[2] | 1 |
|
---|
| 2 | :mod:`math` --- Mathematical functions
|
---|
| 3 | ======================================
|
---|
| 4 |
|
---|
| 5 | .. module:: math
|
---|
| 6 | :synopsis: Mathematical functions (sin() etc.).
|
---|
| 7 |
|
---|
[391] | 8 | .. testsetup::
|
---|
[2] | 9 |
|
---|
[391] | 10 | from math import fsum
|
---|
| 11 |
|
---|
[2] | 12 | This module is always available. It provides access to the mathematical
|
---|
| 13 | functions defined by the C standard.
|
---|
| 14 |
|
---|
| 15 | These functions cannot be used with complex numbers; use the functions of the
|
---|
| 16 | same name from the :mod:`cmath` module if you require support for complex
|
---|
| 17 | numbers. The distinction between functions which support complex numbers and
|
---|
| 18 | those which don't is made since most users do not want to learn quite as much
|
---|
| 19 | mathematics as required to understand complex numbers. Receiving an exception
|
---|
| 20 | instead of a complex result allows earlier detection of the unexpected complex
|
---|
| 21 | number used as a parameter, so that the programmer can determine how and why it
|
---|
| 22 | was generated in the first place.
|
---|
| 23 |
|
---|
| 24 | The following functions are provided by this module. Except when explicitly
|
---|
| 25 | noted otherwise, all return values are floats.
|
---|
| 26 |
|
---|
| 27 |
|
---|
| 28 | Number-theoretic and representation functions
|
---|
| 29 | ---------------------------------------------
|
---|
| 30 |
|
---|
| 31 | .. function:: ceil(x)
|
---|
| 32 |
|
---|
| 33 | Return the ceiling of *x* as a float, the smallest integer value greater than or
|
---|
| 34 | equal to *x*.
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 | .. function:: copysign(x, y)
|
---|
| 38 |
|
---|
[391] | 39 | Return *x* with the sign of *y*. On a platform that supports
|
---|
| 40 | signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
|
---|
[2] | 41 |
|
---|
| 42 | .. versionadded:: 2.6
|
---|
| 43 |
|
---|
| 44 |
|
---|
| 45 | .. function:: fabs(x)
|
---|
| 46 |
|
---|
| 47 | Return the absolute value of *x*.
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | .. function:: factorial(x)
|
---|
| 51 |
|
---|
| 52 | Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
|
---|
| 53 | is negative.
|
---|
| 54 |
|
---|
| 55 | .. versionadded:: 2.6
|
---|
| 56 |
|
---|
| 57 |
|
---|
| 58 | .. function:: floor(x)
|
---|
| 59 |
|
---|
| 60 | Return the floor of *x* as a float, the largest integer value less than or equal
|
---|
| 61 | to *x*.
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | .. function:: fmod(x, y)
|
---|
| 65 |
|
---|
| 66 | Return ``fmod(x, y)``, as defined by the platform C library. Note that the
|
---|
| 67 | Python expression ``x % y`` may not return the same result. The intent of the C
|
---|
| 68 | standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
|
---|
| 69 | precision) equal to ``x - n*y`` for some integer *n* such that the result has
|
---|
| 70 | the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
|
---|
| 71 | returns a result with the sign of *y* instead, and may not be exactly computable
|
---|
| 72 | for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
|
---|
| 73 | the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
|
---|
| 74 | represented exactly as a float, and rounds to the surprising ``1e100``. For
|
---|
| 75 | this reason, function :func:`fmod` is generally preferred when working with
|
---|
| 76 | floats, while Python's ``x % y`` is preferred when working with integers.
|
---|
| 77 |
|
---|
| 78 |
|
---|
| 79 | .. function:: frexp(x)
|
---|
| 80 |
|
---|
| 81 | Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
|
---|
| 82 | and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
|
---|
| 83 | returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
|
---|
| 84 | apart" the internal representation of a float in a portable way.
|
---|
| 85 |
|
---|
| 86 |
|
---|
| 87 | .. function:: fsum(iterable)
|
---|
| 88 |
|
---|
| 89 | Return an accurate floating point sum of values in the iterable. Avoids
|
---|
| 90 | loss of precision by tracking multiple intermediate partial sums::
|
---|
| 91 |
|
---|
| 92 | >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
|
---|
[391] | 93 | 0.9999999999999999
|
---|
[2] | 94 | >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
|
---|
| 95 | 1.0
|
---|
| 96 |
|
---|
| 97 | The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
|
---|
| 98 | typical case where the rounding mode is half-even. On some non-Windows
|
---|
| 99 | builds, the underlying C library uses extended precision addition and may
|
---|
| 100 | occasionally double-round an intermediate sum causing it to be off in its
|
---|
| 101 | least significant bit.
|
---|
| 102 |
|
---|
| 103 | For further discussion and two alternative approaches, see the `ASPN cookbook
|
---|
| 104 | recipes for accurate floating point summation
|
---|
| 105 | <http://code.activestate.com/recipes/393090/>`_\.
|
---|
| 106 |
|
---|
| 107 | .. versionadded:: 2.6
|
---|
| 108 |
|
---|
| 109 |
|
---|
| 110 | .. function:: isinf(x)
|
---|
| 111 |
|
---|
[391] | 112 | Check if the float *x* is positive or negative infinity.
|
---|
[2] | 113 |
|
---|
| 114 | .. versionadded:: 2.6
|
---|
| 115 |
|
---|
| 116 |
|
---|
| 117 | .. function:: isnan(x)
|
---|
| 118 |
|
---|
[391] | 119 | Check if the float *x* is a NaN (not a number). For more information
|
---|
| 120 | on NaNs, see the IEEE 754 standards.
|
---|
[2] | 121 |
|
---|
| 122 | .. versionadded:: 2.6
|
---|
| 123 |
|
---|
| 124 |
|
---|
| 125 | .. function:: ldexp(x, i)
|
---|
| 126 |
|
---|
| 127 | Return ``x * (2**i)``. This is essentially the inverse of function
|
---|
| 128 | :func:`frexp`.
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | .. function:: modf(x)
|
---|
| 132 |
|
---|
| 133 | Return the fractional and integer parts of *x*. Both results carry the sign
|
---|
| 134 | of *x* and are floats.
|
---|
| 135 |
|
---|
| 136 |
|
---|
| 137 | .. function:: trunc(x)
|
---|
| 138 |
|
---|
[391] | 139 | Return the :class:`~numbers.Real` value *x* truncated to an
|
---|
| 140 | :class:`~numbers.Integral` (usually a long integer). Uses the
|
---|
| 141 | ``__trunc__`` method.
|
---|
[2] | 142 |
|
---|
| 143 | .. versionadded:: 2.6
|
---|
| 144 |
|
---|
| 145 |
|
---|
| 146 | Note that :func:`frexp` and :func:`modf` have a different call/return pattern
|
---|
| 147 | than their C equivalents: they take a single argument and return a pair of
|
---|
| 148 | values, rather than returning their second return value through an 'output
|
---|
| 149 | parameter' (there is no such thing in Python).
|
---|
| 150 |
|
---|
| 151 | For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
|
---|
| 152 | floating-point numbers of sufficiently large magnitude are exact integers.
|
---|
| 153 | Python floats typically carry no more than 53 bits of precision (the same as the
|
---|
| 154 | platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
|
---|
| 155 | necessarily has no fractional bits.
|
---|
| 156 |
|
---|
| 157 |
|
---|
| 158 | Power and logarithmic functions
|
---|
| 159 | -------------------------------
|
---|
| 160 |
|
---|
| 161 | .. function:: exp(x)
|
---|
| 162 |
|
---|
| 163 | Return ``e**x``.
|
---|
| 164 |
|
---|
| 165 |
|
---|
[391] | 166 | .. function:: expm1(x)
|
---|
| 167 |
|
---|
| 168 | Return ``e**x - 1``. For small floats *x*, the subtraction in
|
---|
| 169 | ``exp(x) - 1`` can result in a significant loss of precision; the
|
---|
| 170 | :func:`expm1` function provides a way to compute this quantity to
|
---|
| 171 | full precision::
|
---|
| 172 |
|
---|
| 173 | >>> from math import exp, expm1
|
---|
| 174 | >>> exp(1e-5) - 1 # gives result accurate to 11 places
|
---|
| 175 | 1.0000050000069649e-05
|
---|
| 176 | >>> expm1(1e-5) # result accurate to full precision
|
---|
| 177 | 1.0000050000166668e-05
|
---|
| 178 |
|
---|
| 179 | .. versionadded:: 2.7
|
---|
| 180 |
|
---|
| 181 |
|
---|
[2] | 182 | .. function:: log(x[, base])
|
---|
| 183 |
|
---|
| 184 | With one argument, return the natural logarithm of *x* (to base *e*).
|
---|
| 185 |
|
---|
| 186 | With two arguments, return the logarithm of *x* to the given *base*,
|
---|
| 187 | calculated as ``log(x)/log(base)``.
|
---|
| 188 |
|
---|
| 189 | .. versionchanged:: 2.3
|
---|
| 190 | *base* argument added.
|
---|
| 191 |
|
---|
| 192 |
|
---|
| 193 | .. function:: log1p(x)
|
---|
| 194 |
|
---|
| 195 | Return the natural logarithm of *1+x* (base *e*). The
|
---|
| 196 | result is calculated in a way which is accurate for *x* near zero.
|
---|
| 197 |
|
---|
| 198 | .. versionadded:: 2.6
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | .. function:: log10(x)
|
---|
| 202 |
|
---|
| 203 | Return the base-10 logarithm of *x*. This is usually more accurate
|
---|
| 204 | than ``log(x, 10)``.
|
---|
| 205 |
|
---|
| 206 |
|
---|
| 207 | .. function:: pow(x, y)
|
---|
| 208 |
|
---|
| 209 | Return ``x`` raised to the power ``y``. Exceptional cases follow
|
---|
| 210 | Annex 'F' of the C99 standard as far as possible. In particular,
|
---|
| 211 | ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
|
---|
| 212 | when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
|
---|
| 213 | ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
|
---|
| 214 | is undefined, and raises :exc:`ValueError`.
|
---|
| 215 |
|
---|
[391] | 216 | Unlike the built-in ``**`` operator, :func:`math.pow` converts both
|
---|
| 217 | its arguments to type :class:`float`. Use ``**`` or the built-in
|
---|
| 218 | :func:`pow` function for computing exact integer powers.
|
---|
| 219 |
|
---|
[2] | 220 | .. versionchanged:: 2.6
|
---|
| 221 | The outcome of ``1**nan`` and ``nan**0`` was undefined.
|
---|
| 222 |
|
---|
| 223 |
|
---|
| 224 | .. function:: sqrt(x)
|
---|
| 225 |
|
---|
| 226 | Return the square root of *x*.
|
---|
| 227 |
|
---|
| 228 |
|
---|
| 229 | Trigonometric functions
|
---|
| 230 | -----------------------
|
---|
| 231 |
|
---|
| 232 | .. function:: acos(x)
|
---|
| 233 |
|
---|
| 234 | Return the arc cosine of *x*, in radians.
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | .. function:: asin(x)
|
---|
| 238 |
|
---|
| 239 | Return the arc sine of *x*, in radians.
|
---|
| 240 |
|
---|
| 241 |
|
---|
| 242 | .. function:: atan(x)
|
---|
| 243 |
|
---|
| 244 | Return the arc tangent of *x*, in radians.
|
---|
| 245 |
|
---|
| 246 |
|
---|
| 247 | .. function:: atan2(y, x)
|
---|
| 248 |
|
---|
| 249 | Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
|
---|
| 250 | The vector in the plane from the origin to point ``(x, y)`` makes this angle
|
---|
| 251 | with the positive X axis. The point of :func:`atan2` is that the signs of both
|
---|
| 252 | inputs are known to it, so it can compute the correct quadrant for the angle.
|
---|
[391] | 253 | For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
|
---|
[2] | 254 | -1)`` is ``-3*pi/4``.
|
---|
| 255 |
|
---|
| 256 |
|
---|
| 257 | .. function:: cos(x)
|
---|
| 258 |
|
---|
| 259 | Return the cosine of *x* radians.
|
---|
| 260 |
|
---|
| 261 |
|
---|
| 262 | .. function:: hypot(x, y)
|
---|
| 263 |
|
---|
| 264 | Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
|
---|
| 265 | from the origin to point ``(x, y)``.
|
---|
| 266 |
|
---|
| 267 |
|
---|
| 268 | .. function:: sin(x)
|
---|
| 269 |
|
---|
| 270 | Return the sine of *x* radians.
|
---|
| 271 |
|
---|
| 272 |
|
---|
| 273 | .. function:: tan(x)
|
---|
| 274 |
|
---|
| 275 | Return the tangent of *x* radians.
|
---|
| 276 |
|
---|
| 277 |
|
---|
| 278 | Angular conversion
|
---|
| 279 | ------------------
|
---|
| 280 |
|
---|
| 281 | .. function:: degrees(x)
|
---|
| 282 |
|
---|
| 283 | Converts angle *x* from radians to degrees.
|
---|
| 284 |
|
---|
| 285 |
|
---|
| 286 | .. function:: radians(x)
|
---|
| 287 |
|
---|
| 288 | Converts angle *x* from degrees to radians.
|
---|
| 289 |
|
---|
| 290 |
|
---|
| 291 | Hyperbolic functions
|
---|
| 292 | --------------------
|
---|
| 293 |
|
---|
| 294 | .. function:: acosh(x)
|
---|
| 295 |
|
---|
| 296 | Return the inverse hyperbolic cosine of *x*.
|
---|
| 297 |
|
---|
| 298 | .. versionadded:: 2.6
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | .. function:: asinh(x)
|
---|
| 302 |
|
---|
| 303 | Return the inverse hyperbolic sine of *x*.
|
---|
| 304 |
|
---|
| 305 | .. versionadded:: 2.6
|
---|
| 306 |
|
---|
| 307 |
|
---|
| 308 | .. function:: atanh(x)
|
---|
| 309 |
|
---|
| 310 | Return the inverse hyperbolic tangent of *x*.
|
---|
| 311 |
|
---|
| 312 | .. versionadded:: 2.6
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 | .. function:: cosh(x)
|
---|
| 316 |
|
---|
| 317 | Return the hyperbolic cosine of *x*.
|
---|
| 318 |
|
---|
| 319 |
|
---|
| 320 | .. function:: sinh(x)
|
---|
| 321 |
|
---|
| 322 | Return the hyperbolic sine of *x*.
|
---|
| 323 |
|
---|
| 324 |
|
---|
| 325 | .. function:: tanh(x)
|
---|
| 326 |
|
---|
| 327 | Return the hyperbolic tangent of *x*.
|
---|
| 328 |
|
---|
| 329 |
|
---|
[391] | 330 | Special functions
|
---|
| 331 | -----------------
|
---|
| 332 |
|
---|
| 333 | .. function:: erf(x)
|
---|
| 334 |
|
---|
| 335 | Return the error function at *x*.
|
---|
| 336 |
|
---|
| 337 | .. versionadded:: 2.7
|
---|
| 338 |
|
---|
| 339 |
|
---|
| 340 | .. function:: erfc(x)
|
---|
| 341 |
|
---|
| 342 | Return the complementary error function at *x*.
|
---|
| 343 |
|
---|
| 344 | .. versionadded:: 2.7
|
---|
| 345 |
|
---|
| 346 |
|
---|
| 347 | .. function:: gamma(x)
|
---|
| 348 |
|
---|
| 349 | Return the Gamma function at *x*.
|
---|
| 350 |
|
---|
| 351 | .. versionadded:: 2.7
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 | .. function:: lgamma(x)
|
---|
| 355 |
|
---|
| 356 | Return the natural logarithm of the absolute value of the Gamma
|
---|
| 357 | function at *x*.
|
---|
| 358 |
|
---|
| 359 | .. versionadded:: 2.7
|
---|
| 360 |
|
---|
| 361 |
|
---|
[2] | 362 | Constants
|
---|
| 363 | ---------
|
---|
| 364 |
|
---|
| 365 | .. data:: pi
|
---|
| 366 |
|
---|
[391] | 367 | The mathematical constant Ï = 3.141592..., to available precision.
|
---|
[2] | 368 |
|
---|
| 369 |
|
---|
| 370 | .. data:: e
|
---|
| 371 |
|
---|
[391] | 372 | The mathematical constant e = 2.718281..., to available precision.
|
---|
[2] | 373 |
|
---|
| 374 |
|
---|
| 375 | .. impl-detail::
|
---|
| 376 |
|
---|
| 377 | The :mod:`math` module consists mostly of thin wrappers around the platform C
|
---|
[391] | 378 | math library functions. Behavior in exceptional cases follows Annex F of
|
---|
| 379 | the C99 standard where appropriate. The current implementation will raise
|
---|
| 380 | :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
|
---|
| 381 | (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
|
---|
| 382 | and :exc:`OverflowError` for results that overflow (for example,
|
---|
| 383 | ``exp(1000.0)``). A NaN will not be returned from any of the functions
|
---|
| 384 | above unless one or more of the input arguments was a NaN; in that case,
|
---|
| 385 | most functions will return a NaN, but (again following C99 Annex F) there
|
---|
| 386 | are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
|
---|
| 387 | ``hypot(float('nan'), float('inf'))``.
|
---|
[2] | 388 |
|
---|
[391] | 389 | Note that Python makes no effort to distinguish signaling NaNs from
|
---|
| 390 | quiet NaNs, and behavior for signaling NaNs remains unspecified.
|
---|
| 391 | Typical behavior is to treat all NaNs as though they were quiet.
|
---|
[2] | 392 |
|
---|
| 393 | .. versionchanged:: 2.6
|
---|
[391] | 394 | Behavior in special cases now aims to follow C99 Annex F. In earlier
|
---|
| 395 | versions of Python the behavior in special cases was loosely specified.
|
---|
[2] | 396 |
|
---|
| 397 |
|
---|
| 398 | .. seealso::
|
---|
| 399 |
|
---|
| 400 | Module :mod:`cmath`
|
---|
| 401 | Complex number versions of many of these functions.
|
---|