[2] | 1 | :mod:`random` --- Generate pseudo-random numbers
|
---|
| 2 | ================================================
|
---|
| 3 |
|
---|
| 4 | .. module:: random
|
---|
| 5 | :synopsis: Generate pseudo-random numbers with various common distributions.
|
---|
| 6 |
|
---|
[391] | 7 | **Source code:** :source:`Lib/random.py`
|
---|
[2] | 8 |
|
---|
[391] | 9 | --------------
|
---|
| 10 |
|
---|
[2] | 11 | This module implements pseudo-random number generators for various
|
---|
| 12 | distributions.
|
---|
| 13 |
|
---|
| 14 | For integers, uniform selection from a range. For sequences, uniform selection
|
---|
| 15 | of a random element, a function to generate a random permutation of a list
|
---|
| 16 | in-place, and a function for random sampling without replacement.
|
---|
| 17 |
|
---|
| 18 | On the real line, there are functions to compute uniform, normal (Gaussian),
|
---|
| 19 | lognormal, negative exponential, gamma, and beta distributions. For generating
|
---|
| 20 | distributions of angles, the von Mises distribution is available.
|
---|
| 21 |
|
---|
| 22 | Almost all module functions depend on the basic function :func:`random`, which
|
---|
| 23 | generates a random float uniformly in the semi-open range [0.0, 1.0). Python
|
---|
| 24 | uses the Mersenne Twister as the core generator. It produces 53-bit precision
|
---|
| 25 | floats and has a period of 2\*\*19937-1. The underlying implementation in C is
|
---|
| 26 | both fast and threadsafe. The Mersenne Twister is one of the most extensively
|
---|
| 27 | tested random number generators in existence. However, being completely
|
---|
| 28 | deterministic, it is not suitable for all purposes, and is completely unsuitable
|
---|
| 29 | for cryptographic purposes.
|
---|
| 30 |
|
---|
| 31 | The functions supplied by this module are actually bound methods of a hidden
|
---|
| 32 | instance of the :class:`random.Random` class. You can instantiate your own
|
---|
| 33 | instances of :class:`Random` to get generators that don't share state. This is
|
---|
| 34 | especially useful for multi-threaded programs, creating a different instance of
|
---|
| 35 | :class:`Random` for each thread, and using the :meth:`jumpahead` method to make
|
---|
| 36 | it likely that the generated sequences seen by each thread don't overlap.
|
---|
| 37 |
|
---|
| 38 | Class :class:`Random` can also be subclassed if you want to use a different
|
---|
| 39 | basic generator of your own devising: in that case, override the :meth:`random`,
|
---|
| 40 | :meth:`seed`, :meth:`getstate`, :meth:`setstate` and :meth:`jumpahead` methods.
|
---|
| 41 | Optionally, a new generator can supply a :meth:`getrandbits` method --- this
|
---|
| 42 | allows :meth:`randrange` to produce selections over an arbitrarily large range.
|
---|
| 43 |
|
---|
| 44 | .. versionadded:: 2.4
|
---|
| 45 | the :meth:`getrandbits` method.
|
---|
| 46 |
|
---|
| 47 | As an example of subclassing, the :mod:`random` module provides the
|
---|
| 48 | :class:`WichmannHill` class that implements an alternative generator in pure
|
---|
| 49 | Python. The class provides a backward compatible way to reproduce results from
|
---|
| 50 | earlier versions of Python, which used the Wichmann-Hill algorithm as the core
|
---|
| 51 | generator. Note that this Wichmann-Hill generator can no longer be recommended:
|
---|
| 52 | its period is too short by contemporary standards, and the sequence generated is
|
---|
| 53 | known to fail some stringent randomness tests. See the references below for a
|
---|
| 54 | recent variant that repairs these flaws.
|
---|
| 55 |
|
---|
| 56 | .. versionchanged:: 2.3
|
---|
[391] | 57 | MersenneTwister replaced Wichmann-Hill as the default generator.
|
---|
[2] | 58 |
|
---|
[391] | 59 | The :mod:`random` module also provides the :class:`SystemRandom` class which
|
---|
| 60 | uses the system function :func:`os.urandom` to generate random numbers
|
---|
| 61 | from sources provided by the operating system.
|
---|
| 62 |
|
---|
| 63 | .. warning::
|
---|
| 64 |
|
---|
| 65 | The pseudo-random generators of this module should not be used for
|
---|
| 66 | security purposes. Use :func:`os.urandom` or :class:`SystemRandom` if
|
---|
| 67 | you require a cryptographically secure pseudo-random number generator.
|
---|
| 68 |
|
---|
| 69 |
|
---|
[2] | 70 | Bookkeeping functions:
|
---|
| 71 |
|
---|
| 72 |
|
---|
| 73 | .. function:: seed([x])
|
---|
| 74 |
|
---|
| 75 | Initialize the basic random number generator. Optional argument *x* can be any
|
---|
| 76 | :term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
|
---|
| 77 | current system time is also used to initialize the generator when the module is
|
---|
| 78 | first imported. If randomness sources are provided by the operating system,
|
---|
| 79 | they are used instead of the system time (see the :func:`os.urandom` function
|
---|
| 80 | for details on availability).
|
---|
| 81 |
|
---|
| 82 | .. versionchanged:: 2.4
|
---|
| 83 | formerly, operating system resources were not used.
|
---|
| 84 |
|
---|
| 85 | .. function:: getstate()
|
---|
| 86 |
|
---|
| 87 | Return an object capturing the current internal state of the generator. This
|
---|
| 88 | object can be passed to :func:`setstate` to restore the state.
|
---|
| 89 |
|
---|
| 90 | .. versionadded:: 2.1
|
---|
| 91 |
|
---|
| 92 | .. versionchanged:: 2.6
|
---|
| 93 | State values produced in Python 2.6 cannot be loaded into earlier versions.
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 | .. function:: setstate(state)
|
---|
| 97 |
|
---|
| 98 | *state* should have been obtained from a previous call to :func:`getstate`, and
|
---|
| 99 | :func:`setstate` restores the internal state of the generator to what it was at
|
---|
[391] | 100 | the time :func:`getstate` was called.
|
---|
[2] | 101 |
|
---|
| 102 | .. versionadded:: 2.1
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | .. function:: jumpahead(n)
|
---|
| 106 |
|
---|
| 107 | Change the internal state to one different from and likely far away from the
|
---|
| 108 | current state. *n* is a non-negative integer which is used to scramble the
|
---|
| 109 | current state vector. This is most useful in multi-threaded programs, in
|
---|
| 110 | conjunction with multiple instances of the :class:`Random` class:
|
---|
| 111 | :meth:`setstate` or :meth:`seed` can be used to force all instances into the
|
---|
| 112 | same internal state, and then :meth:`jumpahead` can be used to force the
|
---|
| 113 | instances' states far apart.
|
---|
| 114 |
|
---|
| 115 | .. versionadded:: 2.1
|
---|
| 116 |
|
---|
| 117 | .. versionchanged:: 2.3
|
---|
| 118 | Instead of jumping to a specific state, *n* steps ahead, ``jumpahead(n)``
|
---|
| 119 | jumps to another state likely to be separated by many steps.
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | .. function:: getrandbits(k)
|
---|
| 123 |
|
---|
| 124 | Returns a python :class:`long` int with *k* random bits. This method is supplied
|
---|
| 125 | with the MersenneTwister generator and some other generators may also provide it
|
---|
| 126 | as an optional part of the API. When available, :meth:`getrandbits` enables
|
---|
| 127 | :meth:`randrange` to handle arbitrarily large ranges.
|
---|
| 128 |
|
---|
| 129 | .. versionadded:: 2.4
|
---|
| 130 |
|
---|
| 131 | Functions for integers:
|
---|
| 132 |
|
---|
| 133 |
|
---|
[391] | 134 | .. function:: randrange(stop)
|
---|
| 135 | randrange(start, stop[, step])
|
---|
[2] | 136 |
|
---|
| 137 | Return a randomly selected element from ``range(start, stop, step)``. This is
|
---|
| 138 | equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
|
---|
| 139 | range object.
|
---|
| 140 |
|
---|
| 141 | .. versionadded:: 1.5.2
|
---|
| 142 |
|
---|
| 143 |
|
---|
| 144 | .. function:: randint(a, b)
|
---|
| 145 |
|
---|
| 146 | Return a random integer *N* such that ``a <= N <= b``.
|
---|
| 147 |
|
---|
| 148 | Functions for sequences:
|
---|
| 149 |
|
---|
| 150 |
|
---|
| 151 | .. function:: choice(seq)
|
---|
| 152 |
|
---|
| 153 | Return a random element from the non-empty sequence *seq*. If *seq* is empty,
|
---|
| 154 | raises :exc:`IndexError`.
|
---|
| 155 |
|
---|
| 156 |
|
---|
| 157 | .. function:: shuffle(x[, random])
|
---|
| 158 |
|
---|
| 159 | Shuffle the sequence *x* in place. The optional argument *random* is a
|
---|
| 160 | 0-argument function returning a random float in [0.0, 1.0); by default, this is
|
---|
| 161 | the function :func:`random`.
|
---|
| 162 |
|
---|
| 163 | Note that for even rather small ``len(x)``, the total number of permutations of
|
---|
| 164 | *x* is larger than the period of most random number generators; this implies
|
---|
| 165 | that most permutations of a long sequence can never be generated.
|
---|
| 166 |
|
---|
| 167 |
|
---|
| 168 | .. function:: sample(population, k)
|
---|
| 169 |
|
---|
| 170 | Return a *k* length list of unique elements chosen from the population sequence.
|
---|
| 171 | Used for random sampling without replacement.
|
---|
| 172 |
|
---|
| 173 | .. versionadded:: 2.3
|
---|
| 174 |
|
---|
| 175 | Returns a new list containing elements from the population while leaving the
|
---|
| 176 | original population unchanged. The resulting list is in selection order so that
|
---|
| 177 | all sub-slices will also be valid random samples. This allows raffle winners
|
---|
| 178 | (the sample) to be partitioned into grand prize and second place winners (the
|
---|
| 179 | subslices).
|
---|
| 180 |
|
---|
| 181 | Members of the population need not be :term:`hashable` or unique. If the population
|
---|
| 182 | contains repeats, then each occurrence is a possible selection in the sample.
|
---|
| 183 |
|
---|
| 184 | To choose a sample from a range of integers, use an :func:`xrange` object as an
|
---|
| 185 | argument. This is especially fast and space efficient for sampling from a large
|
---|
| 186 | population: ``sample(xrange(10000000), 60)``.
|
---|
| 187 |
|
---|
| 188 | The following functions generate specific real-valued distributions. Function
|
---|
| 189 | parameters are named after the corresponding variables in the distribution's
|
---|
| 190 | equation, as used in common mathematical practice; most of these equations can
|
---|
| 191 | be found in any statistics text.
|
---|
| 192 |
|
---|
| 193 |
|
---|
| 194 | .. function:: random()
|
---|
| 195 |
|
---|
| 196 | Return the next random floating point number in the range [0.0, 1.0).
|
---|
| 197 |
|
---|
| 198 |
|
---|
| 199 | .. function:: uniform(a, b)
|
---|
| 200 |
|
---|
| 201 | Return a random floating point number *N* such that ``a <= N <= b`` for
|
---|
| 202 | ``a <= b`` and ``b <= N <= a`` for ``b < a``.
|
---|
| 203 |
|
---|
| 204 | The end-point value ``b`` may or may not be included in the range
|
---|
| 205 | depending on floating-point rounding in the equation ``a + (b-a) * random()``.
|
---|
| 206 |
|
---|
[391] | 207 |
|
---|
[2] | 208 | .. function:: triangular(low, high, mode)
|
---|
| 209 |
|
---|
| 210 | Return a random floating point number *N* such that ``low <= N <= high`` and
|
---|
| 211 | with the specified *mode* between those bounds. The *low* and *high* bounds
|
---|
| 212 | default to zero and one. The *mode* argument defaults to the midpoint
|
---|
| 213 | between the bounds, giving a symmetric distribution.
|
---|
| 214 |
|
---|
| 215 | .. versionadded:: 2.6
|
---|
| 216 |
|
---|
| 217 |
|
---|
| 218 | .. function:: betavariate(alpha, beta)
|
---|
| 219 |
|
---|
| 220 | Beta distribution. Conditions on the parameters are ``alpha > 0`` and
|
---|
| 221 | ``beta > 0``. Returned values range between 0 and 1.
|
---|
| 222 |
|
---|
| 223 |
|
---|
| 224 | .. function:: expovariate(lambd)
|
---|
| 225 |
|
---|
| 226 | Exponential distribution. *lambd* is 1.0 divided by the desired
|
---|
| 227 | mean. It should be nonzero. (The parameter would be called
|
---|
| 228 | "lambda", but that is a reserved word in Python.) Returned values
|
---|
| 229 | range from 0 to positive infinity if *lambd* is positive, and from
|
---|
| 230 | negative infinity to 0 if *lambd* is negative.
|
---|
| 231 |
|
---|
| 232 |
|
---|
| 233 | .. function:: gammavariate(alpha, beta)
|
---|
| 234 |
|
---|
| 235 | Gamma distribution. (*Not* the gamma function!) Conditions on the
|
---|
| 236 | parameters are ``alpha > 0`` and ``beta > 0``.
|
---|
| 237 |
|
---|
[391] | 238 | The probability distribution function is::
|
---|
[2] | 239 |
|
---|
[391] | 240 | x ** (alpha - 1) * math.exp(-x / beta)
|
---|
| 241 | pdf(x) = --------------------------------------
|
---|
| 242 | math.gamma(alpha) * beta ** alpha
|
---|
| 243 |
|
---|
| 244 |
|
---|
[2] | 245 | .. function:: gauss(mu, sigma)
|
---|
| 246 |
|
---|
| 247 | Gaussian distribution. *mu* is the mean, and *sigma* is the standard
|
---|
| 248 | deviation. This is slightly faster than the :func:`normalvariate` function
|
---|
| 249 | defined below.
|
---|
| 250 |
|
---|
| 251 |
|
---|
| 252 | .. function:: lognormvariate(mu, sigma)
|
---|
| 253 |
|
---|
| 254 | Log normal distribution. If you take the natural logarithm of this
|
---|
| 255 | distribution, you'll get a normal distribution with mean *mu* and standard
|
---|
| 256 | deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
|
---|
| 257 | zero.
|
---|
| 258 |
|
---|
| 259 |
|
---|
| 260 | .. function:: normalvariate(mu, sigma)
|
---|
| 261 |
|
---|
| 262 | Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
|
---|
| 263 |
|
---|
| 264 |
|
---|
| 265 | .. function:: vonmisesvariate(mu, kappa)
|
---|
| 266 |
|
---|
| 267 | *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
|
---|
| 268 | is the concentration parameter, which must be greater than or equal to zero. If
|
---|
| 269 | *kappa* is equal to zero, this distribution reduces to a uniform random angle
|
---|
| 270 | over the range 0 to 2\*\ *pi*.
|
---|
| 271 |
|
---|
| 272 |
|
---|
| 273 | .. function:: paretovariate(alpha)
|
---|
| 274 |
|
---|
| 275 | Pareto distribution. *alpha* is the shape parameter.
|
---|
| 276 |
|
---|
| 277 |
|
---|
| 278 | .. function:: weibullvariate(alpha, beta)
|
---|
| 279 |
|
---|
| 280 | Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
|
---|
| 281 | parameter.
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 | Alternative Generators:
|
---|
| 285 |
|
---|
| 286 | .. class:: WichmannHill([seed])
|
---|
| 287 |
|
---|
| 288 | Class that implements the Wichmann-Hill algorithm as the core generator. Has all
|
---|
| 289 | of the same methods as :class:`Random` plus the :meth:`whseed` method described
|
---|
| 290 | below. Because this class is implemented in pure Python, it is not threadsafe
|
---|
| 291 | and may require locks between calls. The period of the generator is
|
---|
| 292 | 6,953,607,871,644 which is small enough to require care that two independent
|
---|
| 293 | random sequences do not overlap.
|
---|
| 294 |
|
---|
| 295 |
|
---|
| 296 | .. function:: whseed([x])
|
---|
| 297 |
|
---|
| 298 | This is obsolete, supplied for bit-level compatibility with versions of Python
|
---|
| 299 | prior to 2.1. See :func:`seed` for details. :func:`whseed` does not guarantee
|
---|
| 300 | that distinct integer arguments yield distinct internal states, and can yield no
|
---|
| 301 | more than about 2\*\*24 distinct internal states in all.
|
---|
| 302 |
|
---|
| 303 |
|
---|
| 304 | .. class:: SystemRandom([seed])
|
---|
| 305 |
|
---|
| 306 | Class that uses the :func:`os.urandom` function for generating random numbers
|
---|
| 307 | from sources provided by the operating system. Not available on all systems.
|
---|
| 308 | Does not rely on software state and sequences are not reproducible. Accordingly,
|
---|
| 309 | the :meth:`seed` and :meth:`jumpahead` methods have no effect and are ignored.
|
---|
| 310 | The :meth:`getstate` and :meth:`setstate` methods raise
|
---|
| 311 | :exc:`NotImplementedError` if called.
|
---|
| 312 |
|
---|
| 313 | .. versionadded:: 2.4
|
---|
| 314 |
|
---|
| 315 | Examples of basic usage::
|
---|
| 316 |
|
---|
| 317 | >>> random.random() # Random float x, 0.0 <= x < 1.0
|
---|
| 318 | 0.37444887175646646
|
---|
| 319 | >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
|
---|
| 320 | 1.1800146073117523
|
---|
| 321 | >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
|
---|
| 322 | 7
|
---|
| 323 | >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
|
---|
| 324 | 26
|
---|
| 325 | >>> random.choice('abcdefghij') # Choose a random element
|
---|
| 326 | 'c'
|
---|
| 327 |
|
---|
| 328 | >>> items = [1, 2, 3, 4, 5, 6, 7]
|
---|
| 329 | >>> random.shuffle(items)
|
---|
| 330 | >>> items
|
---|
| 331 | [7, 3, 2, 5, 6, 4, 1]
|
---|
| 332 |
|
---|
| 333 | >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
|
---|
| 334 | [4, 1, 5]
|
---|
| 335 |
|
---|
| 336 |
|
---|
| 337 |
|
---|
| 338 | .. seealso::
|
---|
| 339 |
|
---|
| 340 | M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
|
---|
| 341 | equidistributed uniform pseudorandom number generator", ACM Transactions on
|
---|
| 342 | Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
|
---|
| 343 |
|
---|
| 344 | Wichmann, B. A. & Hill, I. D., "Algorithm AS 183: An efficient and portable
|
---|
| 345 | pseudo-random number generator", Applied Statistics 31 (1982) 188-190.
|
---|
| 346 |
|
---|
| 347 | `Complementary-Multiply-with-Carry recipe
|
---|
| 348 | <http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
|
---|
| 349 | random number generator with a long period and comparatively simple update
|
---|
| 350 | operations.
|
---|