[2] | 1 | # Originally contributed by Sjoerd Mullender.
|
---|
| 2 | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
|
---|
| 3 |
|
---|
| 4 | """Rational, infinite-precision, real numbers."""
|
---|
| 5 |
|
---|
| 6 | from __future__ import division
|
---|
[391] | 7 | from decimal import Decimal
|
---|
[2] | 8 | import math
|
---|
| 9 | import numbers
|
---|
| 10 | import operator
|
---|
| 11 | import re
|
---|
| 12 |
|
---|
| 13 | __all__ = ['Fraction', 'gcd']
|
---|
| 14 |
|
---|
| 15 | Rational = numbers.Rational
|
---|
| 16 |
|
---|
| 17 |
|
---|
| 18 | def gcd(a, b):
|
---|
| 19 | """Calculate the Greatest Common Divisor of a and b.
|
---|
| 20 |
|
---|
| 21 | Unless b==0, the result will have the same sign as b (so that when
|
---|
| 22 | b is divided by it, the result comes out positive).
|
---|
| 23 | """
|
---|
| 24 | while b:
|
---|
| 25 | a, b = b, a%b
|
---|
| 26 | return a
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | _RATIONAL_FORMAT = re.compile(r"""
|
---|
| 30 | \A\s* # optional whitespace at the start, then
|
---|
| 31 | (?P<sign>[-+]?) # an optional sign, then
|
---|
| 32 | (?=\d|\.\d) # lookahead for digit or .digit
|
---|
| 33 | (?P<num>\d*) # numerator (possibly empty)
|
---|
[391] | 34 | (?: # followed by
|
---|
| 35 | (?:/(?P<denom>\d+))? # an optional denominator
|
---|
[2] | 36 | | # or
|
---|
[391] | 37 | (?:\.(?P<decimal>\d*))? # an optional fractional part
|
---|
| 38 | (?:E(?P<exp>[-+]?\d+))? # and optional exponent
|
---|
| 39 | )
|
---|
[2] | 40 | \s*\Z # and optional whitespace to finish
|
---|
[391] | 41 | """, re.VERBOSE | re.IGNORECASE)
|
---|
[2] | 42 |
|
---|
| 43 |
|
---|
| 44 | class Fraction(Rational):
|
---|
| 45 | """This class implements rational numbers.
|
---|
| 46 |
|
---|
[391] | 47 | In the two-argument form of the constructor, Fraction(8, 6) will
|
---|
| 48 | produce a rational number equivalent to 4/3. Both arguments must
|
---|
| 49 | be Rational. The numerator defaults to 0 and the denominator
|
---|
| 50 | defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
|
---|
[2] | 51 |
|
---|
[391] | 52 | Fractions can also be constructed from:
|
---|
[2] | 53 |
|
---|
[391] | 54 | - numeric strings similar to those accepted by the
|
---|
| 55 | float constructor (for example, '-2.3' or '1e10')
|
---|
| 56 |
|
---|
| 57 | - strings of the form '123/456'
|
---|
| 58 |
|
---|
| 59 | - float and Decimal instances
|
---|
| 60 |
|
---|
| 61 | - other Rational instances (including integers)
|
---|
| 62 |
|
---|
[2] | 63 | """
|
---|
| 64 |
|
---|
| 65 | __slots__ = ('_numerator', '_denominator')
|
---|
| 66 |
|
---|
| 67 | # We're immutable, so use __new__ not __init__
|
---|
[391] | 68 | def __new__(cls, numerator=0, denominator=None):
|
---|
[2] | 69 | """Constructs a Fraction.
|
---|
| 70 |
|
---|
[391] | 71 | Takes a string like '3/2' or '1.5', another Rational instance, a
|
---|
| 72 | numerator/denominator pair, or a float.
|
---|
[2] | 73 |
|
---|
[391] | 74 | Examples
|
---|
| 75 | --------
|
---|
| 76 |
|
---|
| 77 | >>> Fraction(10, -8)
|
---|
| 78 | Fraction(-5, 4)
|
---|
| 79 | >>> Fraction(Fraction(1, 7), 5)
|
---|
| 80 | Fraction(1, 35)
|
---|
| 81 | >>> Fraction(Fraction(1, 7), Fraction(2, 3))
|
---|
| 82 | Fraction(3, 14)
|
---|
| 83 | >>> Fraction('314')
|
---|
| 84 | Fraction(314, 1)
|
---|
| 85 | >>> Fraction('-35/4')
|
---|
| 86 | Fraction(-35, 4)
|
---|
| 87 | >>> Fraction('3.1415') # conversion from numeric string
|
---|
| 88 | Fraction(6283, 2000)
|
---|
| 89 | >>> Fraction('-47e-2') # string may include a decimal exponent
|
---|
| 90 | Fraction(-47, 100)
|
---|
| 91 | >>> Fraction(1.47) # direct construction from float (exact conversion)
|
---|
| 92 | Fraction(6620291452234629, 4503599627370496)
|
---|
| 93 | >>> Fraction(2.25)
|
---|
| 94 | Fraction(9, 4)
|
---|
| 95 | >>> Fraction(Decimal('1.47'))
|
---|
| 96 | Fraction(147, 100)
|
---|
| 97 |
|
---|
[2] | 98 | """
|
---|
| 99 | self = super(Fraction, cls).__new__(cls)
|
---|
| 100 |
|
---|
[391] | 101 | if denominator is None:
|
---|
| 102 | if isinstance(numerator, Rational):
|
---|
| 103 | self._numerator = numerator.numerator
|
---|
| 104 | self._denominator = numerator.denominator
|
---|
| 105 | return self
|
---|
| 106 |
|
---|
| 107 | elif isinstance(numerator, float):
|
---|
| 108 | # Exact conversion from float
|
---|
| 109 | value = Fraction.from_float(numerator)
|
---|
| 110 | self._numerator = value._numerator
|
---|
| 111 | self._denominator = value._denominator
|
---|
| 112 | return self
|
---|
| 113 |
|
---|
| 114 | elif isinstance(numerator, Decimal):
|
---|
| 115 | value = Fraction.from_decimal(numerator)
|
---|
| 116 | self._numerator = value._numerator
|
---|
| 117 | self._denominator = value._denominator
|
---|
| 118 | return self
|
---|
| 119 |
|
---|
| 120 | elif isinstance(numerator, basestring):
|
---|
[2] | 121 | # Handle construction from strings.
|
---|
[391] | 122 | m = _RATIONAL_FORMAT.match(numerator)
|
---|
[2] | 123 | if m is None:
|
---|
[391] | 124 | raise ValueError('Invalid literal for Fraction: %r' %
|
---|
| 125 | numerator)
|
---|
| 126 | numerator = int(m.group('num') or '0')
|
---|
| 127 | denom = m.group('denom')
|
---|
| 128 | if denom:
|
---|
| 129 | denominator = int(denom)
|
---|
[2] | 130 | else:
|
---|
[391] | 131 | denominator = 1
|
---|
| 132 | decimal = m.group('decimal')
|
---|
| 133 | if decimal:
|
---|
| 134 | scale = 10**len(decimal)
|
---|
| 135 | numerator = numerator * scale + int(decimal)
|
---|
| 136 | denominator *= scale
|
---|
| 137 | exp = m.group('exp')
|
---|
| 138 | if exp:
|
---|
| 139 | exp = int(exp)
|
---|
| 140 | if exp >= 0:
|
---|
| 141 | numerator *= 10**exp
|
---|
| 142 | else:
|
---|
| 143 | denominator *= 10**-exp
|
---|
[2] | 144 | if m.group('sign') == '-':
|
---|
| 145 | numerator = -numerator
|
---|
| 146 |
|
---|
[391] | 147 | else:
|
---|
| 148 | raise TypeError("argument should be a string "
|
---|
| 149 | "or a Rational instance")
|
---|
[2] | 150 |
|
---|
[391] | 151 | elif (isinstance(numerator, Rational) and
|
---|
| 152 | isinstance(denominator, Rational)):
|
---|
| 153 | numerator, denominator = (
|
---|
| 154 | numerator.numerator * denominator.denominator,
|
---|
| 155 | denominator.numerator * numerator.denominator
|
---|
| 156 | )
|
---|
| 157 | else:
|
---|
| 158 | raise TypeError("both arguments should be "
|
---|
| 159 | "Rational instances")
|
---|
| 160 |
|
---|
[2] | 161 | if denominator == 0:
|
---|
| 162 | raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
|
---|
| 163 | g = gcd(numerator, denominator)
|
---|
| 164 | self._numerator = numerator // g
|
---|
| 165 | self._denominator = denominator // g
|
---|
| 166 | return self
|
---|
| 167 |
|
---|
| 168 | @classmethod
|
---|
| 169 | def from_float(cls, f):
|
---|
| 170 | """Converts a finite float to a rational number, exactly.
|
---|
| 171 |
|
---|
| 172 | Beware that Fraction.from_float(0.3) != Fraction(3, 10).
|
---|
| 173 |
|
---|
| 174 | """
|
---|
| 175 | if isinstance(f, numbers.Integral):
|
---|
| 176 | return cls(f)
|
---|
| 177 | elif not isinstance(f, float):
|
---|
| 178 | raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
|
---|
| 179 | (cls.__name__, f, type(f).__name__))
|
---|
| 180 | if math.isnan(f) or math.isinf(f):
|
---|
| 181 | raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
|
---|
| 182 | return cls(*f.as_integer_ratio())
|
---|
| 183 |
|
---|
| 184 | @classmethod
|
---|
| 185 | def from_decimal(cls, dec):
|
---|
| 186 | """Converts a finite Decimal instance to a rational number, exactly."""
|
---|
| 187 | from decimal import Decimal
|
---|
| 188 | if isinstance(dec, numbers.Integral):
|
---|
| 189 | dec = Decimal(int(dec))
|
---|
| 190 | elif not isinstance(dec, Decimal):
|
---|
| 191 | raise TypeError(
|
---|
| 192 | "%s.from_decimal() only takes Decimals, not %r (%s)" %
|
---|
| 193 | (cls.__name__, dec, type(dec).__name__))
|
---|
| 194 | if not dec.is_finite():
|
---|
| 195 | # Catches infinities and nans.
|
---|
| 196 | raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
|
---|
| 197 | sign, digits, exp = dec.as_tuple()
|
---|
| 198 | digits = int(''.join(map(str, digits)))
|
---|
| 199 | if sign:
|
---|
| 200 | digits = -digits
|
---|
| 201 | if exp >= 0:
|
---|
| 202 | return cls(digits * 10 ** exp)
|
---|
| 203 | else:
|
---|
| 204 | return cls(digits, 10 ** -exp)
|
---|
| 205 |
|
---|
| 206 | def limit_denominator(self, max_denominator=1000000):
|
---|
| 207 | """Closest Fraction to self with denominator at most max_denominator.
|
---|
| 208 |
|
---|
| 209 | >>> Fraction('3.141592653589793').limit_denominator(10)
|
---|
| 210 | Fraction(22, 7)
|
---|
| 211 | >>> Fraction('3.141592653589793').limit_denominator(100)
|
---|
| 212 | Fraction(311, 99)
|
---|
| 213 | >>> Fraction(4321, 8765).limit_denominator(10000)
|
---|
| 214 | Fraction(4321, 8765)
|
---|
| 215 |
|
---|
| 216 | """
|
---|
| 217 | # Algorithm notes: For any real number x, define a *best upper
|
---|
| 218 | # approximation* to x to be a rational number p/q such that:
|
---|
| 219 | #
|
---|
| 220 | # (1) p/q >= x, and
|
---|
| 221 | # (2) if p/q > r/s >= x then s > q, for any rational r/s.
|
---|
| 222 | #
|
---|
| 223 | # Define *best lower approximation* similarly. Then it can be
|
---|
| 224 | # proved that a rational number is a best upper or lower
|
---|
| 225 | # approximation to x if, and only if, it is a convergent or
|
---|
| 226 | # semiconvergent of the (unique shortest) continued fraction
|
---|
| 227 | # associated to x.
|
---|
| 228 | #
|
---|
| 229 | # To find a best rational approximation with denominator <= M,
|
---|
| 230 | # we find the best upper and lower approximations with
|
---|
| 231 | # denominator <= M and take whichever of these is closer to x.
|
---|
| 232 | # In the event of a tie, the bound with smaller denominator is
|
---|
| 233 | # chosen. If both denominators are equal (which can happen
|
---|
| 234 | # only when max_denominator == 1 and self is midway between
|
---|
| 235 | # two integers) the lower bound---i.e., the floor of self, is
|
---|
| 236 | # taken.
|
---|
| 237 |
|
---|
| 238 | if max_denominator < 1:
|
---|
| 239 | raise ValueError("max_denominator should be at least 1")
|
---|
| 240 | if self._denominator <= max_denominator:
|
---|
| 241 | return Fraction(self)
|
---|
| 242 |
|
---|
| 243 | p0, q0, p1, q1 = 0, 1, 1, 0
|
---|
| 244 | n, d = self._numerator, self._denominator
|
---|
| 245 | while True:
|
---|
| 246 | a = n//d
|
---|
| 247 | q2 = q0+a*q1
|
---|
| 248 | if q2 > max_denominator:
|
---|
| 249 | break
|
---|
| 250 | p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
|
---|
| 251 | n, d = d, n-a*d
|
---|
| 252 |
|
---|
| 253 | k = (max_denominator-q0)//q1
|
---|
| 254 | bound1 = Fraction(p0+k*p1, q0+k*q1)
|
---|
| 255 | bound2 = Fraction(p1, q1)
|
---|
| 256 | if abs(bound2 - self) <= abs(bound1-self):
|
---|
| 257 | return bound2
|
---|
| 258 | else:
|
---|
| 259 | return bound1
|
---|
| 260 |
|
---|
| 261 | @property
|
---|
| 262 | def numerator(a):
|
---|
| 263 | return a._numerator
|
---|
| 264 |
|
---|
| 265 | @property
|
---|
| 266 | def denominator(a):
|
---|
| 267 | return a._denominator
|
---|
| 268 |
|
---|
| 269 | def __repr__(self):
|
---|
| 270 | """repr(self)"""
|
---|
| 271 | return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
|
---|
| 272 |
|
---|
| 273 | def __str__(self):
|
---|
| 274 | """str(self)"""
|
---|
| 275 | if self._denominator == 1:
|
---|
| 276 | return str(self._numerator)
|
---|
| 277 | else:
|
---|
| 278 | return '%s/%s' % (self._numerator, self._denominator)
|
---|
| 279 |
|
---|
| 280 | def _operator_fallbacks(monomorphic_operator, fallback_operator):
|
---|
| 281 | """Generates forward and reverse operators given a purely-rational
|
---|
| 282 | operator and a function from the operator module.
|
---|
| 283 |
|
---|
| 284 | Use this like:
|
---|
| 285 | __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
|
---|
| 286 |
|
---|
| 287 | In general, we want to implement the arithmetic operations so
|
---|
| 288 | that mixed-mode operations either call an implementation whose
|
---|
| 289 | author knew about the types of both arguments, or convert both
|
---|
| 290 | to the nearest built in type and do the operation there. In
|
---|
| 291 | Fraction, that means that we define __add__ and __radd__ as:
|
---|
| 292 |
|
---|
| 293 | def __add__(self, other):
|
---|
| 294 | # Both types have numerators/denominator attributes,
|
---|
| 295 | # so do the operation directly
|
---|
| 296 | if isinstance(other, (int, long, Fraction)):
|
---|
| 297 | return Fraction(self.numerator * other.denominator +
|
---|
| 298 | other.numerator * self.denominator,
|
---|
| 299 | self.denominator * other.denominator)
|
---|
| 300 | # float and complex don't have those operations, but we
|
---|
| 301 | # know about those types, so special case them.
|
---|
| 302 | elif isinstance(other, float):
|
---|
| 303 | return float(self) + other
|
---|
| 304 | elif isinstance(other, complex):
|
---|
| 305 | return complex(self) + other
|
---|
| 306 | # Let the other type take over.
|
---|
| 307 | return NotImplemented
|
---|
| 308 |
|
---|
| 309 | def __radd__(self, other):
|
---|
| 310 | # radd handles more types than add because there's
|
---|
| 311 | # nothing left to fall back to.
|
---|
| 312 | if isinstance(other, Rational):
|
---|
| 313 | return Fraction(self.numerator * other.denominator +
|
---|
| 314 | other.numerator * self.denominator,
|
---|
| 315 | self.denominator * other.denominator)
|
---|
| 316 | elif isinstance(other, Real):
|
---|
| 317 | return float(other) + float(self)
|
---|
| 318 | elif isinstance(other, Complex):
|
---|
| 319 | return complex(other) + complex(self)
|
---|
| 320 | return NotImplemented
|
---|
| 321 |
|
---|
| 322 |
|
---|
| 323 | There are 5 different cases for a mixed-type addition on
|
---|
| 324 | Fraction. I'll refer to all of the above code that doesn't
|
---|
| 325 | refer to Fraction, float, or complex as "boilerplate". 'r'
|
---|
| 326 | will be an instance of Fraction, which is a subtype of
|
---|
| 327 | Rational (r : Fraction <: Rational), and b : B <:
|
---|
| 328 | Complex. The first three involve 'r + b':
|
---|
| 329 |
|
---|
| 330 | 1. If B <: Fraction, int, float, or complex, we handle
|
---|
| 331 | that specially, and all is well.
|
---|
| 332 | 2. If Fraction falls back to the boilerplate code, and it
|
---|
| 333 | were to return a value from __add__, we'd miss the
|
---|
| 334 | possibility that B defines a more intelligent __radd__,
|
---|
| 335 | so the boilerplate should return NotImplemented from
|
---|
| 336 | __add__. In particular, we don't handle Rational
|
---|
| 337 | here, even though we could get an exact answer, in case
|
---|
| 338 | the other type wants to do something special.
|
---|
| 339 | 3. If B <: Fraction, Python tries B.__radd__ before
|
---|
| 340 | Fraction.__add__. This is ok, because it was
|
---|
| 341 | implemented with knowledge of Fraction, so it can
|
---|
| 342 | handle those instances before delegating to Real or
|
---|
| 343 | Complex.
|
---|
| 344 |
|
---|
| 345 | The next two situations describe 'b + r'. We assume that b
|
---|
| 346 | didn't know about Fraction in its implementation, and that it
|
---|
| 347 | uses similar boilerplate code:
|
---|
| 348 |
|
---|
| 349 | 4. If B <: Rational, then __radd_ converts both to the
|
---|
| 350 | builtin rational type (hey look, that's us) and
|
---|
| 351 | proceeds.
|
---|
| 352 | 5. Otherwise, __radd__ tries to find the nearest common
|
---|
| 353 | base ABC, and fall back to its builtin type. Since this
|
---|
| 354 | class doesn't subclass a concrete type, there's no
|
---|
| 355 | implementation to fall back to, so we need to try as
|
---|
| 356 | hard as possible to return an actual value, or the user
|
---|
| 357 | will get a TypeError.
|
---|
| 358 |
|
---|
| 359 | """
|
---|
| 360 | def forward(a, b):
|
---|
| 361 | if isinstance(b, (int, long, Fraction)):
|
---|
| 362 | return monomorphic_operator(a, b)
|
---|
| 363 | elif isinstance(b, float):
|
---|
| 364 | return fallback_operator(float(a), b)
|
---|
| 365 | elif isinstance(b, complex):
|
---|
| 366 | return fallback_operator(complex(a), b)
|
---|
| 367 | else:
|
---|
| 368 | return NotImplemented
|
---|
| 369 | forward.__name__ = '__' + fallback_operator.__name__ + '__'
|
---|
| 370 | forward.__doc__ = monomorphic_operator.__doc__
|
---|
| 371 |
|
---|
| 372 | def reverse(b, a):
|
---|
| 373 | if isinstance(a, Rational):
|
---|
| 374 | # Includes ints.
|
---|
| 375 | return monomorphic_operator(a, b)
|
---|
| 376 | elif isinstance(a, numbers.Real):
|
---|
| 377 | return fallback_operator(float(a), float(b))
|
---|
| 378 | elif isinstance(a, numbers.Complex):
|
---|
| 379 | return fallback_operator(complex(a), complex(b))
|
---|
| 380 | else:
|
---|
| 381 | return NotImplemented
|
---|
| 382 | reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
|
---|
| 383 | reverse.__doc__ = monomorphic_operator.__doc__
|
---|
| 384 |
|
---|
| 385 | return forward, reverse
|
---|
| 386 |
|
---|
| 387 | def _add(a, b):
|
---|
| 388 | """a + b"""
|
---|
| 389 | return Fraction(a.numerator * b.denominator +
|
---|
| 390 | b.numerator * a.denominator,
|
---|
| 391 | a.denominator * b.denominator)
|
---|
| 392 |
|
---|
| 393 | __add__, __radd__ = _operator_fallbacks(_add, operator.add)
|
---|
| 394 |
|
---|
| 395 | def _sub(a, b):
|
---|
| 396 | """a - b"""
|
---|
| 397 | return Fraction(a.numerator * b.denominator -
|
---|
| 398 | b.numerator * a.denominator,
|
---|
| 399 | a.denominator * b.denominator)
|
---|
| 400 |
|
---|
| 401 | __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
|
---|
| 402 |
|
---|
| 403 | def _mul(a, b):
|
---|
| 404 | """a * b"""
|
---|
| 405 | return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
|
---|
| 406 |
|
---|
| 407 | __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
|
---|
| 408 |
|
---|
| 409 | def _div(a, b):
|
---|
| 410 | """a / b"""
|
---|
| 411 | return Fraction(a.numerator * b.denominator,
|
---|
| 412 | a.denominator * b.numerator)
|
---|
| 413 |
|
---|
| 414 | __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
|
---|
| 415 | __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
|
---|
| 416 |
|
---|
| 417 | def __floordiv__(a, b):
|
---|
| 418 | """a // b"""
|
---|
| 419 | # Will be math.floor(a / b) in 3.0.
|
---|
| 420 | div = a / b
|
---|
| 421 | if isinstance(div, Rational):
|
---|
| 422 | # trunc(math.floor(div)) doesn't work if the rational is
|
---|
| 423 | # more precise than a float because the intermediate
|
---|
| 424 | # rounding may cross an integer boundary.
|
---|
| 425 | return div.numerator // div.denominator
|
---|
| 426 | else:
|
---|
| 427 | return math.floor(div)
|
---|
| 428 |
|
---|
| 429 | def __rfloordiv__(b, a):
|
---|
| 430 | """a // b"""
|
---|
| 431 | # Will be math.floor(a / b) in 3.0.
|
---|
| 432 | div = a / b
|
---|
| 433 | if isinstance(div, Rational):
|
---|
| 434 | # trunc(math.floor(div)) doesn't work if the rational is
|
---|
| 435 | # more precise than a float because the intermediate
|
---|
| 436 | # rounding may cross an integer boundary.
|
---|
| 437 | return div.numerator // div.denominator
|
---|
| 438 | else:
|
---|
| 439 | return math.floor(div)
|
---|
| 440 |
|
---|
| 441 | def __mod__(a, b):
|
---|
| 442 | """a % b"""
|
---|
| 443 | div = a // b
|
---|
| 444 | return a - b * div
|
---|
| 445 |
|
---|
| 446 | def __rmod__(b, a):
|
---|
| 447 | """a % b"""
|
---|
| 448 | div = a // b
|
---|
| 449 | return a - b * div
|
---|
| 450 |
|
---|
| 451 | def __pow__(a, b):
|
---|
| 452 | """a ** b
|
---|
| 453 |
|
---|
| 454 | If b is not an integer, the result will be a float or complex
|
---|
| 455 | since roots are generally irrational. If b is an integer, the
|
---|
| 456 | result will be rational.
|
---|
| 457 |
|
---|
| 458 | """
|
---|
| 459 | if isinstance(b, Rational):
|
---|
| 460 | if b.denominator == 1:
|
---|
| 461 | power = b.numerator
|
---|
| 462 | if power >= 0:
|
---|
| 463 | return Fraction(a._numerator ** power,
|
---|
| 464 | a._denominator ** power)
|
---|
| 465 | else:
|
---|
| 466 | return Fraction(a._denominator ** -power,
|
---|
| 467 | a._numerator ** -power)
|
---|
| 468 | else:
|
---|
| 469 | # A fractional power will generally produce an
|
---|
| 470 | # irrational number.
|
---|
| 471 | return float(a) ** float(b)
|
---|
| 472 | else:
|
---|
| 473 | return float(a) ** b
|
---|
| 474 |
|
---|
| 475 | def __rpow__(b, a):
|
---|
| 476 | """a ** b"""
|
---|
| 477 | if b._denominator == 1 and b._numerator >= 0:
|
---|
| 478 | # If a is an int, keep it that way if possible.
|
---|
| 479 | return a ** b._numerator
|
---|
| 480 |
|
---|
| 481 | if isinstance(a, Rational):
|
---|
| 482 | return Fraction(a.numerator, a.denominator) ** b
|
---|
| 483 |
|
---|
| 484 | if b._denominator == 1:
|
---|
| 485 | return a ** b._numerator
|
---|
| 486 |
|
---|
| 487 | return a ** float(b)
|
---|
| 488 |
|
---|
| 489 | def __pos__(a):
|
---|
| 490 | """+a: Coerces a subclass instance to Fraction"""
|
---|
| 491 | return Fraction(a._numerator, a._denominator)
|
---|
| 492 |
|
---|
| 493 | def __neg__(a):
|
---|
| 494 | """-a"""
|
---|
| 495 | return Fraction(-a._numerator, a._denominator)
|
---|
| 496 |
|
---|
| 497 | def __abs__(a):
|
---|
| 498 | """abs(a)"""
|
---|
| 499 | return Fraction(abs(a._numerator), a._denominator)
|
---|
| 500 |
|
---|
| 501 | def __trunc__(a):
|
---|
| 502 | """trunc(a)"""
|
---|
| 503 | if a._numerator < 0:
|
---|
| 504 | return -(-a._numerator // a._denominator)
|
---|
| 505 | else:
|
---|
| 506 | return a._numerator // a._denominator
|
---|
| 507 |
|
---|
| 508 | def __hash__(self):
|
---|
| 509 | """hash(self)
|
---|
| 510 |
|
---|
| 511 | Tricky because values that are exactly representable as a
|
---|
| 512 | float must have the same hash as that float.
|
---|
| 513 |
|
---|
| 514 | """
|
---|
| 515 | # XXX since this method is expensive, consider caching the result
|
---|
| 516 | if self._denominator == 1:
|
---|
| 517 | # Get integers right.
|
---|
| 518 | return hash(self._numerator)
|
---|
| 519 | # Expensive check, but definitely correct.
|
---|
| 520 | if self == float(self):
|
---|
| 521 | return hash(float(self))
|
---|
| 522 | else:
|
---|
| 523 | # Use tuple's hash to avoid a high collision rate on
|
---|
| 524 | # simple fractions.
|
---|
| 525 | return hash((self._numerator, self._denominator))
|
---|
| 526 |
|
---|
| 527 | def __eq__(a, b):
|
---|
| 528 | """a == b"""
|
---|
| 529 | if isinstance(b, Rational):
|
---|
| 530 | return (a._numerator == b.numerator and
|
---|
| 531 | a._denominator == b.denominator)
|
---|
| 532 | if isinstance(b, numbers.Complex) and b.imag == 0:
|
---|
| 533 | b = b.real
|
---|
| 534 | if isinstance(b, float):
|
---|
[391] | 535 | if math.isnan(b) or math.isinf(b):
|
---|
| 536 | # comparisons with an infinity or nan should behave in
|
---|
| 537 | # the same way for any finite a, so treat a as zero.
|
---|
| 538 | return 0.0 == b
|
---|
| 539 | else:
|
---|
| 540 | return a == a.from_float(b)
|
---|
[2] | 541 | else:
|
---|
[391] | 542 | # Since a doesn't know how to compare with b, let's give b
|
---|
| 543 | # a chance to compare itself with a.
|
---|
| 544 | return NotImplemented
|
---|
[2] | 545 |
|
---|
[391] | 546 | def _richcmp(self, other, op):
|
---|
| 547 | """Helper for comparison operators, for internal use only.
|
---|
[2] | 548 |
|
---|
[391] | 549 | Implement comparison between a Rational instance `self`, and
|
---|
| 550 | either another Rational instance or a float `other`. If
|
---|
| 551 | `other` is not a Rational instance or a float, return
|
---|
| 552 | NotImplemented. `op` should be one of the six standard
|
---|
| 553 | comparison operators.
|
---|
[2] | 554 |
|
---|
| 555 | """
|
---|
[391] | 556 | # convert other to a Rational instance where reasonable.
|
---|
| 557 | if isinstance(other, Rational):
|
---|
| 558 | return op(self._numerator * other.denominator,
|
---|
| 559 | self._denominator * other.numerator)
|
---|
| 560 | # comparisons with complex should raise a TypeError, for consistency
|
---|
| 561 | # with int<->complex, float<->complex, and complex<->complex comparisons.
|
---|
| 562 | if isinstance(other, complex):
|
---|
| 563 | raise TypeError("no ordering relation is defined for complex numbers")
|
---|
| 564 | if isinstance(other, float):
|
---|
| 565 | if math.isnan(other) or math.isinf(other):
|
---|
| 566 | return op(0.0, other)
|
---|
| 567 | else:
|
---|
| 568 | return op(self, self.from_float(other))
|
---|
| 569 | else:
|
---|
[2] | 570 | return NotImplemented
|
---|
| 571 |
|
---|
| 572 | def __lt__(a, b):
|
---|
| 573 | """a < b"""
|
---|
[391] | 574 | return a._richcmp(b, operator.lt)
|
---|
[2] | 575 |
|
---|
| 576 | def __gt__(a, b):
|
---|
| 577 | """a > b"""
|
---|
[391] | 578 | return a._richcmp(b, operator.gt)
|
---|
[2] | 579 |
|
---|
| 580 | def __le__(a, b):
|
---|
| 581 | """a <= b"""
|
---|
[391] | 582 | return a._richcmp(b, operator.le)
|
---|
[2] | 583 |
|
---|
| 584 | def __ge__(a, b):
|
---|
| 585 | """a >= b"""
|
---|
[391] | 586 | return a._richcmp(b, operator.ge)
|
---|
[2] | 587 |
|
---|
| 588 | def __nonzero__(a):
|
---|
| 589 | """a != 0"""
|
---|
| 590 | return a._numerator != 0
|
---|
| 591 |
|
---|
| 592 | # support for pickling, copy, and deepcopy
|
---|
| 593 |
|
---|
| 594 | def __reduce__(self):
|
---|
| 595 | return (self.__class__, (str(self),))
|
---|
| 596 |
|
---|
| 597 | def __copy__(self):
|
---|
| 598 | if type(self) == Fraction:
|
---|
| 599 | return self # I'm immutable; therefore I am my own clone
|
---|
| 600 | return self.__class__(self._numerator, self._denominator)
|
---|
| 601 |
|
---|
| 602 | def __deepcopy__(self, memo):
|
---|
| 603 | if type(self) == Fraction:
|
---|
| 604 | return self # My components are also immutable
|
---|
| 605 | return self.__class__(self._numerator, self._denominator)
|
---|