source: trunk/src/plugins/graphicssystems/meego/dithering.cpp

Last change on this file was 846, checked in by Dmitry A. Kuminov, 14 years ago

trunk: Merged in qt 4.7.2 sources from branches/vendor/nokia/qt.

File size: 13.1 KB
Line 
1/****************************************************************************
2**
3** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
4** All rights reserved.
5** Contact: Nokia Corporation (qt-info@nokia.com)
6**
7** This file is part of the plugins of the Qt Toolkit.
8**
9** $QT_BEGIN_LICENSE:LGPL$
10** Commercial Usage
11** Licensees holding valid Qt Commercial licenses may use this file in
12** accordance with the Qt Commercial License Agreement provided with the
13** Software or, alternatively, in accordance with the terms contained in
14** a written agreement between you and Nokia.
15**
16** GNU Lesser General Public License Usage
17** Alternatively, this file may be used under the terms of the GNU Lesser
18** General Public License version 2.1 as published by the Free Software
19** Foundation and appearing in the file LICENSE.LGPL included in the
20** packaging of this file. Please review the following information to
21** ensure the GNU Lesser General Public License version 2.1 requirements
22** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
23**
24** In addition, as a special exception, Nokia gives you certain additional
25** rights. These rights are described in the Nokia Qt LGPL Exception
26** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
27**
28** GNU General Public License Usage
29** Alternatively, this file may be used under the terms of the GNU
30** General Public License version 3.0 as published by the Free Software
31** Foundation and appearing in the file LICENSE.GPL included in the
32** packaging of this file. Please review the following information to
33** ensure the GNU General Public License version 3.0 requirements will be
34** met: http://www.gnu.org/copyleft/gpl.html.
35**
36** If you have questions regarding the use of this file, please contact
37** Nokia at qt-info@nokia.com.
38** $QT_END_LICENSE$
39**
40****************************************************************************/
41
42// This is an implementation of the 32bit => 16bit Floyd-Steinberg dithering.
43// The alghorithm used here is not the fastest possible but it's prolly fast enough:
44// uses look-up tables, integer-only arthmetics and works in one pass on two lines
45// at a time. It's a high-quality dithering using 1/8 diffusion precission.
46// Two functions here to look at:
47//
48// * convertRGBA32_to_RGB565
49// * convertRGBA32_to_RGBA4444
50//
51// Each channel (RGBA) is diffused independently and alpha is dithered too.
52
53#include <string.h>
54#include <stdio.h>
55#include <stdlib.h>
56#include <math.h>
57#include <QVarLengthArray>
58
59// Gets a component (red = 1, green = 2...) from a RGBA data structure.
60// data is unsigned char. stride is the number of bytes per line.
61#define GET_RGBA_COMPONENT(data, x, y, stride, c) (data[(y * stride) + (x << 2) + c])
62
63// Writes a new pixel with r, g, b to data in 565 16bit format. Data is a short.
64#define PUT_565(data, x, y, width, r, g, b) (data[(y * width) + x] = (r << 11) | (g << 5) | b)
65
66// Writes a new pixel with r, g, b, a to data in 4444 RGBA 16bit format. Data is a short.
67#define PUT_4444(data, x, y, width, r, g, b, a) (data[(y * width) + x] = (r << 12) | (g << 8) | (b << 4) | a)
68
69// Writes(ads) a new value to the diffusion accumulator. accumulator is a short.
70// x, y is a position in the accumulation buffer. y can be 0 or 1 -- we operate on two lines at time.
71#define ACCUMULATE(accumulator, x, y, width, v) if (x < width && x >= 0) accumulator[(y * width) + x] += v
72
73// Clamps a value to be in 0..255 range.
74#define CLAMP_256(v) if (v > 255) v = 255; if (v < 0) v = 0;
75
76// Converts incoming RGB32 (QImage::Format_RGB32) to RGB565. Returns the newly allocated data.
77unsigned short* convertRGB32_to_RGB565(const unsigned char *in, int width, int height, int stride)
78{
79 // Output line stride. Aligned to 4 bytes.
80 int alignedWidth = width;
81 if (alignedWidth % 2 > 0)
82 alignedWidth++;
83
84 // Will store output
85 unsigned short *out = (unsigned short *) malloc(alignedWidth * height * 2);
86
87 // Lookup tables for the 8bit => 6bit and 8bit => 5bit conversion
88 unsigned char lookup_8bit_to_5bit[256];
89 short lookup_8bit_to_5bit_diff[256];
90 unsigned char lookup_8bit_to_6bit[256];
91 short lookup_8bit_to_6bit_diff[256];
92
93 // Macros for the conversion using the lookup table.
94 #define CONVERT_8BIT_TO_5BIT(v) (lookup_8bit_to_5bit[v])
95 #define DIFF_8BIT_TO_5BIT(v) (lookup_8bit_to_5bit_diff[v])
96
97 #define CONVERT_8BIT_TO_6BIT(v) (lookup_8bit_to_6bit[v])
98 #define DIFF_8BIT_TO_6BIT(v) (lookup_8bit_to_6bit_diff[v])
99
100 int i;
101 int x, y, c; // Pixel we're processing. c is component number (0, 1, 2 for r, b, b)
102 short component[3]; // Stores the new components (r, g, b) for pixel produced during conversion
103 short diff; // The difference between the converted value and the original one. To be accumulated.
104 QVarLengthArray <short> accumulatorData(3 * width * 2); // Data for three acumulators for r, g, b. Each accumulator is two lines.
105 short *accumulator[3]; // Helper for accessing the accumulator on a per-channel basis more easily.
106 accumulator[0] = accumulatorData.data();
107 accumulator[1] = accumulatorData.data() + width;
108 accumulator[2] = accumulatorData.data() + (width * 2);
109
110 // Produce the conversion lookup tables.
111 for (i = 0; i < 256; i++) {
112 lookup_8bit_to_5bit[i] = round(i / 8.0);
113
114 // Before bitshifts: (i * 8) - (... * 8 * 8)
115 lookup_8bit_to_5bit_diff[i] = (i << 3) - (lookup_8bit_to_5bit[i] << 6);
116 if (lookup_8bit_to_5bit[i] > 31)
117 lookup_8bit_to_5bit[i] -= 1;
118
119 lookup_8bit_to_6bit[i] = round(i / 4.0);
120
121 // Before bitshifts: (i * 8) - (... * 4 * 8)
122 lookup_8bit_to_6bit_diff[i] = (i << 3) - (lookup_8bit_to_6bit[i] << 5);
123 if (lookup_8bit_to_6bit[i] > 63)
124 lookup_8bit_to_6bit[i] -= 1;
125 }
126
127 // Clear the accumulators
128 memset(accumulator[0], 0, width * 4);
129 memset(accumulator[1], 0, width * 4);
130 memset(accumulator[2], 0, width * 4);
131
132 // For each line...
133 for (y = 0; y < height; y++) {
134
135 // For each accumulator, move the second line (index 1) to replace the first line (index 0).
136 // Clear the second line (index 1)
137 memcpy(accumulator[0], accumulator[0] + width, width * 2);
138 memset(accumulator[0] + width, 0, width * 2);
139
140 memcpy(accumulator[1], accumulator[1] + width, width * 2);
141 memset(accumulator[1] + width, 0, width * 2);
142
143 memcpy(accumulator[2], accumulator[2] + width, width * 2);
144 memset(accumulator[2] + width, 0, width * 2);
145
146 // For each column....
147 for (x = 0; x < width; x++) {
148
149 // For each component (r, g, b)...
150 for (c = 0; c < 3; c++) {
151
152 // Get the 8bit value from the original image
153 component[c] = GET_RGBA_COMPONENT(in, x, y, stride, c);
154
155 // Add the diffusion for this pixel we stored in the accumulator.
156 // >> 7 because the values in accumulator are stored * 128
157 if (x != 0 && x != (width - 1)) {
158 if (accumulator[c][x] >> 7 != 0)
159 component[c] += rand() % accumulator[c][x] >> 7;
160 }
161
162 // Make sure we're not over the boundaries.
163 CLAMP_256(component[c]);
164
165 // For green component we use 6 bits. Otherwise 5 bits.
166 // Store the difference from converting 8bit => 6 bit and the orig pixel.
167 // Convert 8bit => 6(5) bit.
168 if (c == 1) {
169 diff = DIFF_8BIT_TO_6BIT(component[c]);
170 component[c] = CONVERT_8BIT_TO_6BIT(component[c]);
171 } else {
172 diff = DIFF_8BIT_TO_5BIT(component[c]);
173 component[c] = CONVERT_8BIT_TO_5BIT(component[c]);
174 }
175
176 // Distribute the difference according to the matrix in the
177 // accumulation bufffer.
178 ACCUMULATE(accumulator[c], x + 1, 0, width, diff * 3);
179 ACCUMULATE(accumulator[c], x - 1, 1, width, diff * 5);
180 ACCUMULATE(accumulator[c], x, 1, width, diff * 5);
181 ACCUMULATE(accumulator[c], x + 1, 1, width, diff * 3);
182 }
183
184 // Write the newly produced pixel
185 PUT_565(out, x, y, alignedWidth, component[2], component[1], component[0]);
186 }
187 }
188
189 return out;
190}
191
192// Converts incoming RGBA32 (QImage::Format_ARGB32_Premultiplied) to RGB565. Returns the newly allocated data.
193// This function is similar (yet different) to the _565 variant but it makes sense to duplicate it here for simplicity.
194// The output has each scan line aligned to 4 bytes (as expected by GL by default).
195unsigned short* convertARGB32_to_RGBA4444(const unsigned char *in, int width, int height, int stride)
196{
197 // Output line stride. Aligned to 4 bytes.
198 int alignedWidth = width;
199 if (alignedWidth % 2 > 0)
200 alignedWidth++;
201
202 // Will store output
203 unsigned short *out = (unsigned short *) malloc(alignedWidth * 2 * height);
204
205 // Lookup tables for the 8bit => 4bit conversion
206 unsigned char lookup_8bit_to_4bit[256];
207 short lookup_8bit_to_4bit_diff[256];
208
209 // Macros for the conversion using the lookup table.
210 #define CONVERT_8BIT_TO_4BIT(v) (lookup_8bit_to_4bit[v])
211 #define DIFF_8BIT_TO_4BIT(v) (lookup_8bit_to_4bit_diff[v])
212
213 int i;
214 int x, y, c; // Pixel we're processing. c is component number (0, 1, 2, 3 for r, b, b, a)
215 short component[4]; // Stores the new components (r, g, b, a) for pixel produced during conversion
216 short diff; // The difference between the converted value and the original one. To be accumulated.
217 QVarLengthArray <short> accumulatorData(4 * width * 2); // Data for three acumulators for r, g, b. Each accumulator is two lines.
218 short *accumulator[4]; // Helper for accessing the accumulator on a per-channel basis more easily.
219 accumulator[0] = accumulatorData.data();
220 accumulator[1] = accumulatorData.data() + width;
221 accumulator[2] = accumulatorData.data() + (width * 2);
222 accumulator[3] = accumulatorData.data() + (width * 3);
223
224 // Produce the conversion lookup tables.
225 for (i = 0; i < 256; i++) {
226 lookup_8bit_to_4bit[i] = round(i / 16.0);
227 // Before bitshifts: (i * 8) - (... * 16 * 8)
228 lookup_8bit_to_4bit_diff[i] = (i << 3) - (lookup_8bit_to_4bit[i] << 7);
229
230 if (lookup_8bit_to_4bit[i] > 15)
231 lookup_8bit_to_4bit[i] = 15;
232 }
233
234 // Clear the accumulators
235 memset(accumulator[0], 0, width * 4);
236 memset(accumulator[1], 0, width * 4);
237 memset(accumulator[2], 0, width * 4);
238 memset(accumulator[3], 0, width * 4);
239
240 // For each line...
241 for (y = 0; y < height; y++) {
242
243 // For each component (r, g, b, a)...
244 memcpy(accumulator[0], accumulator[0] + width, width * 2);
245 memset(accumulator[0] + width, 0, width * 2);
246
247 memcpy(accumulator[1], accumulator[1] + width, width * 2);
248 memset(accumulator[1] + width, 0, width * 2);
249
250 memcpy(accumulator[2], accumulator[2] + width, width * 2);
251 memset(accumulator[2] + width, 0, width * 2);
252
253 memcpy(accumulator[3], accumulator[3] + width, width * 2);
254 memset(accumulator[3] + width, 0, width * 2);
255
256 // For each column....
257 for (x = 0; x < width; x++) {
258
259 // For each component (r, g, b, a)...
260 for (c = 0; c < 4; c++) {
261
262 // Get the 8bit value from the original image
263 component[c] = GET_RGBA_COMPONENT(in, x, y, stride, c);
264
265 // Add the diffusion for this pixel we stored in the accumulator.
266 // >> 7 because the values in accumulator are stored * 128
267 component[c] += accumulator[c][x] >> 7;
268
269 // Make sure we're not over the boundaries.
270 CLAMP_256(component[c]);
271
272 // Store the difference from converting 8bit => 4bit and the orig pixel.
273 // Convert 8bit => 4bit.
274 diff = DIFF_8BIT_TO_4BIT(component[c]);
275 component[c] = CONVERT_8BIT_TO_4BIT(component[c]);
276
277 // Distribute the difference according to the matrix in the
278 // accumulation bufffer.
279 ACCUMULATE(accumulator[c], x + 1, 0, width, diff * 7);
280 ACCUMULATE(accumulator[c], x - 1, 1, width, diff * 3);
281 ACCUMULATE(accumulator[c], x, 1, width, diff * 5);
282 ACCUMULATE(accumulator[c], x + 1, 1, width, diff * 1);
283 }
284
285 // Write the newly produced pixel
286 PUT_4444(out, x, y, alignedWidth, component[0], component[1], component[2], component[3]);
287 }
288 }
289
290 return out;
291}
292
293unsigned char* convertBGRA32_to_RGBA32(const unsigned char *in, int width, int height, int stride)
294{
295 unsigned char *out = (unsigned char *) malloc(stride * height);
296
297 // For each line...
298 for (int y = 0; y < height; y++) {
299 // For each column
300 for (int x = 0; x < width; x++) {
301 out[(stride * y) + (x * 4) + 0] = in[(stride * y) + (x * 4) + 2];
302 out[(stride * y) + (x * 4) + 1] = in[(stride * y) + (x * 4) + 1];
303 out[(stride * y) + (x * 4) + 2] = in[(stride * y) + (x * 4) + 0];
304 out[(stride * y) + (x * 4) + 3] = in[(stride * y) + (x * 4) + 3];
305 }
306 }
307
308 return out;
309}
Note: See TracBrowser for help on using the repository browser.