1 | import unittest
|
---|
2 | from test import test_support
|
---|
3 |
|
---|
4 | from random import random
|
---|
5 | from math import atan2, isnan, copysign
|
---|
6 |
|
---|
7 | INF = float("inf")
|
---|
8 | NAN = float("nan")
|
---|
9 | # These tests ensure that complex math does the right thing
|
---|
10 |
|
---|
11 | class ComplexTest(unittest.TestCase):
|
---|
12 |
|
---|
13 | def assertAlmostEqual(self, a, b):
|
---|
14 | if isinstance(a, complex):
|
---|
15 | if isinstance(b, complex):
|
---|
16 | unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
|
---|
17 | unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
|
---|
18 | else:
|
---|
19 | unittest.TestCase.assertAlmostEqual(self, a.real, b)
|
---|
20 | unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
|
---|
21 | else:
|
---|
22 | if isinstance(b, complex):
|
---|
23 | unittest.TestCase.assertAlmostEqual(self, a, b.real)
|
---|
24 | unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
|
---|
25 | else:
|
---|
26 | unittest.TestCase.assertAlmostEqual(self, a, b)
|
---|
27 |
|
---|
28 | def assertCloseAbs(self, x, y, eps=1e-9):
|
---|
29 | """Return true iff floats x and y "are close\""""
|
---|
30 | # put the one with larger magnitude second
|
---|
31 | if abs(x) > abs(y):
|
---|
32 | x, y = y, x
|
---|
33 | if y == 0:
|
---|
34 | return abs(x) < eps
|
---|
35 | if x == 0:
|
---|
36 | return abs(y) < eps
|
---|
37 | # check that relative difference < eps
|
---|
38 | self.assertTrue(abs((x-y)/y) < eps)
|
---|
39 |
|
---|
40 | def assertFloatsAreIdentical(self, x, y):
|
---|
41 | """assert that floats x and y are identical, in the sense that:
|
---|
42 | (1) both x and y are nans, or
|
---|
43 | (2) both x and y are infinities, with the same sign, or
|
---|
44 | (3) both x and y are zeros, with the same sign, or
|
---|
45 | (4) x and y are both finite and nonzero, and x == y
|
---|
46 |
|
---|
47 | """
|
---|
48 | msg = 'floats {!r} and {!r} are not identical'
|
---|
49 |
|
---|
50 | if isnan(x) or isnan(y):
|
---|
51 | if isnan(x) and isnan(y):
|
---|
52 | return
|
---|
53 | elif x == y:
|
---|
54 | if x != 0.0:
|
---|
55 | return
|
---|
56 | # both zero; check that signs match
|
---|
57 | elif copysign(1.0, x) == copysign(1.0, y):
|
---|
58 | return
|
---|
59 | else:
|
---|
60 | msg += ': zeros have different signs'
|
---|
61 | self.fail(msg.format(x, y))
|
---|
62 |
|
---|
63 | def assertClose(self, x, y, eps=1e-9):
|
---|
64 | """Return true iff complexes x and y "are close\""""
|
---|
65 | self.assertCloseAbs(x.real, y.real, eps)
|
---|
66 | self.assertCloseAbs(x.imag, y.imag, eps)
|
---|
67 |
|
---|
68 | def check_div(self, x, y):
|
---|
69 | """Compute complex z=x*y, and check that z/x==y and z/y==x."""
|
---|
70 | z = x * y
|
---|
71 | if x != 0:
|
---|
72 | q = z / x
|
---|
73 | self.assertClose(q, y)
|
---|
74 | q = z.__div__(x)
|
---|
75 | self.assertClose(q, y)
|
---|
76 | q = z.__truediv__(x)
|
---|
77 | self.assertClose(q, y)
|
---|
78 | if y != 0:
|
---|
79 | q = z / y
|
---|
80 | self.assertClose(q, x)
|
---|
81 | q = z.__div__(y)
|
---|
82 | self.assertClose(q, x)
|
---|
83 | q = z.__truediv__(y)
|
---|
84 | self.assertClose(q, x)
|
---|
85 |
|
---|
86 | def test_div(self):
|
---|
87 | simple_real = [float(i) for i in xrange(-5, 6)]
|
---|
88 | simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
|
---|
89 | for x in simple_complex:
|
---|
90 | for y in simple_complex:
|
---|
91 | self.check_div(x, y)
|
---|
92 |
|
---|
93 | # A naive complex division algorithm (such as in 2.0) is very prone to
|
---|
94 | # nonsense errors for these (overflows and underflows).
|
---|
95 | self.check_div(complex(1e200, 1e200), 1+0j)
|
---|
96 | self.check_div(complex(1e-200, 1e-200), 1+0j)
|
---|
97 |
|
---|
98 | # Just for fun.
|
---|
99 | for i in xrange(100):
|
---|
100 | self.check_div(complex(random(), random()),
|
---|
101 | complex(random(), random()))
|
---|
102 |
|
---|
103 | self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
|
---|
104 | # FIXME: The following currently crashes on Alpha
|
---|
105 | # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
|
---|
106 |
|
---|
107 | def test_truediv(self):
|
---|
108 | self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
|
---|
109 | self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
|
---|
110 |
|
---|
111 | def test_floordiv(self):
|
---|
112 | self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
|
---|
113 | self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
|
---|
114 |
|
---|
115 | def test_coerce(self):
|
---|
116 | self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
|
---|
117 |
|
---|
118 | def test_no_implicit_coerce(self):
|
---|
119 | # Python 2.7 removed implicit coercion from the complex type
|
---|
120 | class A(object):
|
---|
121 | def __coerce__(self, other):
|
---|
122 | raise RuntimeError
|
---|
123 | __hash__ = None
|
---|
124 | def __cmp__(self, other):
|
---|
125 | return -1
|
---|
126 |
|
---|
127 | a = A()
|
---|
128 | self.assertRaises(TypeError, lambda: a + 2.0j)
|
---|
129 | self.assertTrue(a < 2.0j)
|
---|
130 |
|
---|
131 | def test_richcompare(self):
|
---|
132 | self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False)
|
---|
133 | self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
|
---|
134 | self.assertIs(complex.__eq__(1+1j, 1+1j), True)
|
---|
135 | self.assertIs(complex.__eq__(1+1j, 2+2j), False)
|
---|
136 | self.assertIs(complex.__ne__(1+1j, 1+1j), False)
|
---|
137 | self.assertIs(complex.__ne__(1+1j, 2+2j), True)
|
---|
138 | self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
|
---|
139 | self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
|
---|
140 | self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
|
---|
141 | self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
|
---|
142 |
|
---|
143 | def test_richcompare_boundaries(self):
|
---|
144 | def check(n, deltas, is_equal, imag = 0.0):
|
---|
145 | for delta in deltas:
|
---|
146 | i = n + delta
|
---|
147 | z = complex(i, imag)
|
---|
148 | self.assertIs(complex.__eq__(z, i), is_equal(delta))
|
---|
149 | self.assertIs(complex.__ne__(z, i), not is_equal(delta))
|
---|
150 | # For IEEE-754 doubles the following should hold:
|
---|
151 | # x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
|
---|
152 | # where the interval is representable, of course.
|
---|
153 | for i in range(1, 10):
|
---|
154 | pow = 52 + i
|
---|
155 | mult = 2 ** i
|
---|
156 | check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
|
---|
157 | check(2 ** pow, range(1, 101), lambda delta: False, float(i))
|
---|
158 | check(2 ** 53, range(-100, 0), lambda delta: True)
|
---|
159 |
|
---|
160 | def test_mod(self):
|
---|
161 | self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
|
---|
162 |
|
---|
163 | a = 3.33+4.43j
|
---|
164 | try:
|
---|
165 | a % 0
|
---|
166 | except ZeroDivisionError:
|
---|
167 | pass
|
---|
168 | else:
|
---|
169 | self.fail("modulo parama can't be 0")
|
---|
170 |
|
---|
171 | def test_divmod(self):
|
---|
172 | self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
|
---|
173 |
|
---|
174 | def test_pow(self):
|
---|
175 | self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
|
---|
176 | self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
|
---|
177 | self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
|
---|
178 | self.assertAlmostEqual(pow(1j, -1), 1/1j)
|
---|
179 | self.assertAlmostEqual(pow(1j, 200), 1)
|
---|
180 | self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
|
---|
181 |
|
---|
182 | a = 3.33+4.43j
|
---|
183 | self.assertEqual(a ** 0j, 1)
|
---|
184 | self.assertEqual(a ** 0.+0.j, 1)
|
---|
185 |
|
---|
186 | self.assertEqual(3j ** 0j, 1)
|
---|
187 | self.assertEqual(3j ** 0, 1)
|
---|
188 |
|
---|
189 | try:
|
---|
190 | 0j ** a
|
---|
191 | except ZeroDivisionError:
|
---|
192 | pass
|
---|
193 | else:
|
---|
194 | self.fail("should fail 0.0 to negative or complex power")
|
---|
195 |
|
---|
196 | try:
|
---|
197 | 0j ** (3-2j)
|
---|
198 | except ZeroDivisionError:
|
---|
199 | pass
|
---|
200 | else:
|
---|
201 | self.fail("should fail 0.0 to negative or complex power")
|
---|
202 |
|
---|
203 | # The following is used to exercise certain code paths
|
---|
204 | self.assertEqual(a ** 105, a ** 105)
|
---|
205 | self.assertEqual(a ** -105, a ** -105)
|
---|
206 | self.assertEqual(a ** -30, a ** -30)
|
---|
207 |
|
---|
208 | self.assertEqual(0.0j ** 0, 1)
|
---|
209 |
|
---|
210 | b = 5.1+2.3j
|
---|
211 | self.assertRaises(ValueError, pow, a, b, 0)
|
---|
212 |
|
---|
213 | def test_boolcontext(self):
|
---|
214 | for i in xrange(100):
|
---|
215 | self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
|
---|
216 | self.assertTrue(not complex(0.0, 0.0))
|
---|
217 |
|
---|
218 | def test_conjugate(self):
|
---|
219 | self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
|
---|
220 |
|
---|
221 | def test_constructor(self):
|
---|
222 | class OS:
|
---|
223 | def __init__(self, value): self.value = value
|
---|
224 | def __complex__(self): return self.value
|
---|
225 | class NS(object):
|
---|
226 | def __init__(self, value): self.value = value
|
---|
227 | def __complex__(self): return self.value
|
---|
228 | self.assertEqual(complex(OS(1+10j)), 1+10j)
|
---|
229 | self.assertEqual(complex(NS(1+10j)), 1+10j)
|
---|
230 | self.assertRaises(TypeError, complex, OS(None))
|
---|
231 | self.assertRaises(TypeError, complex, NS(None))
|
---|
232 |
|
---|
233 | self.assertAlmostEqual(complex("1+10j"), 1+10j)
|
---|
234 | self.assertAlmostEqual(complex(10), 10+0j)
|
---|
235 | self.assertAlmostEqual(complex(10.0), 10+0j)
|
---|
236 | self.assertAlmostEqual(complex(10L), 10+0j)
|
---|
237 | self.assertAlmostEqual(complex(10+0j), 10+0j)
|
---|
238 | self.assertAlmostEqual(complex(1,10), 1+10j)
|
---|
239 | self.assertAlmostEqual(complex(1,10L), 1+10j)
|
---|
240 | self.assertAlmostEqual(complex(1,10.0), 1+10j)
|
---|
241 | self.assertAlmostEqual(complex(1L,10), 1+10j)
|
---|
242 | self.assertAlmostEqual(complex(1L,10L), 1+10j)
|
---|
243 | self.assertAlmostEqual(complex(1L,10.0), 1+10j)
|
---|
244 | self.assertAlmostEqual(complex(1.0,10), 1+10j)
|
---|
245 | self.assertAlmostEqual(complex(1.0,10L), 1+10j)
|
---|
246 | self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
|
---|
247 | self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
|
---|
248 | self.assertAlmostEqual(complex(3.14), 3.14+0j)
|
---|
249 | self.assertAlmostEqual(complex(314), 314.0+0j)
|
---|
250 | self.assertAlmostEqual(complex(314L), 314.0+0j)
|
---|
251 | self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
|
---|
252 | self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
|
---|
253 | self.assertAlmostEqual(complex(314, 0), 314.0+0j)
|
---|
254 | self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
|
---|
255 | self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
|
---|
256 | self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
|
---|
257 | self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
|
---|
258 | self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
|
---|
259 | self.assertAlmostEqual(complex("1"), 1+0j)
|
---|
260 | self.assertAlmostEqual(complex("1j"), 1j)
|
---|
261 | self.assertAlmostEqual(complex(), 0)
|
---|
262 | self.assertAlmostEqual(complex("-1"), -1)
|
---|
263 | self.assertAlmostEqual(complex("+1"), +1)
|
---|
264 | self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
|
---|
265 | self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
|
---|
266 | self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
|
---|
267 | self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
|
---|
268 | self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
|
---|
269 | self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
|
---|
270 | self.assertAlmostEqual(complex("J"), 1j)
|
---|
271 | self.assertAlmostEqual(complex("( j )"), 1j)
|
---|
272 | self.assertAlmostEqual(complex("+J"), 1j)
|
---|
273 | self.assertAlmostEqual(complex("( -j)"), -1j)
|
---|
274 | self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
|
---|
275 | self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
|
---|
276 | self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
|
---|
277 |
|
---|
278 | class complex2(complex): pass
|
---|
279 | self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
|
---|
280 | self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
|
---|
281 | self.assertAlmostEqual(complex(real=17+23j), 17+23j)
|
---|
282 | self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
|
---|
283 | self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
|
---|
284 |
|
---|
285 | # check that the sign of a zero in the real or imaginary part
|
---|
286 | # is preserved when constructing from two floats. (These checks
|
---|
287 | # are harmless on systems without support for signed zeros.)
|
---|
288 | def split_zeros(x):
|
---|
289 | """Function that produces different results for 0. and -0."""
|
---|
290 | return atan2(x, -1.)
|
---|
291 |
|
---|
292 | self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
|
---|
293 | self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
|
---|
294 | self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
|
---|
295 | self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
|
---|
296 |
|
---|
297 | c = 3.14 + 1j
|
---|
298 | self.assertTrue(complex(c) is c)
|
---|
299 | del c
|
---|
300 |
|
---|
301 | self.assertRaises(TypeError, complex, "1", "1")
|
---|
302 | self.assertRaises(TypeError, complex, 1, "1")
|
---|
303 |
|
---|
304 | if test_support.have_unicode:
|
---|
305 | self.assertEqual(complex(unicode(" 3.14+J ")), 3.14+1j)
|
---|
306 |
|
---|
307 | # SF bug 543840: complex(string) accepts strings with \0
|
---|
308 | # Fixed in 2.3.
|
---|
309 | self.assertRaises(ValueError, complex, '1+1j\0j')
|
---|
310 |
|
---|
311 | self.assertRaises(TypeError, int, 5+3j)
|
---|
312 | self.assertRaises(TypeError, long, 5+3j)
|
---|
313 | self.assertRaises(TypeError, float, 5+3j)
|
---|
314 | self.assertRaises(ValueError, complex, "")
|
---|
315 | self.assertRaises(TypeError, complex, None)
|
---|
316 | self.assertRaises(ValueError, complex, "\0")
|
---|
317 | self.assertRaises(ValueError, complex, "3\09")
|
---|
318 | self.assertRaises(TypeError, complex, "1", "2")
|
---|
319 | self.assertRaises(TypeError, complex, "1", 42)
|
---|
320 | self.assertRaises(TypeError, complex, 1, "2")
|
---|
321 | self.assertRaises(ValueError, complex, "1+")
|
---|
322 | self.assertRaises(ValueError, complex, "1+1j+1j")
|
---|
323 | self.assertRaises(ValueError, complex, "--")
|
---|
324 | self.assertRaises(ValueError, complex, "(1+2j")
|
---|
325 | self.assertRaises(ValueError, complex, "1+2j)")
|
---|
326 | self.assertRaises(ValueError, complex, "1+(2j)")
|
---|
327 | self.assertRaises(ValueError, complex, "(1+2j)123")
|
---|
328 | if test_support.have_unicode:
|
---|
329 | self.assertRaises(ValueError, complex, unicode("x"))
|
---|
330 | self.assertRaises(ValueError, complex, "1j+2")
|
---|
331 | self.assertRaises(ValueError, complex, "1e1ej")
|
---|
332 | self.assertRaises(ValueError, complex, "1e++1ej")
|
---|
333 | self.assertRaises(ValueError, complex, ")1+2j(")
|
---|
334 | # the following three are accepted by Python 2.6
|
---|
335 | self.assertRaises(ValueError, complex, "1..1j")
|
---|
336 | self.assertRaises(ValueError, complex, "1.11.1j")
|
---|
337 | self.assertRaises(ValueError, complex, "1e1.1j")
|
---|
338 |
|
---|
339 | if test_support.have_unicode:
|
---|
340 | # check that complex accepts long unicode strings
|
---|
341 | self.assertEqual(type(complex(unicode("1"*500))), complex)
|
---|
342 |
|
---|
343 | class EvilExc(Exception):
|
---|
344 | pass
|
---|
345 |
|
---|
346 | class evilcomplex:
|
---|
347 | def __complex__(self):
|
---|
348 | raise EvilExc
|
---|
349 |
|
---|
350 | self.assertRaises(EvilExc, complex, evilcomplex())
|
---|
351 |
|
---|
352 | class float2:
|
---|
353 | def __init__(self, value):
|
---|
354 | self.value = value
|
---|
355 | def __float__(self):
|
---|
356 | return self.value
|
---|
357 |
|
---|
358 | self.assertAlmostEqual(complex(float2(42.)), 42)
|
---|
359 | self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
|
---|
360 | self.assertRaises(TypeError, complex, float2(None))
|
---|
361 |
|
---|
362 | class complex0(complex):
|
---|
363 | """Test usage of __complex__() when inheriting from 'complex'"""
|
---|
364 | def __complex__(self):
|
---|
365 | return 42j
|
---|
366 |
|
---|
367 | class complex1(complex):
|
---|
368 | """Test usage of __complex__() with a __new__() method"""
|
---|
369 | def __new__(self, value=0j):
|
---|
370 | return complex.__new__(self, 2*value)
|
---|
371 | def __complex__(self):
|
---|
372 | return self
|
---|
373 |
|
---|
374 | class complex2(complex):
|
---|
375 | """Make sure that __complex__() calls fail if anything other than a
|
---|
376 | complex is returned"""
|
---|
377 | def __complex__(self):
|
---|
378 | return None
|
---|
379 |
|
---|
380 | self.assertAlmostEqual(complex(complex0(1j)), 42j)
|
---|
381 | self.assertAlmostEqual(complex(complex1(1j)), 2j)
|
---|
382 | self.assertRaises(TypeError, complex, complex2(1j))
|
---|
383 |
|
---|
384 | def test_subclass(self):
|
---|
385 | class xcomplex(complex):
|
---|
386 | def __add__(self,other):
|
---|
387 | return xcomplex(complex(self) + other)
|
---|
388 | __radd__ = __add__
|
---|
389 |
|
---|
390 | def __sub__(self,other):
|
---|
391 | return xcomplex(complex(self) + other)
|
---|
392 | __rsub__ = __sub__
|
---|
393 |
|
---|
394 | def __mul__(self,other):
|
---|
395 | return xcomplex(complex(self) * other)
|
---|
396 | __rmul__ = __mul__
|
---|
397 |
|
---|
398 | def __div__(self,other):
|
---|
399 | return xcomplex(complex(self) / other)
|
---|
400 |
|
---|
401 | def __rdiv__(self,other):
|
---|
402 | return xcomplex(other / complex(self))
|
---|
403 |
|
---|
404 | __truediv__ = __div__
|
---|
405 | __rtruediv__ = __rdiv__
|
---|
406 |
|
---|
407 | def __floordiv__(self,other):
|
---|
408 | return xcomplex(complex(self) // other)
|
---|
409 |
|
---|
410 | def __rfloordiv__(self,other):
|
---|
411 | return xcomplex(other // complex(self))
|
---|
412 |
|
---|
413 | def __pow__(self,other):
|
---|
414 | return xcomplex(complex(self) ** other)
|
---|
415 |
|
---|
416 | def __rpow__(self,other):
|
---|
417 | return xcomplex(other ** complex(self) )
|
---|
418 |
|
---|
419 | def __mod__(self,other):
|
---|
420 | return xcomplex(complex(self) % other)
|
---|
421 |
|
---|
422 | def __rmod__(self,other):
|
---|
423 | return xcomplex(other % complex(self))
|
---|
424 |
|
---|
425 | infix_binops = ('+', '-', '*', '**', '%', '//', '/')
|
---|
426 | xcomplex_values = (xcomplex(1), xcomplex(123.0),
|
---|
427 | xcomplex(-10+2j), xcomplex(3+187j),
|
---|
428 | xcomplex(3-78j))
|
---|
429 | test_values = (1, 123.0, 10-19j, xcomplex(1+2j),
|
---|
430 | xcomplex(1+87j), xcomplex(10+90j))
|
---|
431 |
|
---|
432 | for op in infix_binops:
|
---|
433 | for x in xcomplex_values:
|
---|
434 | for y in test_values:
|
---|
435 | a = 'x %s y' % op
|
---|
436 | b = 'y %s x' % op
|
---|
437 | self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex)
|
---|
438 |
|
---|
439 | def test_hash(self):
|
---|
440 | for x in xrange(-30, 30):
|
---|
441 | self.assertEqual(hash(x), hash(complex(x, 0)))
|
---|
442 | x /= 3.0 # now check against floating point
|
---|
443 | self.assertEqual(hash(x), hash(complex(x, 0.)))
|
---|
444 |
|
---|
445 | def test_abs(self):
|
---|
446 | nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
|
---|
447 | for num in nums:
|
---|
448 | self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num))
|
---|
449 |
|
---|
450 | def test_repr(self):
|
---|
451 | self.assertEqual(repr(1+6j), '(1+6j)')
|
---|
452 | self.assertEqual(repr(1-6j), '(1-6j)')
|
---|
453 |
|
---|
454 | self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')
|
---|
455 |
|
---|
456 | self.assertEqual(1-6j,complex(repr(1-6j)))
|
---|
457 | self.assertEqual(1+6j,complex(repr(1+6j)))
|
---|
458 | self.assertEqual(-6j,complex(repr(-6j)))
|
---|
459 | self.assertEqual(6j,complex(repr(6j)))
|
---|
460 |
|
---|
461 | self.assertEqual(repr(complex(1., INF)), "(1+infj)")
|
---|
462 | self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
|
---|
463 | self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
|
---|
464 | self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
|
---|
465 | self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
|
---|
466 | self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
|
---|
467 | self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")
|
---|
468 |
|
---|
469 | self.assertEqual(repr(complex(0, INF)), "infj")
|
---|
470 | self.assertEqual(repr(complex(0, -INF)), "-infj")
|
---|
471 | self.assertEqual(repr(complex(0, NAN)), "nanj")
|
---|
472 |
|
---|
473 | def test_neg(self):
|
---|
474 | self.assertEqual(-(1+6j), -1-6j)
|
---|
475 |
|
---|
476 | def test_file(self):
|
---|
477 | a = 3.33+4.43j
|
---|
478 | b = 5.1+2.3j
|
---|
479 |
|
---|
480 | fo = None
|
---|
481 | try:
|
---|
482 | fo = open(test_support.TESTFN, "wb")
|
---|
483 | print >>fo, a, b
|
---|
484 | fo.close()
|
---|
485 | fo = open(test_support.TESTFN, "rb")
|
---|
486 | self.assertEqual(fo.read(), "%s %s\n" % (a, b))
|
---|
487 | finally:
|
---|
488 | if (fo is not None) and (not fo.closed):
|
---|
489 | fo.close()
|
---|
490 | test_support.unlink(test_support.TESTFN)
|
---|
491 |
|
---|
492 | def test_getnewargs(self):
|
---|
493 | self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
|
---|
494 | self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
|
---|
495 | self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
|
---|
496 | self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
|
---|
497 | self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
|
---|
498 | self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
|
---|
499 |
|
---|
500 | if float.__getformat__("double").startswith("IEEE"):
|
---|
501 | def test_plus_minus_0j(self):
|
---|
502 | # test that -0j and 0j literals are not identified
|
---|
503 | z1, z2 = 0j, -0j
|
---|
504 | self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
|
---|
505 | self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
|
---|
506 |
|
---|
507 | @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
---|
508 | "test requires IEEE 754 doubles")
|
---|
509 | def test_overflow(self):
|
---|
510 | self.assertEqual(complex("1e500"), complex(INF, 0.0))
|
---|
511 | self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
|
---|
512 | self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
|
---|
513 |
|
---|
514 | @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
|
---|
515 | "test requires IEEE 754 doubles")
|
---|
516 | def test_repr_roundtrip(self):
|
---|
517 | vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
|
---|
518 | vals += [-v for v in vals]
|
---|
519 |
|
---|
520 | # complex(repr(z)) should recover z exactly, even for complex
|
---|
521 | # numbers involving an infinity, nan, or negative zero
|
---|
522 | for x in vals:
|
---|
523 | for y in vals:
|
---|
524 | z = complex(x, y)
|
---|
525 | roundtrip = complex(repr(z))
|
---|
526 | self.assertFloatsAreIdentical(z.real, roundtrip.real)
|
---|
527 | self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
|
---|
528 |
|
---|
529 | # if we predefine some constants, then eval(repr(z)) should
|
---|
530 | # also work, except that it might change the sign of zeros
|
---|
531 | inf, nan = float('inf'), float('nan')
|
---|
532 | infj, nanj = complex(0.0, inf), complex(0.0, nan)
|
---|
533 | for x in vals:
|
---|
534 | for y in vals:
|
---|
535 | z = complex(x, y)
|
---|
536 | roundtrip = eval(repr(z))
|
---|
537 | # adding 0.0 has no effect beside changing -0.0 to 0.0
|
---|
538 | self.assertFloatsAreIdentical(0.0 + z.real,
|
---|
539 | 0.0 + roundtrip.real)
|
---|
540 | self.assertFloatsAreIdentical(0.0 + z.imag,
|
---|
541 | 0.0 + roundtrip.imag)
|
---|
542 |
|
---|
543 | def test_format(self):
|
---|
544 | # empty format string is same as str()
|
---|
545 | self.assertEqual(format(1+3j, ''), str(1+3j))
|
---|
546 | self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
|
---|
547 | self.assertEqual(format(3j, ''), str(3j))
|
---|
548 | self.assertEqual(format(3.2j, ''), str(3.2j))
|
---|
549 | self.assertEqual(format(3+0j, ''), str(3+0j))
|
---|
550 | self.assertEqual(format(3.2+0j, ''), str(3.2+0j))
|
---|
551 |
|
---|
552 | # empty presentation type should still be analogous to str,
|
---|
553 | # even when format string is nonempty (issue #5920).
|
---|
554 | self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
|
---|
555 | self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
|
---|
556 | z = 4/7. - 100j/7.
|
---|
557 | self.assertEqual(format(z, ''), str(z))
|
---|
558 | self.assertEqual(format(z, '-'), str(z))
|
---|
559 | self.assertEqual(format(z, '<'), str(z))
|
---|
560 | self.assertEqual(format(z, '10'), str(z))
|
---|
561 | z = complex(0.0, 3.0)
|
---|
562 | self.assertEqual(format(z, ''), str(z))
|
---|
563 | self.assertEqual(format(z, '-'), str(z))
|
---|
564 | self.assertEqual(format(z, '<'), str(z))
|
---|
565 | self.assertEqual(format(z, '2'), str(z))
|
---|
566 | z = complex(-0.0, 2.0)
|
---|
567 | self.assertEqual(format(z, ''), str(z))
|
---|
568 | self.assertEqual(format(z, '-'), str(z))
|
---|
569 | self.assertEqual(format(z, '<'), str(z))
|
---|
570 | self.assertEqual(format(z, '3'), str(z))
|
---|
571 |
|
---|
572 | self.assertEqual(format(1+3j, 'g'), '1+3j')
|
---|
573 | self.assertEqual(format(3j, 'g'), '0+3j')
|
---|
574 | self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')
|
---|
575 |
|
---|
576 | self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
|
---|
577 | self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
|
---|
578 | self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
|
---|
579 | self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
|
---|
580 | self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
|
---|
581 | self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
|
---|
582 | self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')
|
---|
583 |
|
---|
584 | self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
|
---|
585 | self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
|
---|
586 | self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
|
---|
587 | self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
|
---|
588 | self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
|
---|
589 | self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
|
---|
590 | self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')
|
---|
591 |
|
---|
592 | self.assertEqual(format(1.5+3j, '<20g'), '1.5+3j ')
|
---|
593 | self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
|
---|
594 | self.assertEqual(format(1.5+3j, '>20g'), ' 1.5+3j')
|
---|
595 | self.assertEqual(format(1.5+3j, '^20g'), ' 1.5+3j ')
|
---|
596 | self.assertEqual(format(1.5+3j, '<20'), '(1.5+3j) ')
|
---|
597 | self.assertEqual(format(1.5+3j, '>20'), ' (1.5+3j)')
|
---|
598 | self.assertEqual(format(1.5+3j, '^20'), ' (1.5+3j) ')
|
---|
599 | self.assertEqual(format(1.123-3.123j, '^20.2'), ' (1.1-3.1j) ')
|
---|
600 |
|
---|
601 | self.assertEqual(format(1.5+3j, '20.2f'), ' 1.50+3.00j')
|
---|
602 | self.assertEqual(format(1.5+3j, '>20.2f'), ' 1.50+3.00j')
|
---|
603 | self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j ')
|
---|
604 | self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
|
---|
605 | self.assertEqual(format(1.5e20+3j, '>40.2f'), ' 150000000000000000000.00+3.00j')
|
---|
606 | self.assertEqual(format(1.5e20+3j, '^40,.2f'), ' 150,000,000,000,000,000,000.00+3.00j ')
|
---|
607 | self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
|
---|
608 | self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')
|
---|
609 |
|
---|
610 | # alternate is invalid
|
---|
611 | self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f')
|
---|
612 |
|
---|
613 | # zero padding is invalid
|
---|
614 | self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')
|
---|
615 |
|
---|
616 | # '=' alignment is invalid
|
---|
617 | self.assertRaises(ValueError, (1.5+3j).__format__, '=20')
|
---|
618 |
|
---|
619 | # integer presentation types are an error
|
---|
620 | for t in 'bcdoxX':
|
---|
621 | self.assertRaises(ValueError, (1.5+0.5j).__format__, t)
|
---|
622 |
|
---|
623 | # make sure everything works in ''.format()
|
---|
624 | self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')
|
---|
625 |
|
---|
626 | # issue 3382: 'f' and 'F' with inf's and nan's
|
---|
627 | self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j')
|
---|
628 | self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j')
|
---|
629 | self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j')
|
---|
630 | self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j')
|
---|
631 | self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj')
|
---|
632 | self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj')
|
---|
633 | self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj')
|
---|
634 | self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj')
|
---|
635 | self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj')
|
---|
636 | self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj')
|
---|
637 | self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj')
|
---|
638 | self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj')
|
---|
639 |
|
---|
640 | self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j')
|
---|
641 | self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j')
|
---|
642 | self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj')
|
---|
643 | self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj')
|
---|
644 |
|
---|
645 | def test_main():
|
---|
646 | with test_support.check_warnings(("complex divmod.., // and % are "
|
---|
647 | "deprecated", DeprecationWarning)):
|
---|
648 | test_support.run_unittest(ComplexTest)
|
---|
649 |
|
---|
650 | if __name__ == "__main__":
|
---|
651 | test_main()
|
---|