1 | from test.test_support import run_unittest
|
---|
2 | from test.test_math import parse_testfile, test_file
|
---|
3 | import unittest
|
---|
4 | import cmath, math
|
---|
5 | from cmath import phase, polar, rect, pi
|
---|
6 |
|
---|
7 | INF = float('inf')
|
---|
8 | NAN = float('nan')
|
---|
9 |
|
---|
10 | complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
|
---|
11 | complex_infinities = [complex(x, y) for x, y in [
|
---|
12 | (INF, 0.0), # 1st quadrant
|
---|
13 | (INF, 2.3),
|
---|
14 | (INF, INF),
|
---|
15 | (2.3, INF),
|
---|
16 | (0.0, INF),
|
---|
17 | (-0.0, INF), # 2nd quadrant
|
---|
18 | (-2.3, INF),
|
---|
19 | (-INF, INF),
|
---|
20 | (-INF, 2.3),
|
---|
21 | (-INF, 0.0),
|
---|
22 | (-INF, -0.0), # 3rd quadrant
|
---|
23 | (-INF, -2.3),
|
---|
24 | (-INF, -INF),
|
---|
25 | (-2.3, -INF),
|
---|
26 | (-0.0, -INF),
|
---|
27 | (0.0, -INF), # 4th quadrant
|
---|
28 | (2.3, -INF),
|
---|
29 | (INF, -INF),
|
---|
30 | (INF, -2.3),
|
---|
31 | (INF, -0.0)
|
---|
32 | ]]
|
---|
33 | complex_nans = [complex(x, y) for x, y in [
|
---|
34 | (NAN, -INF),
|
---|
35 | (NAN, -2.3),
|
---|
36 | (NAN, -0.0),
|
---|
37 | (NAN, 0.0),
|
---|
38 | (NAN, 2.3),
|
---|
39 | (NAN, INF),
|
---|
40 | (-INF, NAN),
|
---|
41 | (-2.3, NAN),
|
---|
42 | (-0.0, NAN),
|
---|
43 | (0.0, NAN),
|
---|
44 | (2.3, NAN),
|
---|
45 | (INF, NAN)
|
---|
46 | ]]
|
---|
47 |
|
---|
48 | class CMathTests(unittest.TestCase):
|
---|
49 | # list of all functions in cmath
|
---|
50 | test_functions = [getattr(cmath, fname) for fname in [
|
---|
51 | 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
|
---|
52 | 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
|
---|
53 | 'sqrt', 'tan', 'tanh']]
|
---|
54 | # test first and second arguments independently for 2-argument log
|
---|
55 | test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
|
---|
56 | test_functions.append(lambda x : cmath.log(14.-27j, x))
|
---|
57 |
|
---|
58 | def setUp(self):
|
---|
59 | self.test_values = open(test_file)
|
---|
60 |
|
---|
61 | def tearDown(self):
|
---|
62 | self.test_values.close()
|
---|
63 |
|
---|
64 | def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
|
---|
65 | msg=None):
|
---|
66 | """Fail if the two floating-point numbers are not almost equal.
|
---|
67 |
|
---|
68 | Determine whether floating-point values a and b are equal to within
|
---|
69 | a (small) rounding error. The default values for rel_err and
|
---|
70 | abs_err are chosen to be suitable for platforms where a float is
|
---|
71 | represented by an IEEE 754 double. They allow an error of between
|
---|
72 | 9 and 19 ulps.
|
---|
73 | """
|
---|
74 |
|
---|
75 | # special values testing
|
---|
76 | if math.isnan(a):
|
---|
77 | if math.isnan(b):
|
---|
78 | return
|
---|
79 | self.fail(msg or '{!r} should be nan'.format(b))
|
---|
80 |
|
---|
81 | if math.isinf(a):
|
---|
82 | if a == b:
|
---|
83 | return
|
---|
84 | self.fail(msg or 'finite result where infinity expected: '
|
---|
85 | 'expected {!r}, got {!r}'.format(a, b))
|
---|
86 |
|
---|
87 | # if both a and b are zero, check whether they have the same sign
|
---|
88 | # (in theory there are examples where it would be legitimate for a
|
---|
89 | # and b to have opposite signs; in practice these hardly ever
|
---|
90 | # occur).
|
---|
91 | if not a and not b:
|
---|
92 | if math.copysign(1., a) != math.copysign(1., b):
|
---|
93 | self.fail(msg or 'zero has wrong sign: expected {!r}, '
|
---|
94 | 'got {!r}'.format(a, b))
|
---|
95 |
|
---|
96 | # if a-b overflows, or b is infinite, return False. Again, in
|
---|
97 | # theory there are examples where a is within a few ulps of the
|
---|
98 | # max representable float, and then b could legitimately be
|
---|
99 | # infinite. In practice these examples are rare.
|
---|
100 | try:
|
---|
101 | absolute_error = abs(b-a)
|
---|
102 | except OverflowError:
|
---|
103 | pass
|
---|
104 | else:
|
---|
105 | # test passes if either the absolute error or the relative
|
---|
106 | # error is sufficiently small. The defaults amount to an
|
---|
107 | # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
|
---|
108 | # machine.
|
---|
109 | if absolute_error <= max(abs_err, rel_err * abs(a)):
|
---|
110 | return
|
---|
111 | self.fail(msg or
|
---|
112 | '{!r} and {!r} are not sufficiently close'.format(a, b))
|
---|
113 |
|
---|
114 | def test_constants(self):
|
---|
115 | e_expected = 2.71828182845904523536
|
---|
116 | pi_expected = 3.14159265358979323846
|
---|
117 | self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
|
---|
118 | msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
|
---|
119 | self.assertAlmostEqual(cmath.e, e_expected, places=9,
|
---|
120 | msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
|
---|
121 |
|
---|
122 | def test_user_object(self):
|
---|
123 | # Test automatic calling of __complex__ and __float__ by cmath
|
---|
124 | # functions
|
---|
125 |
|
---|
126 | # some random values to use as test values; we avoid values
|
---|
127 | # for which any of the functions in cmath is undefined
|
---|
128 | # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
|
---|
129 | cx_arg = 4.419414439 + 1.497100113j
|
---|
130 | flt_arg = -6.131677725
|
---|
131 |
|
---|
132 | # a variety of non-complex numbers, used to check that
|
---|
133 | # non-complex return values from __complex__ give an error
|
---|
134 | non_complexes = ["not complex", 1, 5L, 2., None,
|
---|
135 | object(), NotImplemented]
|
---|
136 |
|
---|
137 | # Now we introduce a variety of classes whose instances might
|
---|
138 | # end up being passed to the cmath functions
|
---|
139 |
|
---|
140 | # usual case: new-style class implementing __complex__
|
---|
141 | class MyComplex(object):
|
---|
142 | def __init__(self, value):
|
---|
143 | self.value = value
|
---|
144 | def __complex__(self):
|
---|
145 | return self.value
|
---|
146 |
|
---|
147 | # old-style class implementing __complex__
|
---|
148 | class MyComplexOS:
|
---|
149 | def __init__(self, value):
|
---|
150 | self.value = value
|
---|
151 | def __complex__(self):
|
---|
152 | return self.value
|
---|
153 |
|
---|
154 | # classes for which __complex__ raises an exception
|
---|
155 | class SomeException(Exception):
|
---|
156 | pass
|
---|
157 | class MyComplexException(object):
|
---|
158 | def __complex__(self):
|
---|
159 | raise SomeException
|
---|
160 | class MyComplexExceptionOS:
|
---|
161 | def __complex__(self):
|
---|
162 | raise SomeException
|
---|
163 |
|
---|
164 | # some classes not providing __float__ or __complex__
|
---|
165 | class NeitherComplexNorFloat(object):
|
---|
166 | pass
|
---|
167 | class NeitherComplexNorFloatOS:
|
---|
168 | pass
|
---|
169 | class MyInt(object):
|
---|
170 | def __int__(self): return 2
|
---|
171 | def __long__(self): return 2L
|
---|
172 | def __index__(self): return 2
|
---|
173 | class MyIntOS:
|
---|
174 | def __int__(self): return 2
|
---|
175 | def __long__(self): return 2L
|
---|
176 | def __index__(self): return 2
|
---|
177 |
|
---|
178 | # other possible combinations of __float__ and __complex__
|
---|
179 | # that should work
|
---|
180 | class FloatAndComplex(object):
|
---|
181 | def __float__(self):
|
---|
182 | return flt_arg
|
---|
183 | def __complex__(self):
|
---|
184 | return cx_arg
|
---|
185 | class FloatAndComplexOS:
|
---|
186 | def __float__(self):
|
---|
187 | return flt_arg
|
---|
188 | def __complex__(self):
|
---|
189 | return cx_arg
|
---|
190 | class JustFloat(object):
|
---|
191 | def __float__(self):
|
---|
192 | return flt_arg
|
---|
193 | class JustFloatOS:
|
---|
194 | def __float__(self):
|
---|
195 | return flt_arg
|
---|
196 |
|
---|
197 | for f in self.test_functions:
|
---|
198 | # usual usage
|
---|
199 | self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
|
---|
200 | self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
|
---|
201 | # other combinations of __float__ and __complex__
|
---|
202 | self.assertEqual(f(FloatAndComplex()), f(cx_arg))
|
---|
203 | self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
|
---|
204 | self.assertEqual(f(JustFloat()), f(flt_arg))
|
---|
205 | self.assertEqual(f(JustFloatOS()), f(flt_arg))
|
---|
206 | # TypeError should be raised for classes not providing
|
---|
207 | # either __complex__ or __float__, even if they provide
|
---|
208 | # __int__, __long__ or __index__. An old-style class
|
---|
209 | # currently raises AttributeError instead of a TypeError;
|
---|
210 | # this could be considered a bug.
|
---|
211 | self.assertRaises(TypeError, f, NeitherComplexNorFloat())
|
---|
212 | self.assertRaises(TypeError, f, MyInt())
|
---|
213 | self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
|
---|
214 | self.assertRaises(Exception, f, MyIntOS())
|
---|
215 | # non-complex return value from __complex__ -> TypeError
|
---|
216 | for bad_complex in non_complexes:
|
---|
217 | self.assertRaises(TypeError, f, MyComplex(bad_complex))
|
---|
218 | self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
|
---|
219 | # exceptions in __complex__ should be propagated correctly
|
---|
220 | self.assertRaises(SomeException, f, MyComplexException())
|
---|
221 | self.assertRaises(SomeException, f, MyComplexExceptionOS())
|
---|
222 |
|
---|
223 | def test_input_type(self):
|
---|
224 | # ints and longs should be acceptable inputs to all cmath
|
---|
225 | # functions, by virtue of providing a __float__ method
|
---|
226 | for f in self.test_functions:
|
---|
227 | for arg in [2, 2L, 2.]:
|
---|
228 | self.assertEqual(f(arg), f(arg.__float__()))
|
---|
229 |
|
---|
230 | # but strings should give a TypeError
|
---|
231 | for f in self.test_functions:
|
---|
232 | for arg in ["a", "long_string", "0", "1j", ""]:
|
---|
233 | self.assertRaises(TypeError, f, arg)
|
---|
234 |
|
---|
235 | def test_cmath_matches_math(self):
|
---|
236 | # check that corresponding cmath and math functions are equal
|
---|
237 | # for floats in the appropriate range
|
---|
238 |
|
---|
239 | # test_values in (0, 1)
|
---|
240 | test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
|
---|
241 |
|
---|
242 | # test_values for functions defined on [-1., 1.]
|
---|
243 | unit_interval = test_values + [-x for x in test_values] + \
|
---|
244 | [0., 1., -1.]
|
---|
245 |
|
---|
246 | # test_values for log, log10, sqrt
|
---|
247 | positive = test_values + [1.] + [1./x for x in test_values]
|
---|
248 | nonnegative = [0.] + positive
|
---|
249 |
|
---|
250 | # test_values for functions defined on the whole real line
|
---|
251 | real_line = [0.] + positive + [-x for x in positive]
|
---|
252 |
|
---|
253 | test_functions = {
|
---|
254 | 'acos' : unit_interval,
|
---|
255 | 'asin' : unit_interval,
|
---|
256 | 'atan' : real_line,
|
---|
257 | 'cos' : real_line,
|
---|
258 | 'cosh' : real_line,
|
---|
259 | 'exp' : real_line,
|
---|
260 | 'log' : positive,
|
---|
261 | 'log10' : positive,
|
---|
262 | 'sin' : real_line,
|
---|
263 | 'sinh' : real_line,
|
---|
264 | 'sqrt' : nonnegative,
|
---|
265 | 'tan' : real_line,
|
---|
266 | 'tanh' : real_line}
|
---|
267 |
|
---|
268 | for fn, values in test_functions.items():
|
---|
269 | float_fn = getattr(math, fn)
|
---|
270 | complex_fn = getattr(cmath, fn)
|
---|
271 | for v in values:
|
---|
272 | z = complex_fn(v)
|
---|
273 | self.rAssertAlmostEqual(float_fn(v), z.real)
|
---|
274 | self.assertEqual(0., z.imag)
|
---|
275 |
|
---|
276 | # test two-argument version of log with various bases
|
---|
277 | for base in [0.5, 2., 10.]:
|
---|
278 | for v in positive:
|
---|
279 | z = cmath.log(v, base)
|
---|
280 | self.rAssertAlmostEqual(math.log(v, base), z.real)
|
---|
281 | self.assertEqual(0., z.imag)
|
---|
282 |
|
---|
283 | def test_specific_values(self):
|
---|
284 | if not float.__getformat__("double").startswith("IEEE"):
|
---|
285 | return
|
---|
286 |
|
---|
287 | def rect_complex(z):
|
---|
288 | """Wrapped version of rect that accepts a complex number instead of
|
---|
289 | two float arguments."""
|
---|
290 | return cmath.rect(z.real, z.imag)
|
---|
291 |
|
---|
292 | def polar_complex(z):
|
---|
293 | """Wrapped version of polar that returns a complex number instead of
|
---|
294 | two floats."""
|
---|
295 | return complex(*polar(z))
|
---|
296 |
|
---|
297 | for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
|
---|
298 | arg = complex(ar, ai)
|
---|
299 | expected = complex(er, ei)
|
---|
300 | if fn == 'rect':
|
---|
301 | function = rect_complex
|
---|
302 | elif fn == 'polar':
|
---|
303 | function = polar_complex
|
---|
304 | else:
|
---|
305 | function = getattr(cmath, fn)
|
---|
306 | if 'divide-by-zero' in flags or 'invalid' in flags:
|
---|
307 | try:
|
---|
308 | actual = function(arg)
|
---|
309 | except ValueError:
|
---|
310 | continue
|
---|
311 | else:
|
---|
312 | self.fail('ValueError not raised in test '
|
---|
313 | '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
|
---|
314 |
|
---|
315 | if 'overflow' in flags:
|
---|
316 | try:
|
---|
317 | actual = function(arg)
|
---|
318 | except OverflowError:
|
---|
319 | continue
|
---|
320 | else:
|
---|
321 | self.fail('OverflowError not raised in test '
|
---|
322 | '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
|
---|
323 |
|
---|
324 | actual = function(arg)
|
---|
325 |
|
---|
326 | if 'ignore-real-sign' in flags:
|
---|
327 | actual = complex(abs(actual.real), actual.imag)
|
---|
328 | expected = complex(abs(expected.real), expected.imag)
|
---|
329 | if 'ignore-imag-sign' in flags:
|
---|
330 | actual = complex(actual.real, abs(actual.imag))
|
---|
331 | expected = complex(expected.real, abs(expected.imag))
|
---|
332 |
|
---|
333 | # for the real part of the log function, we allow an
|
---|
334 | # absolute error of up to 2e-15.
|
---|
335 | if fn in ('log', 'log10'):
|
---|
336 | real_abs_err = 2e-15
|
---|
337 | else:
|
---|
338 | real_abs_err = 5e-323
|
---|
339 |
|
---|
340 | error_message = (
|
---|
341 | '{}: {}(complex({!r}, {!r}))\n'
|
---|
342 | 'Expected: complex({!r}, {!r})\n'
|
---|
343 | 'Received: complex({!r}, {!r})\n'
|
---|
344 | 'Received value insufficiently close to expected value.'
|
---|
345 | ).format(id, fn, ar, ai,
|
---|
346 | expected.real, expected.imag,
|
---|
347 | actual.real, actual.imag)
|
---|
348 | self.rAssertAlmostEqual(expected.real, actual.real,
|
---|
349 | abs_err=real_abs_err,
|
---|
350 | msg=error_message)
|
---|
351 | self.rAssertAlmostEqual(expected.imag, actual.imag,
|
---|
352 | msg=error_message)
|
---|
353 |
|
---|
354 | def assertCISEqual(self, a, b):
|
---|
355 | eps = 1E-7
|
---|
356 | if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
|
---|
357 | self.fail((a ,b))
|
---|
358 |
|
---|
359 | def test_polar(self):
|
---|
360 | self.assertCISEqual(polar(0), (0., 0.))
|
---|
361 | self.assertCISEqual(polar(1.), (1., 0.))
|
---|
362 | self.assertCISEqual(polar(-1.), (1., pi))
|
---|
363 | self.assertCISEqual(polar(1j), (1., pi/2))
|
---|
364 | self.assertCISEqual(polar(-1j), (1., -pi/2))
|
---|
365 |
|
---|
366 | def test_phase(self):
|
---|
367 | self.assertAlmostEqual(phase(0), 0.)
|
---|
368 | self.assertAlmostEqual(phase(1.), 0.)
|
---|
369 | self.assertAlmostEqual(phase(-1.), pi)
|
---|
370 | self.assertAlmostEqual(phase(-1.+1E-300j), pi)
|
---|
371 | self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
|
---|
372 | self.assertAlmostEqual(phase(1j), pi/2)
|
---|
373 | self.assertAlmostEqual(phase(-1j), -pi/2)
|
---|
374 |
|
---|
375 | # zeros
|
---|
376 | self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
|
---|
377 | self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
|
---|
378 | self.assertEqual(phase(complex(-0.0, 0.0)), pi)
|
---|
379 | self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
|
---|
380 |
|
---|
381 | # infinities
|
---|
382 | self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
|
---|
383 | self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
|
---|
384 | self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
|
---|
385 | self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
|
---|
386 | self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
|
---|
387 | self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
|
---|
388 | self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
|
---|
389 | self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
|
---|
390 | self.assertEqual(phase(complex(INF, -2.3)), -0.0)
|
---|
391 | self.assertEqual(phase(complex(INF, -0.0)), -0.0)
|
---|
392 | self.assertEqual(phase(complex(INF, 0.0)), 0.0)
|
---|
393 | self.assertEqual(phase(complex(INF, 2.3)), 0.0)
|
---|
394 | self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
|
---|
395 | self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
|
---|
396 | self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
|
---|
397 | self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
|
---|
398 | self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
|
---|
399 | self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
|
---|
400 | self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
|
---|
401 | self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
|
---|
402 |
|
---|
403 | # real or imaginary part NaN
|
---|
404 | for z in complex_nans:
|
---|
405 | self.assertTrue(math.isnan(phase(z)))
|
---|
406 |
|
---|
407 | def test_abs(self):
|
---|
408 | # zeros
|
---|
409 | for z in complex_zeros:
|
---|
410 | self.assertEqual(abs(z), 0.0)
|
---|
411 |
|
---|
412 | # infinities
|
---|
413 | for z in complex_infinities:
|
---|
414 | self.assertEqual(abs(z), INF)
|
---|
415 |
|
---|
416 | # real or imaginary part NaN
|
---|
417 | self.assertEqual(abs(complex(NAN, -INF)), INF)
|
---|
418 | self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
|
---|
419 | self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
|
---|
420 | self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
|
---|
421 | self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
|
---|
422 | self.assertEqual(abs(complex(NAN, INF)), INF)
|
---|
423 | self.assertEqual(abs(complex(-INF, NAN)), INF)
|
---|
424 | self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
|
---|
425 | self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
|
---|
426 | self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
|
---|
427 | self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
|
---|
428 | self.assertEqual(abs(complex(INF, NAN)), INF)
|
---|
429 | self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
|
---|
430 |
|
---|
431 | # result overflows
|
---|
432 | if float.__getformat__("double").startswith("IEEE"):
|
---|
433 | self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
|
---|
434 |
|
---|
435 | def assertCEqual(self, a, b):
|
---|
436 | eps = 1E-7
|
---|
437 | if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
|
---|
438 | self.fail((a ,b))
|
---|
439 |
|
---|
440 | def test_rect(self):
|
---|
441 | self.assertCEqual(rect(0, 0), (0, 0))
|
---|
442 | self.assertCEqual(rect(1, 0), (1., 0))
|
---|
443 | self.assertCEqual(rect(1, -pi), (-1., 0))
|
---|
444 | self.assertCEqual(rect(1, pi/2), (0, 1.))
|
---|
445 | self.assertCEqual(rect(1, -pi/2), (0, -1.))
|
---|
446 |
|
---|
447 | def test_isnan(self):
|
---|
448 | self.assertFalse(cmath.isnan(1))
|
---|
449 | self.assertFalse(cmath.isnan(1j))
|
---|
450 | self.assertFalse(cmath.isnan(INF))
|
---|
451 | self.assertTrue(cmath.isnan(NAN))
|
---|
452 | self.assertTrue(cmath.isnan(complex(NAN, 0)))
|
---|
453 | self.assertTrue(cmath.isnan(complex(0, NAN)))
|
---|
454 | self.assertTrue(cmath.isnan(complex(NAN, NAN)))
|
---|
455 | self.assertTrue(cmath.isnan(complex(NAN, INF)))
|
---|
456 | self.assertTrue(cmath.isnan(complex(INF, NAN)))
|
---|
457 |
|
---|
458 | def test_isinf(self):
|
---|
459 | self.assertFalse(cmath.isinf(1))
|
---|
460 | self.assertFalse(cmath.isinf(1j))
|
---|
461 | self.assertFalse(cmath.isinf(NAN))
|
---|
462 | self.assertTrue(cmath.isinf(INF))
|
---|
463 | self.assertTrue(cmath.isinf(complex(INF, 0)))
|
---|
464 | self.assertTrue(cmath.isinf(complex(0, INF)))
|
---|
465 | self.assertTrue(cmath.isinf(complex(INF, INF)))
|
---|
466 | self.assertTrue(cmath.isinf(complex(NAN, INF)))
|
---|
467 | self.assertTrue(cmath.isinf(complex(INF, NAN)))
|
---|
468 |
|
---|
469 |
|
---|
470 | def test_main():
|
---|
471 | run_unittest(CMathTests)
|
---|
472 |
|
---|
473 | if __name__ == "__main__":
|
---|
474 | test_main()
|
---|