 | /* avoid unnecessary overflow for large arguments */
|
---|
| 135 | r.real = atan2(fabs(z.imag), z.real);
|
---|
| 136 | /* split into cases to make sure that the branch cut has the
|
---|
| 137 | correct continuity on systems with unsigned zeros */
|
---|
| 138 | if (z.real < 0.) {
|
---|
| 139 | r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
| 140 | M_LN2*2., z.imag);
|
---|
| 141 | } else {
|
---|
| 142 | r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
| 143 | M_LN2*2., -z.imag);
|
---|
| 144 | }
|
---|
| 145 | } else {
|
---|
| 146 | s1.real = 1.-z.real;
|
---|
| 147 | s1.imag = -z.imag;
|
---|
| 148 | s1 = c_sqrt(s1);
|
---|
| 149 | s2.real = 1.+z.real;
|
---|
| 150 | s2.imag = z.imag;
|
---|
| 151 | s2 = c_sqrt(s2);
|
---|
| 152 | r.real = 2.*atan2(s1.real, s2.real);
|
---|
| 153 | r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
|
---|
| 154 | }
|
---|
| 155 | errno = 0;
|
---|
| 156 | return r;
|
---|
[2] | 157 | }
|
---|
| 158 |
|
---|
| 159 | PyDoc_STRVAR(c_acos_doc,
|
---|
| 160 | "acos(x)\n"
|
---|
| 161 | "\n"
|
---|
| 162 | "Return the arc cosine of x.");
|
---|
| 163 |
|
---|
| 164 |
|
---|
| 165 | static Py_complex acosh_special_values[7][7];
|
---|
| 166 |
|
---|
| 167 | static Py_complex
|
---|
| 168 | c_acosh(Py_complex z)
|
---|
| 169 | {
|
---|
[391] | 170 | Py_complex s1, s2, r;
|
---|
[2] | 171 |
|
---|
[391] | 172 | SPECIAL_VALUE(z, acosh_special_values);
|
---|
[2] | 173 |
|
---|
[391] | 174 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
| 175 | /* avoid unnecessary overflow for large arguments */
|
---|
| 176 | r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
|
---|
| 177 | r.imag = atan2(z.imag, z.real);
|
---|
| 178 | } else {
|
---|
| 179 | s1.real = z.real - 1.;
|
---|
| 180 | s1.imag = z.imag;
|
---|
| 181 | s1 = c_sqrt(s1);
|
---|
| 182 | s2.real = z.real + 1.;
|
---|
| 183 | s2.imag = z.imag;
|
---|
| 184 | s2 = c_sqrt(s2);
|
---|
| 185 | r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
|
---|
| 186 | r.imag = 2.*atan2(s1.imag, s2.real);
|
---|
| 187 | }
|
---|
| 188 | errno = 0;
|
---|
| 189 | return r;
|
---|
[2] | 190 | }
|
---|
| 191 |
|
---|
| 192 | PyDoc_STRVAR(c_acosh_doc,
|
---|
| 193 | "acosh(x)\n"
|
---|
| 194 | "\n"
|
---|
| 195 | "Return the hyperbolic arccosine of x.");
|
---|
| 196 |
|
---|
| 197 |
|
---|
| 198 | static Py_complex
|
---|
| 199 | c_asin(Py_complex z)
|
---|
| 200 | {
|
---|
[391] | 201 | /* asin(z) = -i asinh(iz) */
|
---|
| 202 | Py_complex s, r;
|
---|
| 203 | s.real = -z.imag;
|
---|
| 204 | s.imag = z.real;
|
---|
| 205 | s = c_asinh(s);
|
---|
| 206 | r.real = s.imag;
|
---|
| 207 | r.imag = -s.real;
|
---|
| 208 | return r;
|
---|
[2] | 209 | }
|
---|
| 210 |
|
---|
| 211 | PyDoc_STRVAR(c_asin_doc,
|
---|
| 212 | "asin(x)\n"
|
---|
| 213 | "\n"
|
---|
| 214 | "Return the arc sine of x.");
|
---|
| 215 |
|
---|
| 216 |
|
---|
| 217 | static Py_complex asinh_special_values[7][7];
|
---|
| 218 |
|
---|
| 219 | static Py_complex
|
---|
| 220 | c_asinh(Py_complex z)
|
---|
| 221 | {
|
---|
[391] | 222 | Py_complex s1, s2, r;
|
---|
[2] | 223 |
|
---|
[391] | 224 | SPECIAL_VALUE(z, asinh_special_values);
|
---|
[2] | 225 |
|
---|
[391] | 226 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
| 227 | if (z.imag >= 0.) {
|
---|
| 228 | r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
| 229 | M_LN2*2., z.real);
|
---|
| 230 | } else {
|
---|
| 231 | r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
| 232 | M_LN2*2., -z.real);
|
---|
| 233 | }
|
---|
| 234 | r.imag = atan2(z.imag, fabs(z.real));
|
---|
| 235 | } else {
|
---|
| 236 | s1.real = 1.+z.imag;
|
---|
| 237 | s1.imag = -z.real;
|
---|
| 238 | s1 = c_sqrt(s1);
|
---|
| 239 | s2.real = 1.-z.imag;
|
---|
| 240 | s2.imag = z.real;
|
---|
| 241 | s2 = c_sqrt(s2);
|
---|
| 242 | r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
|
---|
| 243 | r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
|
---|
| 244 | }
|
---|
| 245 | errno = 0;
|
---|
| 246 | return r;
|
---|
[2] | 247 | }
|
---|
| 248 |
|
---|
| 249 | PyDoc_STRVAR(c_asinh_doc,
|
---|
| 250 | "asinh(x)\n"
|
---|
| 251 | "\n"
|
---|
| 252 | "Return the hyperbolic arc sine of x.");
|
---|
| 253 |
|
---|
| 254 |
|
---|
| 255 | static Py_complex
|
---|
| 256 | c_atan(Py_complex z)
|
---|
| 257 | {
|
---|
[391] | 258 | /* atan(z) = -i atanh(iz) */
|
---|
| 259 | Py_complex s, r;
|
---|
| 260 | s.real = -z.imag;
|
---|
| 261 | s.imag = z.real;
|
---|
| 262 | s = c_atanh(s);
|
---|
| 263 | r.real = s.imag;
|
---|
| 264 | r.imag = -s.real;
|
---|
| 265 | return r;
|
---|
[2] | 266 | }
|
---|
| 267 |
|
---|
| 268 | /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
|
---|
| 269 | C99 for atan2(0., 0.). */
|
---|
| 270 | static double
|
---|
| 271 | c_atan2(Py_complex z)
|
---|
| 272 | {
|
---|
[391] | 273 | if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
|
---|
| 274 | return Py_NAN;
|
---|
| 275 | if (Py_IS_INFINITY(z.imag)) {
|
---|
| 276 | if (Py_IS_INFINITY(z.real)) {
|
---|
| 277 | if (copysign(1., z.real) == 1.)
|
---|
| 278 | /* atan2(+-inf, +inf) == +-pi/4 */
|
---|
| 279 | return copysign(0.25*Py_MATH_PI, z.imag);
|
---|
| 280 | else
|
---|
| 281 | /* atan2(+-inf, -inf) == +-pi*3/4 */
|
---|
| 282 | return copysign(0.75*Py_MATH_PI, z.imag);
|
---|
| 283 | }
|
---|
| 284 | /* atan2(+-inf, x) == +-pi/2 for finite x */
|
---|
| 285 | return copysign(0.5*Py_MATH_PI, z.imag);
|
---|
| 286 | }
|
---|
| 287 | if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
|
---|
| 288 | if (copysign(1., z.real) == 1.)
|
---|
| 289 | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
---|
| 290 | return copysign(0., z.imag);
|
---|
| 291 | else
|
---|
| 292 | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
---|
| 293 | return copysign(Py_MATH_PI, z.imag);
|
---|
| 294 | }
|
---|
| 295 | return atan2(z.imag, z.real);
|
---|
[2] | 296 | }
|
---|
| 297 |
|
---|
| 298 | PyDoc_STRVAR(c_atan_doc,
|
---|
| 299 | "atan(x)\n"
|
---|
| 300 | "\n"
|
---|
| 301 | "Return the arc tangent of x.");
|
---|
| 302 |
|
---|
| 303 |
|
---|
| 304 | static Py_complex atanh_special_values[7][7];
|
---|
| 305 |
|
---|
| 306 | static Py_complex
|
---|
| 307 | c_atanh(Py_complex z)
|
---|
| 308 | {
|
---|
[391] | 309 | Py_complex r;
|
---|
| 310 | double ay, h;
|
---|
[2] | 311 |
|
---|
[391] | 312 | SPECIAL_VALUE(z, atanh_special_values);
|
---|
[2] | 313 |
|
---|
[391] | 314 | /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
|
---|
| 315 | if (z.real < 0.) {
|
---|
| 316 | return c_neg(c_atanh(c_neg(z)));
|
---|
| 317 | }
|
---|
[2] | 318 |
|
---|
[391] | 319 | ay = fabs(z.imag);
|
---|
| 320 | if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
|
---|
| 321 | /*
|
---|
| 322 | if abs(z) is large then we use the approximation
|
---|
| 323 | atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
|
---|
| 324 | of z.imag)
|
---|
| 325 | */
|
---|
| 326 | h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
|
---|
| 327 | r.real = z.real/4./h/h;
|
---|
| 328 | /* the two negations in the next line cancel each other out
|
---|
| 329 | except when working with unsigned zeros: they're there to
|
---|
| 330 | ensure that the branch cut has the correct continuity on
|
---|
| 331 | systems that don't support signed zeros */
|
---|
| 332 | r.imag = -copysign(Py_MATH_PI/2., -z.imag);
|
---|
| 333 | errno = 0;
|
---|
| 334 | } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
|
---|
| 335 | /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
|
---|
| 336 | if (ay == 0.) {
|
---|
| 337 | r.real = INF;
|
---|
| 338 | r.imag = z.imag;
|
---|
| 339 | errno = EDOM;
|
---|
| 340 | } else {
|
---|
| 341 | r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
|
---|
| 342 | r.imag = copysign(atan2(2., -ay)/2, z.imag);
|
---|
| 343 | errno = 0;
|
---|
| 344 | }
|
---|
| 345 | } else {
|
---|
| 346 | r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
|
---|
| 347 | r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
|
---|
| 348 | errno = 0;
|
---|
| 349 | }
|
---|
| 350 | return r;
|
---|
[2] | 351 | }
|
---|
| 352 |
|
---|
| 353 | PyDoc_STRVAR(c_atanh_doc,
|
---|
| 354 | "atanh(x)\n"
|
---|
| 355 | "\n"
|
---|
| 356 | "Return the hyperbolic arc tangent of x.");
|
---|
| 357 |
|
---|
| 358 |
|
---|
| 359 | static Py_complex
|
---|
| 360 | c_cos(Py_complex z)
|
---|
| 361 | {
|
---|
[391] | 362 | /* cos(z) = cosh(iz) */
|
---|
| 363 | Py_complex r;
|
---|
| 364 | r.real = -z.imag;
|
---|
| 365 | r.imag = z.real;
|
---|
| 366 | r = c_cosh(r);
|
---|
| 367 | return r;
|
---|
[2] | 368 | }
|
---|
| 369 |
|
---|
| 370 | PyDoc_STRVAR(c_cos_doc,
|
---|
| 371 | "cos(x)\n"
|
---|
| 372 | "\n"
|
---|
| 373 | "Return the cosine of x.");
|
---|
| 374 |
|
---|
| 375 |
|
---|
| 376 | /* cosh(infinity + i*y) needs to be dealt with specially */
|
---|
| 377 | static Py_complex cosh_special_values[7][7];
|
---|
| 378 |
|
---|
| 379 | static Py_complex
|
---|
| 380 | c_cosh(Py_complex z)
|
---|
| 381 | {
|
---|
[391] | 382 | Py_complex r;
|
---|
| 383 | double x_minus_one;
|
---|
[2] | 384 |
|
---|
[391] | 385 | /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
|
---|
| 386 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
| 387 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
|
---|
| 388 | (z.imag != 0.)) {
|
---|
| 389 | if (z.real > 0) {
|
---|
| 390 | r.real = copysign(INF, cos(z.imag));
|
---|
| 391 | r.imag = copysign(INF, sin(z.imag));
|
---|
| 392 | }
|
---|
| 393 | else {
|
---|
| 394 | r.real = copysign(INF, cos(z.imag));
|
---|
| 395 | r.imag = -copysign(INF, sin(z.imag));
|
---|
| 396 | }
|
---|
| 397 | }
|
---|
| 398 | else {
|
---|
| 399 | r = cosh_special_values[special_type(z.real)]
|
---|
| 400 | [special_type(z.imag)];
|
---|
| 401 | }
|
---|
| 402 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
| 403 | a NaN */
|
---|
| 404 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
---|
| 405 | errno = EDOM;
|
---|
| 406 | else
|
---|
| 407 | errno = 0;
|
---|
| 408 | return r;
|
---|
| 409 | }
|
---|
[2] | 410 |
|
---|
[391] | 411 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
| 412 | /* deal correctly with cases where cosh(z.real) overflows but
|
---|
| 413 | cosh(z) does not. */
|
---|
| 414 | x_minus_one = z.real - copysign(1., z.real);
|
---|
| 415 | r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
---|
| 416 | r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
---|
| 417 | } else {
|
---|
| 418 | r.real = cos(z.imag) * cosh(z.real);
|
---|
| 419 | r.imag = sin(z.imag) * sinh(z.real);
|
---|
| 420 | }
|
---|
| 421 | /* detect overflow, and set errno accordingly */
|
---|
| 422 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
| 423 | errno = ERANGE;
|
---|
| 424 | else
|
---|
| 425 | errno = 0;
|
---|
| 426 | return r;
|
---|
[2] | 427 | }
|
---|
| 428 |
|
---|
| 429 | PyDoc_STRVAR(c_cosh_doc,
|
---|
| 430 | "cosh(x)\n"
|
---|
| 431 | "\n"
|
---|
| 432 | "Return the hyperbolic cosine of x.");
|
---|
| 433 |
|
---|
| 434 |
|
---|
| 435 | /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
|
---|
| 436 | finite y */
|
---|
| 437 | static Py_complex exp_special_values[7][7];
|
---|
| 438 |
|
---|
| 439 | static Py_complex
|
---|
| 440 | c_exp(Py_complex z)
|
---|
| 441 | {
|
---|
[391] | 442 | Py_complex r;
|
---|
| 443 | double l;
|
---|
[2] | 444 |
|
---|
[391] | 445 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
| 446 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
| 447 | && (z.imag != 0.)) {
|
---|
| 448 | if (z.real > 0) {
|
---|
| 449 | r.real = copysign(INF, cos(z.imag));
|
---|
| 450 | r.imag = copysign(INF, sin(z.imag));
|
---|
| 451 | }
|
---|
| 452 | else {
|
---|
| 453 | r.real = copysign(0., cos(z.imag));
|
---|
| 454 | r.imag = copysign(0., sin(z.imag));
|
---|
| 455 | }
|
---|
| 456 | }
|
---|
| 457 | else {
|
---|
| 458 | r = exp_special_values[special_type(z.real)]
|
---|
| 459 | [special_type(z.imag)];
|
---|
| 460 | }
|
---|
| 461 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
| 462 | a NaN and not -infinity */
|
---|
| 463 | if (Py_IS_INFINITY(z.imag) &&
|
---|
| 464 | (Py_IS_FINITE(z.real) ||
|
---|
| 465 | (Py_IS_INFINITY(z.real) && z.real > 0)))
|
---|
| 466 | errno = EDOM;
|
---|
| 467 | else
|
---|
| 468 | errno = 0;
|
---|
| 469 | return r;
|
---|
| 470 | }
|
---|
[2] | 471 |
|
---|
[391] | 472 | if (z.real > CM_LOG_LARGE_DOUBLE) {
|
---|
| 473 | l = exp(z.real-1.);
|
---|
| 474 | r.real = l*cos(z.imag)*Py_MATH_E;
|
---|
| 475 | r.imag = l*sin(z.imag)*Py_MATH_E;
|
---|
| 476 | } else {
|
---|
| 477 | l = exp(z.real);
|
---|
| 478 | r.real = l*cos(z.imag);
|
---|
| 479 | r.imag = l*sin(z.imag);
|
---|
| 480 | }
|
---|
| 481 | /* detect overflow, and set errno accordingly */
|
---|
| 482 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
| 483 | errno = ERANGE;
|
---|
| 484 | else
|
---|
| 485 | errno = 0;
|
---|
| 486 | return r;
|
---|
[2] | 487 | }
|
---|
| 488 |
|
---|
| 489 | PyDoc_STRVAR(c_exp_doc,
|
---|
| 490 | "exp(x)\n"
|
---|
| 491 | "\n"
|
---|
| 492 | "Return the exponential value e**x.");
|
---|
| 493 |
|
---|
| 494 |
|
---|
| 495 | static Py_complex log_special_values[7][7];
|
---|
| 496 |
|
---|
| 497 | static Py_complex
|
---|
| 498 | c_log(Py_complex z)
|
---|
| 499 | {
|
---|
[391] | 500 | /*
|
---|
| 501 | The usual formula for the real part is log(hypot(z.real, z.imag)).
|
---|
| 502 | There are four situations where this formula is potentially
|
---|
| 503 | problematic:
|
---|
[2] | 504 |
|
---|
[391] | 505 | (1) the absolute value of z is subnormal. Then hypot is subnormal,
|
---|
| 506 | so has fewer than the usual number of bits of accuracy, hence may
|
---|
| 507 | have large relative error. This then gives a large absolute error
|
---|
| 508 | in the log. This can be solved by rescaling z by a suitable power
|
---|
| 509 | of 2.
|
---|
[2] | 510 |
|
---|
[391] | 511 | (2) the absolute value of z is greater than DBL_MAX (e.g. when both
|
---|
| 512 | z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
|
---|
| 513 | Again, rescaling solves this.
|
---|
[2] | 514 |
|
---|
[391] | 515 | (3) the absolute value of z is close to 1. In this case it's
|
---|
| 516 | difficult to achieve good accuracy, at least in part because a
|
---|
| 517 | change of 1ulp in the real or imaginary part of z can result in a
|
---|
| 518 | change of billions of ulps in the correctly rounded answer.
|
---|
[2] | 519 |
|
---|
[391] | 520 | (4) z = 0. The simplest thing to do here is to call the
|
---|
| 521 | floating-point log with an argument of 0, and let its behaviour
|
---|
| 522 | (returning -infinity, signaling a floating-point exception, setting
|
---|
| 523 | errno, or whatever) determine that of c_log. So the usual formula
|
---|
| 524 | is fine here.
|
---|
[2] | 525 |
|
---|
[391] | 526 | */
|
---|
[2] | 527 |
|
---|
[391] | 528 | Py_complex r;
|
---|
| 529 | double ax, ay, am, an, h;
|
---|
[2] | 530 |
|
---|
[391] | 531 | SPECIAL_VALUE(z, log_special_values);
|
---|
[2] | 532 |
|
---|
[391] | 533 | ax = fabs(z.real);
|
---|
| 534 | ay = fabs(z.imag);
|
---|
[2] | 535 |
|
---|
[391] | 536 | if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
|
---|
| 537 | r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
|
---|
| 538 | } else if (ax < DBL_MIN && ay < DBL_MIN) {
|
---|
| 539 | if (ax > 0. || ay > 0.) {
|
---|
| 540 | /* catch cases where hypot(ax, ay) is subnormal */
|
---|
| 541 | r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
|
---|
| 542 | ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
|
---|
| 543 | }
|
---|
| 544 | else {
|
---|
| 545 | /* log(+/-0. +/- 0i) */
|
---|
| 546 | r.real = -INF;
|
---|
| 547 | r.imag = atan2(z.imag, z.real);
|
---|
| 548 | errno = EDOM;
|
---|
| 549 | return r;
|
---|
| 550 | }
|
---|
| 551 | } else {
|
---|
| 552 | h = hypot(ax, ay);
|
---|
| 553 | if (0.71 <= h && h <= 1.73) {
|
---|
| 554 | am = ax > ay ? ax : ay; /* max(ax, ay) */
|
---|
| 555 | an = ax > ay ? ay : ax; /* min(ax, ay) */
|
---|
| 556 | r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
|
---|
| 557 | } else {
|
---|
| 558 | r.real = log(h);
|
---|
| 559 | }
|
---|
| 560 | }
|
---|
| 561 | r.imag = atan2(z.imag, z.real);
|
---|
| 562 | errno = 0;
|
---|
| 563 | return r;
|
---|
[2] | 564 | }
|
---|
| 565 |
|
---|
| 566 |
|
---|
| 567 | static Py_complex
|
---|
| 568 | c_log10(Py_complex z)
|
---|
| 569 | {
|
---|
[391] | 570 | Py_complex r;
|
---|
| 571 | int errno_save;
|
---|
[2] | 572 |
|
---|
[391] | 573 | r = c_log(z);
|
---|
| 574 | errno_save = errno; /* just in case the divisions affect errno */
|
---|
| 575 | r.real = r.real / M_LN10;
|
---|
| 576 | r.imag = r.imag / M_LN10;
|
---|
| 577 | errno = errno_save;
|
---|
| 578 | return r;
|
---|
[2] | 579 | }
|
---|
| 580 |
|
---|
| 581 | PyDoc_STRVAR(c_log10_doc,
|
---|
| 582 | "log10(x)\n"
|
---|
| 583 | "\n"
|
---|
| 584 | "Return the base-10 logarithm of x.");
|
---|
| 585 |
|
---|
| 586 |
|
---|
| 587 | static Py_complex
|
---|
| 588 | c_sin(Py_complex z)
|
---|
| 589 | {
|
---|
[391] | 590 | /* sin(z) = -i sin(iz) */
|
---|
| 591 | Py_complex s, r;
|
---|
| 592 | s.real = -z.imag;
|
---|
| 593 | s.imag = z.real;
|
---|
| 594 | s = c_sinh(s);
|
---|
| 595 | r.real = s.imag;
|
---|
| 596 | r.imag = -s.real;
|
---|
| 597 | return r;
|
---|
[2] | 598 | }
|
---|
| 599 |
|
---|
| 600 | PyDoc_STRVAR(c_sin_doc,
|
---|
| 601 | "sin(x)\n"
|
---|
| 602 | "\n"
|
---|
| 603 | "Return the sine of x.");
|
---|
| 604 |
|
---|
| 605 |
|
---|
| 606 | /* sinh(infinity + i*y) needs to be dealt with specially */
|
---|
| 607 | static Py_complex sinh_special_values[7][7];
|
---|
| 608 |
|
---|
| 609 | static Py_complex
|
---|
| 610 | c_sinh(Py_complex z)
|
---|
| 611 | {
|
---|
[391] | 612 | Py_complex r;
|
---|
| 613 | double x_minus_one;
|
---|
[2] | 614 |
|
---|
[391] | 615 | /* special treatment for sinh(+/-inf + iy) if y is finite and
|
---|
| 616 | nonzero */
|
---|
| 617 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
| 618 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
| 619 | && (z.imag != 0.)) {
|
---|
| 620 | if (z.real > 0) {
|
---|
| 621 | r.real = copysign(INF, cos(z.imag));
|
---|
| 622 | r.imag = copysign(INF, sin(z.imag));
|
---|
| 623 | }
|
---|
| 624 | else {
|
---|
| 625 | r.real = -copysign(INF, cos(z.imag));
|
---|
| 626 | r.imag = copysign(INF, sin(z.imag));
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
| 629 | else {
|
---|
| 630 | r = sinh_special_values[special_type(z.real)]
|
---|
| 631 | [special_type(z.imag)];
|
---|
| 632 | }
|
---|
| 633 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
| 634 | a NaN */
|
---|
| 635 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
---|
| 636 | errno = EDOM;
|
---|
| 637 | else
|
---|
| 638 | errno = 0;
|
---|
| 639 | return r;
|
---|
| 640 | }
|
---|
[2] | 641 |
|
---|
[391] | 642 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
| 643 | x_minus_one = z.real - copysign(1., z.real);
|
---|
| 644 | r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
---|
| 645 | r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
---|
| 646 | } else {
|
---|
| 647 | r.real = cos(z.imag) * sinh(z.real);
|
---|
| 648 | r.imag = sin(z.imag) * cosh(z.real);
|
---|
| 649 | }
|
---|
| 650 | /* detect overflow, and set errno accordingly */
|
---|
| 651 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
| 652 | errno = ERANGE;
|
---|
| 653 | else
|
---|
| 654 | errno = 0;
|
---|
| 655 | return r;
|
---|
[2] | 656 | }
|
---|
| 657 |
|
---|
| 658 | PyDoc_STRVAR(c_sinh_doc,
|
---|
| 659 | "sinh(x)\n"
|
---|
| 660 | "\n"
|
---|
| 661 | "Return the hyperbolic sine of x.");
|
---|
| 662 |
|
---|
| 663 |
|
---|
| 664 | static Py_complex sqrt_special_values[7][7];
|
---|
| 665 |
|
---|
| 666 | static Py_complex
|
---|
| 667 | c_sqrt(Py_complex z)
|
---|
| 668 | {
|
---|
[391] | 669 | /*
|
---|
| 670 | Method: use symmetries to reduce to the case when x = z.real and y
|
---|
| 671 | = z.imag are nonnegative. Then the real part of the result is
|
---|
| 672 | given by
|
---|
[2] | 673 |
|
---|
[391] | 674 | s = sqrt((x + hypot(x, y))/2)
|
---|
[2] | 675 |
|
---|
[391] | 676 | and the imaginary part is
|
---|
[2] | 677 |
|
---|
[391] | 678 | d = (y/2)/s
|
---|
[2] | 679 |
|
---|
[391] | 680 | If either x or y is very large then there's a risk of overflow in
|
---|
| 681 | computation of the expression x + hypot(x, y). We can avoid this
|
---|
| 682 | by rewriting the formula for s as:
|
---|
[2] | 683 |
|
---|
[391] | 684 | s = 2*sqrt(x/8 + hypot(x/8, y/8))
|
---|
[2] | 685 |
|
---|
[391] | 686 | This costs us two extra multiplications/divisions, but avoids the
|
---|
| 687 | overhead of checking for x and y large.
|
---|
[2] | 688 |
|
---|
[391] | 689 | If both x and y are subnormal then hypot(x, y) may also be
|
---|
| 690 | subnormal, so will lack full precision. We solve this by rescaling
|
---|
| 691 | x and y by a sufficiently large power of 2 to ensure that x and y
|
---|
| 692 | are normal.
|
---|
| 693 | */
|
---|
[2] | 694 |
|
---|
| 695 |
|
---|
[391] | 696 | Py_complex r;
|
---|
| 697 | double s,d;
|
---|
| 698 | double ax, ay;
|
---|
[2] | 699 |
|
---|
[391] | 700 | SPECIAL_VALUE(z, sqrt_special_values);
|
---|
[2] | 701 |
|
---|
[391] | 702 | if (z.real == 0. && z.imag == 0.) {
|
---|
| 703 | r.real = 0.;
|
---|
| 704 | r.imag = z.imag;
|
---|
| 705 | return r;
|
---|
| 706 | }
|
---|
[2] | 707 |
|
---|
[391] | 708 | ax = fabs(z.real);
|
---|
| 709 | ay = fabs(z.imag);
|
---|
[2] | 710 |
|
---|
[391] | 711 | if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
|
---|
| 712 | /* here we catch cases where hypot(ax, ay) is subnormal */
|
---|
| 713 | ax = ldexp(ax, CM_SCALE_UP);
|
---|
| 714 | s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
|
---|
| 715 | CM_SCALE_DOWN);
|
---|
| 716 | } else {
|
---|
| 717 | ax /= 8.;
|
---|
| 718 | s = 2.*sqrt(ax + hypot(ax, ay/8.));
|
---|
| 719 | }
|
---|
| 720 | d = ay/(2.*s);
|
---|
[2] | 721 |
|
---|
[391] | 722 | if (z.real >= 0.) {
|
---|
| 723 | r.real = s;
|
---|
| 724 | r.imag = copysign(d, z.imag);
|
---|
| 725 | } else {
|
---|
| 726 | r.real = d;
|
---|
| 727 | r.imag = copysign(s, z.imag);
|
---|
| 728 | }
|
---|
| 729 | errno = 0;
|
---|
| 730 | return r;
|
---|
[2] | 731 | }
|
---|
| 732 |
|
---|
| 733 | PyDoc_STRVAR(c_sqrt_doc,
|
---|
| 734 | "sqrt(x)\n"
|
---|
| 735 | "\n"
|
---|
| 736 | "Return the square root of x.");
|
---|
| 737 |
|
---|
| 738 |
|
---|
| 739 | static Py_complex
|
---|
| 740 | c_tan(Py_complex z)
|
---|
| 741 | {
|
---|
[391] | 742 | /* tan(z) = -i tanh(iz) */
|
---|
| 743 | Py_complex s, r;
|
---|
| 744 | s.real = -z.imag;
|
---|
| 745 | s.imag = z.real;
|
---|
| 746 | s = c_tanh(s);
|
---|
| 747 | r.real = s.imag;
|
---|
| 748 | r.imag = -s.real;
|
---|
| 749 | return r;
|
---|
[2] | 750 | }
|
---|
| 751 |
|
---|
| 752 | PyDoc_STRVAR(c_tan_doc,
|
---|
| 753 | "tan(x)\n"
|
---|
| 754 | "\n"
|
---|
| 755 | "Return the tangent of x.");
|
---|
| 756 |
|
---|
| 757 |
|
---|
| 758 | /* tanh(infinity + i*y) needs to be dealt with specially */
|
---|
| 759 | static Py_complex tanh_special_values[7][7];
|
---|
| 760 |
|
---|
| 761 | static Py_complex
|
---|
| 762 | c_tanh(Py_complex z)
|
---|
| 763 | {
|
---|
[391] | 764 | /* Formula:
|
---|
[2] | 765 |
|
---|
[391] | 766 | tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
|
---|
| 767 | (1+tan(y)^2 tanh(x)^2)
|
---|
[2] | 768 |
|
---|
[391] | 769 | To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
|
---|
| 770 | as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
|
---|
| 771 | by 4 exp(-2*x) instead, to avoid possible overflow in the
|
---|
| 772 | computation of cosh(x).
|
---|
[2] | 773 |
|
---|
[391] | 774 | */
|
---|
[2] | 775 |
|
---|
[391] | 776 | Py_complex r;
|
---|
| 777 | double tx, ty, cx, txty, denom;
|
---|
[2] | 778 |
|
---|
[391] | 779 | /* special treatment for tanh(+/-inf + iy) if y is finite and
|
---|
| 780 | nonzero */
|
---|
| 781 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
| 782 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
| 783 | && (z.imag != 0.)) {
|
---|
| 784 | if (z.real > 0) {
|
---|
| 785 | r.real = 1.0;
|
---|
| 786 | r.imag = copysign(0.,
|
---|
| 787 | 2.*sin(z.imag)*cos(z.imag));
|
---|
| 788 | }
|
---|
| 789 | else {
|
---|
| 790 | r.real = -1.0;
|
---|
| 791 | r.imag = copysign(0.,
|
---|
| 792 | 2.*sin(z.imag)*cos(z.imag));
|
---|
| 793 | }
|
---|
| 794 | }
|
---|
| 795 | else {
|
---|
| 796 | r = tanh_special_values[special_type(z.real)]
|
---|
| 797 | [special_type(z.imag)];
|
---|
| 798 | }
|
---|
| 799 | /* need to set errno = EDOM if z.imag is +/-infinity and
|
---|
| 800 | z.real is finite */
|
---|
| 801 | if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
---|
| 802 | errno = EDOM;
|
---|
| 803 | else
|
---|
| 804 | errno = 0;
|
---|
| 805 | return r;
|
---|
| 806 | }
|
---|
[2] | 807 |
|
---|
[391] | 808 | /* danger of overflow in 2.*z.imag !*/
|
---|
| 809 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
| 810 | r.real = copysign(1., z.real);
|
---|
| 811 | r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
|
---|
| 812 | } else {
|
---|
| 813 | tx = tanh(z.real);
|
---|
| 814 | ty = tan(z.imag);
|
---|
| 815 | cx = 1./cosh(z.real);
|
---|
| 816 | txty = tx*ty;
|
---|
| 817 | denom = 1. + txty*txty;
|
---|
| 818 | r.real = tx*(1.+ty*ty)/denom;
|
---|
| 819 | r.imag = ((ty/denom)*cx)*cx;
|
---|
| 820 | }
|
---|
| 821 | errno = 0;
|
---|
| 822 | return r;
|
---|
[2] | 823 | }
|
---|
| 824 |
|
---|
| 825 | PyDoc_STRVAR(c_tanh_doc,
|
---|
| 826 | "tanh(x)\n"
|
---|
| 827 | "\n"
|
---|
| 828 | "Return the hyperbolic tangent of x.");
|
---|
| 829 |
|
---|
| 830 |
|
---|
| 831 | static PyObject *
|
---|
| 832 | cmath_log(PyObject *self, PyObject *args)
|
---|
| 833 | {
|
---|
[391] | 834 | Py_complex x;
|
---|
| 835 | Py_complex y;
|
---|
[2] | 836 |
|
---|
[391] | 837 | if (!PyArg_ParseTuple(args, "D|D", &x, &y))
|
---|
| 838 | return NULL;
|
---|
[2] | 839 |
|
---|
[391] | 840 | errno = 0;
|
---|
| 841 | PyFPE_START_PROTECT("complex function", return 0)
|
---|
| 842 | x = c_log(x);
|
---|
| 843 | if (PyTuple_GET_SIZE(args) == 2) {
|
---|
| 844 | y = c_log(y);
|
---|
| 845 | x = c_quot(x, y);
|
---|
| 846 | }
|
---|
| 847 | PyFPE_END_PROTECT(x)
|
---|
| 848 | if (errno != 0)
|
---|
| 849 | return math_error();
|
---|
| 850 | return PyComplex_FromCComplex(x);
|
---|
[2] | 851 | }
|
---|
| 852 |
|
---|
| 853 | PyDoc_STRVAR(cmath_log_doc,
|
---|
| 854 | "log(x[, base]) -> the logarithm of x to the given base.\n\
|
---|
| 855 | If the base not specified, returns the natural logarithm (base e) of x.");
|
---|
| 856 |
|
---|
| 857 |
|
---|
| 858 | /* And now the glue to make them available from Python: */
|
---|
| 859 |
|
---|
| 860 | static PyObject *
|
---|
| 861 | math_error(void)
|
---|
| 862 | {
|
---|
[391] | 863 | if (errno == EDOM)
|
---|
| 864 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
| 865 | else if (errno == ERANGE)
|
---|
| 866 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
---|
| 867 | else /* Unexpected math error */
|
---|
| 868 | PyErr_SetFromErrno(PyExc_ValueError);
|
---|
| 869 | return NULL;
|
---|
[2] | 870 | }
|
---|
| 871 |
|
---|
| 872 | static PyObject *
|
---|
| 873 | math_1(PyObject *args, Py_complex (*func)(Py_complex))
|
---|
| 874 | {
|
---|
[391] | 875 | Py_complex x,r ;
|
---|
| 876 | if (!PyArg_ParseTuple(args, "D", &x))
|
---|
| 877 | return NULL;
|
---|
| 878 | errno = 0;
|
---|
| 879 | PyFPE_START_PROTECT("complex function", return 0);
|
---|
| 880 | r = (*func)(x);
|
---|
| 881 | PyFPE_END_PROTECT(r);
|
---|
| 882 | if (errno == EDOM) {
|
---|
| 883 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
| 884 | return NULL;
|
---|
| 885 | }
|
---|
| 886 | else if (errno == ERANGE) {
|
---|
| 887 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
---|
| 888 | return NULL;
|
---|
| 889 | }
|
---|
| 890 | else {
|
---|
| 891 | return PyComplex_FromCComplex(r);
|
---|
| 892 | }
|
---|
[2] | 893 | }
|
---|
| 894 |
|
---|
| 895 | #define FUNC1(stubname, func) \
|
---|
[391] | 896 | static PyObject * stubname(PyObject *self, PyObject *args) { \
|
---|
| 897 | return math_1(args, func); \
|
---|
| 898 | }
|
---|
[2] | 899 |
|
---|
| 900 | FUNC1(cmath_acos, c_acos)
|
---|
| 901 | FUNC1(cmath_acosh, c_acosh)
|
---|
| 902 | FUNC1(cmath_asin, c_asin)
|
---|
| 903 | FUNC1(cmath_asinh, c_asinh)
|
---|
| 904 | FUNC1(cmath_atan, c_atan)
|
---|
| 905 | FUNC1(cmath_atanh, c_atanh)
|
---|
| 906 | FUNC1(cmath_cos, c_cos)
|
---|
| 907 | FUNC1(cmath_cosh, c_cosh)
|
---|
| 908 | FUNC1(cmath_exp, c_exp)
|
---|
| 909 | FUNC1(cmath_log10, c_log10)
|
---|
| 910 | FUNC1(cmath_sin, c_sin)
|
---|
| 911 | FUNC1(cmath_sinh, c_sinh)
|
---|
| 912 | FUNC1(cmath_sqrt, c_sqrt)
|
---|
| 913 | FUNC1(cmath_tan, c_tan)
|
---|
| 914 | FUNC1(cmath_tanh, c_tanh)
|
---|
| 915 |
|
---|
| 916 | static PyObject *
|
---|
| 917 | cmath_phase(PyObject *self, PyObject *args)
|
---|
| 918 | {
|
---|
[391] | 919 | Py_complex z;
|
---|
| 920 | double phi;
|
---|
| 921 | if (!PyArg_ParseTuple(args, "D:phase", &z))
|
---|
| 922 | return NULL;
|
---|
| 923 | errno = 0;
|
---|
| 924 | PyFPE_START_PROTECT("arg function", return 0)
|
---|
| 925 | phi = c_atan2(z);
|
---|
| 926 | PyFPE_END_PROTECT(phi)
|
---|
| 927 | if (errno != 0)
|
---|
| 928 | return math_error();
|
---|
| 929 | else
|
---|
| 930 | return PyFloat_FromDouble(phi);
|
---|
[2] | 931 | }
|
---|
| 932 |
|
---|
| 933 | PyDoc_STRVAR(cmath_phase_doc,
|
---|
| 934 | "phase(z) -> float\n\n\
|
---|
| 935 | Return argument, also known as the phase angle, of a complex.");
|
---|
| 936 |
|
---|
| 937 | static PyObject *
|
---|
| 938 | cmath_polar(PyObject *self, PyObject *args)
|
---|
| 939 | {
|
---|
[391] | 940 | Py_complex z;
|
---|
| 941 | double r, phi;
|
---|
| 942 | if (!PyArg_ParseTuple(args, "D:polar", &z))
|
---|
| 943 | return NULL;
|
---|
| 944 | PyFPE_START_PROTECT("polar function", return 0)
|
---|
| 945 | phi = c_atan2(z); /* should not cause any exception */
|
---|
| 946 | r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
|
---|
| 947 | PyFPE_END_PROTECT(r)
|
---|
| 948 | if (errno != 0)
|
---|
| 949 | return math_error();
|
---|
| 950 | else
|
---|
| 951 | return Py_BuildValue("dd", r, phi);
|
---|
[2] | 952 | }
|
---|
| 953 |
|
---|
| 954 | PyDoc_STRVAR(cmath_polar_doc,
|
---|
| 955 | "polar(z) -> r: float, phi: float\n\n\
|
---|
| 956 | Convert a complex from rectangular coordinates to polar coordinates. r is\n\
|
---|
| 957 | the distance from 0 and phi the phase angle.");
|
---|
| 958 |
|
---|
| 959 | /*
|
---|
| 960 | rect() isn't covered by the C99 standard, but it's not too hard to
|
---|
| 961 | figure out 'spirit of C99' rules for special value handing:
|
---|
| 962 |
|
---|
| 963 | rect(x, t) should behave like exp(log(x) + it) for positive-signed x
|
---|
| 964 | rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
|
---|
| 965 | rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
|
---|
| 966 | gives nan +- i0 with the sign of the imaginary part unspecified.
|
---|
| 967 |
|
---|
| 968 | */
|
---|
| 969 |
|
---|
| 970 | static Py_complex rect_special_values[7][7];
|
---|
| 971 |
|
---|
| 972 | static PyObject *
|
---|
| 973 | cmath_rect(PyObject *self, PyObject *args)
|
---|
| 974 | {
|
---|
[391] | 975 | Py_complex z;
|
---|
| 976 | double r, phi;
|
---|
| 977 | if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
|
---|
| 978 | return NULL;
|
---|
| 979 | errno = 0;
|
---|
| 980 | PyFPE_START_PROTECT("rect function", return 0)
|
---|
[2] | 981 |
|
---|
[391] | 982 | /* deal with special values */
|
---|
| 983 | if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
|
---|
| 984 | /* if r is +/-infinity and phi is finite but nonzero then
|
---|
| 985 | result is (+-INF +-INF i), but we need to compute cos(phi)
|
---|
| 986 | and sin(phi) to figure out the signs. */
|
---|
| 987 | if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
|
---|
| 988 | && (phi != 0.))) {
|
---|
| 989 | if (r > 0) {
|
---|
| 990 | z.real = copysign(INF, cos(phi));
|
---|
| 991 | z.imag = copysign(INF, sin(phi));
|
---|
| 992 | }
|
---|
| 993 | else {
|
---|
| 994 | z.real = -copysign(INF, cos(phi));
|
---|
| 995 | z.imag = -copysign(INF, sin(phi));
|
---|
| 996 | }
|
---|
| 997 | }
|
---|
| 998 | else {
|
---|
| 999 | z = rect_special_values[special_type(r)]
|
---|
| 1000 | [special_type(phi)];
|
---|
| 1001 | }
|
---|
| 1002 | /* need to set errno = EDOM if r is a nonzero number and phi
|
---|
| 1003 | is infinite */
|
---|
| 1004 | if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
---|
| 1005 | errno = EDOM;
|
---|
| 1006 | else
|
---|
| 1007 | errno = 0;
|
---|
| 1008 | }
|
---|
| 1009 | else if (phi == 0.0) {
|
---|
| 1010 | /* Workaround for buggy results with phi=-0.0 on OS X 10.8. See
|
---|
| 1011 | bugs.python.org/issue18513. */
|
---|
| 1012 | z.real = r;
|
---|
| 1013 | z.imag = r * phi;
|
---|
| 1014 | errno = 0;
|
---|
| 1015 | }
|
---|
| 1016 | else {
|
---|
| 1017 | z.real = r * cos(phi);
|
---|
| 1018 | z.imag = r * sin(phi);
|
---|
| 1019 | errno = 0;
|
---|
| 1020 | }
|
---|
[2] | 1021 |
|
---|
[391] | 1022 | PyFPE_END_PROTECT(z)
|
---|
| 1023 | if (errno != 0)
|
---|
| 1024 | return math_error();
|
---|
| 1025 | else
|
---|
| 1026 | return PyComplex_FromCComplex(z);
|
---|
[2] | 1027 | }
|
---|
| 1028 |
|
---|
| 1029 | PyDoc_STRVAR(cmath_rect_doc,
|
---|
| 1030 | "rect(r, phi) -> z: complex\n\n\
|
---|
| 1031 | Convert from polar coordinates to rectangular coordinates.");
|
---|
| 1032 |
|
---|
| 1033 | static PyObject *
|
---|
| 1034 | cmath_isnan(PyObject *self, PyObject *args)
|
---|
| 1035 | {
|
---|
[391] | 1036 | Py_complex z;
|
---|
| 1037 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
---|
| 1038 | return NULL;
|
---|
| 1039 | return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
|
---|
[2] | 1040 | }
|
---|
| 1041 |
|
---|
| 1042 | PyDoc_STRVAR(cmath_isnan_doc,
|
---|
| 1043 | "isnan(z) -> bool\n\
|
---|
| 1044 | Checks if the real or imaginary part of z not a number (NaN)");
|
---|
| 1045 |
|
---|
| 1046 | static PyObject *
|
---|
| 1047 | cmath_isinf(PyObject *self, PyObject *args)
|
---|
| 1048 | {
|
---|
[391] | 1049 | Py_complex z;
|
---|
| 1050 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
---|
| 1051 | return NULL;
|
---|
| 1052 | return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
|
---|
| 1053 | Py_IS_INFINITY(z.imag));
|
---|
[2] | 1054 | }
|
---|
| 1055 |
|
---|
| 1056 | PyDoc_STRVAR(cmath_isinf_doc,
|
---|
| 1057 | "isinf(z) -> bool\n\
|
---|
| 1058 | Checks if the real or imaginary part of z is infinite.");
|
---|
| 1059 |
|
---|
| 1060 |
|
---|
| 1061 | PyDoc_STRVAR(module_doc,
|
---|
| 1062 | "This module is always available. It provides access to mathematical\n"
|
---|
| 1063 | "functions for complex numbers.");
|
---|
| 1064 |
|
---|
| 1065 | static PyMethodDef cmath_methods[] = {
|
---|
[391] | 1066 | {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
|
---|
| 1067 | {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
|
---|
| 1068 | {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
|
---|
| 1069 | {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
|
---|
| 1070 | {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
|
---|
| 1071 | {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
|
---|
| 1072 | {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
|
---|
| 1073 | {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
|
---|
| 1074 | {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
|
---|
| 1075 | {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
|
---|
| 1076 | {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
|
---|
| 1077 | {"log", cmath_log, METH_VARARGS, cmath_log_doc},
|
---|
| 1078 | {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
|
---|
| 1079 | {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
|
---|
| 1080 | {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
|
---|
| 1081 | {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
|
---|
| 1082 | {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
|
---|
| 1083 | {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
|
---|
| 1084 | {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
|
---|
| 1085 | {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
|
---|
| 1086 | {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
|
---|
| 1087 | {NULL, NULL} /* sentinel */
|
---|
[2] | 1088 | };
|
---|
| 1089 |
|
---|
| 1090 | PyMODINIT_FUNC
|
---|
| 1091 | initcmath(void)
|
---|
| 1092 | {
|
---|
[391] | 1093 | PyObject *m;
|
---|
[2] | 1094 |
|
---|
[391] | 1095 | m = Py_InitModule3("cmath", cmath_methods, module_doc);
|
---|
| 1096 | if (m == NULL)
|
---|
| 1097 | return;
|
---|
[2] | 1098 |
|
---|
[391] | 1099 | PyModule_AddObject(m, "pi",
|
---|
| 1100 | PyFloat_FromDouble(Py_MATH_PI));
|
---|
| 1101 | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
|
---|
[2] | 1102 |
|
---|
[391] | 1103 | /* initialize special value tables */
|
---|
[2] | 1104 |
|
---|
| 1105 | #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
|
---|
| 1106 | #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
|
---|
| 1107 |
|
---|
[391] | 1108 | INIT_SPECIAL_VALUES(acos_special_values, {
|
---|
| 1109 | C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
|
---|
| 1110 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
---|
| 1111 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
---|
| 1112 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
---|
| 1113 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
---|
| 1114 | C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
|
---|
| 1115 | C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
|
---|
| 1116 | })
|
---|
[2] | 1117 |
|
---|
[391] | 1118 | INIT_SPECIAL_VALUES(acosh_special_values, {
|
---|
| 1119 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
---|
| 1120 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1121 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1122 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1123 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1124 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
| 1125 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
---|
| 1126 | })
|
---|
[2] | 1127 |
|
---|
[391] | 1128 | INIT_SPECIAL_VALUES(asinh_special_values, {
|
---|
| 1129 | C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
|
---|
| 1130 | C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
|
---|
| 1131 | C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
|
---|
| 1132 | C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1133 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1134 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
| 1135 | C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
|
---|
| 1136 | })
|
---|
[2] | 1137 |
|
---|
[391] | 1138 | INIT_SPECIAL_VALUES(atanh_special_values, {
|
---|
| 1139 | C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
|
---|
| 1140 | C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
|
---|
| 1141 | C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
|
---|
| 1142 | C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
|
---|
| 1143 | C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
|
---|
| 1144 | C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
|
---|
| 1145 | C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
|
---|
| 1146 | })
|
---|
[2] | 1147 |
|
---|
[391] | 1148 | INIT_SPECIAL_VALUES(cosh_special_values, {
|
---|
| 1149 | C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1150 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1151 | C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
|
---|
| 1152 | C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
|
---|
| 1153 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1154 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1155 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
| 1156 | })
|
---|
[2] | 1157 |
|
---|
[391] | 1158 | INIT_SPECIAL_VALUES(exp_special_values, {
|
---|
| 1159 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
| 1160 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1161 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
---|
| 1162 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
---|
| 1163 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1164 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1165 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
| 1166 | })
|
---|
[2] | 1167 |
|
---|
[391] | 1168 | INIT_SPECIAL_VALUES(log_special_values, {
|
---|
| 1169 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
---|
| 1170 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1171 | C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1172 | C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1173 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
| 1174 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
| 1175 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
---|
| 1176 | })
|
---|
[2] | 1177 |
|
---|
[391] | 1178 | INIT_SPECIAL_VALUES(sinh_special_values, {
|
---|
| 1179 | C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1180 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1181 | C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
|
---|
| 1182 | C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
|
---|
| 1183 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1184 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1185 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
| 1186 | })
|
---|
[2] | 1187 |
|
---|
[391] | 1188 | INIT_SPECIAL_VALUES(sqrt_special_values, {
|
---|
| 1189 | C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
|
---|
| 1190 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
---|
| 1191 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
---|
| 1192 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
---|
| 1193 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
---|
| 1194 | C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
|
---|
| 1195 | C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
|
---|
| 1196 | })
|
---|
[2] | 1197 |
|
---|
[391] | 1198 | INIT_SPECIAL_VALUES(tanh_special_values, {
|
---|
| 1199 | C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
|
---|
| 1200 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1201 | C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
|
---|
| 1202 | C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
|
---|
| 1203 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1204 | C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
|
---|
| 1205 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
| 1206 | })
|
---|
[2] | 1207 |
|
---|
[391] | 1208 | INIT_SPECIAL_VALUES(rect_special_values, {
|
---|
| 1209 | C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1210 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1211 | C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
| 1212 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
| 1213 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
| 1214 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
| 1215 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
| 1216 | })
|
---|
[2] | 1217 | }
|
---|