| 1 | """Random variable generators.
|
|---|
| 2 |
|
|---|
| 3 | integers
|
|---|
| 4 | --------
|
|---|
| 5 | uniform within range
|
|---|
| 6 |
|
|---|
| 7 | sequences
|
|---|
| 8 | ---------
|
|---|
| 9 | pick random element
|
|---|
| 10 | pick random sample
|
|---|
| 11 | generate random permutation
|
|---|
| 12 |
|
|---|
| 13 | distributions on the real line:
|
|---|
| 14 | ------------------------------
|
|---|
| 15 | uniform
|
|---|
| 16 | triangular
|
|---|
| 17 | normal (Gaussian)
|
|---|
| 18 | lognormal
|
|---|
| 19 | negative exponential
|
|---|
| 20 | gamma
|
|---|
| 21 | beta
|
|---|
| 22 | pareto
|
|---|
| 23 | Weibull
|
|---|
| 24 |
|
|---|
| 25 | distributions on the circle (angles 0 to 2pi)
|
|---|
| 26 | ---------------------------------------------
|
|---|
| 27 | circular uniform
|
|---|
| 28 | von Mises
|
|---|
| 29 |
|
|---|
| 30 | General notes on the underlying Mersenne Twister core generator:
|
|---|
| 31 |
|
|---|
| 32 | * The period is 2**19937-1.
|
|---|
| 33 | * It is one of the most extensively tested generators in existence.
|
|---|
| 34 | * Without a direct way to compute N steps forward, the semantics of
|
|---|
| 35 | jumpahead(n) are weakened to simply jump to another distant state and rely
|
|---|
| 36 | on the large period to avoid overlapping sequences.
|
|---|
| 37 | * The random() method is implemented in C, executes in a single Python step,
|
|---|
| 38 | and is, therefore, threadsafe.
|
|---|
| 39 |
|
|---|
| 40 | """
|
|---|
| 41 |
|
|---|
| 42 | from __future__ import division
|
|---|
| 43 | from warnings import warn as _warn
|
|---|
| 44 | from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
|
|---|
| 45 | from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
|
|---|
| 46 | from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
|
|---|
| 47 | from os import urandom as _urandom
|
|---|
| 48 | from binascii import hexlify as _hexlify
|
|---|
| 49 |
|
|---|
| 50 | __all__ = ["Random","seed","random","uniform","randint","choice","sample",
|
|---|
| 51 | "randrange","shuffle","normalvariate","lognormvariate",
|
|---|
| 52 | "expovariate","vonmisesvariate","gammavariate","triangular",
|
|---|
| 53 | "gauss","betavariate","paretovariate","weibullvariate",
|
|---|
| 54 | "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
|
|---|
| 55 | "SystemRandom"]
|
|---|
| 56 |
|
|---|
| 57 | NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
|
|---|
| 58 | TWOPI = 2.0*_pi
|
|---|
| 59 | LOG4 = _log(4.0)
|
|---|
| 60 | SG_MAGICCONST = 1.0 + _log(4.5)
|
|---|
| 61 | BPF = 53 # Number of bits in a float
|
|---|
| 62 | RECIP_BPF = 2**-BPF
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 | # Translated by Guido van Rossum from C source provided by
|
|---|
| 66 | # Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
|---|
| 67 | # the Mersenne Twister and os.urandom() core generators.
|
|---|
| 68 |
|
|---|
| 69 | import _random
|
|---|
| 70 |
|
|---|
| 71 | class Random(_random.Random):
|
|---|
| 72 | """Random number generator base class used by bound module functions.
|
|---|
| 73 |
|
|---|
| 74 | Used to instantiate instances of Random to get generators that don't
|
|---|
| 75 | share state. Especially useful for multi-threaded programs, creating
|
|---|
| 76 | a different instance of Random for each thread, and using the jumpahead()
|
|---|
| 77 | method to ensure that the generated sequences seen by each thread don't
|
|---|
| 78 | overlap.
|
|---|
| 79 |
|
|---|
| 80 | Class Random can also be subclassed if you want to use a different basic
|
|---|
| 81 | generator of your own devising: in that case, override the following
|
|---|
| 82 | methods: random(), seed(), getstate(), setstate() and jumpahead().
|
|---|
| 83 | Optionally, implement a getrandbits() method so that randrange() can cover
|
|---|
| 84 | arbitrarily large ranges.
|
|---|
| 85 |
|
|---|
| 86 | """
|
|---|
| 87 |
|
|---|
| 88 | VERSION = 3 # used by getstate/setstate
|
|---|
| 89 |
|
|---|
| 90 | def __init__(self, x=None):
|
|---|
| 91 | """Initialize an instance.
|
|---|
| 92 |
|
|---|
| 93 | Optional argument x controls seeding, as for Random.seed().
|
|---|
| 94 | """
|
|---|
| 95 |
|
|---|
| 96 | self.seed(x)
|
|---|
| 97 | self.gauss_next = None
|
|---|
| 98 |
|
|---|
| 99 | def seed(self, a=None):
|
|---|
| 100 | """Initialize internal state from hashable object.
|
|---|
| 101 |
|
|---|
| 102 | None or no argument seeds from current time or from an operating
|
|---|
| 103 | system specific randomness source if available.
|
|---|
| 104 |
|
|---|
| 105 | If a is not None or an int or long, hash(a) is used instead.
|
|---|
| 106 | """
|
|---|
| 107 |
|
|---|
| 108 | if a is None:
|
|---|
| 109 | try:
|
|---|
| 110 | a = long(_hexlify(_urandom(16)), 16)
|
|---|
| 111 | except NotImplementedError:
|
|---|
| 112 | import time
|
|---|
| 113 | a = long(time.time() * 256) # use fractional seconds
|
|---|
| 114 |
|
|---|
| 115 | super(Random, self).seed(a)
|
|---|
| 116 | self.gauss_next = None
|
|---|
| 117 |
|
|---|
| 118 | def getstate(self):
|
|---|
| 119 | """Return internal state; can be passed to setstate() later."""
|
|---|
| 120 | return self.VERSION, super(Random, self).getstate(), self.gauss_next
|
|---|
| 121 |
|
|---|
| 122 | def setstate(self, state):
|
|---|
| 123 | """Restore internal state from object returned by getstate()."""
|
|---|
| 124 | version = state[0]
|
|---|
| 125 | if version == 3:
|
|---|
| 126 | version, internalstate, self.gauss_next = state
|
|---|
| 127 | super(Random, self).setstate(internalstate)
|
|---|
| 128 | elif version == 2:
|
|---|
| 129 | version, internalstate, self.gauss_next = state
|
|---|
| 130 | # In version 2, the state was saved as signed ints, which causes
|
|---|
| 131 | # inconsistencies between 32/64-bit systems. The state is
|
|---|
| 132 | # really unsigned 32-bit ints, so we convert negative ints from
|
|---|
| 133 | # version 2 to positive longs for version 3.
|
|---|
| 134 | try:
|
|---|
| 135 | internalstate = tuple( long(x) % (2**32) for x in internalstate )
|
|---|
| 136 | except ValueError, e:
|
|---|
| 137 | raise TypeError, e
|
|---|
| 138 | super(Random, self).setstate(internalstate)
|
|---|
| 139 | else:
|
|---|
| 140 | raise ValueError("state with version %s passed to "
|
|---|
| 141 | "Random.setstate() of version %s" %
|
|---|
| 142 | (version, self.VERSION))
|
|---|
| 143 |
|
|---|
| 144 | ## ---- Methods below this point do not need to be overridden when
|
|---|
| 145 | ## ---- subclassing for the purpose of using a different core generator.
|
|---|
| 146 |
|
|---|
| 147 | ## -------------------- pickle support -------------------
|
|---|
| 148 |
|
|---|
| 149 | def __getstate__(self): # for pickle
|
|---|
| 150 | return self.getstate()
|
|---|
| 151 |
|
|---|
| 152 | def __setstate__(self, state): # for pickle
|
|---|
| 153 | self.setstate(state)
|
|---|
| 154 |
|
|---|
| 155 | def __reduce__(self):
|
|---|
| 156 | return self.__class__, (), self.getstate()
|
|---|
| 157 |
|
|---|
| 158 | ## -------------------- integer methods -------------------
|
|---|
| 159 |
|
|---|
| 160 | def randrange(self, start, stop=None, step=1, int=int, default=None,
|
|---|
| 161 | maxwidth=1L<<BPF):
|
|---|
| 162 | """Choose a random item from range(start, stop[, step]).
|
|---|
| 163 |
|
|---|
| 164 | This fixes the problem with randint() which includes the
|
|---|
| 165 | endpoint; in Python this is usually not what you want.
|
|---|
| 166 | Do not supply the 'int', 'default', and 'maxwidth' arguments.
|
|---|
| 167 | """
|
|---|
| 168 |
|
|---|
| 169 | # This code is a bit messy to make it fast for the
|
|---|
| 170 | # common case while still doing adequate error checking.
|
|---|
| 171 | istart = int(start)
|
|---|
| 172 | if istart != start:
|
|---|
| 173 | raise ValueError, "non-integer arg 1 for randrange()"
|
|---|
| 174 | if stop is default:
|
|---|
| 175 | if istart > 0:
|
|---|
| 176 | if istart >= maxwidth:
|
|---|
| 177 | return self._randbelow(istart)
|
|---|
| 178 | return int(self.random() * istart)
|
|---|
| 179 | raise ValueError, "empty range for randrange()"
|
|---|
| 180 |
|
|---|
| 181 | # stop argument supplied.
|
|---|
| 182 | istop = int(stop)
|
|---|
| 183 | if istop != stop:
|
|---|
| 184 | raise ValueError, "non-integer stop for randrange()"
|
|---|
| 185 | width = istop - istart
|
|---|
| 186 | if step == 1 and width > 0:
|
|---|
| 187 | # Note that
|
|---|
| 188 | # int(istart + self.random()*width)
|
|---|
| 189 | # instead would be incorrect. For example, consider istart
|
|---|
| 190 | # = -2 and istop = 0. Then the guts would be in
|
|---|
| 191 | # -2.0 to 0.0 exclusive on both ends (ignoring that random()
|
|---|
| 192 | # might return 0.0), and because int() truncates toward 0, the
|
|---|
| 193 | # final result would be -1 or 0 (instead of -2 or -1).
|
|---|
| 194 | # istart + int(self.random()*width)
|
|---|
| 195 | # would also be incorrect, for a subtler reason: the RHS
|
|---|
| 196 | # can return a long, and then randrange() would also return
|
|---|
| 197 | # a long, but we're supposed to return an int (for backward
|
|---|
| 198 | # compatibility).
|
|---|
| 199 |
|
|---|
| 200 | if width >= maxwidth:
|
|---|
| 201 | return int(istart + self._randbelow(width))
|
|---|
| 202 | return int(istart + int(self.random()*width))
|
|---|
| 203 | if step == 1:
|
|---|
| 204 | raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
|
|---|
| 205 |
|
|---|
| 206 | # Non-unit step argument supplied.
|
|---|
| 207 | istep = int(step)
|
|---|
| 208 | if istep != step:
|
|---|
| 209 | raise ValueError, "non-integer step for randrange()"
|
|---|
| 210 | if istep > 0:
|
|---|
| 211 | n = (width + istep - 1) // istep
|
|---|
| 212 | elif istep < 0:
|
|---|
| 213 | n = (width + istep + 1) // istep
|
|---|
| 214 | else:
|
|---|
| 215 | raise ValueError, "zero step for randrange()"
|
|---|
| 216 |
|
|---|
| 217 | if n <= 0:
|
|---|
| 218 | raise ValueError, "empty range for randrange()"
|
|---|
| 219 |
|
|---|
| 220 | if n >= maxwidth:
|
|---|
| 221 | return istart + istep*self._randbelow(n)
|
|---|
| 222 | return istart + istep*int(self.random() * n)
|
|---|
| 223 |
|
|---|
| 224 | def randint(self, a, b):
|
|---|
| 225 | """Return random integer in range [a, b], including both end points.
|
|---|
| 226 | """
|
|---|
| 227 |
|
|---|
| 228 | return self.randrange(a, b+1)
|
|---|
| 229 |
|
|---|
| 230 | def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
|
|---|
| 231 | _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
|
|---|
| 232 | """Return a random int in the range [0,n)
|
|---|
| 233 |
|
|---|
| 234 | Handles the case where n has more bits than returned
|
|---|
| 235 | by a single call to the underlying generator.
|
|---|
| 236 | """
|
|---|
| 237 |
|
|---|
| 238 | try:
|
|---|
| 239 | getrandbits = self.getrandbits
|
|---|
| 240 | except AttributeError:
|
|---|
| 241 | pass
|
|---|
| 242 | else:
|
|---|
| 243 | # Only call self.getrandbits if the original random() builtin method
|
|---|
| 244 | # has not been overridden or if a new getrandbits() was supplied.
|
|---|
| 245 | # This assures that the two methods correspond.
|
|---|
| 246 | if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
|
|---|
| 247 | k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
|
|---|
| 248 | r = getrandbits(k)
|
|---|
| 249 | while r >= n:
|
|---|
| 250 | r = getrandbits(k)
|
|---|
| 251 | return r
|
|---|
| 252 | if n >= _maxwidth:
|
|---|
| 253 | _warn("Underlying random() generator does not supply \n"
|
|---|
| 254 | "enough bits to choose from a population range this large")
|
|---|
| 255 | return int(self.random() * n)
|
|---|
| 256 |
|
|---|
| 257 | ## -------------------- sequence methods -------------------
|
|---|
| 258 |
|
|---|
| 259 | def choice(self, seq):
|
|---|
| 260 | """Choose a random element from a non-empty sequence."""
|
|---|
| 261 | return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
|
|---|
| 262 |
|
|---|
| 263 | def shuffle(self, x, random=None, int=int):
|
|---|
| 264 | """x, random=random.random -> shuffle list x in place; return None.
|
|---|
| 265 |
|
|---|
| 266 | Optional arg random is a 0-argument function returning a random
|
|---|
| 267 | float in [0.0, 1.0); by default, the standard random.random.
|
|---|
| 268 | """
|
|---|
| 269 |
|
|---|
| 270 | if random is None:
|
|---|
| 271 | random = self.random
|
|---|
| 272 | for i in reversed(xrange(1, len(x))):
|
|---|
| 273 | # pick an element in x[:i+1] with which to exchange x[i]
|
|---|
| 274 | j = int(random() * (i+1))
|
|---|
| 275 | x[i], x[j] = x[j], x[i]
|
|---|
| 276 |
|
|---|
| 277 | def sample(self, population, k):
|
|---|
| 278 | """Chooses k unique random elements from a population sequence.
|
|---|
| 279 |
|
|---|
| 280 | Returns a new list containing elements from the population while
|
|---|
| 281 | leaving the original population unchanged. The resulting list is
|
|---|
| 282 | in selection order so that all sub-slices will also be valid random
|
|---|
| 283 | samples. This allows raffle winners (the sample) to be partitioned
|
|---|
| 284 | into grand prize and second place winners (the subslices).
|
|---|
| 285 |
|
|---|
| 286 | Members of the population need not be hashable or unique. If the
|
|---|
| 287 | population contains repeats, then each occurrence is a possible
|
|---|
| 288 | selection in the sample.
|
|---|
| 289 |
|
|---|
| 290 | To choose a sample in a range of integers, use xrange as an argument.
|
|---|
| 291 | This is especially fast and space efficient for sampling from a
|
|---|
| 292 | large population: sample(xrange(10000000), 60)
|
|---|
| 293 | """
|
|---|
| 294 |
|
|---|
| 295 | # XXX Although the documentation says `population` is "a sequence",
|
|---|
| 296 | # XXX attempts are made to cater to any iterable with a __len__
|
|---|
| 297 | # XXX method. This has had mixed success. Examples from both
|
|---|
| 298 | # XXX sides: sets work fine, and should become officially supported;
|
|---|
| 299 | # XXX dicts are much harder, and have failed in various subtle
|
|---|
| 300 | # XXX ways across attempts. Support for mapping types should probably
|
|---|
| 301 | # XXX be dropped (and users should pass mapping.keys() or .values()
|
|---|
| 302 | # XXX explicitly).
|
|---|
| 303 |
|
|---|
| 304 | # Sampling without replacement entails tracking either potential
|
|---|
| 305 | # selections (the pool) in a list or previous selections in a set.
|
|---|
| 306 |
|
|---|
| 307 | # When the number of selections is small compared to the
|
|---|
| 308 | # population, then tracking selections is efficient, requiring
|
|---|
| 309 | # only a small set and an occasional reselection. For
|
|---|
| 310 | # a larger number of selections, the pool tracking method is
|
|---|
| 311 | # preferred since the list takes less space than the
|
|---|
| 312 | # set and it doesn't suffer from frequent reselections.
|
|---|
| 313 |
|
|---|
| 314 | n = len(population)
|
|---|
| 315 | if not 0 <= k <= n:
|
|---|
| 316 | raise ValueError, "sample larger than population"
|
|---|
| 317 | random = self.random
|
|---|
| 318 | _int = int
|
|---|
| 319 | result = [None] * k
|
|---|
| 320 | setsize = 21 # size of a small set minus size of an empty list
|
|---|
| 321 | if k > 5:
|
|---|
| 322 | setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
|
|---|
| 323 | if n <= setsize or hasattr(population, "keys"):
|
|---|
| 324 | # An n-length list is smaller than a k-length set, or this is a
|
|---|
| 325 | # mapping type so the other algorithm wouldn't work.
|
|---|
| 326 | pool = list(population)
|
|---|
| 327 | for i in xrange(k): # invariant: non-selected at [0,n-i)
|
|---|
| 328 | j = _int(random() * (n-i))
|
|---|
| 329 | result[i] = pool[j]
|
|---|
| 330 | pool[j] = pool[n-i-1] # move non-selected item into vacancy
|
|---|
| 331 | else:
|
|---|
| 332 | try:
|
|---|
| 333 | selected = set()
|
|---|
| 334 | selected_add = selected.add
|
|---|
| 335 | for i in xrange(k):
|
|---|
| 336 | j = _int(random() * n)
|
|---|
| 337 | while j in selected:
|
|---|
| 338 | j = _int(random() * n)
|
|---|
| 339 | selected_add(j)
|
|---|
| 340 | result[i] = population[j]
|
|---|
| 341 | except (TypeError, KeyError): # handle (at least) sets
|
|---|
| 342 | if isinstance(population, list):
|
|---|
| 343 | raise
|
|---|
| 344 | return self.sample(tuple(population), k)
|
|---|
| 345 | return result
|
|---|
| 346 |
|
|---|
| 347 | ## -------------------- real-valued distributions -------------------
|
|---|
| 348 |
|
|---|
| 349 | ## -------------------- uniform distribution -------------------
|
|---|
| 350 |
|
|---|
| 351 | def uniform(self, a, b):
|
|---|
| 352 | "Get a random number in the range [a, b) or [a, b] depending on rounding."
|
|---|
| 353 | return a + (b-a) * self.random()
|
|---|
| 354 |
|
|---|
| 355 | ## -------------------- triangular --------------------
|
|---|
| 356 |
|
|---|
| 357 | def triangular(self, low=0.0, high=1.0, mode=None):
|
|---|
| 358 | """Triangular distribution.
|
|---|
| 359 |
|
|---|
| 360 | Continuous distribution bounded by given lower and upper limits,
|
|---|
| 361 | and having a given mode value in-between.
|
|---|
| 362 |
|
|---|
| 363 | http://en.wikipedia.org/wiki/Triangular_distribution
|
|---|
| 364 |
|
|---|
| 365 | """
|
|---|
| 366 | u = self.random()
|
|---|
| 367 | c = 0.5 if mode is None else (mode - low) / (high - low)
|
|---|
| 368 | if u > c:
|
|---|
| 369 | u = 1.0 - u
|
|---|
| 370 | c = 1.0 - c
|
|---|
| 371 | low, high = high, low
|
|---|
| 372 | return low + (high - low) * (u * c) ** 0.5
|
|---|
| 373 |
|
|---|
| 374 | ## -------------------- normal distribution --------------------
|
|---|
| 375 |
|
|---|
| 376 | def normalvariate(self, mu, sigma):
|
|---|
| 377 | """Normal distribution.
|
|---|
| 378 |
|
|---|
| 379 | mu is the mean, and sigma is the standard deviation.
|
|---|
| 380 |
|
|---|
| 381 | """
|
|---|
| 382 | # mu = mean, sigma = standard deviation
|
|---|
| 383 |
|
|---|
| 384 | # Uses Kinderman and Monahan method. Reference: Kinderman,
|
|---|
| 385 | # A.J. and Monahan, J.F., "Computer generation of random
|
|---|
| 386 | # variables using the ratio of uniform deviates", ACM Trans
|
|---|
| 387 | # Math Software, 3, (1977), pp257-260.
|
|---|
| 388 |
|
|---|
| 389 | random = self.random
|
|---|
| 390 | while 1:
|
|---|
| 391 | u1 = random()
|
|---|
| 392 | u2 = 1.0 - random()
|
|---|
| 393 | z = NV_MAGICCONST*(u1-0.5)/u2
|
|---|
| 394 | zz = z*z/4.0
|
|---|
| 395 | if zz <= -_log(u2):
|
|---|
| 396 | break
|
|---|
| 397 | return mu + z*sigma
|
|---|
| 398 |
|
|---|
| 399 | ## -------------------- lognormal distribution --------------------
|
|---|
| 400 |
|
|---|
| 401 | def lognormvariate(self, mu, sigma):
|
|---|
| 402 | """Log normal distribution.
|
|---|
| 403 |
|
|---|
| 404 | If you take the natural logarithm of this distribution, you'll get a
|
|---|
| 405 | normal distribution with mean mu and standard deviation sigma.
|
|---|
| 406 | mu can have any value, and sigma must be greater than zero.
|
|---|
| 407 |
|
|---|
| 408 | """
|
|---|
| 409 | return _exp(self.normalvariate(mu, sigma))
|
|---|
| 410 |
|
|---|
| 411 | ## -------------------- exponential distribution --------------------
|
|---|
| 412 |
|
|---|
| 413 | def expovariate(self, lambd):
|
|---|
| 414 | """Exponential distribution.
|
|---|
| 415 |
|
|---|
| 416 | lambd is 1.0 divided by the desired mean. It should be
|
|---|
| 417 | nonzero. (The parameter would be called "lambda", but that is
|
|---|
| 418 | a reserved word in Python.) Returned values range from 0 to
|
|---|
| 419 | positive infinity if lambd is positive, and from negative
|
|---|
| 420 | infinity to 0 if lambd is negative.
|
|---|
| 421 |
|
|---|
| 422 | """
|
|---|
| 423 | # lambd: rate lambd = 1/mean
|
|---|
| 424 | # ('lambda' is a Python reserved word)
|
|---|
| 425 |
|
|---|
| 426 | random = self.random
|
|---|
| 427 | u = random()
|
|---|
| 428 | while u <= 1e-7:
|
|---|
| 429 | u = random()
|
|---|
| 430 | return -_log(u)/lambd
|
|---|
| 431 |
|
|---|
| 432 | ## -------------------- von Mises distribution --------------------
|
|---|
| 433 |
|
|---|
| 434 | def vonmisesvariate(self, mu, kappa):
|
|---|
| 435 | """Circular data distribution.
|
|---|
| 436 |
|
|---|
| 437 | mu is the mean angle, expressed in radians between 0 and 2*pi, and
|
|---|
| 438 | kappa is the concentration parameter, which must be greater than or
|
|---|
| 439 | equal to zero. If kappa is equal to zero, this distribution reduces
|
|---|
| 440 | to a uniform random angle over the range 0 to 2*pi.
|
|---|
| 441 |
|
|---|
| 442 | """
|
|---|
| 443 | # mu: mean angle (in radians between 0 and 2*pi)
|
|---|
| 444 | # kappa: concentration parameter kappa (>= 0)
|
|---|
| 445 | # if kappa = 0 generate uniform random angle
|
|---|
| 446 |
|
|---|
| 447 | # Based upon an algorithm published in: Fisher, N.I.,
|
|---|
| 448 | # "Statistical Analysis of Circular Data", Cambridge
|
|---|
| 449 | # University Press, 1993.
|
|---|
| 450 |
|
|---|
| 451 | # Thanks to Magnus Kessler for a correction to the
|
|---|
| 452 | # implementation of step 4.
|
|---|
| 453 |
|
|---|
| 454 | random = self.random
|
|---|
| 455 | if kappa <= 1e-6:
|
|---|
| 456 | return TWOPI * random()
|
|---|
| 457 |
|
|---|
| 458 | a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
|
|---|
| 459 | b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
|
|---|
| 460 | r = (1.0 + b * b)/(2.0 * b)
|
|---|
| 461 |
|
|---|
| 462 | while 1:
|
|---|
| 463 | u1 = random()
|
|---|
| 464 |
|
|---|
| 465 | z = _cos(_pi * u1)
|
|---|
| 466 | f = (1.0 + r * z)/(r + z)
|
|---|
| 467 | c = kappa * (r - f)
|
|---|
| 468 |
|
|---|
| 469 | u2 = random()
|
|---|
| 470 |
|
|---|
| 471 | if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
|
|---|
| 472 | break
|
|---|
| 473 |
|
|---|
| 474 | u3 = random()
|
|---|
| 475 | if u3 > 0.5:
|
|---|
| 476 | theta = (mu % TWOPI) + _acos(f)
|
|---|
| 477 | else:
|
|---|
| 478 | theta = (mu % TWOPI) - _acos(f)
|
|---|
| 479 |
|
|---|
| 480 | return theta
|
|---|
| 481 |
|
|---|
| 482 | ## -------------------- gamma distribution --------------------
|
|---|
| 483 |
|
|---|
| 484 | def gammavariate(self, alpha, beta):
|
|---|
| 485 | """Gamma distribution. Not the gamma function!
|
|---|
| 486 |
|
|---|
| 487 | Conditions on the parameters are alpha > 0 and beta > 0.
|
|---|
| 488 |
|
|---|
| 489 | """
|
|---|
| 490 |
|
|---|
| 491 | # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
|
|---|
| 492 |
|
|---|
| 493 | # Warning: a few older sources define the gamma distribution in terms
|
|---|
| 494 | # of alpha > -1.0
|
|---|
| 495 | if alpha <= 0.0 or beta <= 0.0:
|
|---|
| 496 | raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
|
|---|
| 497 |
|
|---|
| 498 | random = self.random
|
|---|
| 499 | if alpha > 1.0:
|
|---|
| 500 |
|
|---|
| 501 | # Uses R.C.H. Cheng, "The generation of Gamma
|
|---|
| 502 | # variables with non-integral shape parameters",
|
|---|
| 503 | # Applied Statistics, (1977), 26, No. 1, p71-74
|
|---|
| 504 |
|
|---|
| 505 | ainv = _sqrt(2.0 * alpha - 1.0)
|
|---|
| 506 | bbb = alpha - LOG4
|
|---|
| 507 | ccc = alpha + ainv
|
|---|
| 508 |
|
|---|
| 509 | while 1:
|
|---|
| 510 | u1 = random()
|
|---|
| 511 | if not 1e-7 < u1 < .9999999:
|
|---|
| 512 | continue
|
|---|
| 513 | u2 = 1.0 - random()
|
|---|
| 514 | v = _log(u1/(1.0-u1))/ainv
|
|---|
| 515 | x = alpha*_exp(v)
|
|---|
| 516 | z = u1*u1*u2
|
|---|
| 517 | r = bbb+ccc*v-x
|
|---|
| 518 | if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
|
|---|
| 519 | return x * beta
|
|---|
| 520 |
|
|---|
| 521 | elif alpha == 1.0:
|
|---|
| 522 | # expovariate(1)
|
|---|
| 523 | u = random()
|
|---|
| 524 | while u <= 1e-7:
|
|---|
| 525 | u = random()
|
|---|
| 526 | return -_log(u) * beta
|
|---|
| 527 |
|
|---|
| 528 | else: # alpha is between 0 and 1 (exclusive)
|
|---|
| 529 |
|
|---|
| 530 | # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
|---|
| 531 |
|
|---|
| 532 | while 1:
|
|---|
| 533 | u = random()
|
|---|
| 534 | b = (_e + alpha)/_e
|
|---|
| 535 | p = b*u
|
|---|
| 536 | if p <= 1.0:
|
|---|
| 537 | x = p ** (1.0/alpha)
|
|---|
| 538 | else:
|
|---|
| 539 | x = -_log((b-p)/alpha)
|
|---|
| 540 | u1 = random()
|
|---|
| 541 | if p > 1.0:
|
|---|
| 542 | if u1 <= x ** (alpha - 1.0):
|
|---|
| 543 | break
|
|---|
| 544 | elif u1 <= _exp(-x):
|
|---|
| 545 | break
|
|---|
| 546 | return x * beta
|
|---|
| 547 |
|
|---|
| 548 | ## -------------------- Gauss (faster alternative) --------------------
|
|---|
| 549 |
|
|---|
| 550 | def gauss(self, mu, sigma):
|
|---|
| 551 | """Gaussian distribution.
|
|---|
| 552 |
|
|---|
| 553 | mu is the mean, and sigma is the standard deviation. This is
|
|---|
| 554 | slightly faster than the normalvariate() function.
|
|---|
| 555 |
|
|---|
| 556 | Not thread-safe without a lock around calls.
|
|---|
| 557 |
|
|---|
| 558 | """
|
|---|
| 559 |
|
|---|
| 560 | # When x and y are two variables from [0, 1), uniformly
|
|---|
| 561 | # distributed, then
|
|---|
| 562 | #
|
|---|
| 563 | # cos(2*pi*x)*sqrt(-2*log(1-y))
|
|---|
| 564 | # sin(2*pi*x)*sqrt(-2*log(1-y))
|
|---|
| 565 | #
|
|---|
| 566 | # are two *independent* variables with normal distribution
|
|---|
| 567 | # (mu = 0, sigma = 1).
|
|---|
| 568 | # (Lambert Meertens)
|
|---|
| 569 | # (corrected version; bug discovered by Mike Miller, fixed by LM)
|
|---|
| 570 |
|
|---|
| 571 | # Multithreading note: When two threads call this function
|
|---|
| 572 | # simultaneously, it is possible that they will receive the
|
|---|
| 573 | # same return value. The window is very small though. To
|
|---|
| 574 | # avoid this, you have to use a lock around all calls. (I
|
|---|
| 575 | # didn't want to slow this down in the serial case by using a
|
|---|
| 576 | # lock here.)
|
|---|
| 577 |
|
|---|
| 578 | random = self.random
|
|---|
| 579 | z = self.gauss_next
|
|---|
| 580 | self.gauss_next = None
|
|---|
| 581 | if z is None:
|
|---|
| 582 | x2pi = random() * TWOPI
|
|---|
| 583 | g2rad = _sqrt(-2.0 * _log(1.0 - random()))
|
|---|
| 584 | z = _cos(x2pi) * g2rad
|
|---|
| 585 | self.gauss_next = _sin(x2pi) * g2rad
|
|---|
| 586 |
|
|---|
| 587 | return mu + z*sigma
|
|---|
| 588 |
|
|---|
| 589 | ## -------------------- beta --------------------
|
|---|
| 590 | ## See
|
|---|
| 591 | ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
|
|---|
| 592 | ## for Ivan Frohne's insightful analysis of why the original implementation:
|
|---|
| 593 | ##
|
|---|
| 594 | ## def betavariate(self, alpha, beta):
|
|---|
| 595 | ## # Discrete Event Simulation in C, pp 87-88.
|
|---|
| 596 | ##
|
|---|
| 597 | ## y = self.expovariate(alpha)
|
|---|
| 598 | ## z = self.expovariate(1.0/beta)
|
|---|
| 599 | ## return z/(y+z)
|
|---|
| 600 | ##
|
|---|
| 601 | ## was dead wrong, and how it probably got that way.
|
|---|
| 602 |
|
|---|
| 603 | def betavariate(self, alpha, beta):
|
|---|
| 604 | """Beta distribution.
|
|---|
| 605 |
|
|---|
| 606 | Conditions on the parameters are alpha > 0 and beta > 0.
|
|---|
| 607 | Returned values range between 0 and 1.
|
|---|
| 608 |
|
|---|
| 609 | """
|
|---|
| 610 |
|
|---|
| 611 | # This version due to Janne Sinkkonen, and matches all the std
|
|---|
| 612 | # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
|
|---|
| 613 | y = self.gammavariate(alpha, 1.)
|
|---|
| 614 | if y == 0:
|
|---|
| 615 | return 0.0
|
|---|
| 616 | else:
|
|---|
| 617 | return y / (y + self.gammavariate(beta, 1.))
|
|---|
| 618 |
|
|---|
| 619 | ## -------------------- Pareto --------------------
|
|---|
| 620 |
|
|---|
| 621 | def paretovariate(self, alpha):
|
|---|
| 622 | """Pareto distribution. alpha is the shape parameter."""
|
|---|
| 623 | # Jain, pg. 495
|
|---|
| 624 |
|
|---|
| 625 | u = 1.0 - self.random()
|
|---|
| 626 | return 1.0 / pow(u, 1.0/alpha)
|
|---|
| 627 |
|
|---|
| 628 | ## -------------------- Weibull --------------------
|
|---|
| 629 |
|
|---|
| 630 | def weibullvariate(self, alpha, beta):
|
|---|
| 631 | """Weibull distribution.
|
|---|
| 632 |
|
|---|
| 633 | alpha is the scale parameter and beta is the shape parameter.
|
|---|
| 634 |
|
|---|
| 635 | """
|
|---|
| 636 | # Jain, pg. 499; bug fix courtesy Bill Arms
|
|---|
| 637 |
|
|---|
| 638 | u = 1.0 - self.random()
|
|---|
| 639 | return alpha * pow(-_log(u), 1.0/beta)
|
|---|
| 640 |
|
|---|
| 641 | ## -------------------- Wichmann-Hill -------------------
|
|---|
| 642 |
|
|---|
| 643 | class WichmannHill(Random):
|
|---|
| 644 |
|
|---|
| 645 | VERSION = 1 # used by getstate/setstate
|
|---|
| 646 |
|
|---|
| 647 | def seed(self, a=None):
|
|---|
| 648 | """Initialize internal state from hashable object.
|
|---|
| 649 |
|
|---|
| 650 | None or no argument seeds from current time or from an operating
|
|---|
| 651 | system specific randomness source if available.
|
|---|
| 652 |
|
|---|
| 653 | If a is not None or an int or long, hash(a) is used instead.
|
|---|
| 654 |
|
|---|
| 655 | If a is an int or long, a is used directly. Distinct values between
|
|---|
| 656 | 0 and 27814431486575L inclusive are guaranteed to yield distinct
|
|---|
| 657 | internal states (this guarantee is specific to the default
|
|---|
| 658 | Wichmann-Hill generator).
|
|---|
| 659 | """
|
|---|
| 660 |
|
|---|
| 661 | if a is None:
|
|---|
| 662 | try:
|
|---|
| 663 | a = long(_hexlify(_urandom(16)), 16)
|
|---|
| 664 | except NotImplementedError:
|
|---|
| 665 | import time
|
|---|
| 666 | a = long(time.time() * 256) # use fractional seconds
|
|---|
| 667 |
|
|---|
| 668 | if not isinstance(a, (int, long)):
|
|---|
| 669 | a = hash(a)
|
|---|
| 670 |
|
|---|
| 671 | a, x = divmod(a, 30268)
|
|---|
| 672 | a, y = divmod(a, 30306)
|
|---|
| 673 | a, z = divmod(a, 30322)
|
|---|
| 674 | self._seed = int(x)+1, int(y)+1, int(z)+1
|
|---|
| 675 |
|
|---|
| 676 | self.gauss_next = None
|
|---|
| 677 |
|
|---|
| 678 | def random(self):
|
|---|
| 679 | """Get the next random number in the range [0.0, 1.0)."""
|
|---|
| 680 |
|
|---|
| 681 | # Wichman-Hill random number generator.
|
|---|
| 682 | #
|
|---|
| 683 | # Wichmann, B. A. & Hill, I. D. (1982)
|
|---|
| 684 | # Algorithm AS 183:
|
|---|
| 685 | # An efficient and portable pseudo-random number generator
|
|---|
| 686 | # Applied Statistics 31 (1982) 188-190
|
|---|
| 687 | #
|
|---|
| 688 | # see also:
|
|---|
| 689 | # Correction to Algorithm AS 183
|
|---|
| 690 | # Applied Statistics 33 (1984) 123
|
|---|
| 691 | #
|
|---|
| 692 | # McLeod, A. I. (1985)
|
|---|
| 693 | # A remark on Algorithm AS 183
|
|---|
| 694 | # Applied Statistics 34 (1985),198-200
|
|---|
| 695 |
|
|---|
| 696 | # This part is thread-unsafe:
|
|---|
| 697 | # BEGIN CRITICAL SECTION
|
|---|
| 698 | x, y, z = self._seed
|
|---|
| 699 | x = (171 * x) % 30269
|
|---|
| 700 | y = (172 * y) % 30307
|
|---|
| 701 | z = (170 * z) % 30323
|
|---|
| 702 | self._seed = x, y, z
|
|---|
| 703 | # END CRITICAL SECTION
|
|---|
| 704 |
|
|---|
| 705 | # Note: on a platform using IEEE-754 double arithmetic, this can
|
|---|
| 706 | # never return 0.0 (asserted by Tim; proof too long for a comment).
|
|---|
| 707 | return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
|
|---|
| 708 |
|
|---|
| 709 | def getstate(self):
|
|---|
| 710 | """Return internal state; can be passed to setstate() later."""
|
|---|
| 711 | return self.VERSION, self._seed, self.gauss_next
|
|---|
| 712 |
|
|---|
| 713 | def setstate(self, state):
|
|---|
| 714 | """Restore internal state from object returned by getstate()."""
|
|---|
| 715 | version = state[0]
|
|---|
| 716 | if version == 1:
|
|---|
| 717 | version, self._seed, self.gauss_next = state
|
|---|
| 718 | else:
|
|---|
| 719 | raise ValueError("state with version %s passed to "
|
|---|
| 720 | "Random.setstate() of version %s" %
|
|---|
| 721 | (version, self.VERSION))
|
|---|
| 722 |
|
|---|
| 723 | def jumpahead(self, n):
|
|---|
| 724 | """Act as if n calls to random() were made, but quickly.
|
|---|
| 725 |
|
|---|
| 726 | n is an int, greater than or equal to 0.
|
|---|
| 727 |
|
|---|
| 728 | Example use: If you have 2 threads and know that each will
|
|---|
| 729 | consume no more than a million random numbers, create two Random
|
|---|
| 730 | objects r1 and r2, then do
|
|---|
| 731 | r2.setstate(r1.getstate())
|
|---|
| 732 | r2.jumpahead(1000000)
|
|---|
| 733 | Then r1 and r2 will use guaranteed-disjoint segments of the full
|
|---|
| 734 | period.
|
|---|
| 735 | """
|
|---|
| 736 |
|
|---|
| 737 | if not n >= 0:
|
|---|
| 738 | raise ValueError("n must be >= 0")
|
|---|
| 739 | x, y, z = self._seed
|
|---|
| 740 | x = int(x * pow(171, n, 30269)) % 30269
|
|---|
| 741 | y = int(y * pow(172, n, 30307)) % 30307
|
|---|
| 742 | z = int(z * pow(170, n, 30323)) % 30323
|
|---|
| 743 | self._seed = x, y, z
|
|---|
| 744 |
|
|---|
| 745 | def __whseed(self, x=0, y=0, z=0):
|
|---|
| 746 | """Set the Wichmann-Hill seed from (x, y, z).
|
|---|
| 747 |
|
|---|
| 748 | These must be integers in the range [0, 256).
|
|---|
| 749 | """
|
|---|
| 750 |
|
|---|
| 751 | if not type(x) == type(y) == type(z) == int:
|
|---|
| 752 | raise TypeError('seeds must be integers')
|
|---|
| 753 | if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
|
|---|
| 754 | raise ValueError('seeds must be in range(0, 256)')
|
|---|
| 755 | if 0 == x == y == z:
|
|---|
| 756 | # Initialize from current time
|
|---|
| 757 | import time
|
|---|
| 758 | t = long(time.time() * 256)
|
|---|
| 759 | t = int((t&0xffffff) ^ (t>>24))
|
|---|
| 760 | t, x = divmod(t, 256)
|
|---|
| 761 | t, y = divmod(t, 256)
|
|---|
| 762 | t, z = divmod(t, 256)
|
|---|
| 763 | # Zero is a poor seed, so substitute 1
|
|---|
| 764 | self._seed = (x or 1, y or 1, z or 1)
|
|---|
| 765 |
|
|---|
| 766 | self.gauss_next = None
|
|---|
| 767 |
|
|---|
| 768 | def whseed(self, a=None):
|
|---|
| 769 | """Seed from hashable object's hash code.
|
|---|
| 770 |
|
|---|
| 771 | None or no argument seeds from current time. It is not guaranteed
|
|---|
| 772 | that objects with distinct hash codes lead to distinct internal
|
|---|
| 773 | states.
|
|---|
| 774 |
|
|---|
| 775 | This is obsolete, provided for compatibility with the seed routine
|
|---|
| 776 | used prior to Python 2.1. Use the .seed() method instead.
|
|---|
| 777 | """
|
|---|
| 778 |
|
|---|
| 779 | if a is None:
|
|---|
| 780 | self.__whseed()
|
|---|
| 781 | return
|
|---|
| 782 | a = hash(a)
|
|---|
| 783 | a, x = divmod(a, 256)
|
|---|
| 784 | a, y = divmod(a, 256)
|
|---|
| 785 | a, z = divmod(a, 256)
|
|---|
| 786 | x = (x + a) % 256 or 1
|
|---|
| 787 | y = (y + a) % 256 or 1
|
|---|
| 788 | z = (z + a) % 256 or 1
|
|---|
| 789 | self.__whseed(x, y, z)
|
|---|
| 790 |
|
|---|
| 791 | ## --------------- Operating System Random Source ------------------
|
|---|
| 792 |
|
|---|
| 793 | class SystemRandom(Random):
|
|---|
| 794 | """Alternate random number generator using sources provided
|
|---|
| 795 | by the operating system (such as /dev/urandom on Unix or
|
|---|
| 796 | CryptGenRandom on Windows).
|
|---|
| 797 |
|
|---|
| 798 | Not available on all systems (see os.urandom() for details).
|
|---|
| 799 | """
|
|---|
| 800 |
|
|---|
| 801 | def random(self):
|
|---|
| 802 | """Get the next random number in the range [0.0, 1.0)."""
|
|---|
| 803 | return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
|
|---|
| 804 |
|
|---|
| 805 | def getrandbits(self, k):
|
|---|
| 806 | """getrandbits(k) -> x. Generates a long int with k random bits."""
|
|---|
| 807 | if k <= 0:
|
|---|
| 808 | raise ValueError('number of bits must be greater than zero')
|
|---|
| 809 | if k != int(k):
|
|---|
| 810 | raise TypeError('number of bits should be an integer')
|
|---|
| 811 | bytes = (k + 7) // 8 # bits / 8 and rounded up
|
|---|
| 812 | x = long(_hexlify(_urandom(bytes)), 16)
|
|---|
| 813 | return x >> (bytes * 8 - k) # trim excess bits
|
|---|
| 814 |
|
|---|
| 815 | def _stub(self, *args, **kwds):
|
|---|
| 816 | "Stub method. Not used for a system random number generator."
|
|---|
| 817 | return None
|
|---|
| 818 | seed = jumpahead = _stub
|
|---|
| 819 |
|
|---|
| 820 | def _notimplemented(self, *args, **kwds):
|
|---|
| 821 | "Method should not be called for a system random number generator."
|
|---|
| 822 | raise NotImplementedError('System entropy source does not have state.')
|
|---|
| 823 | getstate = setstate = _notimplemented
|
|---|
| 824 |
|
|---|
| 825 | ## -------------------- test program --------------------
|
|---|
| 826 |
|
|---|
| 827 | def _test_generator(n, func, args):
|
|---|
| 828 | import time
|
|---|
| 829 | print n, 'times', func.__name__
|
|---|
| 830 | total = 0.0
|
|---|
| 831 | sqsum = 0.0
|
|---|
| 832 | smallest = 1e10
|
|---|
| 833 | largest = -1e10
|
|---|
| 834 | t0 = time.time()
|
|---|
| 835 | for i in range(n):
|
|---|
| 836 | x = func(*args)
|
|---|
| 837 | total += x
|
|---|
| 838 | sqsum = sqsum + x*x
|
|---|
| 839 | smallest = min(x, smallest)
|
|---|
| 840 | largest = max(x, largest)
|
|---|
| 841 | t1 = time.time()
|
|---|
| 842 | print round(t1-t0, 3), 'sec,',
|
|---|
| 843 | avg = total/n
|
|---|
| 844 | stddev = _sqrt(sqsum/n - avg*avg)
|
|---|
| 845 | print 'avg %g, stddev %g, min %g, max %g' % \
|
|---|
| 846 | (avg, stddev, smallest, largest)
|
|---|
| 847 |
|
|---|
| 848 |
|
|---|
| 849 | def _test(N=2000):
|
|---|
| 850 | _test_generator(N, random, ())
|
|---|
| 851 | _test_generator(N, normalvariate, (0.0, 1.0))
|
|---|
| 852 | _test_generator(N, lognormvariate, (0.0, 1.0))
|
|---|
| 853 | _test_generator(N, vonmisesvariate, (0.0, 1.0))
|
|---|
| 854 | _test_generator(N, gammavariate, (0.01, 1.0))
|
|---|
| 855 | _test_generator(N, gammavariate, (0.1, 1.0))
|
|---|
| 856 | _test_generator(N, gammavariate, (0.1, 2.0))
|
|---|
| 857 | _test_generator(N, gammavariate, (0.5, 1.0))
|
|---|
| 858 | _test_generator(N, gammavariate, (0.9, 1.0))
|
|---|
| 859 | _test_generator(N, gammavariate, (1.0, 1.0))
|
|---|
| 860 | _test_generator(N, gammavariate, (2.0, 1.0))
|
|---|
| 861 | _test_generator(N, gammavariate, (20.0, 1.0))
|
|---|
| 862 | _test_generator(N, gammavariate, (200.0, 1.0))
|
|---|
| 863 | _test_generator(N, gauss, (0.0, 1.0))
|
|---|
| 864 | _test_generator(N, betavariate, (3.0, 3.0))
|
|---|
| 865 | _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
|
|---|
| 866 |
|
|---|
| 867 | # Create one instance, seeded from current time, and export its methods
|
|---|
| 868 | # as module-level functions. The functions share state across all uses
|
|---|
| 869 | #(both in the user's code and in the Python libraries), but that's fine
|
|---|
| 870 | # for most programs and is easier for the casual user than making them
|
|---|
| 871 | # instantiate their own Random() instance.
|
|---|
| 872 |
|
|---|
| 873 | _inst = Random()
|
|---|
| 874 | seed = _inst.seed
|
|---|
| 875 | random = _inst.random
|
|---|
| 876 | uniform = _inst.uniform
|
|---|
| 877 | triangular = _inst.triangular
|
|---|
| 878 | randint = _inst.randint
|
|---|
| 879 | choice = _inst.choice
|
|---|
| 880 | randrange = _inst.randrange
|
|---|
| 881 | sample = _inst.sample
|
|---|
| 882 | shuffle = _inst.shuffle
|
|---|
| 883 | normalvariate = _inst.normalvariate
|
|---|
| 884 | lognormvariate = _inst.lognormvariate
|
|---|
| 885 | expovariate = _inst.expovariate
|
|---|
| 886 | vonmisesvariate = _inst.vonmisesvariate
|
|---|
| 887 | gammavariate = _inst.gammavariate
|
|---|
| 888 | gauss = _inst.gauss
|
|---|
| 889 | betavariate = _inst.betavariate
|
|---|
| 890 | paretovariate = _inst.paretovariate
|
|---|
| 891 | weibullvariate = _inst.weibullvariate
|
|---|
| 892 | getstate = _inst.getstate
|
|---|
| 893 | setstate = _inst.setstate
|
|---|
| 894 | jumpahead = _inst.jumpahead
|
|---|
| 895 | getrandbits = _inst.getrandbits
|
|---|
| 896 |
|
|---|
| 897 | if __name__ == '__main__':
|
|---|
| 898 | _test()
|
|---|