1 | -- Testcases for functions in math.
|
---|
2 | --
|
---|
3 | -- Each line takes the form:
|
---|
4 | --
|
---|
5 | -- <testid> <function> <input_value> -> <output_value> <flags>
|
---|
6 | --
|
---|
7 | -- where:
|
---|
8 | --
|
---|
9 | -- <testid> is a short name identifying the test,
|
---|
10 | --
|
---|
11 | -- <function> is the function to be tested (exp, cos, asinh, ...),
|
---|
12 | --
|
---|
13 | -- <input_value> is a string representing a floating-point value
|
---|
14 | --
|
---|
15 | -- <output_value> is the expected (ideal) output value, again
|
---|
16 | -- represented as a string.
|
---|
17 | --
|
---|
18 | -- <flags> is a list of the floating-point flags required by C99
|
---|
19 | --
|
---|
20 | -- The possible flags are:
|
---|
21 | --
|
---|
22 | -- divide-by-zero : raised when a finite input gives a
|
---|
23 | -- mathematically infinite result.
|
---|
24 | --
|
---|
25 | -- overflow : raised when a finite input gives a finite result that
|
---|
26 | -- is too large to fit in the usual range of an IEEE 754 double.
|
---|
27 | --
|
---|
28 | -- invalid : raised for invalid inputs (e.g., sqrt(-1))
|
---|
29 | --
|
---|
30 | -- ignore-sign : indicates that the sign of the result is
|
---|
31 | -- unspecified; e.g., if the result is given as inf,
|
---|
32 | -- then both -inf and inf should be accepted as correct.
|
---|
33 | --
|
---|
34 | -- Flags may appear in any order.
|
---|
35 | --
|
---|
36 | -- Lines beginning with '--' (like this one) start a comment, and are
|
---|
37 | -- ignored. Blank lines, or lines containing only whitespace, are also
|
---|
38 | -- ignored.
|
---|
39 |
|
---|
40 | -- Many of the values below were computed with the help of
|
---|
41 | -- version 2.4 of the MPFR library for multiple-precision
|
---|
42 | -- floating-point computations with correct rounding. All output
|
---|
43 | -- values in this file are (modulo yet-to-be-discovered bugs)
|
---|
44 | -- correctly rounded, provided that each input and output decimal
|
---|
45 | -- floating-point value below is interpreted as a representation of
|
---|
46 | -- the corresponding nearest IEEE 754 double-precision value. See the
|
---|
47 | -- MPFR homepage at http://www.mpfr.org for more information about the
|
---|
48 | -- MPFR project.
|
---|
49 |
|
---|
50 |
|
---|
51 | -------------------------
|
---|
52 | -- erf: error function --
|
---|
53 | -------------------------
|
---|
54 |
|
---|
55 | erf0000 erf 0.0 -> 0.0
|
---|
56 | erf0001 erf -0.0 -> -0.0
|
---|
57 | erf0002 erf inf -> 1.0
|
---|
58 | erf0003 erf -inf -> -1.0
|
---|
59 | erf0004 erf nan -> nan
|
---|
60 |
|
---|
61 | -- tiny values
|
---|
62 | erf0010 erf 1e-308 -> 1.1283791670955125e-308
|
---|
63 | erf0011 erf 5e-324 -> 4.9406564584124654e-324
|
---|
64 | erf0012 erf 1e-10 -> 1.1283791670955126e-10
|
---|
65 |
|
---|
66 | -- small integers
|
---|
67 | erf0020 erf 1 -> 0.84270079294971489
|
---|
68 | erf0021 erf 2 -> 0.99532226501895271
|
---|
69 | erf0022 erf 3 -> 0.99997790950300136
|
---|
70 | erf0023 erf 4 -> 0.99999998458274209
|
---|
71 | erf0024 erf 5 -> 0.99999999999846256
|
---|
72 | erf0025 erf 6 -> 1.0
|
---|
73 |
|
---|
74 | erf0030 erf -1 -> -0.84270079294971489
|
---|
75 | erf0031 erf -2 -> -0.99532226501895271
|
---|
76 | erf0032 erf -3 -> -0.99997790950300136
|
---|
77 | erf0033 erf -4 -> -0.99999998458274209
|
---|
78 | erf0034 erf -5 -> -0.99999999999846256
|
---|
79 | erf0035 erf -6 -> -1.0
|
---|
80 |
|
---|
81 | -- huge values should all go to +/-1, depending on sign
|
---|
82 | erf0040 erf -40 -> -1.0
|
---|
83 | erf0041 erf 1e16 -> 1.0
|
---|
84 | erf0042 erf -1e150 -> -1.0
|
---|
85 | erf0043 erf 1.7e308 -> 1.0
|
---|
86 |
|
---|
87 | -- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
|
---|
88 | -- incorrectly signalled overflow on some platforms.
|
---|
89 | erf0100 erf 26.2 -> 1.0
|
---|
90 | erf0101 erf 26.4 -> 1.0
|
---|
91 | erf0102 erf 26.6 -> 1.0
|
---|
92 | erf0103 erf 26.8 -> 1.0
|
---|
93 | erf0104 erf 27.0 -> 1.0
|
---|
94 | erf0105 erf 27.2 -> 1.0
|
---|
95 | erf0106 erf 27.4 -> 1.0
|
---|
96 | erf0107 erf 27.6 -> 1.0
|
---|
97 |
|
---|
98 | erf0110 erf -26.2 -> -1.0
|
---|
99 | erf0111 erf -26.4 -> -1.0
|
---|
100 | erf0112 erf -26.6 -> -1.0
|
---|
101 | erf0113 erf -26.8 -> -1.0
|
---|
102 | erf0114 erf -27.0 -> -1.0
|
---|
103 | erf0115 erf -27.2 -> -1.0
|
---|
104 | erf0116 erf -27.4 -> -1.0
|
---|
105 | erf0117 erf -27.6 -> -1.0
|
---|
106 |
|
---|
107 | ----------------------------------------
|
---|
108 | -- erfc: complementary error function --
|
---|
109 | ----------------------------------------
|
---|
110 |
|
---|
111 | erfc0000 erfc 0.0 -> 1.0
|
---|
112 | erfc0001 erfc -0.0 -> 1.0
|
---|
113 | erfc0002 erfc inf -> 0.0
|
---|
114 | erfc0003 erfc -inf -> 2.0
|
---|
115 | erfc0004 erfc nan -> nan
|
---|
116 |
|
---|
117 | -- tiny values
|
---|
118 | erfc0010 erfc 1e-308 -> 1.0
|
---|
119 | erfc0011 erfc 5e-324 -> 1.0
|
---|
120 | erfc0012 erfc 1e-10 -> 0.99999999988716204
|
---|
121 |
|
---|
122 | -- small integers
|
---|
123 | erfc0020 erfc 1 -> 0.15729920705028513
|
---|
124 | erfc0021 erfc 2 -> 0.0046777349810472662
|
---|
125 | erfc0022 erfc 3 -> 2.2090496998585441e-05
|
---|
126 | erfc0023 erfc 4 -> 1.541725790028002e-08
|
---|
127 | erfc0024 erfc 5 -> 1.5374597944280349e-12
|
---|
128 | erfc0025 erfc 6 -> 2.1519736712498913e-17
|
---|
129 |
|
---|
130 | erfc0030 erfc -1 -> 1.8427007929497148
|
---|
131 | erfc0031 erfc -2 -> 1.9953222650189528
|
---|
132 | erfc0032 erfc -3 -> 1.9999779095030015
|
---|
133 | erfc0033 erfc -4 -> 1.9999999845827421
|
---|
134 | erfc0034 erfc -5 -> 1.9999999999984626
|
---|
135 | erfc0035 erfc -6 -> 2.0
|
---|
136 |
|
---|
137 | -- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
|
---|
138 | erfc0040 erfc 20 -> 5.3958656116079012e-176
|
---|
139 | erfc0041 erfc 25 -> 8.3001725711965228e-274
|
---|
140 | erfc0042 erfc 27 -> 5.2370464393526292e-319
|
---|
141 | erfc0043 erfc 28 -> 0.0
|
---|
142 |
|
---|
143 | -- huge values
|
---|
144 | erfc0050 erfc -40 -> 2.0
|
---|
145 | erfc0051 erfc 1e16 -> 0.0
|
---|
146 | erfc0052 erfc -1e150 -> 2.0
|
---|
147 | erfc0053 erfc 1.7e308 -> 0.0
|
---|
148 |
|
---|
149 | -- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
|
---|
150 | -- incorrectly signalled overflow on some platforms.
|
---|
151 | erfc0100 erfc 26.2 -> 1.6432507924389461e-300
|
---|
152 | erfc0101 erfc 26.4 -> 4.4017768588035426e-305
|
---|
153 | erfc0102 erfc 26.6 -> 1.0885125885442269e-309
|
---|
154 | erfc0103 erfc 26.8 -> 2.4849621571966629e-314
|
---|
155 | erfc0104 erfc 27.0 -> 5.2370464393526292e-319
|
---|
156 | erfc0105 erfc 27.2 -> 9.8813129168249309e-324
|
---|
157 | erfc0106 erfc 27.4 -> 0.0
|
---|
158 | erfc0107 erfc 27.6 -> 0.0
|
---|
159 |
|
---|
160 | erfc0110 erfc -26.2 -> 2.0
|
---|
161 | erfc0111 erfc -26.4 -> 2.0
|
---|
162 | erfc0112 erfc -26.6 -> 2.0
|
---|
163 | erfc0113 erfc -26.8 -> 2.0
|
---|
164 | erfc0114 erfc -27.0 -> 2.0
|
---|
165 | erfc0115 erfc -27.2 -> 2.0
|
---|
166 | erfc0116 erfc -27.4 -> 2.0
|
---|
167 | erfc0117 erfc -27.6 -> 2.0
|
---|
168 |
|
---|
169 | ---------------------------------------------------------
|
---|
170 | -- lgamma: log of absolute value of the gamma function --
|
---|
171 | ---------------------------------------------------------
|
---|
172 |
|
---|
173 | -- special values
|
---|
174 | lgam0000 lgamma 0.0 -> inf divide-by-zero
|
---|
175 | lgam0001 lgamma -0.0 -> inf divide-by-zero
|
---|
176 | lgam0002 lgamma inf -> inf
|
---|
177 | lgam0003 lgamma -inf -> inf
|
---|
178 | lgam0004 lgamma nan -> nan
|
---|
179 |
|
---|
180 | -- negative integers
|
---|
181 | lgam0010 lgamma -1 -> inf divide-by-zero
|
---|
182 | lgam0011 lgamma -2 -> inf divide-by-zero
|
---|
183 | lgam0012 lgamma -1e16 -> inf divide-by-zero
|
---|
184 | lgam0013 lgamma -1e300 -> inf divide-by-zero
|
---|
185 | lgam0014 lgamma -1.79e308 -> inf divide-by-zero
|
---|
186 |
|
---|
187 | -- small positive integers give factorials
|
---|
188 | lgam0020 lgamma 1 -> 0.0
|
---|
189 | lgam0021 lgamma 2 -> 0.0
|
---|
190 | lgam0022 lgamma 3 -> 0.69314718055994529
|
---|
191 | lgam0023 lgamma 4 -> 1.791759469228055
|
---|
192 | lgam0024 lgamma 5 -> 3.1780538303479458
|
---|
193 | lgam0025 lgamma 6 -> 4.7874917427820458
|
---|
194 |
|
---|
195 | -- half integers
|
---|
196 | lgam0030 lgamma 0.5 -> 0.57236494292470008
|
---|
197 | lgam0031 lgamma 1.5 -> -0.12078223763524522
|
---|
198 | lgam0032 lgamma 2.5 -> 0.28468287047291918
|
---|
199 | lgam0033 lgamma 3.5 -> 1.2009736023470743
|
---|
200 | lgam0034 lgamma -0.5 -> 1.2655121234846454
|
---|
201 | lgam0035 lgamma -1.5 -> 0.86004701537648098
|
---|
202 | lgam0036 lgamma -2.5 -> -0.056243716497674054
|
---|
203 | lgam0037 lgamma -3.5 -> -1.309006684993042
|
---|
204 |
|
---|
205 | -- values near 0
|
---|
206 | lgam0040 lgamma 0.1 -> 2.252712651734206
|
---|
207 | lgam0041 lgamma 0.01 -> 4.5994798780420219
|
---|
208 | lgam0042 lgamma 1e-8 -> 18.420680738180209
|
---|
209 | lgam0043 lgamma 1e-16 -> 36.841361487904734
|
---|
210 | lgam0044 lgamma 1e-30 -> 69.077552789821368
|
---|
211 | lgam0045 lgamma 1e-160 -> 368.41361487904732
|
---|
212 | lgam0046 lgamma 1e-308 -> 709.19620864216608
|
---|
213 | lgam0047 lgamma 5.6e-309 -> 709.77602713741896
|
---|
214 | lgam0048 lgamma 5.5e-309 -> 709.79404564292167
|
---|
215 | lgam0049 lgamma 1e-309 -> 711.49879373516012
|
---|
216 | lgam0050 lgamma 1e-323 -> 743.74692474082133
|
---|
217 | lgam0051 lgamma 5e-324 -> 744.44007192138122
|
---|
218 | lgam0060 lgamma -0.1 -> 2.3689613327287886
|
---|
219 | lgam0061 lgamma -0.01 -> 4.6110249927528013
|
---|
220 | lgam0062 lgamma -1e-8 -> 18.420680749724522
|
---|
221 | lgam0063 lgamma -1e-16 -> 36.841361487904734
|
---|
222 | lgam0064 lgamma -1e-30 -> 69.077552789821368
|
---|
223 | lgam0065 lgamma -1e-160 -> 368.41361487904732
|
---|
224 | lgam0066 lgamma -1e-308 -> 709.19620864216608
|
---|
225 | lgam0067 lgamma -5.6e-309 -> 709.77602713741896
|
---|
226 | lgam0068 lgamma -5.5e-309 -> 709.79404564292167
|
---|
227 | lgam0069 lgamma -1e-309 -> 711.49879373516012
|
---|
228 | lgam0070 lgamma -1e-323 -> 743.74692474082133
|
---|
229 | lgam0071 lgamma -5e-324 -> 744.44007192138122
|
---|
230 |
|
---|
231 | -- values near negative integers
|
---|
232 | lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
|
---|
233 | lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
|
---|
234 | lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
|
---|
235 | lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
|
---|
236 | lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
|
---|
237 | lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
|
---|
238 |
|
---|
239 | -- large inputs
|
---|
240 | lgam0100 lgamma 170 -> 701.43726380873704
|
---|
241 | lgam0101 lgamma 171 -> 706.57306224578736
|
---|
242 | lgam0102 lgamma 171.624 -> 709.78077443669895
|
---|
243 | lgam0103 lgamma 171.625 -> 709.78591682948365
|
---|
244 | lgam0104 lgamma 172 -> 711.71472580228999
|
---|
245 | lgam0105 lgamma 2000 -> 13198.923448054265
|
---|
246 | lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
|
---|
247 | lgam0107 lgamma 2.55998332785164e305 -> inf overflow
|
---|
248 | lgam0108 lgamma 1.7e308 -> inf overflow
|
---|
249 |
|
---|
250 | -- inputs for which gamma(x) is tiny
|
---|
251 | lgam0120 lgamma -100.5 -> -364.90096830942736
|
---|
252 | lgam0121 lgamma -160.5 -> -656.88005261126432
|
---|
253 | lgam0122 lgamma -170.5 -> -707.99843314507882
|
---|
254 | lgam0123 lgamma -171.5 -> -713.14301641168481
|
---|
255 | lgam0124 lgamma -176.5 -> -738.95247590846486
|
---|
256 | lgam0125 lgamma -177.5 -> -744.13144651738037
|
---|
257 | lgam0126 lgamma -178.5 -> -749.3160351186001
|
---|
258 |
|
---|
259 | lgam0130 lgamma -1000.5 -> -5914.4377011168517
|
---|
260 | lgam0131 lgamma -30000.5 -> -279278.6629959144
|
---|
261 | lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
|
---|
262 |
|
---|
263 | -- results close to 0: positive argument ...
|
---|
264 | lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
|
---|
265 | lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
|
---|
266 | lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
|
---|
267 | lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
|
---|
268 |
|
---|
269 | -- ... and negative argument
|
---|
270 | lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
|
---|
271 | lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
|
---|
272 |
|
---|
273 |
|
---|
274 | ---------------------------
|
---|
275 | -- gamma: Gamma function --
|
---|
276 | ---------------------------
|
---|
277 |
|
---|
278 | -- special values
|
---|
279 | gam0000 gamma 0.0 -> inf divide-by-zero
|
---|
280 | gam0001 gamma -0.0 -> -inf divide-by-zero
|
---|
281 | gam0002 gamma inf -> inf
|
---|
282 | gam0003 gamma -inf -> nan invalid
|
---|
283 | gam0004 gamma nan -> nan
|
---|
284 |
|
---|
285 | -- negative integers inputs are invalid
|
---|
286 | gam0010 gamma -1 -> nan invalid
|
---|
287 | gam0011 gamma -2 -> nan invalid
|
---|
288 | gam0012 gamma -1e16 -> nan invalid
|
---|
289 | gam0013 gamma -1e300 -> nan invalid
|
---|
290 |
|
---|
291 | -- small positive integers give factorials
|
---|
292 | gam0020 gamma 1 -> 1
|
---|
293 | gam0021 gamma 2 -> 1
|
---|
294 | gam0022 gamma 3 -> 2
|
---|
295 | gam0023 gamma 4 -> 6
|
---|
296 | gam0024 gamma 5 -> 24
|
---|
297 | gam0025 gamma 6 -> 120
|
---|
298 |
|
---|
299 | -- half integers
|
---|
300 | gam0030 gamma 0.5 -> 1.7724538509055161
|
---|
301 | gam0031 gamma 1.5 -> 0.88622692545275805
|
---|
302 | gam0032 gamma 2.5 -> 1.3293403881791370
|
---|
303 | gam0033 gamma 3.5 -> 3.3233509704478426
|
---|
304 | gam0034 gamma -0.5 -> -3.5449077018110322
|
---|
305 | gam0035 gamma -1.5 -> 2.3632718012073548
|
---|
306 | gam0036 gamma -2.5 -> -0.94530872048294190
|
---|
307 | gam0037 gamma -3.5 -> 0.27008820585226911
|
---|
308 |
|
---|
309 | -- values near 0
|
---|
310 | gam0040 gamma 0.1 -> 9.5135076986687306
|
---|
311 | gam0041 gamma 0.01 -> 99.432585119150602
|
---|
312 | gam0042 gamma 1e-8 -> 99999999.422784343
|
---|
313 | gam0043 gamma 1e-16 -> 10000000000000000
|
---|
314 | gam0044 gamma 1e-30 -> 9.9999999999999988e+29
|
---|
315 | gam0045 gamma 1e-160 -> 1.0000000000000000e+160
|
---|
316 | gam0046 gamma 1e-308 -> 1.0000000000000000e+308
|
---|
317 | gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
|
---|
318 | gam0048 gamma 5.5e-309 -> inf overflow
|
---|
319 | gam0049 gamma 1e-309 -> inf overflow
|
---|
320 | gam0050 gamma 1e-323 -> inf overflow
|
---|
321 | gam0051 gamma 5e-324 -> inf overflow
|
---|
322 | gam0060 gamma -0.1 -> -10.686287021193193
|
---|
323 | gam0061 gamma -0.01 -> -100.58719796441078
|
---|
324 | gam0062 gamma -1e-8 -> -100000000.57721567
|
---|
325 | gam0063 gamma -1e-16 -> -10000000000000000
|
---|
326 | gam0064 gamma -1e-30 -> -9.9999999999999988e+29
|
---|
327 | gam0065 gamma -1e-160 -> -1.0000000000000000e+160
|
---|
328 | gam0066 gamma -1e-308 -> -1.0000000000000000e+308
|
---|
329 | gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
|
---|
330 | gam0068 gamma -5.5e-309 -> -inf overflow
|
---|
331 | gam0069 gamma -1e-309 -> -inf overflow
|
---|
332 | gam0070 gamma -1e-323 -> -inf overflow
|
---|
333 | gam0071 gamma -5e-324 -> -inf overflow
|
---|
334 |
|
---|
335 | -- values near negative integers
|
---|
336 | gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
|
---|
337 | gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
|
---|
338 | gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
|
---|
339 | gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
|
---|
340 | gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
|
---|
341 | gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
|
---|
342 |
|
---|
343 | -- large inputs
|
---|
344 | gam0100 gamma 170 -> 4.2690680090047051e+304
|
---|
345 | gam0101 gamma 171 -> 7.2574156153079990e+306
|
---|
346 | gam0102 gamma 171.624 -> 1.7942117599248104e+308
|
---|
347 | gam0103 gamma 171.625 -> inf overflow
|
---|
348 | gam0104 gamma 172 -> inf overflow
|
---|
349 | gam0105 gamma 2000 -> inf overflow
|
---|
350 | gam0106 gamma 1.7e308 -> inf overflow
|
---|
351 |
|
---|
352 | -- inputs for which gamma(x) is tiny
|
---|
353 | gam0120 gamma -100.5 -> -3.3536908198076787e-159
|
---|
354 | gam0121 gamma -160.5 -> -5.2555464470078293e-286
|
---|
355 | gam0122 gamma -170.5 -> -3.3127395215386074e-308
|
---|
356 | gam0123 gamma -171.5 -> 1.9316265431711902e-310
|
---|
357 | gam0124 gamma -176.5 -> -1.1956388629358166e-321
|
---|
358 | gam0125 gamma -177.5 -> 4.9406564584124654e-324
|
---|
359 | gam0126 gamma -178.5 -> -0.0
|
---|
360 | gam0127 gamma -179.5 -> 0.0
|
---|
361 | gam0128 gamma -201.0001 -> 0.0
|
---|
362 | gam0129 gamma -202.9999 -> -0.0
|
---|
363 | gam0130 gamma -1000.5 -> -0.0
|
---|
364 | gam0131 gamma -1000000000.3 -> -0.0
|
---|
365 | gam0132 gamma -4503599627370495.5 -> 0.0
|
---|
366 |
|
---|
367 | -- inputs that cause problems for the standard reflection formula,
|
---|
368 | -- thanks to loss of accuracy in 1-x
|
---|
369 | gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
|
---|
370 | gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
|
---|
371 |
|
---|
372 |
|
---|
373 | -----------------------------------------------------------
|
---|
374 | -- expm1: exp(x) - 1, without precision loss for small x --
|
---|
375 | -----------------------------------------------------------
|
---|
376 |
|
---|
377 | -- special values
|
---|
378 | expm10000 expm1 0.0 -> 0.0
|
---|
379 | expm10001 expm1 -0.0 -> -0.0
|
---|
380 | expm10002 expm1 inf -> inf
|
---|
381 | expm10003 expm1 -inf -> -1.0
|
---|
382 | expm10004 expm1 nan -> nan
|
---|
383 |
|
---|
384 | -- expm1(x) ~ x for tiny x
|
---|
385 | expm10010 expm1 5e-324 -> 5e-324
|
---|
386 | expm10011 expm1 1e-320 -> 1e-320
|
---|
387 | expm10012 expm1 1e-300 -> 1e-300
|
---|
388 | expm10013 expm1 1e-150 -> 1e-150
|
---|
389 | expm10014 expm1 1e-20 -> 1e-20
|
---|
390 |
|
---|
391 | expm10020 expm1 -5e-324 -> -5e-324
|
---|
392 | expm10021 expm1 -1e-320 -> -1e-320
|
---|
393 | expm10022 expm1 -1e-300 -> -1e-300
|
---|
394 | expm10023 expm1 -1e-150 -> -1e-150
|
---|
395 | expm10024 expm1 -1e-20 -> -1e-20
|
---|
396 |
|
---|
397 | -- moderate sized values, where direct evaluation runs into trouble
|
---|
398 | expm10100 expm1 1e-10 -> 1.0000000000500000e-10
|
---|
399 | expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
|
---|
400 | expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
|
---|
401 | expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
|
---|
402 | expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
|
---|
403 | expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
|
---|
404 | expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
|
---|
405 | expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
|
---|
406 | expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
|
---|
407 | expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
|
---|
408 | expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
|
---|
409 | expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
|
---|
410 | expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
|
---|
411 | expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
|
---|
412 | expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
|
---|
413 | expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
|
---|
414 | expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
|
---|
415 | expm10117 expm1 10.0 -> 22025.465794806718
|
---|
416 | expm10118 expm1 27.0 -> 532048240600.79865
|
---|
417 | expm10119 expm1 123 -> 2.6195173187490626e+53
|
---|
418 | expm10120 expm1 -12.0 -> -0.99999385578764666
|
---|
419 | expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
|
---|
420 |
|
---|
421 | -- extreme negative values
|
---|
422 | expm10201 expm1 -37.0 -> -0.99999999999999989
|
---|
423 | expm10200 expm1 -38.0 -> -1.0
|
---|
424 | expm10210 expm1 -710.0 -> -1.0
|
---|
425 | -- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
|
---|
426 | -- well when exp(x/2) is subnormal or underflows to zero; check we're
|
---|
427 | -- not using it!
|
---|
428 | expm10211 expm1 -1420.0 -> -1.0
|
---|
429 | expm10212 expm1 -1450.0 -> -1.0
|
---|
430 | expm10213 expm1 -1500.0 -> -1.0
|
---|
431 | expm10214 expm1 -1e50 -> -1.0
|
---|
432 | expm10215 expm1 -1.79e308 -> -1.0
|
---|
433 |
|
---|
434 | -- extreme positive values
|
---|
435 | expm10300 expm1 300 -> 1.9424263952412558e+130
|
---|
436 | expm10301 expm1 700 -> 1.0142320547350045e+304
|
---|
437 | -- the next test (expm10302) is disabled because it causes failure on
|
---|
438 | -- OS X 10.4/Intel: apparently all values over 709.78 produce an
|
---|
439 | -- overflow on that platform. See issue #7575.
|
---|
440 | -- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
|
---|
441 | expm10303 expm1 709.78271289348402 -> inf overflow
|
---|
442 | expm10304 expm1 1000 -> inf overflow
|
---|
443 | expm10305 expm1 1e50 -> inf overflow
|
---|
444 | expm10306 expm1 1.79e308 -> inf overflow
|
---|
445 |
|
---|
446 | -- weaker version of expm10302
|
---|
447 | expm10307 expm1 709.5 -> 1.3549863193146328e+308
|
---|