[2] | 1 | """Bisection algorithms."""
|
---|
| 2 |
|
---|
| 3 | def insort_right(a, x, lo=0, hi=None):
|
---|
| 4 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
| 5 |
|
---|
| 6 | If x is already in a, insert it to the right of the rightmost x.
|
---|
| 7 |
|
---|
| 8 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
| 9 | slice of a to be searched.
|
---|
| 10 | """
|
---|
| 11 |
|
---|
| 12 | if lo < 0:
|
---|
| 13 | raise ValueError('lo must be non-negative')
|
---|
| 14 | if hi is None:
|
---|
| 15 | hi = len(a)
|
---|
| 16 | while lo < hi:
|
---|
| 17 | mid = (lo+hi)//2
|
---|
| 18 | if x < a[mid]: hi = mid
|
---|
| 19 | else: lo = mid+1
|
---|
| 20 | a.insert(lo, x)
|
---|
| 21 |
|
---|
| 22 | insort = insort_right # backward compatibility
|
---|
| 23 |
|
---|
| 24 | def bisect_right(a, x, lo=0, hi=None):
|
---|
| 25 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
| 26 |
|
---|
| 27 | The return value i is such that all e in a[:i] have e <= x, and all e in
|
---|
| 28 | a[i:] have e > x. So if x already appears in the list, a.insert(x) will
|
---|
| 29 | insert just after the rightmost x already there.
|
---|
| 30 |
|
---|
| 31 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
| 32 | slice of a to be searched.
|
---|
| 33 | """
|
---|
| 34 |
|
---|
| 35 | if lo < 0:
|
---|
| 36 | raise ValueError('lo must be non-negative')
|
---|
| 37 | if hi is None:
|
---|
| 38 | hi = len(a)
|
---|
| 39 | while lo < hi:
|
---|
| 40 | mid = (lo+hi)//2
|
---|
| 41 | if x < a[mid]: hi = mid
|
---|
| 42 | else: lo = mid+1
|
---|
| 43 | return lo
|
---|
| 44 |
|
---|
| 45 | bisect = bisect_right # backward compatibility
|
---|
| 46 |
|
---|
| 47 | def insort_left(a, x, lo=0, hi=None):
|
---|
| 48 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
| 49 |
|
---|
| 50 | If x is already in a, insert it to the left of the leftmost x.
|
---|
| 51 |
|
---|
| 52 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
| 53 | slice of a to be searched.
|
---|
| 54 | """
|
---|
| 55 |
|
---|
| 56 | if lo < 0:
|
---|
| 57 | raise ValueError('lo must be non-negative')
|
---|
| 58 | if hi is None:
|
---|
| 59 | hi = len(a)
|
---|
| 60 | while lo < hi:
|
---|
| 61 | mid = (lo+hi)//2
|
---|
| 62 | if a[mid] < x: lo = mid+1
|
---|
| 63 | else: hi = mid
|
---|
| 64 | a.insert(lo, x)
|
---|
| 65 |
|
---|
| 66 |
|
---|
| 67 | def bisect_left(a, x, lo=0, hi=None):
|
---|
| 68 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
| 69 |
|
---|
| 70 | The return value i is such that all e in a[:i] have e < x, and all e in
|
---|
| 71 | a[i:] have e >= x. So if x already appears in the list, a.insert(x) will
|
---|
| 72 | insert just before the leftmost x already there.
|
---|
| 73 |
|
---|
| 74 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
| 75 | slice of a to be searched.
|
---|
| 76 | """
|
---|
| 77 |
|
---|
| 78 | if lo < 0:
|
---|
| 79 | raise ValueError('lo must be non-negative')
|
---|
| 80 | if hi is None:
|
---|
| 81 | hi = len(a)
|
---|
| 82 | while lo < hi:
|
---|
| 83 | mid = (lo+hi)//2
|
---|
| 84 | if a[mid] < x: lo = mid+1
|
---|
| 85 | else: hi = mid
|
---|
| 86 | return lo
|
---|
| 87 |
|
---|
| 88 | # Overwrite above definitions with a fast C implementation
|
---|
| 89 | try:
|
---|
[391] | 90 | from _bisect import *
|
---|
[2] | 91 | except ImportError:
|
---|
| 92 | pass
|
---|