[2] | 1 | /* The PyObject_ memory family: high-level object memory interfaces.
|
---|
| 2 | See pymem.h for the low-level PyMem_ family.
|
---|
| 3 | */
|
---|
| 4 |
|
---|
| 5 | #ifndef Py_OBJIMPL_H
|
---|
| 6 | #define Py_OBJIMPL_H
|
---|
| 7 |
|
---|
| 8 | #include "pymem.h"
|
---|
| 9 |
|
---|
| 10 | #ifdef __cplusplus
|
---|
| 11 | extern "C" {
|
---|
| 12 | #endif
|
---|
| 13 |
|
---|
| 14 | /* BEWARE:
|
---|
| 15 |
|
---|
| 16 | Each interface exports both functions and macros. Extension modules should
|
---|
| 17 | use the functions, to ensure binary compatibility across Python versions.
|
---|
| 18 | Because the Python implementation is free to change internal details, and
|
---|
| 19 | the macros may (or may not) expose details for speed, if you do use the
|
---|
| 20 | macros you must recompile your extensions with each Python release.
|
---|
| 21 |
|
---|
| 22 | Never mix calls to PyObject_ memory functions with calls to the platform
|
---|
| 23 | malloc/realloc/ calloc/free, or with calls to PyMem_.
|
---|
| 24 | */
|
---|
| 25 |
|
---|
| 26 | /*
|
---|
| 27 | Functions and macros for modules that implement new object types.
|
---|
| 28 |
|
---|
| 29 | - PyObject_New(type, typeobj) allocates memory for a new object of the given
|
---|
| 30 | type, and initializes part of it. 'type' must be the C structure type used
|
---|
| 31 | to represent the object, and 'typeobj' the address of the corresponding
|
---|
| 32 | type object. Reference count and type pointer are filled in; the rest of
|
---|
| 33 | the bytes of the object are *undefined*! The resulting expression type is
|
---|
| 34 | 'type *'. The size of the object is determined by the tp_basicsize field
|
---|
| 35 | of the type object.
|
---|
| 36 |
|
---|
| 37 | - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
|
---|
| 38 | object with room for n items. In addition to the refcount and type pointer
|
---|
| 39 | fields, this also fills in the ob_size field.
|
---|
| 40 |
|
---|
| 41 | - PyObject_Del(op) releases the memory allocated for an object. It does not
|
---|
| 42 | run a destructor -- it only frees the memory. PyObject_Free is identical.
|
---|
| 43 |
|
---|
| 44 | - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
|
---|
| 45 | allocate memory. Instead of a 'type' parameter, they take a pointer to a
|
---|
| 46 | new object (allocated by an arbitrary allocator), and initialize its object
|
---|
| 47 | header fields.
|
---|
| 48 |
|
---|
| 49 | Note that objects created with PyObject_{New, NewVar} are allocated using the
|
---|
| 50 | specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
|
---|
| 51 | enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG
|
---|
| 52 | is also #defined.
|
---|
| 53 |
|
---|
| 54 | In case a specific form of memory management is needed (for example, if you
|
---|
| 55 | must use the platform malloc heap(s), or shared memory, or C++ local storage or
|
---|
| 56 | operator new), you must first allocate the object with your custom allocator,
|
---|
| 57 | then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
|
---|
| 58 | specific fields: reference count, type pointer, possibly others. You should
|
---|
| 59 | be aware that Python no control over these objects because they don't
|
---|
| 60 | cooperate with the Python memory manager. Such objects may not be eligible
|
---|
| 61 | for automatic garbage collection and you have to make sure that they are
|
---|
| 62 | released accordingly whenever their destructor gets called (cf. the specific
|
---|
| 63 | form of memory management you're using).
|
---|
| 64 |
|
---|
| 65 | Unless you have specific memory management requirements, use
|
---|
| 66 | PyObject_{New, NewVar, Del}.
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | /*
|
---|
| 70 | * Raw object memory interface
|
---|
| 71 | * ===========================
|
---|
| 72 | */
|
---|
| 73 |
|
---|
| 74 | /* Functions to call the same malloc/realloc/free as used by Python's
|
---|
| 75 | object allocator. If WITH_PYMALLOC is enabled, these may differ from
|
---|
| 76 | the platform malloc/realloc/free. The Python object allocator is
|
---|
| 77 | designed for fast, cache-conscious allocation of many "small" objects,
|
---|
| 78 | and with low hidden memory overhead.
|
---|
| 79 |
|
---|
| 80 | PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
|
---|
| 81 |
|
---|
| 82 | PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
|
---|
| 83 | PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
|
---|
| 84 | at p.
|
---|
| 85 |
|
---|
| 86 | Returned pointers must be checked for NULL explicitly; no action is
|
---|
| 87 | performed on failure other than to return NULL (no warning it printed, no
|
---|
| 88 | exception is set, etc).
|
---|
| 89 |
|
---|
| 90 | For allocating objects, use PyObject_{New, NewVar} instead whenever
|
---|
| 91 | possible. The PyObject_{Malloc, Realloc, Free} family is exposed
|
---|
| 92 | so that you can exploit Python's small-block allocator for non-object
|
---|
| 93 | uses. If you must use these routines to allocate object memory, make sure
|
---|
| 94 | the object gets initialized via PyObject_{Init, InitVar} after obtaining
|
---|
| 95 | the raw memory.
|
---|
| 96 | */
|
---|
| 97 | PyAPI_FUNC(void *) PyObject_Malloc(size_t);
|
---|
| 98 | PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
|
---|
| 99 | PyAPI_FUNC(void) PyObject_Free(void *);
|
---|
| 100 |
|
---|
| 101 |
|
---|
| 102 | /* Macros */
|
---|
| 103 | #ifdef WITH_PYMALLOC
|
---|
[391] | 104 | #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */
|
---|
[2] | 105 | PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
|
---|
| 106 | PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
|
---|
| 107 | PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
|
---|
| 108 | PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
|
---|
| 109 | PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
|
---|
| 110 | PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
|
---|
[391] | 111 | PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
|
---|
| 112 | PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
|
---|
| 113 | PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
|
---|
| 114 | PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
|
---|
| 115 | PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
|
---|
| 116 | PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
|
---|
| 117 | PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
|
---|
| 118 | #define PyObject_MALLOC _PyObject_DebugMalloc
|
---|
| 119 | #define PyObject_Malloc _PyObject_DebugMalloc
|
---|
| 120 | #define PyObject_REALLOC _PyObject_DebugRealloc
|
---|
| 121 | #define PyObject_Realloc _PyObject_DebugRealloc
|
---|
| 122 | #define PyObject_FREE _PyObject_DebugFree
|
---|
| 123 | #define PyObject_Free _PyObject_DebugFree
|
---|
[2] | 124 |
|
---|
[391] | 125 | #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
|
---|
| 126 | #define PyObject_MALLOC PyObject_Malloc
|
---|
| 127 | #define PyObject_REALLOC PyObject_Realloc
|
---|
| 128 | #define PyObject_FREE PyObject_Free
|
---|
[2] | 129 | #endif
|
---|
| 130 |
|
---|
[391] | 131 | #else /* ! WITH_PYMALLOC */
|
---|
| 132 | #define PyObject_MALLOC PyMem_MALLOC
|
---|
| 133 | #define PyObject_REALLOC PyMem_REALLOC
|
---|
| 134 | #define PyObject_FREE PyMem_FREE
|
---|
[2] | 135 |
|
---|
[391] | 136 | #endif /* WITH_PYMALLOC */
|
---|
[2] | 137 |
|
---|
[391] | 138 | #define PyObject_Del PyObject_Free
|
---|
| 139 | #define PyObject_DEL PyObject_FREE
|
---|
[2] | 140 |
|
---|
| 141 | /* for source compatibility with 2.2 */
|
---|
[391] | 142 | #define _PyObject_Del PyObject_Free
|
---|
[2] | 143 |
|
---|
| 144 | /*
|
---|
| 145 | * Generic object allocator interface
|
---|
| 146 | * ==================================
|
---|
| 147 | */
|
---|
| 148 |
|
---|
| 149 | /* Functions */
|
---|
| 150 | PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
|
---|
| 151 | PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
|
---|
| 152 | PyTypeObject *, Py_ssize_t);
|
---|
| 153 | PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
|
---|
| 154 | PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
|
---|
| 155 |
|
---|
| 156 | #define PyObject_New(type, typeobj) \
|
---|
[391] | 157 | ( (type *) _PyObject_New(typeobj) )
|
---|
[2] | 158 | #define PyObject_NewVar(type, typeobj, n) \
|
---|
[391] | 159 | ( (type *) _PyObject_NewVar((typeobj), (n)) )
|
---|
[2] | 160 |
|
---|
| 161 | /* Macros trading binary compatibility for speed. See also pymem.h.
|
---|
| 162 | Note that these macros expect non-NULL object pointers.*/
|
---|
| 163 | #define PyObject_INIT(op, typeobj) \
|
---|
[391] | 164 | ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
|
---|
[2] | 165 | #define PyObject_INIT_VAR(op, typeobj, size) \
|
---|
[391] | 166 | ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
|
---|
[2] | 167 |
|
---|
| 168 | #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
|
---|
| 169 |
|
---|
| 170 | /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
|
---|
| 171 | vrbl-size object with nitems items, exclusive of gc overhead (if any). The
|
---|
| 172 | value is rounded up to the closest multiple of sizeof(void *), in order to
|
---|
| 173 | ensure that pointer fields at the end of the object are correctly aligned
|
---|
| 174 | for the platform (this is of special importance for subclasses of, e.g.,
|
---|
| 175 | str or long, so that pointers can be stored after the embedded data).
|
---|
| 176 |
|
---|
| 177 | Note that there's no memory wastage in doing this, as malloc has to
|
---|
| 178 | return (at worst) pointer-aligned memory anyway.
|
---|
| 179 | */
|
---|
| 180 | #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
|
---|
| 181 | # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
|
---|
| 182 | #endif
|
---|
| 183 |
|
---|
[391] | 184 | #define _PyObject_VAR_SIZE(typeobj, nitems) \
|
---|
| 185 | (size_t) \
|
---|
| 186 | ( ( (typeobj)->tp_basicsize + \
|
---|
| 187 | (nitems)*(typeobj)->tp_itemsize + \
|
---|
| 188 | (SIZEOF_VOID_P - 1) \
|
---|
| 189 | ) & ~(SIZEOF_VOID_P - 1) \
|
---|
| 190 | )
|
---|
[2] | 191 |
|
---|
| 192 | #define PyObject_NEW(type, typeobj) \
|
---|
| 193 | ( (type *) PyObject_Init( \
|
---|
[391] | 194 | (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
|
---|
[2] | 195 |
|
---|
| 196 | #define PyObject_NEW_VAR(type, typeobj, n) \
|
---|
| 197 | ( (type *) PyObject_InitVar( \
|
---|
| 198 | (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
|
---|
| 199 | (typeobj), (n)) )
|
---|
| 200 |
|
---|
| 201 | /* This example code implements an object constructor with a custom
|
---|
| 202 | allocator, where PyObject_New is inlined, and shows the important
|
---|
| 203 | distinction between two steps (at least):
|
---|
| 204 | 1) the actual allocation of the object storage;
|
---|
| 205 | 2) the initialization of the Python specific fields
|
---|
[391] | 206 | in this storage with PyObject_{Init, InitVar}.
|
---|
[2] | 207 |
|
---|
| 208 | PyObject *
|
---|
| 209 | YourObject_New(...)
|
---|
| 210 | {
|
---|
| 211 | PyObject *op;
|
---|
| 212 |
|
---|
| 213 | op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
|
---|
| 214 | if (op == NULL)
|
---|
[391] | 215 | return PyErr_NoMemory();
|
---|
[2] | 216 |
|
---|
| 217 | PyObject_Init(op, &YourTypeStruct);
|
---|
| 218 |
|
---|
| 219 | op->ob_field = value;
|
---|
| 220 | ...
|
---|
| 221 | return op;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | Note that in C++, the use of the new operator usually implies that
|
---|
| 225 | the 1st step is performed automatically for you, so in a C++ class
|
---|
| 226 | constructor you would start directly with PyObject_Init/InitVar
|
---|
| 227 | */
|
---|
| 228 |
|
---|
| 229 | /*
|
---|
| 230 | * Garbage Collection Support
|
---|
| 231 | * ==========================
|
---|
| 232 | */
|
---|
| 233 |
|
---|
| 234 | /* C equivalent of gc.collect(). */
|
---|
| 235 | PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
|
---|
| 236 |
|
---|
| 237 | /* Test if a type has a GC head */
|
---|
| 238 | #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
|
---|
| 239 |
|
---|
| 240 | /* Test if an object has a GC head */
|
---|
| 241 | #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
|
---|
[391] | 242 | (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
|
---|
[2] | 243 |
|
---|
| 244 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
|
---|
| 245 | #define PyObject_GC_Resize(type, op, n) \
|
---|
[391] | 246 | ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
|
---|
[2] | 247 |
|
---|
| 248 | /* for source compatibility with 2.2 */
|
---|
| 249 | #define _PyObject_GC_Del PyObject_GC_Del
|
---|
| 250 |
|
---|
| 251 | /* GC information is stored BEFORE the object structure. */
|
---|
| 252 | typedef union _gc_head {
|
---|
[391] | 253 | struct {
|
---|
| 254 | union _gc_head *gc_next;
|
---|
| 255 | union _gc_head *gc_prev;
|
---|
| 256 | Py_ssize_t gc_refs;
|
---|
| 257 | } gc;
|
---|
| 258 | long double dummy; /* force worst-case alignment */
|
---|
[2] | 259 | } PyGC_Head;
|
---|
| 260 |
|
---|
| 261 | extern PyGC_Head *_PyGC_generation0;
|
---|
| 262 |
|
---|
| 263 | #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
|
---|
| 264 |
|
---|
[391] | 265 | #define _PyGC_REFS_UNTRACKED (-2)
|
---|
| 266 | #define _PyGC_REFS_REACHABLE (-3)
|
---|
| 267 | #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4)
|
---|
[2] | 268 |
|
---|
| 269 | /* Tell the GC to track this object. NB: While the object is tracked the
|
---|
| 270 | * collector it must be safe to call the ob_traverse method. */
|
---|
| 271 | #define _PyObject_GC_TRACK(o) do { \
|
---|
[391] | 272 | PyGC_Head *g = _Py_AS_GC(o); \
|
---|
| 273 | if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
|
---|
| 274 | Py_FatalError("GC object already tracked"); \
|
---|
| 275 | g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
|
---|
| 276 | g->gc.gc_next = _PyGC_generation0; \
|
---|
| 277 | g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
|
---|
| 278 | g->gc.gc_prev->gc.gc_next = g; \
|
---|
| 279 | _PyGC_generation0->gc.gc_prev = g; \
|
---|
[2] | 280 | } while (0);
|
---|
| 281 |
|
---|
| 282 | /* Tell the GC to stop tracking this object.
|
---|
| 283 | * gc_next doesn't need to be set to NULL, but doing so is a good
|
---|
| 284 | * way to provoke memory errors if calling code is confused.
|
---|
| 285 | */
|
---|
| 286 | #define _PyObject_GC_UNTRACK(o) do { \
|
---|
[391] | 287 | PyGC_Head *g = _Py_AS_GC(o); \
|
---|
| 288 | assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
|
---|
| 289 | g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
|
---|
| 290 | g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
|
---|
| 291 | g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
|
---|
| 292 | g->gc.gc_next = NULL; \
|
---|
[2] | 293 | } while (0);
|
---|
| 294 |
|
---|
[391] | 295 | /* True if the object is currently tracked by the GC. */
|
---|
| 296 | #define _PyObject_GC_IS_TRACKED(o) \
|
---|
| 297 | ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
|
---|
| 298 |
|
---|
| 299 | /* True if the object may be tracked by the GC in the future, or already is.
|
---|
| 300 | This can be useful to implement some optimizations. */
|
---|
| 301 | #define _PyObject_GC_MAY_BE_TRACKED(obj) \
|
---|
| 302 | (PyObject_IS_GC(obj) && \
|
---|
| 303 | (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
|
---|
| 304 |
|
---|
| 305 |
|
---|
[2] | 306 | PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
|
---|
| 307 | PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
|
---|
| 308 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
|
---|
| 309 | PyAPI_FUNC(void) PyObject_GC_Track(void *);
|
---|
| 310 | PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
|
---|
| 311 | PyAPI_FUNC(void) PyObject_GC_Del(void *);
|
---|
| 312 |
|
---|
| 313 | #define PyObject_GC_New(type, typeobj) \
|
---|
[391] | 314 | ( (type *) _PyObject_GC_New(typeobj) )
|
---|
[2] | 315 | #define PyObject_GC_NewVar(type, typeobj, n) \
|
---|
[391] | 316 | ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
|
---|
[2] | 317 |
|
---|
| 318 |
|
---|
| 319 | /* Utility macro to help write tp_traverse functions.
|
---|
| 320 | * To use this macro, the tp_traverse function must name its arguments
|
---|
| 321 | * "visit" and "arg". This is intended to keep tp_traverse functions
|
---|
| 322 | * looking as much alike as possible.
|
---|
| 323 | */
|
---|
[391] | 324 | #define Py_VISIT(op) \
|
---|
| 325 | do { \
|
---|
| 326 | if (op) { \
|
---|
| 327 | int vret = visit((PyObject *)(op), arg); \
|
---|
| 328 | if (vret) \
|
---|
| 329 | return vret; \
|
---|
| 330 | } \
|
---|
| 331 | } while (0)
|
---|
[2] | 332 |
|
---|
| 333 | /* This is here for the sake of backwards compatibility. Extensions that
|
---|
| 334 | * use the old GC API will still compile but the objects will not be
|
---|
| 335 | * tracked by the GC. */
|
---|
| 336 | #define PyGC_HEAD_SIZE 0
|
---|
| 337 | #define PyObject_GC_Init(op)
|
---|
| 338 | #define PyObject_GC_Fini(op)
|
---|
| 339 | #define PyObject_AS_GC(op) (op)
|
---|
| 340 | #define PyObject_FROM_GC(op) (op)
|
---|
| 341 |
|
---|
| 342 |
|
---|
| 343 | /* Test if a type supports weak references */
|
---|
| 344 | #define PyType_SUPPORTS_WEAKREFS(t) \
|
---|
[391] | 345 | (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
|
---|
| 346 | && ((t)->tp_weaklistoffset > 0))
|
---|
[2] | 347 |
|
---|
| 348 | #define PyObject_GET_WEAKREFS_LISTPTR(o) \
|
---|
[391] | 349 | ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
|
---|
[2] | 350 |
|
---|
| 351 | #ifdef __cplusplus
|
---|
| 352 | }
|
---|
| 353 | #endif
|
---|
| 354 | #endif /* !Py_OBJIMPL_H */
|
---|