[2] | 1 | :mod:`multiprocessing` --- Process-based "threading" interface
|
---|
| 2 | ==============================================================
|
---|
| 3 |
|
---|
| 4 | .. module:: multiprocessing
|
---|
| 5 | :synopsis: Process-based "threading" interface.
|
---|
| 6 |
|
---|
| 7 | .. versionadded:: 2.6
|
---|
| 8 |
|
---|
| 9 |
|
---|
| 10 | Introduction
|
---|
| 11 | ----------------------
|
---|
| 12 |
|
---|
| 13 | :mod:`multiprocessing` is a package that supports spawning processes using an
|
---|
| 14 | API similar to the :mod:`threading` module. The :mod:`multiprocessing` package
|
---|
| 15 | offers both local and remote concurrency, effectively side-stepping the
|
---|
| 16 | :term:`Global Interpreter Lock` by using subprocesses instead of threads. Due
|
---|
| 17 | to this, the :mod:`multiprocessing` module allows the programmer to fully
|
---|
| 18 | leverage multiple processors on a given machine. It runs on both Unix and
|
---|
| 19 | Windows.
|
---|
| 20 |
|
---|
| 21 | .. warning::
|
---|
| 22 |
|
---|
| 23 | Some of this package's functionality requires a functioning shared semaphore
|
---|
| 24 | implementation on the host operating system. Without one, the
|
---|
| 25 | :mod:`multiprocessing.synchronize` module will be disabled, and attempts to
|
---|
| 26 | import it will result in an :exc:`ImportError`. See
|
---|
| 27 | :issue:`3770` for additional information.
|
---|
| 28 |
|
---|
| 29 | .. note::
|
---|
| 30 |
|
---|
[391] | 31 | Functionality within this package requires that the ``__main__`` module be
|
---|
[2] | 32 | importable by the children. This is covered in :ref:`multiprocessing-programming`
|
---|
| 33 | however it is worth pointing out here. This means that some examples, such
|
---|
| 34 | as the :class:`multiprocessing.Pool` examples will not work in the
|
---|
| 35 | interactive interpreter. For example::
|
---|
| 36 |
|
---|
| 37 | >>> from multiprocessing import Pool
|
---|
| 38 | >>> p = Pool(5)
|
---|
| 39 | >>> def f(x):
|
---|
| 40 | ... return x*x
|
---|
| 41 | ...
|
---|
| 42 | >>> p.map(f, [1,2,3])
|
---|
| 43 | Process PoolWorker-1:
|
---|
| 44 | Process PoolWorker-2:
|
---|
| 45 | Process PoolWorker-3:
|
---|
| 46 | Traceback (most recent call last):
|
---|
| 47 | Traceback (most recent call last):
|
---|
| 48 | Traceback (most recent call last):
|
---|
| 49 | AttributeError: 'module' object has no attribute 'f'
|
---|
| 50 | AttributeError: 'module' object has no attribute 'f'
|
---|
| 51 | AttributeError: 'module' object has no attribute 'f'
|
---|
| 52 |
|
---|
| 53 | (If you try this it will actually output three full tracebacks
|
---|
| 54 | interleaved in a semi-random fashion, and then you may have to
|
---|
| 55 | stop the master process somehow.)
|
---|
| 56 |
|
---|
| 57 |
|
---|
| 58 | The :class:`Process` class
|
---|
| 59 | ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 60 |
|
---|
| 61 | In :mod:`multiprocessing`, processes are spawned by creating a :class:`Process`
|
---|
| 62 | object and then calling its :meth:`~Process.start` method. :class:`Process`
|
---|
| 63 | follows the API of :class:`threading.Thread`. A trivial example of a
|
---|
| 64 | multiprocess program is ::
|
---|
| 65 |
|
---|
| 66 | from multiprocessing import Process
|
---|
| 67 |
|
---|
| 68 | def f(name):
|
---|
| 69 | print 'hello', name
|
---|
| 70 |
|
---|
| 71 | if __name__ == '__main__':
|
---|
| 72 | p = Process(target=f, args=('bob',))
|
---|
| 73 | p.start()
|
---|
| 74 | p.join()
|
---|
| 75 |
|
---|
| 76 | To show the individual process IDs involved, here is an expanded example::
|
---|
| 77 |
|
---|
| 78 | from multiprocessing import Process
|
---|
| 79 | import os
|
---|
| 80 |
|
---|
| 81 | def info(title):
|
---|
| 82 | print title
|
---|
| 83 | print 'module name:', __name__
|
---|
[391] | 84 | if hasattr(os, 'getppid'): # only available on Unix
|
---|
| 85 | print 'parent process:', os.getppid()
|
---|
[2] | 86 | print 'process id:', os.getpid()
|
---|
| 87 |
|
---|
| 88 | def f(name):
|
---|
| 89 | info('function f')
|
---|
| 90 | print 'hello', name
|
---|
| 91 |
|
---|
| 92 | if __name__ == '__main__':
|
---|
| 93 | info('main line')
|
---|
| 94 | p = Process(target=f, args=('bob',))
|
---|
| 95 | p.start()
|
---|
| 96 | p.join()
|
---|
| 97 |
|
---|
| 98 | For an explanation of why (on Windows) the ``if __name__ == '__main__'`` part is
|
---|
| 99 | necessary, see :ref:`multiprocessing-programming`.
|
---|
| 100 |
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | Exchanging objects between processes
|
---|
| 104 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 105 |
|
---|
| 106 | :mod:`multiprocessing` supports two types of communication channel between
|
---|
| 107 | processes:
|
---|
| 108 |
|
---|
| 109 | **Queues**
|
---|
| 110 |
|
---|
[391] | 111 | The :class:`~multiprocessing.Queue` class is a near clone of :class:`Queue.Queue`. For
|
---|
[2] | 112 | example::
|
---|
| 113 |
|
---|
| 114 | from multiprocessing import Process, Queue
|
---|
| 115 |
|
---|
| 116 | def f(q):
|
---|
| 117 | q.put([42, None, 'hello'])
|
---|
| 118 |
|
---|
| 119 | if __name__ == '__main__':
|
---|
| 120 | q = Queue()
|
---|
| 121 | p = Process(target=f, args=(q,))
|
---|
| 122 | p.start()
|
---|
| 123 | print q.get() # prints "[42, None, 'hello']"
|
---|
| 124 | p.join()
|
---|
| 125 |
|
---|
| 126 | Queues are thread and process safe.
|
---|
| 127 |
|
---|
| 128 | **Pipes**
|
---|
| 129 |
|
---|
| 130 | The :func:`Pipe` function returns a pair of connection objects connected by a
|
---|
| 131 | pipe which by default is duplex (two-way). For example::
|
---|
| 132 |
|
---|
| 133 | from multiprocessing import Process, Pipe
|
---|
| 134 |
|
---|
| 135 | def f(conn):
|
---|
| 136 | conn.send([42, None, 'hello'])
|
---|
| 137 | conn.close()
|
---|
| 138 |
|
---|
| 139 | if __name__ == '__main__':
|
---|
| 140 | parent_conn, child_conn = Pipe()
|
---|
| 141 | p = Process(target=f, args=(child_conn,))
|
---|
| 142 | p.start()
|
---|
| 143 | print parent_conn.recv() # prints "[42, None, 'hello']"
|
---|
| 144 | p.join()
|
---|
| 145 |
|
---|
| 146 | The two connection objects returned by :func:`Pipe` represent the two ends of
|
---|
| 147 | the pipe. Each connection object has :meth:`~Connection.send` and
|
---|
| 148 | :meth:`~Connection.recv` methods (among others). Note that data in a pipe
|
---|
| 149 | may become corrupted if two processes (or threads) try to read from or write
|
---|
| 150 | to the *same* end of the pipe at the same time. Of course there is no risk
|
---|
| 151 | of corruption from processes using different ends of the pipe at the same
|
---|
| 152 | time.
|
---|
| 153 |
|
---|
| 154 |
|
---|
| 155 | Synchronization between processes
|
---|
| 156 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 157 |
|
---|
| 158 | :mod:`multiprocessing` contains equivalents of all the synchronization
|
---|
| 159 | primitives from :mod:`threading`. For instance one can use a lock to ensure
|
---|
| 160 | that only one process prints to standard output at a time::
|
---|
| 161 |
|
---|
| 162 | from multiprocessing import Process, Lock
|
---|
| 163 |
|
---|
| 164 | def f(l, i):
|
---|
| 165 | l.acquire()
|
---|
| 166 | print 'hello world', i
|
---|
| 167 | l.release()
|
---|
| 168 |
|
---|
| 169 | if __name__ == '__main__':
|
---|
| 170 | lock = Lock()
|
---|
| 171 |
|
---|
| 172 | for num in range(10):
|
---|
| 173 | Process(target=f, args=(lock, num)).start()
|
---|
| 174 |
|
---|
| 175 | Without using the lock output from the different processes is liable to get all
|
---|
| 176 | mixed up.
|
---|
| 177 |
|
---|
| 178 |
|
---|
| 179 | Sharing state between processes
|
---|
| 180 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 181 |
|
---|
| 182 | As mentioned above, when doing concurrent programming it is usually best to
|
---|
| 183 | avoid using shared state as far as possible. This is particularly true when
|
---|
| 184 | using multiple processes.
|
---|
| 185 |
|
---|
| 186 | However, if you really do need to use some shared data then
|
---|
| 187 | :mod:`multiprocessing` provides a couple of ways of doing so.
|
---|
| 188 |
|
---|
| 189 | **Shared memory**
|
---|
| 190 |
|
---|
| 191 | Data can be stored in a shared memory map using :class:`Value` or
|
---|
| 192 | :class:`Array`. For example, the following code ::
|
---|
| 193 |
|
---|
| 194 | from multiprocessing import Process, Value, Array
|
---|
| 195 |
|
---|
| 196 | def f(n, a):
|
---|
| 197 | n.value = 3.1415927
|
---|
| 198 | for i in range(len(a)):
|
---|
| 199 | a[i] = -a[i]
|
---|
| 200 |
|
---|
| 201 | if __name__ == '__main__':
|
---|
| 202 | num = Value('d', 0.0)
|
---|
| 203 | arr = Array('i', range(10))
|
---|
| 204 |
|
---|
| 205 | p = Process(target=f, args=(num, arr))
|
---|
| 206 | p.start()
|
---|
| 207 | p.join()
|
---|
| 208 |
|
---|
| 209 | print num.value
|
---|
| 210 | print arr[:]
|
---|
| 211 |
|
---|
| 212 | will print ::
|
---|
| 213 |
|
---|
| 214 | 3.1415927
|
---|
| 215 | [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
|
---|
| 216 |
|
---|
| 217 | The ``'d'`` and ``'i'`` arguments used when creating ``num`` and ``arr`` are
|
---|
| 218 | typecodes of the kind used by the :mod:`array` module: ``'d'`` indicates a
|
---|
| 219 | double precision float and ``'i'`` indicates a signed integer. These shared
|
---|
[391] | 220 | objects will be process and thread-safe.
|
---|
[2] | 221 |
|
---|
| 222 | For more flexibility in using shared memory one can use the
|
---|
| 223 | :mod:`multiprocessing.sharedctypes` module which supports the creation of
|
---|
| 224 | arbitrary ctypes objects allocated from shared memory.
|
---|
| 225 |
|
---|
| 226 | **Server process**
|
---|
| 227 |
|
---|
| 228 | A manager object returned by :func:`Manager` controls a server process which
|
---|
| 229 | holds Python objects and allows other processes to manipulate them using
|
---|
| 230 | proxies.
|
---|
| 231 |
|
---|
| 232 | A manager returned by :func:`Manager` will support types :class:`list`,
|
---|
| 233 | :class:`dict`, :class:`Namespace`, :class:`Lock`, :class:`RLock`,
|
---|
| 234 | :class:`Semaphore`, :class:`BoundedSemaphore`, :class:`Condition`,
|
---|
[391] | 235 | :class:`Event`, :class:`~multiprocessing.Queue`, :class:`Value` and :class:`Array`. For
|
---|
[2] | 236 | example, ::
|
---|
| 237 |
|
---|
| 238 | from multiprocessing import Process, Manager
|
---|
| 239 |
|
---|
| 240 | def f(d, l):
|
---|
| 241 | d[1] = '1'
|
---|
| 242 | d['2'] = 2
|
---|
| 243 | d[0.25] = None
|
---|
| 244 | l.reverse()
|
---|
| 245 |
|
---|
| 246 | if __name__ == '__main__':
|
---|
| 247 | manager = Manager()
|
---|
| 248 |
|
---|
| 249 | d = manager.dict()
|
---|
| 250 | l = manager.list(range(10))
|
---|
| 251 |
|
---|
| 252 | p = Process(target=f, args=(d, l))
|
---|
| 253 | p.start()
|
---|
| 254 | p.join()
|
---|
| 255 |
|
---|
| 256 | print d
|
---|
| 257 | print l
|
---|
| 258 |
|
---|
| 259 | will print ::
|
---|
| 260 |
|
---|
| 261 | {0.25: None, 1: '1', '2': 2}
|
---|
| 262 | [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
|
---|
| 263 |
|
---|
| 264 | Server process managers are more flexible than using shared memory objects
|
---|
| 265 | because they can be made to support arbitrary object types. Also, a single
|
---|
| 266 | manager can be shared by processes on different computers over a network.
|
---|
| 267 | They are, however, slower than using shared memory.
|
---|
| 268 |
|
---|
| 269 |
|
---|
| 270 | Using a pool of workers
|
---|
| 271 | ~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 272 |
|
---|
| 273 | The :class:`~multiprocessing.pool.Pool` class represents a pool of worker
|
---|
| 274 | processes. It has methods which allows tasks to be offloaded to the worker
|
---|
| 275 | processes in a few different ways.
|
---|
| 276 |
|
---|
| 277 | For example::
|
---|
| 278 |
|
---|
| 279 | from multiprocessing import Pool
|
---|
| 280 |
|
---|
| 281 | def f(x):
|
---|
| 282 | return x*x
|
---|
| 283 |
|
---|
| 284 | if __name__ == '__main__':
|
---|
| 285 | pool = Pool(processes=4) # start 4 worker processes
|
---|
[391] | 286 | result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
|
---|
[2] | 287 | print result.get(timeout=1) # prints "100" unless your computer is *very* slow
|
---|
| 288 | print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
|
---|
| 289 |
|
---|
[391] | 290 | Note that the methods of a pool should only ever be used by the
|
---|
| 291 | process which created it.
|
---|
[2] | 292 |
|
---|
[391] | 293 |
|
---|
[2] | 294 | Reference
|
---|
| 295 | ---------
|
---|
| 296 |
|
---|
| 297 | The :mod:`multiprocessing` package mostly replicates the API of the
|
---|
| 298 | :mod:`threading` module.
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | :class:`Process` and exceptions
|
---|
| 302 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 303 |
|
---|
[391] | 304 | .. class:: Process(group=None, target=None, name=None, args=(), kwargs={})
|
---|
[2] | 305 |
|
---|
| 306 | Process objects represent activity that is run in a separate process. The
|
---|
| 307 | :class:`Process` class has equivalents of all the methods of
|
---|
| 308 | :class:`threading.Thread`.
|
---|
| 309 |
|
---|
| 310 | The constructor should always be called with keyword arguments. *group*
|
---|
| 311 | should always be ``None``; it exists solely for compatibility with
|
---|
| 312 | :class:`threading.Thread`. *target* is the callable object to be invoked by
|
---|
| 313 | the :meth:`run()` method. It defaults to ``None``, meaning nothing is
|
---|
| 314 | called. *name* is the process name. By default, a unique name is constructed
|
---|
| 315 | of the form 'Process-N\ :sub:`1`:N\ :sub:`2`:...:N\ :sub:`k`' where N\
|
---|
| 316 | :sub:`1`,N\ :sub:`2`,...,N\ :sub:`k` is a sequence of integers whose length
|
---|
| 317 | is determined by the *generation* of the process. *args* is the argument
|
---|
| 318 | tuple for the target invocation. *kwargs* is a dictionary of keyword
|
---|
| 319 | arguments for the target invocation. By default, no arguments are passed to
|
---|
| 320 | *target*.
|
---|
| 321 |
|
---|
| 322 | If a subclass overrides the constructor, it must make sure it invokes the
|
---|
| 323 | base class constructor (:meth:`Process.__init__`) before doing anything else
|
---|
| 324 | to the process.
|
---|
| 325 |
|
---|
| 326 | .. method:: run()
|
---|
| 327 |
|
---|
| 328 | Method representing the process's activity.
|
---|
| 329 |
|
---|
| 330 | You may override this method in a subclass. The standard :meth:`run`
|
---|
| 331 | method invokes the callable object passed to the object's constructor as
|
---|
| 332 | the target argument, if any, with sequential and keyword arguments taken
|
---|
| 333 | from the *args* and *kwargs* arguments, respectively.
|
---|
| 334 |
|
---|
| 335 | .. method:: start()
|
---|
| 336 |
|
---|
| 337 | Start the process's activity.
|
---|
| 338 |
|
---|
| 339 | This must be called at most once per process object. It arranges for the
|
---|
| 340 | object's :meth:`run` method to be invoked in a separate process.
|
---|
| 341 |
|
---|
| 342 | .. method:: join([timeout])
|
---|
| 343 |
|
---|
| 344 | Block the calling thread until the process whose :meth:`join` method is
|
---|
| 345 | called terminates or until the optional timeout occurs.
|
---|
| 346 |
|
---|
| 347 | If *timeout* is ``None`` then there is no timeout.
|
---|
| 348 |
|
---|
| 349 | A process can be joined many times.
|
---|
| 350 |
|
---|
| 351 | A process cannot join itself because this would cause a deadlock. It is
|
---|
| 352 | an error to attempt to join a process before it has been started.
|
---|
| 353 |
|
---|
| 354 | .. attribute:: name
|
---|
| 355 |
|
---|
| 356 | The process's name.
|
---|
| 357 |
|
---|
| 358 | The name is a string used for identification purposes only. It has no
|
---|
| 359 | semantics. Multiple processes may be given the same name. The initial
|
---|
| 360 | name is set by the constructor.
|
---|
| 361 |
|
---|
| 362 | .. method:: is_alive
|
---|
| 363 |
|
---|
| 364 | Return whether the process is alive.
|
---|
| 365 |
|
---|
| 366 | Roughly, a process object is alive from the moment the :meth:`start`
|
---|
| 367 | method returns until the child process terminates.
|
---|
| 368 |
|
---|
| 369 | .. attribute:: daemon
|
---|
| 370 |
|
---|
| 371 | The process's daemon flag, a Boolean value. This must be set before
|
---|
| 372 | :meth:`start` is called.
|
---|
| 373 |
|
---|
| 374 | The initial value is inherited from the creating process.
|
---|
| 375 |
|
---|
| 376 | When a process exits, it attempts to terminate all of its daemonic child
|
---|
| 377 | processes.
|
---|
| 378 |
|
---|
| 379 | Note that a daemonic process is not allowed to create child processes.
|
---|
| 380 | Otherwise a daemonic process would leave its children orphaned if it gets
|
---|
| 381 | terminated when its parent process exits. Additionally, these are **not**
|
---|
| 382 | Unix daemons or services, they are normal processes that will be
|
---|
[391] | 383 | terminated (and not joined) if non-daemonic processes have exited.
|
---|
[2] | 384 |
|
---|
[391] | 385 | In addition to the :class:`threading.Thread` API, :class:`Process` objects
|
---|
[2] | 386 | also support the following attributes and methods:
|
---|
| 387 |
|
---|
| 388 | .. attribute:: pid
|
---|
| 389 |
|
---|
| 390 | Return the process ID. Before the process is spawned, this will be
|
---|
| 391 | ``None``.
|
---|
| 392 |
|
---|
| 393 | .. attribute:: exitcode
|
---|
| 394 |
|
---|
| 395 | The child's exit code. This will be ``None`` if the process has not yet
|
---|
| 396 | terminated. A negative value *-N* indicates that the child was terminated
|
---|
| 397 | by signal *N*.
|
---|
| 398 |
|
---|
| 399 | .. attribute:: authkey
|
---|
| 400 |
|
---|
| 401 | The process's authentication key (a byte string).
|
---|
| 402 |
|
---|
| 403 | When :mod:`multiprocessing` is initialized the main process is assigned a
|
---|
[391] | 404 | random string using :func:`os.urandom`.
|
---|
[2] | 405 |
|
---|
| 406 | When a :class:`Process` object is created, it will inherit the
|
---|
| 407 | authentication key of its parent process, although this may be changed by
|
---|
| 408 | setting :attr:`authkey` to another byte string.
|
---|
| 409 |
|
---|
| 410 | See :ref:`multiprocessing-auth-keys`.
|
---|
| 411 |
|
---|
| 412 | .. method:: terminate()
|
---|
| 413 |
|
---|
| 414 | Terminate the process. On Unix this is done using the ``SIGTERM`` signal;
|
---|
[391] | 415 | on Windows :c:func:`TerminateProcess` is used. Note that exit handlers and
|
---|
[2] | 416 | finally clauses, etc., will not be executed.
|
---|
| 417 |
|
---|
| 418 | Note that descendant processes of the process will *not* be terminated --
|
---|
| 419 | they will simply become orphaned.
|
---|
| 420 |
|
---|
| 421 | .. warning::
|
---|
| 422 |
|
---|
| 423 | If this method is used when the associated process is using a pipe or
|
---|
| 424 | queue then the pipe or queue is liable to become corrupted and may
|
---|
| 425 | become unusable by other process. Similarly, if the process has
|
---|
| 426 | acquired a lock or semaphore etc. then terminating it is liable to
|
---|
| 427 | cause other processes to deadlock.
|
---|
| 428 |
|
---|
[391] | 429 | Note that the :meth:`start`, :meth:`join`, :meth:`is_alive`,
|
---|
| 430 | :meth:`terminate` and :attr:`exitcode` methods should only be called by
|
---|
| 431 | the process that created the process object.
|
---|
[2] | 432 |
|
---|
| 433 | Example usage of some of the methods of :class:`Process`:
|
---|
| 434 |
|
---|
| 435 | .. doctest::
|
---|
| 436 |
|
---|
| 437 | >>> import multiprocessing, time, signal
|
---|
| 438 | >>> p = multiprocessing.Process(target=time.sleep, args=(1000,))
|
---|
| 439 | >>> print p, p.is_alive()
|
---|
| 440 | <Process(Process-1, initial)> False
|
---|
| 441 | >>> p.start()
|
---|
| 442 | >>> print p, p.is_alive()
|
---|
| 443 | <Process(Process-1, started)> True
|
---|
| 444 | >>> p.terminate()
|
---|
| 445 | >>> time.sleep(0.1)
|
---|
| 446 | >>> print p, p.is_alive()
|
---|
| 447 | <Process(Process-1, stopped[SIGTERM])> False
|
---|
| 448 | >>> p.exitcode == -signal.SIGTERM
|
---|
| 449 | True
|
---|
| 450 |
|
---|
| 451 |
|
---|
| 452 | .. exception:: BufferTooShort
|
---|
| 453 |
|
---|
| 454 | Exception raised by :meth:`Connection.recv_bytes_into()` when the supplied
|
---|
| 455 | buffer object is too small for the message read.
|
---|
| 456 |
|
---|
| 457 | If ``e`` is an instance of :exc:`BufferTooShort` then ``e.args[0]`` will give
|
---|
| 458 | the message as a byte string.
|
---|
| 459 |
|
---|
| 460 |
|
---|
| 461 | Pipes and Queues
|
---|
| 462 | ~~~~~~~~~~~~~~~~
|
---|
| 463 |
|
---|
| 464 | When using multiple processes, one generally uses message passing for
|
---|
| 465 | communication between processes and avoids having to use any synchronization
|
---|
| 466 | primitives like locks.
|
---|
| 467 |
|
---|
| 468 | For passing messages one can use :func:`Pipe` (for a connection between two
|
---|
| 469 | processes) or a queue (which allows multiple producers and consumers).
|
---|
| 470 |
|
---|
[391] | 471 | The :class:`~multiprocessing.Queue`, :class:`multiprocessing.queues.SimpleQueue` and :class:`JoinableQueue` types are multi-producer,
|
---|
[2] | 472 | multi-consumer FIFO queues modelled on the :class:`Queue.Queue` class in the
|
---|
[391] | 473 | standard library. They differ in that :class:`~multiprocessing.Queue` lacks the
|
---|
[2] | 474 | :meth:`~Queue.Queue.task_done` and :meth:`~Queue.Queue.join` methods introduced
|
---|
| 475 | into Python 2.5's :class:`Queue.Queue` class.
|
---|
| 476 |
|
---|
| 477 | If you use :class:`JoinableQueue` then you **must** call
|
---|
| 478 | :meth:`JoinableQueue.task_done` for each task removed from the queue or else the
|
---|
[391] | 479 | semaphore used to count the number of unfinished tasks may eventually overflow,
|
---|
[2] | 480 | raising an exception.
|
---|
| 481 |
|
---|
| 482 | Note that one can also create a shared queue by using a manager object -- see
|
---|
| 483 | :ref:`multiprocessing-managers`.
|
---|
| 484 |
|
---|
| 485 | .. note::
|
---|
| 486 |
|
---|
| 487 | :mod:`multiprocessing` uses the usual :exc:`Queue.Empty` and
|
---|
| 488 | :exc:`Queue.Full` exceptions to signal a timeout. They are not available in
|
---|
| 489 | the :mod:`multiprocessing` namespace so you need to import them from
|
---|
| 490 | :mod:`Queue`.
|
---|
| 491 |
|
---|
[391] | 492 | .. note::
|
---|
[2] | 493 |
|
---|
[391] | 494 | When an object is put on a queue, the object is pickled and a
|
---|
| 495 | background thread later flushes the pickled data to an underlying
|
---|
| 496 | pipe. This has some consequences which are a little surprising,
|
---|
| 497 | but should not cause any practical difficulties -- if they really
|
---|
| 498 | bother you then you can instead use a queue created with a
|
---|
| 499 | :ref:`manager <multiprocessing-managers>`.
|
---|
| 500 |
|
---|
| 501 | (1) After putting an object on an empty queue there may be an
|
---|
| 502 | infinitesimal delay before the queue's :meth:`~Queue.empty`
|
---|
| 503 | method returns :const:`False` and :meth:`~Queue.get_nowait` can
|
---|
| 504 | return without raising :exc:`Queue.Empty`.
|
---|
| 505 |
|
---|
| 506 | (2) If multiple processes are enqueuing objects, it is possible for
|
---|
| 507 | the objects to be received at the other end out-of-order.
|
---|
| 508 | However, objects enqueued by the same process will always be in
|
---|
| 509 | the expected order with respect to each other.
|
---|
| 510 |
|
---|
[2] | 511 | .. warning::
|
---|
| 512 |
|
---|
| 513 | If a process is killed using :meth:`Process.terminate` or :func:`os.kill`
|
---|
[391] | 514 | while it is trying to use a :class:`~multiprocessing.Queue`, then the data in the queue is
|
---|
| 515 | likely to become corrupted. This may cause any other process to get an
|
---|
[2] | 516 | exception when it tries to use the queue later on.
|
---|
| 517 |
|
---|
| 518 | .. warning::
|
---|
| 519 |
|
---|
| 520 | As mentioned above, if a child process has put items on a queue (and it has
|
---|
[391] | 521 | not used :meth:`JoinableQueue.cancel_join_thread
|
---|
| 522 | <multiprocessing.Queue.cancel_join_thread>`), then that process will
|
---|
[2] | 523 | not terminate until all buffered items have been flushed to the pipe.
|
---|
| 524 |
|
---|
| 525 | This means that if you try joining that process you may get a deadlock unless
|
---|
| 526 | you are sure that all items which have been put on the queue have been
|
---|
| 527 | consumed. Similarly, if the child process is non-daemonic then the parent
|
---|
| 528 | process may hang on exit when it tries to join all its non-daemonic children.
|
---|
| 529 |
|
---|
| 530 | Note that a queue created using a manager does not have this issue. See
|
---|
| 531 | :ref:`multiprocessing-programming`.
|
---|
| 532 |
|
---|
| 533 | For an example of the usage of queues for interprocess communication see
|
---|
| 534 | :ref:`multiprocessing-examples`.
|
---|
| 535 |
|
---|
| 536 |
|
---|
| 537 | .. function:: Pipe([duplex])
|
---|
| 538 |
|
---|
| 539 | Returns a pair ``(conn1, conn2)`` of :class:`Connection` objects representing
|
---|
| 540 | the ends of a pipe.
|
---|
| 541 |
|
---|
| 542 | If *duplex* is ``True`` (the default) then the pipe is bidirectional. If
|
---|
| 543 | *duplex* is ``False`` then the pipe is unidirectional: ``conn1`` can only be
|
---|
| 544 | used for receiving messages and ``conn2`` can only be used for sending
|
---|
| 545 | messages.
|
---|
| 546 |
|
---|
| 547 |
|
---|
| 548 | .. class:: Queue([maxsize])
|
---|
| 549 |
|
---|
| 550 | Returns a process shared queue implemented using a pipe and a few
|
---|
| 551 | locks/semaphores. When a process first puts an item on the queue a feeder
|
---|
| 552 | thread is started which transfers objects from a buffer into the pipe.
|
---|
| 553 |
|
---|
| 554 | The usual :exc:`Queue.Empty` and :exc:`Queue.Full` exceptions from the
|
---|
| 555 | standard library's :mod:`Queue` module are raised to signal timeouts.
|
---|
| 556 |
|
---|
[391] | 557 | :class:`~multiprocessing.Queue` implements all the methods of :class:`Queue.Queue` except for
|
---|
[2] | 558 | :meth:`~Queue.Queue.task_done` and :meth:`~Queue.Queue.join`.
|
---|
| 559 |
|
---|
| 560 | .. method:: qsize()
|
---|
| 561 |
|
---|
| 562 | Return the approximate size of the queue. Because of
|
---|
| 563 | multithreading/multiprocessing semantics, this number is not reliable.
|
---|
| 564 |
|
---|
| 565 | Note that this may raise :exc:`NotImplementedError` on Unix platforms like
|
---|
| 566 | Mac OS X where ``sem_getvalue()`` is not implemented.
|
---|
| 567 |
|
---|
| 568 | .. method:: empty()
|
---|
| 569 |
|
---|
| 570 | Return ``True`` if the queue is empty, ``False`` otherwise. Because of
|
---|
| 571 | multithreading/multiprocessing semantics, this is not reliable.
|
---|
| 572 |
|
---|
| 573 | .. method:: full()
|
---|
| 574 |
|
---|
| 575 | Return ``True`` if the queue is full, ``False`` otherwise. Because of
|
---|
| 576 | multithreading/multiprocessing semantics, this is not reliable.
|
---|
| 577 |
|
---|
[391] | 578 | .. method:: put(obj[, block[, timeout]])
|
---|
[2] | 579 |
|
---|
[391] | 580 | Put obj into the queue. If the optional argument *block* is ``True``
|
---|
[2] | 581 | (the default) and *timeout* is ``None`` (the default), block if necessary until
|
---|
| 582 | a free slot is available. If *timeout* is a positive number, it blocks at
|
---|
| 583 | most *timeout* seconds and raises the :exc:`Queue.Full` exception if no
|
---|
| 584 | free slot was available within that time. Otherwise (*block* is
|
---|
| 585 | ``False``), put an item on the queue if a free slot is immediately
|
---|
| 586 | available, else raise the :exc:`Queue.Full` exception (*timeout* is
|
---|
| 587 | ignored in that case).
|
---|
| 588 |
|
---|
[391] | 589 | .. method:: put_nowait(obj)
|
---|
[2] | 590 |
|
---|
[391] | 591 | Equivalent to ``put(obj, False)``.
|
---|
[2] | 592 |
|
---|
| 593 | .. method:: get([block[, timeout]])
|
---|
| 594 |
|
---|
| 595 | Remove and return an item from the queue. If optional args *block* is
|
---|
| 596 | ``True`` (the default) and *timeout* is ``None`` (the default), block if
|
---|
| 597 | necessary until an item is available. If *timeout* is a positive number,
|
---|
| 598 | it blocks at most *timeout* seconds and raises the :exc:`Queue.Empty`
|
---|
| 599 | exception if no item was available within that time. Otherwise (block is
|
---|
| 600 | ``False``), return an item if one is immediately available, else raise the
|
---|
| 601 | :exc:`Queue.Empty` exception (*timeout* is ignored in that case).
|
---|
| 602 |
|
---|
| 603 | .. method:: get_nowait()
|
---|
| 604 |
|
---|
| 605 | Equivalent to ``get(False)``.
|
---|
| 606 |
|
---|
[391] | 607 | :class:`~multiprocessing.Queue` has a few additional methods not found in
|
---|
[2] | 608 | :class:`Queue.Queue`. These methods are usually unnecessary for most
|
---|
| 609 | code:
|
---|
| 610 |
|
---|
| 611 | .. method:: close()
|
---|
| 612 |
|
---|
| 613 | Indicate that no more data will be put on this queue by the current
|
---|
| 614 | process. The background thread will quit once it has flushed all buffered
|
---|
| 615 | data to the pipe. This is called automatically when the queue is garbage
|
---|
| 616 | collected.
|
---|
| 617 |
|
---|
| 618 | .. method:: join_thread()
|
---|
| 619 |
|
---|
| 620 | Join the background thread. This can only be used after :meth:`close` has
|
---|
| 621 | been called. It blocks until the background thread exits, ensuring that
|
---|
| 622 | all data in the buffer has been flushed to the pipe.
|
---|
| 623 |
|
---|
| 624 | By default if a process is not the creator of the queue then on exit it
|
---|
| 625 | will attempt to join the queue's background thread. The process can call
|
---|
| 626 | :meth:`cancel_join_thread` to make :meth:`join_thread` do nothing.
|
---|
| 627 |
|
---|
| 628 | .. method:: cancel_join_thread()
|
---|
| 629 |
|
---|
| 630 | Prevent :meth:`join_thread` from blocking. In particular, this prevents
|
---|
| 631 | the background thread from being joined automatically when the process
|
---|
| 632 | exits -- see :meth:`join_thread`.
|
---|
| 633 |
|
---|
[391] | 634 | A better name for this method might be
|
---|
| 635 | ``allow_exit_without_flush()``. It is likely to cause enqueued
|
---|
| 636 | data to lost, and you almost certainly will not need to use it.
|
---|
| 637 | It is really only there if you need the current process to exit
|
---|
| 638 | immediately without waiting to flush enqueued data to the
|
---|
| 639 | underlying pipe, and you don't care about lost data.
|
---|
[2] | 640 |
|
---|
[391] | 641 |
|
---|
| 642 | .. class:: multiprocessing.queues.SimpleQueue()
|
---|
| 643 |
|
---|
| 644 | It is a simplified :class:`~multiprocessing.Queue` type, very close to a locked :class:`Pipe`.
|
---|
| 645 |
|
---|
| 646 | .. method:: empty()
|
---|
| 647 |
|
---|
| 648 | Return ``True`` if the queue is empty, ``False`` otherwise.
|
---|
| 649 |
|
---|
| 650 | .. method:: get()
|
---|
| 651 |
|
---|
| 652 | Remove and return an item from the queue.
|
---|
| 653 |
|
---|
| 654 | .. method:: put(item)
|
---|
| 655 |
|
---|
| 656 | Put *item* into the queue.
|
---|
| 657 |
|
---|
| 658 |
|
---|
[2] | 659 | .. class:: JoinableQueue([maxsize])
|
---|
| 660 |
|
---|
[391] | 661 | :class:`JoinableQueue`, a :class:`~multiprocessing.Queue` subclass, is a queue which
|
---|
[2] | 662 | additionally has :meth:`task_done` and :meth:`join` methods.
|
---|
| 663 |
|
---|
| 664 | .. method:: task_done()
|
---|
| 665 |
|
---|
| 666 | Indicate that a formerly enqueued task is complete. Used by queue consumer
|
---|
| 667 | threads. For each :meth:`~Queue.get` used to fetch a task, a subsequent
|
---|
| 668 | call to :meth:`task_done` tells the queue that the processing on the task
|
---|
| 669 | is complete.
|
---|
| 670 |
|
---|
[391] | 671 | If a :meth:`~Queue.Queue.join` is currently blocking, it will resume when all
|
---|
[2] | 672 | items have been processed (meaning that a :meth:`task_done` call was
|
---|
| 673 | received for every item that had been :meth:`~Queue.put` into the queue).
|
---|
| 674 |
|
---|
| 675 | Raises a :exc:`ValueError` if called more times than there were items
|
---|
| 676 | placed in the queue.
|
---|
| 677 |
|
---|
| 678 |
|
---|
| 679 | .. method:: join()
|
---|
| 680 |
|
---|
| 681 | Block until all items in the queue have been gotten and processed.
|
---|
| 682 |
|
---|
| 683 | The count of unfinished tasks goes up whenever an item is added to the
|
---|
| 684 | queue. The count goes down whenever a consumer thread calls
|
---|
| 685 | :meth:`task_done` to indicate that the item was retrieved and all work on
|
---|
| 686 | it is complete. When the count of unfinished tasks drops to zero,
|
---|
[391] | 687 | :meth:`~Queue.Queue.join` unblocks.
|
---|
[2] | 688 |
|
---|
| 689 |
|
---|
| 690 | Miscellaneous
|
---|
| 691 | ~~~~~~~~~~~~~
|
---|
| 692 |
|
---|
| 693 | .. function:: active_children()
|
---|
| 694 |
|
---|
| 695 | Return list of all live children of the current process.
|
---|
| 696 |
|
---|
| 697 | Calling this has the side affect of "joining" any processes which have
|
---|
| 698 | already finished.
|
---|
| 699 |
|
---|
| 700 | .. function:: cpu_count()
|
---|
| 701 |
|
---|
| 702 | Return the number of CPUs in the system. May raise
|
---|
| 703 | :exc:`NotImplementedError`.
|
---|
| 704 |
|
---|
| 705 | .. function:: current_process()
|
---|
| 706 |
|
---|
| 707 | Return the :class:`Process` object corresponding to the current process.
|
---|
| 708 |
|
---|
| 709 | An analogue of :func:`threading.current_thread`.
|
---|
| 710 |
|
---|
| 711 | .. function:: freeze_support()
|
---|
| 712 |
|
---|
| 713 | Add support for when a program which uses :mod:`multiprocessing` has been
|
---|
| 714 | frozen to produce a Windows executable. (Has been tested with **py2exe**,
|
---|
| 715 | **PyInstaller** and **cx_Freeze**.)
|
---|
| 716 |
|
---|
| 717 | One needs to call this function straight after the ``if __name__ ==
|
---|
| 718 | '__main__'`` line of the main module. For example::
|
---|
| 719 |
|
---|
| 720 | from multiprocessing import Process, freeze_support
|
---|
| 721 |
|
---|
| 722 | def f():
|
---|
| 723 | print 'hello world!'
|
---|
| 724 |
|
---|
| 725 | if __name__ == '__main__':
|
---|
| 726 | freeze_support()
|
---|
| 727 | Process(target=f).start()
|
---|
| 728 |
|
---|
| 729 | If the ``freeze_support()`` line is omitted then trying to run the frozen
|
---|
| 730 | executable will raise :exc:`RuntimeError`.
|
---|
| 731 |
|
---|
| 732 | If the module is being run normally by the Python interpreter then
|
---|
| 733 | :func:`freeze_support` has no effect.
|
---|
| 734 |
|
---|
| 735 | .. function:: set_executable()
|
---|
| 736 |
|
---|
| 737 | Sets the path of the Python interpreter to use when starting a child process.
|
---|
| 738 | (By default :data:`sys.executable` is used). Embedders will probably need to
|
---|
| 739 | do some thing like ::
|
---|
| 740 |
|
---|
[391] | 741 | set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))
|
---|
[2] | 742 |
|
---|
| 743 | before they can create child processes. (Windows only)
|
---|
| 744 |
|
---|
| 745 |
|
---|
| 746 | .. note::
|
---|
| 747 |
|
---|
| 748 | :mod:`multiprocessing` contains no analogues of
|
---|
| 749 | :func:`threading.active_count`, :func:`threading.enumerate`,
|
---|
| 750 | :func:`threading.settrace`, :func:`threading.setprofile`,
|
---|
| 751 | :class:`threading.Timer`, or :class:`threading.local`.
|
---|
| 752 |
|
---|
| 753 |
|
---|
| 754 | Connection Objects
|
---|
| 755 | ~~~~~~~~~~~~~~~~~~
|
---|
| 756 |
|
---|
| 757 | Connection objects allow the sending and receiving of picklable objects or
|
---|
| 758 | strings. They can be thought of as message oriented connected sockets.
|
---|
| 759 |
|
---|
[391] | 760 | Connection objects are usually created using :func:`Pipe` -- see also
|
---|
[2] | 761 | :ref:`multiprocessing-listeners-clients`.
|
---|
| 762 |
|
---|
| 763 | .. class:: Connection
|
---|
| 764 |
|
---|
| 765 | .. method:: send(obj)
|
---|
| 766 |
|
---|
| 767 | Send an object to the other end of the connection which should be read
|
---|
| 768 | using :meth:`recv`.
|
---|
| 769 |
|
---|
[391] | 770 | The object must be picklable. Very large pickles (approximately 32 MB+,
|
---|
| 771 | though it depends on the OS) may raise a :exc:`ValueError` exception.
|
---|
[2] | 772 |
|
---|
| 773 | .. method:: recv()
|
---|
| 774 |
|
---|
| 775 | Return an object sent from the other end of the connection using
|
---|
[391] | 776 | :meth:`send`. Blocks until there its something to receive. Raises
|
---|
| 777 | :exc:`EOFError` if there is nothing left to receive
|
---|
[2] | 778 | and the other end was closed.
|
---|
| 779 |
|
---|
| 780 | .. method:: fileno()
|
---|
| 781 |
|
---|
[391] | 782 | Return the file descriptor or handle used by the connection.
|
---|
[2] | 783 |
|
---|
| 784 | .. method:: close()
|
---|
| 785 |
|
---|
| 786 | Close the connection.
|
---|
| 787 |
|
---|
| 788 | This is called automatically when the connection is garbage collected.
|
---|
| 789 |
|
---|
| 790 | .. method:: poll([timeout])
|
---|
| 791 |
|
---|
| 792 | Return whether there is any data available to be read.
|
---|
| 793 |
|
---|
| 794 | If *timeout* is not specified then it will return immediately. If
|
---|
| 795 | *timeout* is a number then this specifies the maximum time in seconds to
|
---|
| 796 | block. If *timeout* is ``None`` then an infinite timeout is used.
|
---|
| 797 |
|
---|
| 798 | .. method:: send_bytes(buffer[, offset[, size]])
|
---|
| 799 |
|
---|
| 800 | Send byte data from an object supporting the buffer interface as a
|
---|
| 801 | complete message.
|
---|
| 802 |
|
---|
| 803 | If *offset* is given then data is read from that position in *buffer*. If
|
---|
[391] | 804 | *size* is given then that many bytes will be read from buffer. Very large
|
---|
| 805 | buffers (approximately 32 MB+, though it depends on the OS) may raise a
|
---|
| 806 | :exc:`ValueError` exception
|
---|
[2] | 807 |
|
---|
| 808 | .. method:: recv_bytes([maxlength])
|
---|
| 809 |
|
---|
| 810 | Return a complete message of byte data sent from the other end of the
|
---|
[391] | 811 | connection as a string. Blocks until there is something to receive.
|
---|
| 812 | Raises :exc:`EOFError` if there is nothing left
|
---|
[2] | 813 | to receive and the other end has closed.
|
---|
| 814 |
|
---|
| 815 | If *maxlength* is specified and the message is longer than *maxlength*
|
---|
| 816 | then :exc:`IOError` is raised and the connection will no longer be
|
---|
| 817 | readable.
|
---|
| 818 |
|
---|
| 819 | .. method:: recv_bytes_into(buffer[, offset])
|
---|
| 820 |
|
---|
| 821 | Read into *buffer* a complete message of byte data sent from the other end
|
---|
[391] | 822 | of the connection and return the number of bytes in the message. Blocks
|
---|
| 823 | until there is something to receive. Raises
|
---|
[2] | 824 | :exc:`EOFError` if there is nothing left to receive and the other end was
|
---|
| 825 | closed.
|
---|
| 826 |
|
---|
| 827 | *buffer* must be an object satisfying the writable buffer interface. If
|
---|
| 828 | *offset* is given then the message will be written into the buffer from
|
---|
| 829 | that position. Offset must be a non-negative integer less than the
|
---|
| 830 | length of *buffer* (in bytes).
|
---|
| 831 |
|
---|
| 832 | If the buffer is too short then a :exc:`BufferTooShort` exception is
|
---|
| 833 | raised and the complete message is available as ``e.args[0]`` where ``e``
|
---|
| 834 | is the exception instance.
|
---|
| 835 |
|
---|
| 836 |
|
---|
| 837 | For example:
|
---|
| 838 |
|
---|
| 839 | .. doctest::
|
---|
| 840 |
|
---|
| 841 | >>> from multiprocessing import Pipe
|
---|
| 842 | >>> a, b = Pipe()
|
---|
| 843 | >>> a.send([1, 'hello', None])
|
---|
| 844 | >>> b.recv()
|
---|
| 845 | [1, 'hello', None]
|
---|
| 846 | >>> b.send_bytes('thank you')
|
---|
| 847 | >>> a.recv_bytes()
|
---|
| 848 | 'thank you'
|
---|
| 849 | >>> import array
|
---|
| 850 | >>> arr1 = array.array('i', range(5))
|
---|
| 851 | >>> arr2 = array.array('i', [0] * 10)
|
---|
| 852 | >>> a.send_bytes(arr1)
|
---|
| 853 | >>> count = b.recv_bytes_into(arr2)
|
---|
| 854 | >>> assert count == len(arr1) * arr1.itemsize
|
---|
| 855 | >>> arr2
|
---|
| 856 | array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])
|
---|
| 857 |
|
---|
| 858 |
|
---|
| 859 | .. warning::
|
---|
| 860 |
|
---|
| 861 | The :meth:`Connection.recv` method automatically unpickles the data it
|
---|
| 862 | receives, which can be a security risk unless you can trust the process
|
---|
| 863 | which sent the message.
|
---|
| 864 |
|
---|
| 865 | Therefore, unless the connection object was produced using :func:`Pipe` you
|
---|
| 866 | should only use the :meth:`~Connection.recv` and :meth:`~Connection.send`
|
---|
| 867 | methods after performing some sort of authentication. See
|
---|
| 868 | :ref:`multiprocessing-auth-keys`.
|
---|
| 869 |
|
---|
| 870 | .. warning::
|
---|
| 871 |
|
---|
| 872 | If a process is killed while it is trying to read or write to a pipe then
|
---|
| 873 | the data in the pipe is likely to become corrupted, because it may become
|
---|
| 874 | impossible to be sure where the message boundaries lie.
|
---|
| 875 |
|
---|
| 876 |
|
---|
| 877 | Synchronization primitives
|
---|
| 878 | ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 879 |
|
---|
| 880 | Generally synchronization primitives are not as necessary in a multiprocess
|
---|
| 881 | program as they are in a multithreaded program. See the documentation for
|
---|
| 882 | :mod:`threading` module.
|
---|
| 883 |
|
---|
| 884 | Note that one can also create synchronization primitives by using a manager
|
---|
| 885 | object -- see :ref:`multiprocessing-managers`.
|
---|
| 886 |
|
---|
| 887 | .. class:: BoundedSemaphore([value])
|
---|
| 888 |
|
---|
| 889 | A bounded semaphore object: a clone of :class:`threading.BoundedSemaphore`.
|
---|
| 890 |
|
---|
[391] | 891 | (On Mac OS X, this is indistinguishable from :class:`Semaphore` because
|
---|
[2] | 892 | ``sem_getvalue()`` is not implemented on that platform).
|
---|
| 893 |
|
---|
| 894 | .. class:: Condition([lock])
|
---|
| 895 |
|
---|
| 896 | A condition variable: a clone of :class:`threading.Condition`.
|
---|
| 897 |
|
---|
| 898 | If *lock* is specified then it should be a :class:`Lock` or :class:`RLock`
|
---|
| 899 | object from :mod:`multiprocessing`.
|
---|
| 900 |
|
---|
| 901 | .. class:: Event()
|
---|
| 902 |
|
---|
| 903 | A clone of :class:`threading.Event`.
|
---|
[391] | 904 | This method returns the state of the internal semaphore on exit, so it
|
---|
| 905 | will always return ``True`` except if a timeout is given and the operation
|
---|
| 906 | times out.
|
---|
[2] | 907 |
|
---|
[391] | 908 | .. versionchanged:: 2.7
|
---|
| 909 | Previously, the method always returned ``None``.
|
---|
| 910 |
|
---|
[2] | 911 | .. class:: Lock()
|
---|
| 912 |
|
---|
| 913 | A non-recursive lock object: a clone of :class:`threading.Lock`.
|
---|
| 914 |
|
---|
| 915 | .. class:: RLock()
|
---|
| 916 |
|
---|
| 917 | A recursive lock object: a clone of :class:`threading.RLock`.
|
---|
| 918 |
|
---|
| 919 | .. class:: Semaphore([value])
|
---|
| 920 |
|
---|
[391] | 921 | A semaphore object: a clone of :class:`threading.Semaphore`.
|
---|
[2] | 922 |
|
---|
| 923 | .. note::
|
---|
| 924 |
|
---|
| 925 | The :meth:`acquire` method of :class:`BoundedSemaphore`, :class:`Lock`,
|
---|
| 926 | :class:`RLock` and :class:`Semaphore` has a timeout parameter not supported
|
---|
| 927 | by the equivalents in :mod:`threading`. The signature is
|
---|
| 928 | ``acquire(block=True, timeout=None)`` with keyword parameters being
|
---|
| 929 | acceptable. If *block* is ``True`` and *timeout* is not ``None`` then it
|
---|
| 930 | specifies a timeout in seconds. If *block* is ``False`` then *timeout* is
|
---|
| 931 | ignored.
|
---|
| 932 |
|
---|
[391] | 933 | On Mac OS X, ``sem_timedwait`` is unsupported, so calling ``acquire()`` with
|
---|
| 934 | a timeout will emulate that function's behavior using a sleeping loop.
|
---|
[2] | 935 |
|
---|
| 936 | .. note::
|
---|
| 937 |
|
---|
| 938 | If the SIGINT signal generated by Ctrl-C arrives while the main thread is
|
---|
| 939 | blocked by a call to :meth:`BoundedSemaphore.acquire`, :meth:`Lock.acquire`,
|
---|
| 940 | :meth:`RLock.acquire`, :meth:`Semaphore.acquire`, :meth:`Condition.acquire`
|
---|
| 941 | or :meth:`Condition.wait` then the call will be immediately interrupted and
|
---|
| 942 | :exc:`KeyboardInterrupt` will be raised.
|
---|
| 943 |
|
---|
| 944 | This differs from the behaviour of :mod:`threading` where SIGINT will be
|
---|
| 945 | ignored while the equivalent blocking calls are in progress.
|
---|
| 946 |
|
---|
| 947 |
|
---|
| 948 | Shared :mod:`ctypes` Objects
|
---|
| 949 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 950 |
|
---|
| 951 | It is possible to create shared objects using shared memory which can be
|
---|
| 952 | inherited by child processes.
|
---|
| 953 |
|
---|
| 954 | .. function:: Value(typecode_or_type, *args[, lock])
|
---|
| 955 |
|
---|
| 956 | Return a :mod:`ctypes` object allocated from shared memory. By default the
|
---|
| 957 | return value is actually a synchronized wrapper for the object.
|
---|
| 958 |
|
---|
| 959 | *typecode_or_type* determines the type of the returned object: it is either a
|
---|
| 960 | ctypes type or a one character typecode of the kind used by the :mod:`array`
|
---|
| 961 | module. *\*args* is passed on to the constructor for the type.
|
---|
| 962 |
|
---|
| 963 | If *lock* is ``True`` (the default) then a new lock object is created to
|
---|
| 964 | synchronize access to the value. If *lock* is a :class:`Lock` or
|
---|
| 965 | :class:`RLock` object then that will be used to synchronize access to the
|
---|
| 966 | value. If *lock* is ``False`` then access to the returned object will not be
|
---|
| 967 | automatically protected by a lock, so it will not necessarily be
|
---|
| 968 | "process-safe".
|
---|
| 969 |
|
---|
| 970 | Note that *lock* is a keyword-only argument.
|
---|
| 971 |
|
---|
| 972 | .. function:: Array(typecode_or_type, size_or_initializer, *, lock=True)
|
---|
| 973 |
|
---|
| 974 | Return a ctypes array allocated from shared memory. By default the return
|
---|
| 975 | value is actually a synchronized wrapper for the array.
|
---|
| 976 |
|
---|
| 977 | *typecode_or_type* determines the type of the elements of the returned array:
|
---|
| 978 | it is either a ctypes type or a one character typecode of the kind used by
|
---|
| 979 | the :mod:`array` module. If *size_or_initializer* is an integer, then it
|
---|
| 980 | determines the length of the array, and the array will be initially zeroed.
|
---|
| 981 | Otherwise, *size_or_initializer* is a sequence which is used to initialize
|
---|
| 982 | the array and whose length determines the length of the array.
|
---|
| 983 |
|
---|
| 984 | If *lock* is ``True`` (the default) then a new lock object is created to
|
---|
| 985 | synchronize access to the value. If *lock* is a :class:`Lock` or
|
---|
| 986 | :class:`RLock` object then that will be used to synchronize access to the
|
---|
| 987 | value. If *lock* is ``False`` then access to the returned object will not be
|
---|
| 988 | automatically protected by a lock, so it will not necessarily be
|
---|
| 989 | "process-safe".
|
---|
| 990 |
|
---|
| 991 | Note that *lock* is a keyword only argument.
|
---|
| 992 |
|
---|
| 993 | Note that an array of :data:`ctypes.c_char` has *value* and *raw*
|
---|
| 994 | attributes which allow one to use it to store and retrieve strings.
|
---|
| 995 |
|
---|
| 996 |
|
---|
| 997 | The :mod:`multiprocessing.sharedctypes` module
|
---|
| 998 | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
|
---|
| 999 |
|
---|
| 1000 | .. module:: multiprocessing.sharedctypes
|
---|
| 1001 | :synopsis: Allocate ctypes objects from shared memory.
|
---|
| 1002 |
|
---|
| 1003 | The :mod:`multiprocessing.sharedctypes` module provides functions for allocating
|
---|
| 1004 | :mod:`ctypes` objects from shared memory which can be inherited by child
|
---|
| 1005 | processes.
|
---|
| 1006 |
|
---|
| 1007 | .. note::
|
---|
| 1008 |
|
---|
| 1009 | Although it is possible to store a pointer in shared memory remember that
|
---|
| 1010 | this will refer to a location in the address space of a specific process.
|
---|
| 1011 | However, the pointer is quite likely to be invalid in the context of a second
|
---|
| 1012 | process and trying to dereference the pointer from the second process may
|
---|
| 1013 | cause a crash.
|
---|
| 1014 |
|
---|
| 1015 | .. function:: RawArray(typecode_or_type, size_or_initializer)
|
---|
| 1016 |
|
---|
| 1017 | Return a ctypes array allocated from shared memory.
|
---|
| 1018 |
|
---|
| 1019 | *typecode_or_type* determines the type of the elements of the returned array:
|
---|
| 1020 | it is either a ctypes type or a one character typecode of the kind used by
|
---|
| 1021 | the :mod:`array` module. If *size_or_initializer* is an integer then it
|
---|
| 1022 | determines the length of the array, and the array will be initially zeroed.
|
---|
| 1023 | Otherwise *size_or_initializer* is a sequence which is used to initialize the
|
---|
| 1024 | array and whose length determines the length of the array.
|
---|
| 1025 |
|
---|
| 1026 | Note that setting and getting an element is potentially non-atomic -- use
|
---|
| 1027 | :func:`Array` instead to make sure that access is automatically synchronized
|
---|
| 1028 | using a lock.
|
---|
| 1029 |
|
---|
| 1030 | .. function:: RawValue(typecode_or_type, *args)
|
---|
| 1031 |
|
---|
| 1032 | Return a ctypes object allocated from shared memory.
|
---|
| 1033 |
|
---|
| 1034 | *typecode_or_type* determines the type of the returned object: it is either a
|
---|
| 1035 | ctypes type or a one character typecode of the kind used by the :mod:`array`
|
---|
| 1036 | module. *\*args* is passed on to the constructor for the type.
|
---|
| 1037 |
|
---|
| 1038 | Note that setting and getting the value is potentially non-atomic -- use
|
---|
| 1039 | :func:`Value` instead to make sure that access is automatically synchronized
|
---|
| 1040 | using a lock.
|
---|
| 1041 |
|
---|
| 1042 | Note that an array of :data:`ctypes.c_char` has ``value`` and ``raw``
|
---|
| 1043 | attributes which allow one to use it to store and retrieve strings -- see
|
---|
| 1044 | documentation for :mod:`ctypes`.
|
---|
| 1045 |
|
---|
| 1046 | .. function:: Array(typecode_or_type, size_or_initializer, *args[, lock])
|
---|
| 1047 |
|
---|
| 1048 | The same as :func:`RawArray` except that depending on the value of *lock* a
|
---|
| 1049 | process-safe synchronization wrapper may be returned instead of a raw ctypes
|
---|
| 1050 | array.
|
---|
| 1051 |
|
---|
| 1052 | If *lock* is ``True`` (the default) then a new lock object is created to
|
---|
[391] | 1053 | synchronize access to the value. If *lock* is a
|
---|
| 1054 | :class:`~multiprocessing.Lock` or :class:`~multiprocessing.RLock` object
|
---|
| 1055 | then that will be used to synchronize access to the
|
---|
[2] | 1056 | value. If *lock* is ``False`` then access to the returned object will not be
|
---|
| 1057 | automatically protected by a lock, so it will not necessarily be
|
---|
| 1058 | "process-safe".
|
---|
| 1059 |
|
---|
| 1060 | Note that *lock* is a keyword-only argument.
|
---|
| 1061 |
|
---|
| 1062 | .. function:: Value(typecode_or_type, *args[, lock])
|
---|
| 1063 |
|
---|
| 1064 | The same as :func:`RawValue` except that depending on the value of *lock* a
|
---|
| 1065 | process-safe synchronization wrapper may be returned instead of a raw ctypes
|
---|
| 1066 | object.
|
---|
| 1067 |
|
---|
| 1068 | If *lock* is ``True`` (the default) then a new lock object is created to
|
---|
[391] | 1069 | synchronize access to the value. If *lock* is a :class:`~multiprocessing.Lock` or
|
---|
| 1070 | :class:`~multiprocessing.RLock` object then that will be used to synchronize access to the
|
---|
[2] | 1071 | value. If *lock* is ``False`` then access to the returned object will not be
|
---|
| 1072 | automatically protected by a lock, so it will not necessarily be
|
---|
| 1073 | "process-safe".
|
---|
| 1074 |
|
---|
| 1075 | Note that *lock* is a keyword-only argument.
|
---|
| 1076 |
|
---|
| 1077 | .. function:: copy(obj)
|
---|
| 1078 |
|
---|
| 1079 | Return a ctypes object allocated from shared memory which is a copy of the
|
---|
| 1080 | ctypes object *obj*.
|
---|
| 1081 |
|
---|
| 1082 | .. function:: synchronized(obj[, lock])
|
---|
| 1083 |
|
---|
| 1084 | Return a process-safe wrapper object for a ctypes object which uses *lock* to
|
---|
| 1085 | synchronize access. If *lock* is ``None`` (the default) then a
|
---|
| 1086 | :class:`multiprocessing.RLock` object is created automatically.
|
---|
| 1087 |
|
---|
| 1088 | A synchronized wrapper will have two methods in addition to those of the
|
---|
| 1089 | object it wraps: :meth:`get_obj` returns the wrapped object and
|
---|
| 1090 | :meth:`get_lock` returns the lock object used for synchronization.
|
---|
| 1091 |
|
---|
| 1092 | Note that accessing the ctypes object through the wrapper can be a lot slower
|
---|
| 1093 | than accessing the raw ctypes object.
|
---|
| 1094 |
|
---|
| 1095 |
|
---|
| 1096 | The table below compares the syntax for creating shared ctypes objects from
|
---|
| 1097 | shared memory with the normal ctypes syntax. (In the table ``MyStruct`` is some
|
---|
| 1098 | subclass of :class:`ctypes.Structure`.)
|
---|
| 1099 |
|
---|
| 1100 | ==================== ========================== ===========================
|
---|
| 1101 | ctypes sharedctypes using type sharedctypes using typecode
|
---|
| 1102 | ==================== ========================== ===========================
|
---|
| 1103 | c_double(2.4) RawValue(c_double, 2.4) RawValue('d', 2.4)
|
---|
| 1104 | MyStruct(4, 6) RawValue(MyStruct, 4, 6)
|
---|
| 1105 | (c_short * 7)() RawArray(c_short, 7) RawArray('h', 7)
|
---|
| 1106 | (c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray('i', (9, 2, 8))
|
---|
| 1107 | ==================== ========================== ===========================
|
---|
| 1108 |
|
---|
| 1109 |
|
---|
| 1110 | Below is an example where a number of ctypes objects are modified by a child
|
---|
| 1111 | process::
|
---|
| 1112 |
|
---|
| 1113 | from multiprocessing import Process, Lock
|
---|
| 1114 | from multiprocessing.sharedctypes import Value, Array
|
---|
| 1115 | from ctypes import Structure, c_double
|
---|
| 1116 |
|
---|
| 1117 | class Point(Structure):
|
---|
| 1118 | _fields_ = [('x', c_double), ('y', c_double)]
|
---|
| 1119 |
|
---|
| 1120 | def modify(n, x, s, A):
|
---|
| 1121 | n.value **= 2
|
---|
| 1122 | x.value **= 2
|
---|
| 1123 | s.value = s.value.upper()
|
---|
| 1124 | for a in A:
|
---|
| 1125 | a.x **= 2
|
---|
| 1126 | a.y **= 2
|
---|
| 1127 |
|
---|
| 1128 | if __name__ == '__main__':
|
---|
| 1129 | lock = Lock()
|
---|
| 1130 |
|
---|
| 1131 | n = Value('i', 7)
|
---|
| 1132 | x = Value(c_double, 1.0/3.0, lock=False)
|
---|
| 1133 | s = Array('c', 'hello world', lock=lock)
|
---|
| 1134 | A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)
|
---|
| 1135 |
|
---|
| 1136 | p = Process(target=modify, args=(n, x, s, A))
|
---|
| 1137 | p.start()
|
---|
| 1138 | p.join()
|
---|
| 1139 |
|
---|
| 1140 | print n.value
|
---|
| 1141 | print x.value
|
---|
| 1142 | print s.value
|
---|
| 1143 | print [(a.x, a.y) for a in A]
|
---|
| 1144 |
|
---|
| 1145 |
|
---|
| 1146 | .. highlightlang:: none
|
---|
| 1147 |
|
---|
| 1148 | The results printed are ::
|
---|
| 1149 |
|
---|
| 1150 | 49
|
---|
| 1151 | 0.1111111111111111
|
---|
| 1152 | HELLO WORLD
|
---|
| 1153 | [(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]
|
---|
| 1154 |
|
---|
| 1155 | .. highlightlang:: python
|
---|
| 1156 |
|
---|
| 1157 |
|
---|
| 1158 | .. _multiprocessing-managers:
|
---|
| 1159 |
|
---|
| 1160 | Managers
|
---|
| 1161 | ~~~~~~~~
|
---|
| 1162 |
|
---|
| 1163 | Managers provide a way to create data which can be shared between different
|
---|
| 1164 | processes. A manager object controls a server process which manages *shared
|
---|
| 1165 | objects*. Other processes can access the shared objects by using proxies.
|
---|
| 1166 |
|
---|
| 1167 | .. function:: multiprocessing.Manager()
|
---|
| 1168 |
|
---|
| 1169 | Returns a started :class:`~multiprocessing.managers.SyncManager` object which
|
---|
| 1170 | can be used for sharing objects between processes. The returned manager
|
---|
| 1171 | object corresponds to a spawned child process and has methods which will
|
---|
| 1172 | create shared objects and return corresponding proxies.
|
---|
| 1173 |
|
---|
| 1174 | .. module:: multiprocessing.managers
|
---|
| 1175 | :synopsis: Share data between process with shared objects.
|
---|
| 1176 |
|
---|
| 1177 | Manager processes will be shutdown as soon as they are garbage collected or
|
---|
| 1178 | their parent process exits. The manager classes are defined in the
|
---|
| 1179 | :mod:`multiprocessing.managers` module:
|
---|
| 1180 |
|
---|
| 1181 | .. class:: BaseManager([address[, authkey]])
|
---|
| 1182 |
|
---|
| 1183 | Create a BaseManager object.
|
---|
| 1184 |
|
---|
[391] | 1185 | Once created one should call :meth:`start` or ``get_server().serve_forever()`` to ensure
|
---|
[2] | 1186 | that the manager object refers to a started manager process.
|
---|
| 1187 |
|
---|
| 1188 | *address* is the address on which the manager process listens for new
|
---|
| 1189 | connections. If *address* is ``None`` then an arbitrary one is chosen.
|
---|
| 1190 |
|
---|
| 1191 | *authkey* is the authentication key which will be used to check the validity
|
---|
| 1192 | of incoming connections to the server process. If *authkey* is ``None`` then
|
---|
| 1193 | ``current_process().authkey``. Otherwise *authkey* is used and it
|
---|
| 1194 | must be a string.
|
---|
| 1195 |
|
---|
[391] | 1196 | .. method:: start([initializer[, initargs]])
|
---|
[2] | 1197 |
|
---|
[391] | 1198 | Start a subprocess to start the manager. If *initializer* is not ``None``
|
---|
| 1199 | then the subprocess will call ``initializer(*initargs)`` when it starts.
|
---|
[2] | 1200 |
|
---|
| 1201 | .. method:: get_server()
|
---|
| 1202 |
|
---|
| 1203 | Returns a :class:`Server` object which represents the actual server under
|
---|
| 1204 | the control of the Manager. The :class:`Server` object supports the
|
---|
| 1205 | :meth:`serve_forever` method::
|
---|
| 1206 |
|
---|
| 1207 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1208 | >>> manager = BaseManager(address=('', 50000), authkey='abc')
|
---|
| 1209 | >>> server = manager.get_server()
|
---|
| 1210 | >>> server.serve_forever()
|
---|
| 1211 |
|
---|
| 1212 | :class:`Server` additionally has an :attr:`address` attribute.
|
---|
| 1213 |
|
---|
| 1214 | .. method:: connect()
|
---|
| 1215 |
|
---|
| 1216 | Connect a local manager object to a remote manager process::
|
---|
| 1217 |
|
---|
| 1218 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1219 | >>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc')
|
---|
| 1220 | >>> m.connect()
|
---|
| 1221 |
|
---|
| 1222 | .. method:: shutdown()
|
---|
| 1223 |
|
---|
| 1224 | Stop the process used by the manager. This is only available if
|
---|
| 1225 | :meth:`start` has been used to start the server process.
|
---|
| 1226 |
|
---|
| 1227 | This can be called multiple times.
|
---|
| 1228 |
|
---|
| 1229 | .. method:: register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
|
---|
| 1230 |
|
---|
| 1231 | A classmethod which can be used for registering a type or callable with
|
---|
| 1232 | the manager class.
|
---|
| 1233 |
|
---|
| 1234 | *typeid* is a "type identifier" which is used to identify a particular
|
---|
| 1235 | type of shared object. This must be a string.
|
---|
| 1236 |
|
---|
| 1237 | *callable* is a callable used for creating objects for this type
|
---|
| 1238 | identifier. If a manager instance will be created using the
|
---|
| 1239 | :meth:`from_address` classmethod or if the *create_method* argument is
|
---|
| 1240 | ``False`` then this can be left as ``None``.
|
---|
| 1241 |
|
---|
| 1242 | *proxytype* is a subclass of :class:`BaseProxy` which is used to create
|
---|
| 1243 | proxies for shared objects with this *typeid*. If ``None`` then a proxy
|
---|
| 1244 | class is created automatically.
|
---|
| 1245 |
|
---|
| 1246 | *exposed* is used to specify a sequence of method names which proxies for
|
---|
| 1247 | this typeid should be allowed to access using
|
---|
| 1248 | :meth:`BaseProxy._callMethod`. (If *exposed* is ``None`` then
|
---|
| 1249 | :attr:`proxytype._exposed_` is used instead if it exists.) In the case
|
---|
| 1250 | where no exposed list is specified, all "public methods" of the shared
|
---|
| 1251 | object will be accessible. (Here a "public method" means any attribute
|
---|
[391] | 1252 | which has a :meth:`~object.__call__` method and whose name does not begin
|
---|
| 1253 | with ``'_'``.)
|
---|
[2] | 1254 |
|
---|
| 1255 | *method_to_typeid* is a mapping used to specify the return type of those
|
---|
| 1256 | exposed methods which should return a proxy. It maps method names to
|
---|
| 1257 | typeid strings. (If *method_to_typeid* is ``None`` then
|
---|
| 1258 | :attr:`proxytype._method_to_typeid_` is used instead if it exists.) If a
|
---|
| 1259 | method's name is not a key of this mapping or if the mapping is ``None``
|
---|
| 1260 | then the object returned by the method will be copied by value.
|
---|
| 1261 |
|
---|
| 1262 | *create_method* determines whether a method should be created with name
|
---|
| 1263 | *typeid* which can be used to tell the server process to create a new
|
---|
| 1264 | shared object and return a proxy for it. By default it is ``True``.
|
---|
| 1265 |
|
---|
| 1266 | :class:`BaseManager` instances also have one read-only property:
|
---|
| 1267 |
|
---|
| 1268 | .. attribute:: address
|
---|
| 1269 |
|
---|
| 1270 | The address used by the manager.
|
---|
| 1271 |
|
---|
| 1272 |
|
---|
| 1273 | .. class:: SyncManager
|
---|
| 1274 |
|
---|
| 1275 | A subclass of :class:`BaseManager` which can be used for the synchronization
|
---|
| 1276 | of processes. Objects of this type are returned by
|
---|
| 1277 | :func:`multiprocessing.Manager`.
|
---|
| 1278 |
|
---|
| 1279 | It also supports creation of shared lists and dictionaries.
|
---|
| 1280 |
|
---|
| 1281 | .. method:: BoundedSemaphore([value])
|
---|
| 1282 |
|
---|
| 1283 | Create a shared :class:`threading.BoundedSemaphore` object and return a
|
---|
| 1284 | proxy for it.
|
---|
| 1285 |
|
---|
| 1286 | .. method:: Condition([lock])
|
---|
| 1287 |
|
---|
| 1288 | Create a shared :class:`threading.Condition` object and return a proxy for
|
---|
| 1289 | it.
|
---|
| 1290 |
|
---|
| 1291 | If *lock* is supplied then it should be a proxy for a
|
---|
| 1292 | :class:`threading.Lock` or :class:`threading.RLock` object.
|
---|
| 1293 |
|
---|
| 1294 | .. method:: Event()
|
---|
| 1295 |
|
---|
| 1296 | Create a shared :class:`threading.Event` object and return a proxy for it.
|
---|
| 1297 |
|
---|
| 1298 | .. method:: Lock()
|
---|
| 1299 |
|
---|
| 1300 | Create a shared :class:`threading.Lock` object and return a proxy for it.
|
---|
| 1301 |
|
---|
| 1302 | .. method:: Namespace()
|
---|
| 1303 |
|
---|
| 1304 | Create a shared :class:`Namespace` object and return a proxy for it.
|
---|
| 1305 |
|
---|
| 1306 | .. method:: Queue([maxsize])
|
---|
| 1307 |
|
---|
| 1308 | Create a shared :class:`Queue.Queue` object and return a proxy for it.
|
---|
| 1309 |
|
---|
| 1310 | .. method:: RLock()
|
---|
| 1311 |
|
---|
| 1312 | Create a shared :class:`threading.RLock` object and return a proxy for it.
|
---|
| 1313 |
|
---|
| 1314 | .. method:: Semaphore([value])
|
---|
| 1315 |
|
---|
| 1316 | Create a shared :class:`threading.Semaphore` object and return a proxy for
|
---|
| 1317 | it.
|
---|
| 1318 |
|
---|
| 1319 | .. method:: Array(typecode, sequence)
|
---|
| 1320 |
|
---|
| 1321 | Create an array and return a proxy for it.
|
---|
| 1322 |
|
---|
| 1323 | .. method:: Value(typecode, value)
|
---|
| 1324 |
|
---|
| 1325 | Create an object with a writable ``value`` attribute and return a proxy
|
---|
| 1326 | for it.
|
---|
| 1327 |
|
---|
| 1328 | .. method:: dict()
|
---|
| 1329 | dict(mapping)
|
---|
| 1330 | dict(sequence)
|
---|
| 1331 |
|
---|
| 1332 | Create a shared ``dict`` object and return a proxy for it.
|
---|
| 1333 |
|
---|
| 1334 | .. method:: list()
|
---|
| 1335 | list(sequence)
|
---|
| 1336 |
|
---|
| 1337 | Create a shared ``list`` object and return a proxy for it.
|
---|
| 1338 |
|
---|
[391] | 1339 | .. note::
|
---|
[2] | 1340 |
|
---|
[391] | 1341 | Modifications to mutable values or items in dict and list proxies will not
|
---|
| 1342 | be propagated through the manager, because the proxy has no way of knowing
|
---|
| 1343 | when its values or items are modified. To modify such an item, you can
|
---|
| 1344 | re-assign the modified object to the container proxy::
|
---|
| 1345 |
|
---|
| 1346 | # create a list proxy and append a mutable object (a dictionary)
|
---|
| 1347 | lproxy = manager.list()
|
---|
| 1348 | lproxy.append({})
|
---|
| 1349 | # now mutate the dictionary
|
---|
| 1350 | d = lproxy[0]
|
---|
| 1351 | d['a'] = 1
|
---|
| 1352 | d['b'] = 2
|
---|
| 1353 | # at this point, the changes to d are not yet synced, but by
|
---|
| 1354 | # reassigning the dictionary, the proxy is notified of the change
|
---|
| 1355 | lproxy[0] = d
|
---|
| 1356 |
|
---|
| 1357 |
|
---|
[2] | 1358 | Namespace objects
|
---|
| 1359 | >>>>>>>>>>>>>>>>>
|
---|
| 1360 |
|
---|
| 1361 | A namespace object has no public methods, but does have writable attributes.
|
---|
| 1362 | Its representation shows the values of its attributes.
|
---|
| 1363 |
|
---|
| 1364 | However, when using a proxy for a namespace object, an attribute beginning with
|
---|
| 1365 | ``'_'`` will be an attribute of the proxy and not an attribute of the referent:
|
---|
| 1366 |
|
---|
| 1367 | .. doctest::
|
---|
| 1368 |
|
---|
| 1369 | >>> manager = multiprocessing.Manager()
|
---|
| 1370 | >>> Global = manager.Namespace()
|
---|
| 1371 | >>> Global.x = 10
|
---|
| 1372 | >>> Global.y = 'hello'
|
---|
| 1373 | >>> Global._z = 12.3 # this is an attribute of the proxy
|
---|
| 1374 | >>> print Global
|
---|
| 1375 | Namespace(x=10, y='hello')
|
---|
| 1376 |
|
---|
| 1377 |
|
---|
| 1378 | Customized managers
|
---|
| 1379 | >>>>>>>>>>>>>>>>>>>
|
---|
| 1380 |
|
---|
| 1381 | To create one's own manager, one creates a subclass of :class:`BaseManager` and
|
---|
[391] | 1382 | uses the :meth:`~BaseManager.register` classmethod to register new types or
|
---|
[2] | 1383 | callables with the manager class. For example::
|
---|
| 1384 |
|
---|
| 1385 | from multiprocessing.managers import BaseManager
|
---|
| 1386 |
|
---|
| 1387 | class MathsClass(object):
|
---|
| 1388 | def add(self, x, y):
|
---|
| 1389 | return x + y
|
---|
| 1390 | def mul(self, x, y):
|
---|
| 1391 | return x * y
|
---|
| 1392 |
|
---|
| 1393 | class MyManager(BaseManager):
|
---|
| 1394 | pass
|
---|
| 1395 |
|
---|
| 1396 | MyManager.register('Maths', MathsClass)
|
---|
| 1397 |
|
---|
| 1398 | if __name__ == '__main__':
|
---|
| 1399 | manager = MyManager()
|
---|
| 1400 | manager.start()
|
---|
| 1401 | maths = manager.Maths()
|
---|
| 1402 | print maths.add(4, 3) # prints 7
|
---|
| 1403 | print maths.mul(7, 8) # prints 56
|
---|
| 1404 |
|
---|
| 1405 |
|
---|
| 1406 | Using a remote manager
|
---|
| 1407 | >>>>>>>>>>>>>>>>>>>>>>
|
---|
| 1408 |
|
---|
| 1409 | It is possible to run a manager server on one machine and have clients use it
|
---|
| 1410 | from other machines (assuming that the firewalls involved allow it).
|
---|
| 1411 |
|
---|
| 1412 | Running the following commands creates a server for a single shared queue which
|
---|
| 1413 | remote clients can access::
|
---|
| 1414 |
|
---|
| 1415 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1416 | >>> import Queue
|
---|
| 1417 | >>> queue = Queue.Queue()
|
---|
| 1418 | >>> class QueueManager(BaseManager): pass
|
---|
| 1419 | >>> QueueManager.register('get_queue', callable=lambda:queue)
|
---|
| 1420 | >>> m = QueueManager(address=('', 50000), authkey='abracadabra')
|
---|
| 1421 | >>> s = m.get_server()
|
---|
| 1422 | >>> s.serve_forever()
|
---|
| 1423 |
|
---|
| 1424 | One client can access the server as follows::
|
---|
| 1425 |
|
---|
| 1426 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1427 | >>> class QueueManager(BaseManager): pass
|
---|
| 1428 | >>> QueueManager.register('get_queue')
|
---|
| 1429 | >>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
|
---|
| 1430 | >>> m.connect()
|
---|
| 1431 | >>> queue = m.get_queue()
|
---|
| 1432 | >>> queue.put('hello')
|
---|
| 1433 |
|
---|
| 1434 | Another client can also use it::
|
---|
| 1435 |
|
---|
| 1436 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1437 | >>> class QueueManager(BaseManager): pass
|
---|
| 1438 | >>> QueueManager.register('get_queue')
|
---|
| 1439 | >>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
|
---|
| 1440 | >>> m.connect()
|
---|
| 1441 | >>> queue = m.get_queue()
|
---|
| 1442 | >>> queue.get()
|
---|
| 1443 | 'hello'
|
---|
| 1444 |
|
---|
| 1445 | Local processes can also access that queue, using the code from above on the
|
---|
| 1446 | client to access it remotely::
|
---|
| 1447 |
|
---|
| 1448 | >>> from multiprocessing import Process, Queue
|
---|
| 1449 | >>> from multiprocessing.managers import BaseManager
|
---|
| 1450 | >>> class Worker(Process):
|
---|
| 1451 | ... def __init__(self, q):
|
---|
| 1452 | ... self.q = q
|
---|
| 1453 | ... super(Worker, self).__init__()
|
---|
| 1454 | ... def run(self):
|
---|
| 1455 | ... self.q.put('local hello')
|
---|
| 1456 | ...
|
---|
| 1457 | >>> queue = Queue()
|
---|
| 1458 | >>> w = Worker(queue)
|
---|
| 1459 | >>> w.start()
|
---|
| 1460 | >>> class QueueManager(BaseManager): pass
|
---|
| 1461 | ...
|
---|
| 1462 | >>> QueueManager.register('get_queue', callable=lambda: queue)
|
---|
| 1463 | >>> m = QueueManager(address=('', 50000), authkey='abracadabra')
|
---|
| 1464 | >>> s = m.get_server()
|
---|
| 1465 | >>> s.serve_forever()
|
---|
| 1466 |
|
---|
| 1467 | Proxy Objects
|
---|
| 1468 | ~~~~~~~~~~~~~
|
---|
| 1469 |
|
---|
| 1470 | A proxy is an object which *refers* to a shared object which lives (presumably)
|
---|
| 1471 | in a different process. The shared object is said to be the *referent* of the
|
---|
| 1472 | proxy. Multiple proxy objects may have the same referent.
|
---|
| 1473 |
|
---|
| 1474 | A proxy object has methods which invoke corresponding methods of its referent
|
---|
| 1475 | (although not every method of the referent will necessarily be available through
|
---|
| 1476 | the proxy). A proxy can usually be used in most of the same ways that its
|
---|
| 1477 | referent can:
|
---|
| 1478 |
|
---|
| 1479 | .. doctest::
|
---|
| 1480 |
|
---|
| 1481 | >>> from multiprocessing import Manager
|
---|
| 1482 | >>> manager = Manager()
|
---|
| 1483 | >>> l = manager.list([i*i for i in range(10)])
|
---|
| 1484 | >>> print l
|
---|
| 1485 | [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
|
---|
| 1486 | >>> print repr(l)
|
---|
| 1487 | <ListProxy object, typeid 'list' at 0x...>
|
---|
| 1488 | >>> l[4]
|
---|
| 1489 | 16
|
---|
| 1490 | >>> l[2:5]
|
---|
| 1491 | [4, 9, 16]
|
---|
| 1492 |
|
---|
| 1493 | Notice that applying :func:`str` to a proxy will return the representation of
|
---|
| 1494 | the referent, whereas applying :func:`repr` will return the representation of
|
---|
| 1495 | the proxy.
|
---|
| 1496 |
|
---|
| 1497 | An important feature of proxy objects is that they are picklable so they can be
|
---|
| 1498 | passed between processes. Note, however, that if a proxy is sent to the
|
---|
| 1499 | corresponding manager's process then unpickling it will produce the referent
|
---|
| 1500 | itself. This means, for example, that one shared object can contain a second:
|
---|
| 1501 |
|
---|
| 1502 | .. doctest::
|
---|
| 1503 |
|
---|
| 1504 | >>> a = manager.list()
|
---|
| 1505 | >>> b = manager.list()
|
---|
| 1506 | >>> a.append(b) # referent of a now contains referent of b
|
---|
| 1507 | >>> print a, b
|
---|
| 1508 | [[]] []
|
---|
| 1509 | >>> b.append('hello')
|
---|
| 1510 | >>> print a, b
|
---|
| 1511 | [['hello']] ['hello']
|
---|
| 1512 |
|
---|
| 1513 | .. note::
|
---|
| 1514 |
|
---|
| 1515 | The proxy types in :mod:`multiprocessing` do nothing to support comparisons
|
---|
| 1516 | by value. So, for instance, we have:
|
---|
| 1517 |
|
---|
| 1518 | .. doctest::
|
---|
| 1519 |
|
---|
| 1520 | >>> manager.list([1,2,3]) == [1,2,3]
|
---|
| 1521 | False
|
---|
| 1522 |
|
---|
| 1523 | One should just use a copy of the referent instead when making comparisons.
|
---|
| 1524 |
|
---|
| 1525 | .. class:: BaseProxy
|
---|
| 1526 |
|
---|
| 1527 | Proxy objects are instances of subclasses of :class:`BaseProxy`.
|
---|
| 1528 |
|
---|
| 1529 | .. method:: _callmethod(methodname[, args[, kwds]])
|
---|
| 1530 |
|
---|
| 1531 | Call and return the result of a method of the proxy's referent.
|
---|
| 1532 |
|
---|
| 1533 | If ``proxy`` is a proxy whose referent is ``obj`` then the expression ::
|
---|
| 1534 |
|
---|
| 1535 | proxy._callmethod(methodname, args, kwds)
|
---|
| 1536 |
|
---|
| 1537 | will evaluate the expression ::
|
---|
| 1538 |
|
---|
| 1539 | getattr(obj, methodname)(*args, **kwds)
|
---|
| 1540 |
|
---|
| 1541 | in the manager's process.
|
---|
| 1542 |
|
---|
| 1543 | The returned value will be a copy of the result of the call or a proxy to
|
---|
| 1544 | a new shared object -- see documentation for the *method_to_typeid*
|
---|
| 1545 | argument of :meth:`BaseManager.register`.
|
---|
| 1546 |
|
---|
[391] | 1547 | If an exception is raised by the call, then is re-raised by
|
---|
[2] | 1548 | :meth:`_callmethod`. If some other exception is raised in the manager's
|
---|
| 1549 | process then this is converted into a :exc:`RemoteError` exception and is
|
---|
| 1550 | raised by :meth:`_callmethod`.
|
---|
| 1551 |
|
---|
| 1552 | Note in particular that an exception will be raised if *methodname* has
|
---|
| 1553 | not been *exposed*
|
---|
| 1554 |
|
---|
| 1555 | An example of the usage of :meth:`_callmethod`:
|
---|
| 1556 |
|
---|
| 1557 | .. doctest::
|
---|
| 1558 |
|
---|
| 1559 | >>> l = manager.list(range(10))
|
---|
| 1560 | >>> l._callmethod('__len__')
|
---|
| 1561 | 10
|
---|
| 1562 | >>> l._callmethod('__getslice__', (2, 7)) # equiv to `l[2:7]`
|
---|
| 1563 | [2, 3, 4, 5, 6]
|
---|
| 1564 | >>> l._callmethod('__getitem__', (20,)) # equiv to `l[20]`
|
---|
| 1565 | Traceback (most recent call last):
|
---|
| 1566 | ...
|
---|
| 1567 | IndexError: list index out of range
|
---|
| 1568 |
|
---|
| 1569 | .. method:: _getvalue()
|
---|
| 1570 |
|
---|
| 1571 | Return a copy of the referent.
|
---|
| 1572 |
|
---|
| 1573 | If the referent is unpicklable then this will raise an exception.
|
---|
| 1574 |
|
---|
| 1575 | .. method:: __repr__
|
---|
| 1576 |
|
---|
| 1577 | Return a representation of the proxy object.
|
---|
| 1578 |
|
---|
| 1579 | .. method:: __str__
|
---|
| 1580 |
|
---|
| 1581 | Return the representation of the referent.
|
---|
| 1582 |
|
---|
| 1583 |
|
---|
| 1584 | Cleanup
|
---|
| 1585 | >>>>>>>
|
---|
| 1586 |
|
---|
| 1587 | A proxy object uses a weakref callback so that when it gets garbage collected it
|
---|
| 1588 | deregisters itself from the manager which owns its referent.
|
---|
| 1589 |
|
---|
| 1590 | A shared object gets deleted from the manager process when there are no longer
|
---|
| 1591 | any proxies referring to it.
|
---|
| 1592 |
|
---|
| 1593 |
|
---|
| 1594 | Process Pools
|
---|
| 1595 | ~~~~~~~~~~~~~
|
---|
| 1596 |
|
---|
| 1597 | .. module:: multiprocessing.pool
|
---|
| 1598 | :synopsis: Create pools of processes.
|
---|
| 1599 |
|
---|
| 1600 | One can create a pool of processes which will carry out tasks submitted to it
|
---|
| 1601 | with the :class:`Pool` class.
|
---|
| 1602 |
|
---|
[391] | 1603 | .. class:: multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
|
---|
[2] | 1604 |
|
---|
| 1605 | A process pool object which controls a pool of worker processes to which jobs
|
---|
| 1606 | can be submitted. It supports asynchronous results with timeouts and
|
---|
| 1607 | callbacks and has a parallel map implementation.
|
---|
| 1608 |
|
---|
| 1609 | *processes* is the number of worker processes to use. If *processes* is
|
---|
| 1610 | ``None`` then the number returned by :func:`cpu_count` is used. If
|
---|
| 1611 | *initializer* is not ``None`` then each worker process will call
|
---|
| 1612 | ``initializer(*initargs)`` when it starts.
|
---|
| 1613 |
|
---|
[391] | 1614 | Note that the methods of the pool object should only be called by
|
---|
| 1615 | the process which created the pool.
|
---|
| 1616 |
|
---|
| 1617 | .. versionadded:: 2.7
|
---|
| 1618 | *maxtasksperchild* is the number of tasks a worker process can complete
|
---|
| 1619 | before it will exit and be replaced with a fresh worker process, to enable
|
---|
| 1620 | unused resources to be freed. The default *maxtasksperchild* is None, which
|
---|
| 1621 | means worker processes will live as long as the pool.
|
---|
| 1622 |
|
---|
| 1623 | .. note::
|
---|
| 1624 |
|
---|
| 1625 | Worker processes within a :class:`Pool` typically live for the complete
|
---|
| 1626 | duration of the Pool's work queue. A frequent pattern found in other
|
---|
| 1627 | systems (such as Apache, mod_wsgi, etc) to free resources held by
|
---|
| 1628 | workers is to allow a worker within a pool to complete only a set
|
---|
| 1629 | amount of work before being exiting, being cleaned up and a new
|
---|
| 1630 | process spawned to replace the old one. The *maxtasksperchild*
|
---|
| 1631 | argument to the :class:`Pool` exposes this ability to the end user.
|
---|
| 1632 |
|
---|
[2] | 1633 | .. method:: apply(func[, args[, kwds]])
|
---|
| 1634 |
|
---|
[391] | 1635 | Equivalent of the :func:`apply` built-in function. It blocks until the
|
---|
| 1636 | result is ready, so :meth:`apply_async` is better suited for performing
|
---|
| 1637 | work in parallel. Additionally, *func* is only executed in one of the
|
---|
| 1638 | workers of the pool.
|
---|
[2] | 1639 |
|
---|
| 1640 | .. method:: apply_async(func[, args[, kwds[, callback]]])
|
---|
| 1641 |
|
---|
| 1642 | A variant of the :meth:`apply` method which returns a result object.
|
---|
| 1643 |
|
---|
| 1644 | If *callback* is specified then it should be a callable which accepts a
|
---|
| 1645 | single argument. When the result becomes ready *callback* is applied to
|
---|
| 1646 | it (unless the call failed). *callback* should complete immediately since
|
---|
| 1647 | otherwise the thread which handles the results will get blocked.
|
---|
| 1648 |
|
---|
| 1649 | .. method:: map(func, iterable[, chunksize])
|
---|
| 1650 |
|
---|
| 1651 | A parallel equivalent of the :func:`map` built-in function (it supports only
|
---|
[391] | 1652 | one *iterable* argument though). It blocks until the result is ready.
|
---|
[2] | 1653 |
|
---|
| 1654 | This method chops the iterable into a number of chunks which it submits to
|
---|
| 1655 | the process pool as separate tasks. The (approximate) size of these
|
---|
| 1656 | chunks can be specified by setting *chunksize* to a positive integer.
|
---|
| 1657 |
|
---|
| 1658 | .. method:: map_async(func, iterable[, chunksize[, callback]])
|
---|
| 1659 |
|
---|
| 1660 | A variant of the :meth:`.map` method which returns a result object.
|
---|
| 1661 |
|
---|
| 1662 | If *callback* is specified then it should be a callable which accepts a
|
---|
| 1663 | single argument. When the result becomes ready *callback* is applied to
|
---|
| 1664 | it (unless the call failed). *callback* should complete immediately since
|
---|
| 1665 | otherwise the thread which handles the results will get blocked.
|
---|
| 1666 |
|
---|
| 1667 | .. method:: imap(func, iterable[, chunksize])
|
---|
| 1668 |
|
---|
| 1669 | An equivalent of :func:`itertools.imap`.
|
---|
| 1670 |
|
---|
| 1671 | The *chunksize* argument is the same as the one used by the :meth:`.map`
|
---|
| 1672 | method. For very long iterables using a large value for *chunksize* can
|
---|
[391] | 1673 | make the job complete **much** faster than using the default value of
|
---|
[2] | 1674 | ``1``.
|
---|
| 1675 |
|
---|
| 1676 | Also if *chunksize* is ``1`` then the :meth:`!next` method of the iterator
|
---|
| 1677 | returned by the :meth:`imap` method has an optional *timeout* parameter:
|
---|
| 1678 | ``next(timeout)`` will raise :exc:`multiprocessing.TimeoutError` if the
|
---|
| 1679 | result cannot be returned within *timeout* seconds.
|
---|
| 1680 |
|
---|
| 1681 | .. method:: imap_unordered(func, iterable[, chunksize])
|
---|
| 1682 |
|
---|
| 1683 | The same as :meth:`imap` except that the ordering of the results from the
|
---|
| 1684 | returned iterator should be considered arbitrary. (Only when there is
|
---|
| 1685 | only one worker process is the order guaranteed to be "correct".)
|
---|
| 1686 |
|
---|
| 1687 | .. method:: close()
|
---|
| 1688 |
|
---|
| 1689 | Prevents any more tasks from being submitted to the pool. Once all the
|
---|
| 1690 | tasks have been completed the worker processes will exit.
|
---|
| 1691 |
|
---|
| 1692 | .. method:: terminate()
|
---|
| 1693 |
|
---|
| 1694 | Stops the worker processes immediately without completing outstanding
|
---|
| 1695 | work. When the pool object is garbage collected :meth:`terminate` will be
|
---|
| 1696 | called immediately.
|
---|
| 1697 |
|
---|
| 1698 | .. method:: join()
|
---|
| 1699 |
|
---|
| 1700 | Wait for the worker processes to exit. One must call :meth:`close` or
|
---|
| 1701 | :meth:`terminate` before using :meth:`join`.
|
---|
| 1702 |
|
---|
| 1703 |
|
---|
| 1704 | .. class:: AsyncResult
|
---|
| 1705 |
|
---|
| 1706 | The class of the result returned by :meth:`Pool.apply_async` and
|
---|
| 1707 | :meth:`Pool.map_async`.
|
---|
| 1708 |
|
---|
| 1709 | .. method:: get([timeout])
|
---|
| 1710 |
|
---|
| 1711 | Return the result when it arrives. If *timeout* is not ``None`` and the
|
---|
| 1712 | result does not arrive within *timeout* seconds then
|
---|
| 1713 | :exc:`multiprocessing.TimeoutError` is raised. If the remote call raised
|
---|
| 1714 | an exception then that exception will be reraised by :meth:`get`.
|
---|
| 1715 |
|
---|
| 1716 | .. method:: wait([timeout])
|
---|
| 1717 |
|
---|
| 1718 | Wait until the result is available or until *timeout* seconds pass.
|
---|
| 1719 |
|
---|
| 1720 | .. method:: ready()
|
---|
| 1721 |
|
---|
| 1722 | Return whether the call has completed.
|
---|
| 1723 |
|
---|
| 1724 | .. method:: successful()
|
---|
| 1725 |
|
---|
| 1726 | Return whether the call completed without raising an exception. Will
|
---|
| 1727 | raise :exc:`AssertionError` if the result is not ready.
|
---|
| 1728 |
|
---|
| 1729 | The following example demonstrates the use of a pool::
|
---|
| 1730 |
|
---|
| 1731 | from multiprocessing import Pool
|
---|
| 1732 |
|
---|
| 1733 | def f(x):
|
---|
| 1734 | return x*x
|
---|
| 1735 |
|
---|
| 1736 | if __name__ == '__main__':
|
---|
| 1737 | pool = Pool(processes=4) # start 4 worker processes
|
---|
| 1738 |
|
---|
| 1739 | result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
|
---|
| 1740 | print result.get(timeout=1) # prints "100" unless your computer is *very* slow
|
---|
| 1741 |
|
---|
| 1742 | print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
|
---|
| 1743 |
|
---|
| 1744 | it = pool.imap(f, range(10))
|
---|
| 1745 | print it.next() # prints "0"
|
---|
| 1746 | print it.next() # prints "1"
|
---|
| 1747 | print it.next(timeout=1) # prints "4" unless your computer is *very* slow
|
---|
| 1748 |
|
---|
| 1749 | import time
|
---|
| 1750 | result = pool.apply_async(time.sleep, (10,))
|
---|
| 1751 | print result.get(timeout=1) # raises TimeoutError
|
---|
| 1752 |
|
---|
| 1753 |
|
---|
| 1754 | .. _multiprocessing-listeners-clients:
|
---|
| 1755 |
|
---|
| 1756 | Listeners and Clients
|
---|
| 1757 | ~~~~~~~~~~~~~~~~~~~~~
|
---|
| 1758 |
|
---|
| 1759 | .. module:: multiprocessing.connection
|
---|
| 1760 | :synopsis: API for dealing with sockets.
|
---|
| 1761 |
|
---|
| 1762 | Usually message passing between processes is done using queues or by using
|
---|
[391] | 1763 | :class:`~multiprocessing.Connection` objects returned by
|
---|
| 1764 | :func:`~multiprocessing.Pipe`.
|
---|
[2] | 1765 |
|
---|
| 1766 | However, the :mod:`multiprocessing.connection` module allows some extra
|
---|
| 1767 | flexibility. It basically gives a high level message oriented API for dealing
|
---|
| 1768 | with sockets or Windows named pipes, and also has support for *digest
|
---|
| 1769 | authentication* using the :mod:`hmac` module.
|
---|
| 1770 |
|
---|
| 1771 |
|
---|
| 1772 | .. function:: deliver_challenge(connection, authkey)
|
---|
| 1773 |
|
---|
| 1774 | Send a randomly generated message to the other end of the connection and wait
|
---|
| 1775 | for a reply.
|
---|
| 1776 |
|
---|
| 1777 | If the reply matches the digest of the message using *authkey* as the key
|
---|
| 1778 | then a welcome message is sent to the other end of the connection. Otherwise
|
---|
| 1779 | :exc:`AuthenticationError` is raised.
|
---|
| 1780 |
|
---|
[391] | 1781 | .. function:: answer_challenge(connection, authkey)
|
---|
[2] | 1782 |
|
---|
| 1783 | Receive a message, calculate the digest of the message using *authkey* as the
|
---|
| 1784 | key, and then send the digest back.
|
---|
| 1785 |
|
---|
| 1786 | If a welcome message is not received, then :exc:`AuthenticationError` is
|
---|
| 1787 | raised.
|
---|
| 1788 |
|
---|
| 1789 | .. function:: Client(address[, family[, authenticate[, authkey]]])
|
---|
| 1790 |
|
---|
| 1791 | Attempt to set up a connection to the listener which is using address
|
---|
| 1792 | *address*, returning a :class:`~multiprocessing.Connection`.
|
---|
| 1793 |
|
---|
| 1794 | The type of the connection is determined by *family* argument, but this can
|
---|
| 1795 | generally be omitted since it can usually be inferred from the format of
|
---|
| 1796 | *address*. (See :ref:`multiprocessing-address-formats`)
|
---|
| 1797 |
|
---|
| 1798 | If *authenticate* is ``True`` or *authkey* is a string then digest
|
---|
| 1799 | authentication is used. The key used for authentication will be either
|
---|
| 1800 | *authkey* or ``current_process().authkey)`` if *authkey* is ``None``.
|
---|
| 1801 | If authentication fails then :exc:`AuthenticationError` is raised. See
|
---|
| 1802 | :ref:`multiprocessing-auth-keys`.
|
---|
| 1803 |
|
---|
| 1804 | .. class:: Listener([address[, family[, backlog[, authenticate[, authkey]]]]])
|
---|
| 1805 |
|
---|
| 1806 | A wrapper for a bound socket or Windows named pipe which is 'listening' for
|
---|
| 1807 | connections.
|
---|
| 1808 |
|
---|
| 1809 | *address* is the address to be used by the bound socket or named pipe of the
|
---|
| 1810 | listener object.
|
---|
| 1811 |
|
---|
| 1812 | .. note::
|
---|
| 1813 |
|
---|
| 1814 | If an address of '0.0.0.0' is used, the address will not be a connectable
|
---|
| 1815 | end point on Windows. If you require a connectable end-point,
|
---|
| 1816 | you should use '127.0.0.1'.
|
---|
| 1817 |
|
---|
| 1818 | *family* is the type of socket (or named pipe) to use. This can be one of
|
---|
| 1819 | the strings ``'AF_INET'`` (for a TCP socket), ``'AF_UNIX'`` (for a Unix
|
---|
| 1820 | domain socket) or ``'AF_PIPE'`` (for a Windows named pipe). Of these only
|
---|
| 1821 | the first is guaranteed to be available. If *family* is ``None`` then the
|
---|
| 1822 | family is inferred from the format of *address*. If *address* is also
|
---|
| 1823 | ``None`` then a default is chosen. This default is the family which is
|
---|
| 1824 | assumed to be the fastest available. See
|
---|
| 1825 | :ref:`multiprocessing-address-formats`. Note that if *family* is
|
---|
| 1826 | ``'AF_UNIX'`` and address is ``None`` then the socket will be created in a
|
---|
| 1827 | private temporary directory created using :func:`tempfile.mkstemp`.
|
---|
| 1828 |
|
---|
| 1829 | If the listener object uses a socket then *backlog* (1 by default) is passed
|
---|
[391] | 1830 | to the :meth:`~socket.socket.listen` method of the socket once it has been
|
---|
| 1831 | bound.
|
---|
[2] | 1832 |
|
---|
| 1833 | If *authenticate* is ``True`` (``False`` by default) or *authkey* is not
|
---|
| 1834 | ``None`` then digest authentication is used.
|
---|
| 1835 |
|
---|
| 1836 | If *authkey* is a string then it will be used as the authentication key;
|
---|
| 1837 | otherwise it must be *None*.
|
---|
| 1838 |
|
---|
| 1839 | If *authkey* is ``None`` and *authenticate* is ``True`` then
|
---|
| 1840 | ``current_process().authkey`` is used as the authentication key. If
|
---|
| 1841 | *authkey* is ``None`` and *authenticate* is ``False`` then no
|
---|
| 1842 | authentication is done. If authentication fails then
|
---|
| 1843 | :exc:`AuthenticationError` is raised. See :ref:`multiprocessing-auth-keys`.
|
---|
| 1844 |
|
---|
| 1845 | .. method:: accept()
|
---|
| 1846 |
|
---|
| 1847 | Accept a connection on the bound socket or named pipe of the listener
|
---|
[391] | 1848 | object and return a :class:`~multiprocessing.Connection` object. If
|
---|
| 1849 | authentication is attempted and fails, then
|
---|
| 1850 | :exc:`~multiprocessing.AuthenticationError` is raised.
|
---|
[2] | 1851 |
|
---|
| 1852 | .. method:: close()
|
---|
| 1853 |
|
---|
| 1854 | Close the bound socket or named pipe of the listener object. This is
|
---|
| 1855 | called automatically when the listener is garbage collected. However it
|
---|
| 1856 | is advisable to call it explicitly.
|
---|
| 1857 |
|
---|
| 1858 | Listener objects have the following read-only properties:
|
---|
| 1859 |
|
---|
| 1860 | .. attribute:: address
|
---|
| 1861 |
|
---|
| 1862 | The address which is being used by the Listener object.
|
---|
| 1863 |
|
---|
| 1864 | .. attribute:: last_accepted
|
---|
| 1865 |
|
---|
| 1866 | The address from which the last accepted connection came. If this is
|
---|
| 1867 | unavailable then it is ``None``.
|
---|
| 1868 |
|
---|
| 1869 |
|
---|
| 1870 | The module defines two exceptions:
|
---|
| 1871 |
|
---|
| 1872 | .. exception:: AuthenticationError
|
---|
| 1873 |
|
---|
| 1874 | Exception raised when there is an authentication error.
|
---|
| 1875 |
|
---|
| 1876 |
|
---|
| 1877 | **Examples**
|
---|
| 1878 |
|
---|
| 1879 | The following server code creates a listener which uses ``'secret password'`` as
|
---|
| 1880 | an authentication key. It then waits for a connection and sends some data to
|
---|
| 1881 | the client::
|
---|
| 1882 |
|
---|
| 1883 | from multiprocessing.connection import Listener
|
---|
| 1884 | from array import array
|
---|
| 1885 |
|
---|
| 1886 | address = ('localhost', 6000) # family is deduced to be 'AF_INET'
|
---|
| 1887 | listener = Listener(address, authkey='secret password')
|
---|
| 1888 |
|
---|
| 1889 | conn = listener.accept()
|
---|
| 1890 | print 'connection accepted from', listener.last_accepted
|
---|
| 1891 |
|
---|
| 1892 | conn.send([2.25, None, 'junk', float])
|
---|
| 1893 |
|
---|
| 1894 | conn.send_bytes('hello')
|
---|
| 1895 |
|
---|
| 1896 | conn.send_bytes(array('i', [42, 1729]))
|
---|
| 1897 |
|
---|
| 1898 | conn.close()
|
---|
| 1899 | listener.close()
|
---|
| 1900 |
|
---|
| 1901 | The following code connects to the server and receives some data from the
|
---|
| 1902 | server::
|
---|
| 1903 |
|
---|
| 1904 | from multiprocessing.connection import Client
|
---|
| 1905 | from array import array
|
---|
| 1906 |
|
---|
| 1907 | address = ('localhost', 6000)
|
---|
| 1908 | conn = Client(address, authkey='secret password')
|
---|
| 1909 |
|
---|
| 1910 | print conn.recv() # => [2.25, None, 'junk', float]
|
---|
| 1911 |
|
---|
| 1912 | print conn.recv_bytes() # => 'hello'
|
---|
| 1913 |
|
---|
| 1914 | arr = array('i', [0, 0, 0, 0, 0])
|
---|
| 1915 | print conn.recv_bytes_into(arr) # => 8
|
---|
| 1916 | print arr # => array('i', [42, 1729, 0, 0, 0])
|
---|
| 1917 |
|
---|
| 1918 | conn.close()
|
---|
| 1919 |
|
---|
| 1920 |
|
---|
| 1921 | .. _multiprocessing-address-formats:
|
---|
| 1922 |
|
---|
| 1923 | Address Formats
|
---|
| 1924 | >>>>>>>>>>>>>>>
|
---|
| 1925 |
|
---|
| 1926 | * An ``'AF_INET'`` address is a tuple of the form ``(hostname, port)`` where
|
---|
| 1927 | *hostname* is a string and *port* is an integer.
|
---|
| 1928 |
|
---|
| 1929 | * An ``'AF_UNIX'`` address is a string representing a filename on the
|
---|
| 1930 | filesystem.
|
---|
| 1931 |
|
---|
| 1932 | * An ``'AF_PIPE'`` address is a string of the form
|
---|
| 1933 | :samp:`r'\\\\.\\pipe\\{PipeName}'`. To use :func:`Client` to connect to a named
|
---|
| 1934 | pipe on a remote computer called *ServerName* one should use an address of the
|
---|
| 1935 | form :samp:`r'\\\\{ServerName}\\pipe\\{PipeName}'` instead.
|
---|
| 1936 |
|
---|
| 1937 | Note that any string beginning with two backslashes is assumed by default to be
|
---|
| 1938 | an ``'AF_PIPE'`` address rather than an ``'AF_UNIX'`` address.
|
---|
| 1939 |
|
---|
| 1940 |
|
---|
| 1941 | .. _multiprocessing-auth-keys:
|
---|
| 1942 |
|
---|
| 1943 | Authentication keys
|
---|
| 1944 | ~~~~~~~~~~~~~~~~~~~
|
---|
| 1945 |
|
---|
[391] | 1946 | When one uses :meth:`Connection.recv <multiprocessing.Connection.recv>`, the
|
---|
| 1947 | data received is automatically
|
---|
[2] | 1948 | unpickled. Unfortunately unpickling data from an untrusted source is a security
|
---|
| 1949 | risk. Therefore :class:`Listener` and :func:`Client` use the :mod:`hmac` module
|
---|
| 1950 | to provide digest authentication.
|
---|
| 1951 |
|
---|
| 1952 | An authentication key is a string which can be thought of as a password: once a
|
---|
| 1953 | connection is established both ends will demand proof that the other knows the
|
---|
| 1954 | authentication key. (Demonstrating that both ends are using the same key does
|
---|
| 1955 | **not** involve sending the key over the connection.)
|
---|
| 1956 |
|
---|
| 1957 | If authentication is requested but do authentication key is specified then the
|
---|
| 1958 | return value of ``current_process().authkey`` is used (see
|
---|
| 1959 | :class:`~multiprocessing.Process`). This value will automatically inherited by
|
---|
| 1960 | any :class:`~multiprocessing.Process` object that the current process creates.
|
---|
| 1961 | This means that (by default) all processes of a multi-process program will share
|
---|
| 1962 | a single authentication key which can be used when setting up connections
|
---|
| 1963 | between themselves.
|
---|
| 1964 |
|
---|
| 1965 | Suitable authentication keys can also be generated by using :func:`os.urandom`.
|
---|
| 1966 |
|
---|
| 1967 |
|
---|
| 1968 | Logging
|
---|
| 1969 | ~~~~~~~
|
---|
| 1970 |
|
---|
| 1971 | Some support for logging is available. Note, however, that the :mod:`logging`
|
---|
| 1972 | package does not use process shared locks so it is possible (depending on the
|
---|
| 1973 | handler type) for messages from different processes to get mixed up.
|
---|
| 1974 |
|
---|
| 1975 | .. currentmodule:: multiprocessing
|
---|
| 1976 | .. function:: get_logger()
|
---|
| 1977 |
|
---|
| 1978 | Returns the logger used by :mod:`multiprocessing`. If necessary, a new one
|
---|
| 1979 | will be created.
|
---|
| 1980 |
|
---|
| 1981 | When first created the logger has level :data:`logging.NOTSET` and no
|
---|
| 1982 | default handler. Messages sent to this logger will not by default propagate
|
---|
| 1983 | to the root logger.
|
---|
| 1984 |
|
---|
| 1985 | Note that on Windows child processes will only inherit the level of the
|
---|
| 1986 | parent process's logger -- any other customization of the logger will not be
|
---|
| 1987 | inherited.
|
---|
| 1988 |
|
---|
| 1989 | .. currentmodule:: multiprocessing
|
---|
| 1990 | .. function:: log_to_stderr()
|
---|
| 1991 |
|
---|
| 1992 | This function performs a call to :func:`get_logger` but in addition to
|
---|
| 1993 | returning the logger created by get_logger, it adds a handler which sends
|
---|
| 1994 | output to :data:`sys.stderr` using format
|
---|
| 1995 | ``'[%(levelname)s/%(processName)s] %(message)s'``.
|
---|
| 1996 |
|
---|
| 1997 | Below is an example session with logging turned on::
|
---|
| 1998 |
|
---|
| 1999 | >>> import multiprocessing, logging
|
---|
| 2000 | >>> logger = multiprocessing.log_to_stderr()
|
---|
| 2001 | >>> logger.setLevel(logging.INFO)
|
---|
| 2002 | >>> logger.warning('doomed')
|
---|
| 2003 | [WARNING/MainProcess] doomed
|
---|
| 2004 | >>> m = multiprocessing.Manager()
|
---|
| 2005 | [INFO/SyncManager-...] child process calling self.run()
|
---|
| 2006 | [INFO/SyncManager-...] created temp directory /.../pymp-...
|
---|
| 2007 | [INFO/SyncManager-...] manager serving at '/.../listener-...'
|
---|
| 2008 | >>> del m
|
---|
| 2009 | [INFO/MainProcess] sending shutdown message to manager
|
---|
| 2010 | [INFO/SyncManager-...] manager exiting with exitcode 0
|
---|
| 2011 |
|
---|
| 2012 | In addition to having these two logging functions, the multiprocessing also
|
---|
| 2013 | exposes two additional logging level attributes. These are :const:`SUBWARNING`
|
---|
| 2014 | and :const:`SUBDEBUG`. The table below illustrates where theses fit in the
|
---|
| 2015 | normal level hierarchy.
|
---|
| 2016 |
|
---|
| 2017 | +----------------+----------------+
|
---|
| 2018 | | Level | Numeric value |
|
---|
| 2019 | +================+================+
|
---|
| 2020 | | ``SUBWARNING`` | 25 |
|
---|
| 2021 | +----------------+----------------+
|
---|
| 2022 | | ``SUBDEBUG`` | 5 |
|
---|
| 2023 | +----------------+----------------+
|
---|
| 2024 |
|
---|
| 2025 | For a full table of logging levels, see the :mod:`logging` module.
|
---|
| 2026 |
|
---|
| 2027 | These additional logging levels are used primarily for certain debug messages
|
---|
| 2028 | within the multiprocessing module. Below is the same example as above, except
|
---|
| 2029 | with :const:`SUBDEBUG` enabled::
|
---|
| 2030 |
|
---|
| 2031 | >>> import multiprocessing, logging
|
---|
| 2032 | >>> logger = multiprocessing.log_to_stderr()
|
---|
| 2033 | >>> logger.setLevel(multiprocessing.SUBDEBUG)
|
---|
| 2034 | >>> logger.warning('doomed')
|
---|
| 2035 | [WARNING/MainProcess] doomed
|
---|
| 2036 | >>> m = multiprocessing.Manager()
|
---|
| 2037 | [INFO/SyncManager-...] child process calling self.run()
|
---|
| 2038 | [INFO/SyncManager-...] created temp directory /.../pymp-...
|
---|
| 2039 | [INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'
|
---|
| 2040 | >>> del m
|
---|
| 2041 | [SUBDEBUG/MainProcess] finalizer calling ...
|
---|
| 2042 | [INFO/MainProcess] sending shutdown message to manager
|
---|
| 2043 | [DEBUG/SyncManager-...] manager received shutdown message
|
---|
| 2044 | [SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
|
---|
| 2045 | [SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
|
---|
| 2046 | [SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
|
---|
| 2047 | [SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
|
---|
| 2048 | [INFO/SyncManager-...] manager exiting with exitcode 0
|
---|
| 2049 |
|
---|
| 2050 | The :mod:`multiprocessing.dummy` module
|
---|
| 2051 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
---|
| 2052 |
|
---|
| 2053 | .. module:: multiprocessing.dummy
|
---|
| 2054 | :synopsis: Dumb wrapper around threading.
|
---|
| 2055 |
|
---|
| 2056 | :mod:`multiprocessing.dummy` replicates the API of :mod:`multiprocessing` but is
|
---|
| 2057 | no more than a wrapper around the :mod:`threading` module.
|
---|
| 2058 |
|
---|
| 2059 |
|
---|
| 2060 | .. _multiprocessing-programming:
|
---|
| 2061 |
|
---|
| 2062 | Programming guidelines
|
---|
| 2063 | ----------------------
|
---|
| 2064 |
|
---|
| 2065 | There are certain guidelines and idioms which should be adhered to when using
|
---|
| 2066 | :mod:`multiprocessing`.
|
---|
| 2067 |
|
---|
| 2068 |
|
---|
| 2069 | All platforms
|
---|
| 2070 | ~~~~~~~~~~~~~
|
---|
| 2071 |
|
---|
| 2072 | Avoid shared state
|
---|
| 2073 |
|
---|
| 2074 | As far as possible one should try to avoid shifting large amounts of data
|
---|
| 2075 | between processes.
|
---|
| 2076 |
|
---|
| 2077 | It is probably best to stick to using queues or pipes for communication
|
---|
| 2078 | between processes rather than using the lower level synchronization
|
---|
| 2079 | primitives from the :mod:`threading` module.
|
---|
| 2080 |
|
---|
| 2081 | Picklability
|
---|
| 2082 |
|
---|
| 2083 | Ensure that the arguments to the methods of proxies are picklable.
|
---|
| 2084 |
|
---|
| 2085 | Thread safety of proxies
|
---|
| 2086 |
|
---|
| 2087 | Do not use a proxy object from more than one thread unless you protect it
|
---|
| 2088 | with a lock.
|
---|
| 2089 |
|
---|
| 2090 | (There is never a problem with different processes using the *same* proxy.)
|
---|
| 2091 |
|
---|
| 2092 | Joining zombie processes
|
---|
| 2093 |
|
---|
| 2094 | On Unix when a process finishes but has not been joined it becomes a zombie.
|
---|
| 2095 | There should never be very many because each time a new process starts (or
|
---|
[391] | 2096 | :func:`~multiprocessing.active_children` is called) all completed processes
|
---|
| 2097 | which have not yet been joined will be joined. Also calling a finished
|
---|
| 2098 | process's :meth:`Process.is_alive <multiprocessing.Process.is_alive>` will
|
---|
| 2099 | join the process. Even so it is probably good
|
---|
[2] | 2100 | practice to explicitly join all the processes that you start.
|
---|
| 2101 |
|
---|
| 2102 | Better to inherit than pickle/unpickle
|
---|
| 2103 |
|
---|
| 2104 | On Windows many types from :mod:`multiprocessing` need to be picklable so
|
---|
| 2105 | that child processes can use them. However, one should generally avoid
|
---|
| 2106 | sending shared objects to other processes using pipes or queues. Instead
|
---|
[391] | 2107 | you should arrange the program so that a process which needs access to a
|
---|
[2] | 2108 | shared resource created elsewhere can inherit it from an ancestor process.
|
---|
| 2109 |
|
---|
| 2110 | Avoid terminating processes
|
---|
| 2111 |
|
---|
[391] | 2112 | Using the :meth:`Process.terminate <multiprocessing.Process.terminate>`
|
---|
| 2113 | method to stop a process is liable to
|
---|
[2] | 2114 | cause any shared resources (such as locks, semaphores, pipes and queues)
|
---|
| 2115 | currently being used by the process to become broken or unavailable to other
|
---|
| 2116 | processes.
|
---|
| 2117 |
|
---|
| 2118 | Therefore it is probably best to only consider using
|
---|
[391] | 2119 | :meth:`Process.terminate <multiprocessing.Process.terminate>` on processes
|
---|
| 2120 | which never use any shared resources.
|
---|
[2] | 2121 |
|
---|
| 2122 | Joining processes that use queues
|
---|
| 2123 |
|
---|
| 2124 | Bear in mind that a process that has put items in a queue will wait before
|
---|
| 2125 | terminating until all the buffered items are fed by the "feeder" thread to
|
---|
| 2126 | the underlying pipe. (The child process can call the
|
---|
[391] | 2127 | :meth:`~multiprocessing.Queue.cancel_join_thread` method of the queue to avoid this behaviour.)
|
---|
[2] | 2128 |
|
---|
| 2129 | This means that whenever you use a queue you need to make sure that all
|
---|
| 2130 | items which have been put on the queue will eventually be removed before the
|
---|
| 2131 | process is joined. Otherwise you cannot be sure that processes which have
|
---|
| 2132 | put items on the queue will terminate. Remember also that non-daemonic
|
---|
| 2133 | processes will be automatically be joined.
|
---|
| 2134 |
|
---|
| 2135 | An example which will deadlock is the following::
|
---|
| 2136 |
|
---|
| 2137 | from multiprocessing import Process, Queue
|
---|
| 2138 |
|
---|
| 2139 | def f(q):
|
---|
| 2140 | q.put('X' * 1000000)
|
---|
| 2141 |
|
---|
| 2142 | if __name__ == '__main__':
|
---|
| 2143 | queue = Queue()
|
---|
| 2144 | p = Process(target=f, args=(queue,))
|
---|
| 2145 | p.start()
|
---|
| 2146 | p.join() # this deadlocks
|
---|
| 2147 | obj = queue.get()
|
---|
| 2148 |
|
---|
| 2149 | A fix here would be to swap the last two lines round (or simply remove the
|
---|
| 2150 | ``p.join()`` line).
|
---|
| 2151 |
|
---|
| 2152 | Explicitly pass resources to child processes
|
---|
| 2153 |
|
---|
| 2154 | On Unix a child process can make use of a shared resource created in a
|
---|
| 2155 | parent process using a global resource. However, it is better to pass the
|
---|
| 2156 | object as an argument to the constructor for the child process.
|
---|
| 2157 |
|
---|
| 2158 | Apart from making the code (potentially) compatible with Windows this also
|
---|
| 2159 | ensures that as long as the child process is still alive the object will not
|
---|
| 2160 | be garbage collected in the parent process. This might be important if some
|
---|
| 2161 | resource is freed when the object is garbage collected in the parent
|
---|
| 2162 | process.
|
---|
| 2163 |
|
---|
| 2164 | So for instance ::
|
---|
| 2165 |
|
---|
| 2166 | from multiprocessing import Process, Lock
|
---|
| 2167 |
|
---|
| 2168 | def f():
|
---|
| 2169 | ... do something using "lock" ...
|
---|
| 2170 |
|
---|
| 2171 | if __name__ == '__main__':
|
---|
| 2172 | lock = Lock()
|
---|
| 2173 | for i in range(10):
|
---|
| 2174 | Process(target=f).start()
|
---|
| 2175 |
|
---|
| 2176 | should be rewritten as ::
|
---|
| 2177 |
|
---|
| 2178 | from multiprocessing import Process, Lock
|
---|
| 2179 |
|
---|
| 2180 | def f(l):
|
---|
| 2181 | ... do something using "l" ...
|
---|
| 2182 |
|
---|
| 2183 | if __name__ == '__main__':
|
---|
| 2184 | lock = Lock()
|
---|
| 2185 | for i in range(10):
|
---|
| 2186 | Process(target=f, args=(lock,)).start()
|
---|
| 2187 |
|
---|
[391] | 2188 | Beware of replacing :data:`sys.stdin` with a "file like object"
|
---|
[2] | 2189 |
|
---|
| 2190 | :mod:`multiprocessing` originally unconditionally called::
|
---|
| 2191 |
|
---|
| 2192 | os.close(sys.stdin.fileno())
|
---|
| 2193 |
|
---|
| 2194 | in the :meth:`multiprocessing.Process._bootstrap` method --- this resulted
|
---|
| 2195 | in issues with processes-in-processes. This has been changed to::
|
---|
| 2196 |
|
---|
| 2197 | sys.stdin.close()
|
---|
| 2198 | sys.stdin = open(os.devnull)
|
---|
| 2199 |
|
---|
| 2200 | Which solves the fundamental issue of processes colliding with each other
|
---|
| 2201 | resulting in a bad file descriptor error, but introduces a potential danger
|
---|
| 2202 | to applications which replace :func:`sys.stdin` with a "file-like object"
|
---|
| 2203 | with output buffering. This danger is that if multiple processes call
|
---|
[391] | 2204 | :meth:`~io.IOBase.close()` on this file-like object, it could result in the same
|
---|
[2] | 2205 | data being flushed to the object multiple times, resulting in corruption.
|
---|
| 2206 |
|
---|
| 2207 | If you write a file-like object and implement your own caching, you can
|
---|
| 2208 | make it fork-safe by storing the pid whenever you append to the cache,
|
---|
| 2209 | and discarding the cache when the pid changes. For example::
|
---|
| 2210 |
|
---|
| 2211 | @property
|
---|
| 2212 | def cache(self):
|
---|
| 2213 | pid = os.getpid()
|
---|
| 2214 | if pid != self._pid:
|
---|
| 2215 | self._pid = pid
|
---|
| 2216 | self._cache = []
|
---|
| 2217 | return self._cache
|
---|
| 2218 |
|
---|
| 2219 | For more information, see :issue:`5155`, :issue:`5313` and :issue:`5331`
|
---|
| 2220 |
|
---|
| 2221 | Windows
|
---|
| 2222 | ~~~~~~~
|
---|
| 2223 |
|
---|
| 2224 | Since Windows lacks :func:`os.fork` it has a few extra restrictions:
|
---|
| 2225 |
|
---|
| 2226 | More picklability
|
---|
| 2227 |
|
---|
| 2228 | Ensure that all arguments to :meth:`Process.__init__` are picklable. This
|
---|
| 2229 | means, in particular, that bound or unbound methods cannot be used directly
|
---|
| 2230 | as the ``target`` argument on Windows --- just define a function and use
|
---|
| 2231 | that instead.
|
---|
| 2232 |
|
---|
[391] | 2233 | Also, if you subclass :class:`~multiprocessing.Process` then make sure that
|
---|
| 2234 | instances will be picklable when the :meth:`Process.start
|
---|
| 2235 | <multiprocessing.Process.start>` method is called.
|
---|
[2] | 2236 |
|
---|
| 2237 | Global variables
|
---|
| 2238 |
|
---|
| 2239 | Bear in mind that if code run in a child process tries to access a global
|
---|
| 2240 | variable, then the value it sees (if any) may not be the same as the value
|
---|
[391] | 2241 | in the parent process at the time that :meth:`Process.start
|
---|
| 2242 | <multiprocessing.Process.start>` was called.
|
---|
[2] | 2243 |
|
---|
| 2244 | However, global variables which are just module level constants cause no
|
---|
| 2245 | problems.
|
---|
| 2246 |
|
---|
| 2247 | Safe importing of main module
|
---|
| 2248 |
|
---|
| 2249 | Make sure that the main module can be safely imported by a new Python
|
---|
| 2250 | interpreter without causing unintended side effects (such a starting a new
|
---|
| 2251 | process).
|
---|
| 2252 |
|
---|
| 2253 | For example, under Windows running the following module would fail with a
|
---|
| 2254 | :exc:`RuntimeError`::
|
---|
| 2255 |
|
---|
| 2256 | from multiprocessing import Process
|
---|
| 2257 |
|
---|
| 2258 | def foo():
|
---|
| 2259 | print 'hello'
|
---|
| 2260 |
|
---|
| 2261 | p = Process(target=foo)
|
---|
| 2262 | p.start()
|
---|
| 2263 |
|
---|
| 2264 | Instead one should protect the "entry point" of the program by using ``if
|
---|
| 2265 | __name__ == '__main__':`` as follows::
|
---|
| 2266 |
|
---|
| 2267 | from multiprocessing import Process, freeze_support
|
---|
| 2268 |
|
---|
| 2269 | def foo():
|
---|
| 2270 | print 'hello'
|
---|
| 2271 |
|
---|
| 2272 | if __name__ == '__main__':
|
---|
| 2273 | freeze_support()
|
---|
| 2274 | p = Process(target=foo)
|
---|
| 2275 | p.start()
|
---|
| 2276 |
|
---|
| 2277 | (The ``freeze_support()`` line can be omitted if the program will be run
|
---|
| 2278 | normally instead of frozen.)
|
---|
| 2279 |
|
---|
| 2280 | This allows the newly spawned Python interpreter to safely import the module
|
---|
| 2281 | and then run the module's ``foo()`` function.
|
---|
| 2282 |
|
---|
| 2283 | Similar restrictions apply if a pool or manager is created in the main
|
---|
| 2284 | module.
|
---|
| 2285 |
|
---|
| 2286 |
|
---|
| 2287 | .. _multiprocessing-examples:
|
---|
| 2288 |
|
---|
| 2289 | Examples
|
---|
| 2290 | --------
|
---|
| 2291 |
|
---|
| 2292 | Demonstration of how to create and use customized managers and proxies:
|
---|
| 2293 |
|
---|
| 2294 | .. literalinclude:: ../includes/mp_newtype.py
|
---|
| 2295 |
|
---|
| 2296 |
|
---|
[391] | 2297 | Using :class:`~multiprocessing.pool.Pool`:
|
---|
[2] | 2298 |
|
---|
| 2299 | .. literalinclude:: ../includes/mp_pool.py
|
---|
| 2300 |
|
---|
| 2301 |
|
---|
| 2302 | Synchronization types like locks, conditions and queues:
|
---|
| 2303 |
|
---|
| 2304 | .. literalinclude:: ../includes/mp_synchronize.py
|
---|
| 2305 |
|
---|
| 2306 |
|
---|
[391] | 2307 | An example showing how to use queues to feed tasks to a collection of worker
|
---|
| 2308 | processes and collect the results:
|
---|
[2] | 2309 |
|
---|
| 2310 | .. literalinclude:: ../includes/mp_workers.py
|
---|
| 2311 |
|
---|
| 2312 |
|
---|
| 2313 | An example of how a pool of worker processes can each run a
|
---|
| 2314 | :class:`SimpleHTTPServer.HttpServer` instance while sharing a single listening
|
---|
| 2315 | socket.
|
---|
| 2316 |
|
---|
| 2317 | .. literalinclude:: ../includes/mp_webserver.py
|
---|
| 2318 |
|
---|
| 2319 |
|
---|
| 2320 | Some simple benchmarks comparing :mod:`multiprocessing` with :mod:`threading`:
|
---|
| 2321 |
|
---|
| 2322 | .. literalinclude:: ../includes/mp_benchmarks.py
|
---|
| 2323 |
|
---|